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(57) Abstract: The invention relates to a method and a computer program for determining a cofactor specificity of a target enzyme,
wherein the target enzyme is expected to use one of a first cofactor and a second cofactor based on an amino-acid sequence of the
target enzyme, and/or for determining an amino-acid sequence of a target enzyme variant, wherein the variant is characterized by a
cofactor specificity differing from that of the target enzyme, the method comprising at least the steps of: providing an atomic structure
for each of both cofactors, wherein each atomic structure comprises cofactor atoms, and wherein cofactor atoms in the atomic structures
that are located at the same corresponding locations in both atomic structures are selected; providing the amino-acid sequence of the
target enzyme; determining an estimated target enzyme-cofactor structure comprising information on a spatial structure of the target
enzyme bound to one of the cofactors; generating an interaction matrix for the target enzyme-cofactor structure, wherein the interaction
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matrix comprises entries relating the selected cofactor atoms to surrounding amino-acid residues of the target enzyme; determining
a cofactor specificity of the target enzyme by providing the interaction matrix, particularly the entries of the interaction matrix, to a
trained classifier that is configured to classify the cofactor specificity of the target enzyme based on the provided interaction matrix
to either the first or the second cofactor.
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Method and computer program for determining or altering a cofactor

specificity of a target enzyme

Specification

The invention relates for determining a cofactor specificity of a target enzyme,
wherein the target enzyme is expected to use one of a first cofactor and a second
cofactor based on an amino-acid sequence of the target enzyme, and/or for
determining an amino-acid sequence of a target enzyme variant, wherein the variant

is characterized by a cofactor specificity differing from that of the target enzyme.

Systems biology foundations broadly rely upon well performed gene annotations. In
this post-genomic era, given the large and exponentially growing amount of
sequences being characterized, experimental determination of a protein’s function is
becoming unfeasible, due to its cost and time consumption. Current methodologies
are based on pairwise sequence alignment and search for sequence homology to
perform protein function annotation. However, the usage of such approaches in
annotation pipelines tend to continuously propagate annotation errors across all
sequenced organisms due to the attribution of outdated and unspecific functions to
new annotated genes, impairing the discovery of new gene functions. Despite their
usefulness and relevance, such methodologies fail in capturing essential information
hidden in dissimilar areas of different sequences, such as cofactor specificity, which

gravely impairs the understanding of an organism’s metabolism.

Cofactors act in enzymatic reactions as redox carries and are important mediators for
energy transfer in the cell. The lack of accuracy in determining cofactor usage in
numerous genes severely affects, for example, genome-scale metabolic model
reconstruction, as well as metabolic engineering and strain design endeavours, due

to the potential identification of misleading reactions.

Nicotinamide adenine dinucleotide (NAD(H)) and nicotinamide adenine dinuclectide
phosphate (NADP(H)), are the most wildly used cofactors in cell metabolism. These
structurally similar molecules act as functional group transfer agents, being therefore
consumed at the same rate of substrate consumption. Moreover, the uncertainty of
their usage in metabolic reactions has a major impact in metabolic engineering
applications, affecting both predictions and strain design results. When correctly

characterized, enzyme modification by thorough structure redesign for cofactor

SUBSTITUTE SHEET (RULE 26)
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specificity change can be undertaken, enabling the efficient processing of multiple
desired biocatalytic transformations.

NAD(H) and NADP(H) are functionally equivalent cofactors used for storage and
exchange of electrons in catalytic reactions. These cofactors are used by the majority
of oxidoreductases, the largest class in Enzyme Commission. The only difference
between these two molecules is a phosphate group in the adenine moiety, located on
the opposite side from the chemically active nicotinamide moiety. Despite their
apparent similarity, enzymes that use these cofactors tend to be specific for only one
of them, enabling pathway regulation and chemical driving force maintenance by the
cells, through heavy regulation of the levels of oxidized and reduced metabolic pools
of NAD(P)(H).

Despite the efforts in identifying the cofactor specificity, very few studies go beyond
pinpointing the specific residues Arginine and Aspartate and only for the phosphate
moiety area. The best example is a study performed using ketol-acid
reductoisomerases that showed that the presence of acidic residues at conserved
phosphate binding positions are potential candidates of enzymes preferring NAD(H).

Another problem is the fact that most studies are based on data often composed by
small datasets or specific enzyme sub-classes, which can bias the results due to
their sequence similarity, and are regularly characterized using visual interpretation

or selection of positive cofactor change mutations.

Moreover, one of the most relevant even greater challenge is not only to determine
the cofactor specificity of an unknown enzyme, but also to alter the cofactor
specificity of enzyme and thus opening the gate for designing biosynthetic pathways,
such as the case of nicotinamide adenine dinucleotide (NAD(H)) and nicotinamide
adenine dinucleotide phosphate (NADP(H)) pathways.

Due to the structural similarity between NAD(H) and NADP(H), with their only
difference residing in the presence of a phosphate group in the vicinity of the 2’
hydroxyl of the adenosine ribose in NADP(H), specificity mechanisms are difficult to
characterize, hindering rational approaches for performing NAD(P)(H) cofactor
specificity reversal or specificity switching.

An object of the present invention is to provide a method and a computer program for
determining a cofactor specificity of a target enzyme, wherein the target enzyme is
expected to use one of a first cofactor and a second cofactor based on an amino-acid
sequence of the target enzyme, particularly wherein the amino-acid sequence is
devoid of 2D- or 3D-structural enzyme information. Another aspect of the invention is
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to provide a method and computer program for determining an amino-acid sequence
of a target enzyme variant, wherein the enzyme variant is characterized by a cofactor
specificity differing from that of the target enzyme, wherein the cofactor specificity of
the enzyme variant is particularly switched from the first cofactor to the second
cofactor. These objects are achieved by the device having the features of claim 1.

Advantageous embodiments are described in the subclaims.

According to claim 1 the method comprising at least the steps of:

i) providing particularly an information on an atomic structure for each of
both cofactors, wherein each atomic structure comprises cofactor atoms,
and wherein cofactor atoms in the atomic structures that are located at
the same corresponding locations in both atomic structures are selected,

i) providing the amino-acid sequence of the target enzyme,

i)  determining an estimated target enzyme-cofactor structure comprising
information on a spatial structure of the target enzyme bound to one of
the cofactors,

iv)  generating an interaction matrix for the target enzyme-cofactor structure,
wherein the interaction matrix comprises entries relating the selected
cofactor atoms to surrounding amino-acid residues of the target enzyme,
particularly wherein for each selected cofactor atom, entries are
generated in the interaction matrix that comprise the counts of each
amino-acid residue of the target enzyme within a predefined distance to
the selected cofactor atom,

v)  determining, particularly by means of a higher probability score, a
cofactor specificity of the target enzyme by providing the interaction
matrix, particularly the entries of the interaction matrix, to a trained
classifier, particularly a trained support vector machine that is configured
to classify the cofactor specificity of the target enzyme based on the
provided interaction matrix to either the first or the second cofactor.

It is noted that the sequence of steps i) to v) and also sequence steps of the
subclaims do not have to be carried out according to their numbering or listed
sequence. Moreover, separate sequence steps can be executed simultaneously or
be comprised in a single step or action. Particularly steps comprising the provision of
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features can be merged and be reduced to practice by for example providing the

respective features mixed or in combination.

Ad item i) The provision of the atomic structure particularly comprises the retrieval of
an information about the atomic structure of the cofactor. The term “atomic structure
of the cofactor” particularly refers to the geometrical and spatial relative position of

atoms in the cofactor to each other.

The first and the second cofactor particularly differ in their atomic structure in at least
one atom, i.e. the atomic structure of one of the cofactors has at least one atom that
is not present in the other cofactor. This can be by addition or replacement.

The selected cofactor atoms particularly reflect essentially the atoms common in both
cofactors. Atoms in excess are not selected.

Therefore, independent of the cofactor the number of selected atoms is the same,
even though the cofactors might not have the same number of atoms. In other words,
the selected atoms form a common cofactor devoid of structural features

characteristic for the first or the second cofactor.

The atomic structure (and more specifically the information on the atomic structure),
can be provided or retrieved for example by a particularly electronic database and
stored in a data storage for further processing

The atomic structure can be provided in a common data format for storing and read-
out the atomic structures. Moreover, the atomic structure can be provided in
combination with other information such as for example in combination with the target
enzyme-cofactor structure. It is explicitly noted, that it is not necessary to provide the
atomic structure in a separate processing step. It is within the scope of claim 1 that
the atomic structure is provided by any means.

Ad step ii) the provision of the amino-acid sequence of the target enzyme particularly
refers to the provision or retrieval of information on the amino acid sequence of the
target enzyme. In analogy to step i) the information can be stored in an electronic
data format and processed accordingly.

The amino acid sequence can provide a numbering of the amino acids such that the
amino-acid sequence can be determined by providing number in combination with
the kind code of the amino acid. Each amino acid therefore can be associated with a

number indicating its unique position in the sequence.
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Ad step iii) determining an estimated target enzyme-cofactor structure comprising
information on a spatial structure of the target enzyme to one of the cofactors.

The term “bound” in the context of the enzyme and the cofactor particularly also
refers to a state of interaction of the enzyme with the cofactor, when the enzyme
uses said cofactor, and thus a generic interaction configuration is adopted by the
enzyme and the cofactor. Therefore, the term “bound” is to be understood in a broad

sense throughout the specification.

The target enzyme-cofactor structure in analogy to the atomic structure of the
cofactor comprises the relative positions and particularly orientations of the atoms of
the cofactor as well as the amino acids of the target enzyme.

The target enzyme-cofactor structure can be provided, determined or stored in an
appropriate data format.

It is noted that the target enzyme-cofactor structure particularly provides information
about the positions of the cofactor atoms, including the selected cofactor atoms, with
respect to the amino acid residues of the enzyme. Therefore, it is possible to
determine distances between the cofactor atoms and amino-acids and other spatial
relations between the cofactor and the amino acid residues of the enzyme.

The term “amino acid residue” particularly refers to an amino acid comprised by the
enzyme and can particularly addressed by means of an index in the amino acid
sequence of the enzyme.

While on some cases the target enzyme-cofactor structure might be known or
otherwise inferred, in other cases the target enzyme-cofactor structure has to be
determined, for example by a homology search method. The latter is typically the
case, when the cofactor specificity of the enzyme is unknown.

In case the cofactor specificity is to be altered or switched from the first cofactor to
the second cofactor (or vice versa), the target enzyme-cofactor structure is often
known regarding only one of the cofactors, e.g. the first cofactor. As in subsequent
steps particularly only the selected cofactor atoms are of importance, knowing the
target enzyme-cofactor structure for one cofactor only, e.g. the first cofactor is
suffices for proceeding with the next method steps.

It is further noted that the atomic structure of the cofactor might be provided (cf. step
i)) only or exclusively together with, e.g. bound to the target enzyme. The same holds
true for the provision of the amino-acid sequence of the target enzyme (cf. step ii)).

Ad step iv) generating an interaction matrix for and particularly from the target

enzyme-cofactor structure, wherein the interaction matrix comprises entries relating
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the selected cofactor atoms to surrounding amino-acid residues of the target
enzyme, particularly wherein for each selected cofactor atom of the selected cofactor
atoms, entries are generated in the interaction matrix that comprise counts of each
amino-acid residue or amino-acid residue type of the target enzyme within a
predefined distance to the selected cofactor atom.

The interaction matrix is also referred to as the cofactor neighbor residue profile
matrix or CNRPM. The CNRPM can be in generated in a form of a look-up table or
any other format that is suited to relate selected cofactor atoms with the surrounding
amino acid residues of the target enzyme. In the context of the current specification
these formats are considered equivalent and within the meaning of the term “matrix”,

as they can serve the same purpose.

Entries in the CNRPM particularly consist of a single value that provides the

information of the surrounding amino-acids.

According to one embodiment for each cofactor atom M entries are provided,
wherein equals to the number of particularly naturally occurring amino acids, i.e.

typically 20, or amino acids that are comprised in the enzyme.

Thus, for N selected cofactor atoms and M amino acids, a total of N x M entries are

generated. Each entry relating the n" selected cofactor atom with the m" amino acid

Said n" x m"™ entry comprises for example the number of Lysines with in the

surrounding of m™" selected cofactor atom, which can be for example a carbon atom.

It is noted that for the purpose of unambiguity, the cofactor atoms, particularly the
selected cofactor atoms, can be associated with an index allowing an identification of
the cofactor atom in the atomic structure of the cofactor.

The term “counts” particularly refers to the number of occurrences, e.g. the

frequency, the specific amino acid is found in the surrounding.

The term “surrounding” particularly refers to an atomic scale surrounding, i.e. in the

order of Angstroms.

As the number of selected cofactor atoms is independent of the first and second
cofactor, the interaction matrix particularly does not comprise cofactor atoms solely
present in one of the two cofactors.

Moreover, the number of entries and particularly the dimension of the interaction
matrix is independent of the first or second cofactor and is the same for both
cofactors.
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This allows for a machine learning method, such as the classifier, particularly the
support vector machine to process to be trained with the same number of features for
the first and second cofactor.

According to one embodiment of the invention, the predefined distance corresponds
to a radius of less than 12A, more particularly less than 6A. “A” stands for Angstrom.

According to this embodiment all amino-acid residues that are within the predefined
distance of at least one of the selected cofactor atoms are counted in the respective
entry of the CNRPM.

In step v) a cofactor specificity of the target enzyme is determined by providing the
interaction matrix, particularly the entries of the interaction matrix, to a trained
support vector machine that is configured to classify the cofactor specificity of the
target enzyme based on the provided interaction matrix to either the first or the
second cofactor.

The classifier, particularly the support vector machine is particularly a machine
learning method that during a supervised training phase identifies a hyperplane that
separates features from each other such that a classifier is built.

The classifier is trained in a supervised manner with datasets of target enzymes
having a known cofactor specificity, particularly a known target enzyme-cofactor
structure, more particularly a known associated-interaction matrix, which can be

determined from the target enzyme-cofactor structure.

The features for training and for evaluation provided to the classifier are particularly

the entries of interaction matrix.

A suitable classifier in form of a support vector machine, can be based for example
on the scikit-learn library for python [3].

After training the classifier, particularly the trained support vector machine is used for
classifying interaction matrices associated or derived from to a target enzyme-
cofactor structure. The classification is for example done by means of a higher
probability score output by the classifier for one of the two cofactors.

It is noted that the interaction matrix does not comprise specific structural features of
the cofactors as only the selected cofactor atoms are comprised in the interaction
matrix.

Thus, even if the target enzyme-cofactor structure is specific to the first or second
cofactor the interaction matrix does not comprise these structural differentiating

features.



10

15

20

25

30

35

WO 2020/115269 PCT/EP2019/083950
8

This allows using a molecular structure template of a known enzyme-cofactor
structure and adapt said template to a target enzyme having unknown cofactor
specificity or an unknown target enzyme-cofactor structure without introducing or at

least with minimizing a bias in the interaction matrix that is used for classification.

Thus, the support vector machine classifies the cofactor specificity of a given target
enzyme by means of the interaction matrix associated to the target enzyme and the
selected cofactor atoms.

Therefore, special attention should be paid at the generation step of the target-

enzyme-cofactor structure in case it is unknown.

The method according to the invention therefore allows determining and particularly
predicting the cofactor specificity of a target enzyme, wherein only the amino-acid
sequence of the target enzyme and the atomic structure of the cofactor is provided.

The target enzyme-cofactor structure can be determined by means of a homology
search and/or a modelling method.

According to an embodiment of the invention, the trained classifier provides for each
selected cofactor atom and for each cofactor and for each amino acid a feature
weight indicative for a cofactor specificity strength of the amino acid.

The cofactor specificity strength and the feature weight is a statistically determined
value derived from a training set for the classifier, particularly wherein a higher
feature weight for an amino acid indicates that the said amino acid has a supposedly
large influence on the cofactor specificity, wherein a lower feature weight indicates a
small influence on cofactor specificity.

According to another embodiment of the invention, particularly if the target enzyme-
cofactor structure is unknown, the following steps are executed for determining the
estimated target enzyme-cofactor structure:

- performing a homology search with the amino-acid sequence of the target
enzyme in a protein structure database comprising information on molecular
structures of enzymes bound to the first or the second cofactor,

- assigning the molecular structure comprising the enzyme that exhibits a
highest degree of homology to the amino-acid sequence of the target
enzyme as a molecular structure template,

- from the molecular structure template determining the target enzyme-
cofactor structure for the amino-acid sequence of the target enzyme bound
to the cofactor particularly by aligning particularly modelling the amino-acid
sequence of the target enzyme to the molecular structure template.
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A homology search can be performed by using homology models. Such models are
for example created using Modeller [7], where sequence similarity search for
template selection is performed using the Smith-Waterman local alignment [8], [9] in
a local database composed by structures from the Protein Data Bank (PDB) bound to
one of the cofactors, such as for example NAD(P)(H). Structural similarity evidencing
a suitable template is particularly assume when two enzymes share an amino-acid
sequence identity above 25%, i.e. more than 25% of the amino-acid residues are
identical.

The atomic structure of the cofactor is particularly allocated in the aligned amino-acid
sequence by allowing Modeller to transfer these molecules from the molecular
structure template to the modelled structure, which is considered the target enzyme-

cofactor structure.

Thus, according to this embodiment the target enzyme-cofactor structure estimated
from the molecular structure template might comprise the cofactor bound to the
target enzyme for which the target enzyme might not be specific. This issue is
particularly resolved by generating the interaction matrix from the selected cofactor
atoms only and corrected by determining the cofactor specificity of the target enzyme
with the classifier, particularly the support vector machine based on the interaction

matrix.

According to another embodiment of the invention, the classifier, particularly the
support vector machine is trained by

- providing particularly a protein structure database, the protein structure
database comprising information on molecular structures of a plurality of
enzymes, wherein each molecular structure represents an enzyme bound to
the first or the second cofactor, particularly wherein each molecular structure
is provided in the same format as the target enzyme-cofactor structure,
particularly wherein the atomic structure of the bound cofactor in relation to
the amino-acid residues of the respective enzyme is comprised by the
molecular structure.

- for each molecular structure, generating the interaction matrix particularly
according to step iv), wherein each interaction matrix is associated to the
respective cofactor of the molecular structure,

- training the classifier, particularly the support vector machine with the
interaction matrices so that the classifier, particularly the support vector
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machine is trained to classify the cofactor specificity for the first or the second

cofactor of an enzyme based on the entries of the interaction matrix.
The molecular structures can be provided by the PDB.

Once the classifier is trained, the classifier particularly estimates a probability for the
target enzyme to be specific for the first and/or second cofactor. If probability for the
first and/or second cofactor is greater than a threshold value it is classified to be
specific for this cofactor.

According to another embodiment of the invention, the trained classifier, particularly
the support vector machine provides a cofactor specificity probability for the first
and/or the second cofactor for classifying the cofactor specificity of the target
enzyme, wherein if said cofactor specificity probability exceeds a predefined
threshold value, the target enzyme is classified to be specific to the cofactor with the
probability exceeding said threshold value.

The cofactor specificity probability particularly assumes values between 0 and 1,
wherein the threshold value for the probability is particularly larger than 0.5, more
particularly larger than 0.8, even more particularly larger than 0.9.

According to another embodiment of the invention, the amino-acid sequence of the
target enzyme having the cofactor specificity switched from the first cofactor to the
second cofactor is determined by the steps of:

a) particularly providing a target enzyme cofactor structure with a target
enzyme being specific to the first cofactor,

b)  prior to step v), replacing at least one amino-acid in the interaction matrix,

c) determining whether the cofactor specificity determined in step v) is
switched from the first cofactor to the second cofactor,

d) particularly repeating the steps b) to ¢), particularly until the cofactor
specificity determined in step v) is switched from the first cofactor to the
second cofactor.

Step a) this step can be achieved already in step iii). This target enzyme-cofactor
structure serves as the basis for modifications on the enzyme, wherein form the
target enzyme-cofactor structure the interaction matrix is generated according to step
iv). Once the interaction matrix is established, at least one amino-acid residue of the
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amino-acid sequence of the target enzyme is changed. This can be done directly in
the interaction matrix according to step b) and translated to the amino-acid sequence

of the target enzyme resulting in an amino-acid sequence for an enzyme variant.

It is noted that changing one amino-acid residue of the amino-acid sequence of the
target enzyme might result in multiple changes in the interaction matrix, in case said

amino-acid residue is comprised in multiple entries of the interaction matrix.

The altered interaction matrix is then provided to the trained classifier, such that a
cofactor specificity of the enzyme variant is determined. In case the specificity
remains unaltered another or more amino-acids can be changed until the cofactor
specificity of the associated enzyme variant is witched form the first cofactor to the
second cofactor.

This embodiment allows for determining an amino-acid sequence of an enzyme
variant having a switched cofactor specificity with respect to the original target

enzyme.

According to another embodiment of the invention, for each of the two cofactors and
for each of the selected cofactor atoms and for each amino-acid, particularly when it
is within the predefined distance of the cofactor atom, a feature weight indicative of a
cofactor specificity strength is determined or provided, particularly wherein the
classifier determines and/or provides the feature weights after being trained,
particularly wherein said feature weights are provided in form of a computer readable
look-up table.

The plurality of feature weights associated to the first or second cofactor and to the
respective cofactor atom is also referred to as impact matrix in the current

specification.

This embodiment allows identification of amino-acids for each selected cofactor atom
that have a large influence on cofactor specificity. The identification is achieved by
means of comparably (with respect to estimated feature weights of other amino
acids) large feature weight.

It is noted that the feature weights are determined for amino acids in the surrounding,
particularly within the predefined distance of the respective cofactor atom. The
feature weights are particularly not connected to a specific enzyme or amino acid
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sequence but represent a generalized property of the cofactor specificity resulting
from the training of the classifier, particularly the support vector machine.

The feature weight can particularly assume values between 0 and 1 or scaled to this

range.

According to another embodiment of the invention, a maximum impact matrix is
determined or provided relating for each cofactor, each selected cofactor atom to the
amino-acid having the largest feature weight for the respective cofactor specificity,
particularly wherein the maximum impact matrix is determined and/or provided by the
trained classifier, particularly the trained support vector machine, particularly wherein
the maximum impact matrix stored as a computer readable look-up table.

The maximum impact matrix is particularly generated after training of the classifier is
completed, wherein the maximum impact matrix does not necessarily need to be
generated each time the trained classifier determines the cofactor specificity of the
target enzyme.

The maximum impact matrix can be sorted according to the feature weight,
particularly such that the selected cofactor atoms associated with the amino acids
with the largest feature weights are in the first rows or columns.

According to another embodiment of the invention, the amino-acid sequence of the
target enzyme, i.e. the enzyme variant, having the cofactor specificity switched from
the first cofactor to the second cofactor is determined by the steps of:

- before the interaction matrix is provided to the classifier, particularly the
support vector machine in step v), replacing M amino-acid residues in the
interaction matrix corresponding to the amino-acid residues of the target
enzyme with the M largest feature weights for the first cofactor, with the
corresponding M amino-acid residues for the same cofactor atoms having
the largest feature weight for the second cofactor, wherein M is a natural
number, particularly wherein the maximum impact matrix is used for
looking up M amino acids for the first and second cofactor,

- particularly providing the such altered interaction matrix to the classifier,
particularly the support vector machine as the interaction matrix in step

v),
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- after step v), determining whether the specificity of the enzyme variant
associated to the interaction matrix is switched with respect to the target

enzyme.

The M amino-acids having the M largest feature weights of the corresponding

cofactor atom can be for example looked up from the maximum impact matrix.

Particularly from the maximum impact matrix the cofactors having the amino acids
with the largest feature weight for the first cofactor are identified and the amino acids
for the same cofactor atoms are identified (particularly from the maximum impact
matrix) that have the highest feature weight for the cofactor specificity for the second
cofactor.

Then, the M amino-acids with the M highest feature weights for the first cofactor are
replaced with the amino acids (for the same cofactor atom) having the highest
feature weight for the second cofactor.

This embodiment particularly uses the maximum impact matrix, however it is possible
to do so also by selecting the respective amino acids from feature weights

determined in the impact matrix.
M is particularly between 1 and 10.

This embodiment provides a deterministic approach for replacing the amino-acids.

According to another embodiment of the invention, starting from an initial value for M,
particularly M =1, the amino acid residue having the M highest feature weights for the
first cofactor are replaced by the corresponding amino acids for the second cofactor,
wherein M is incremented by one or more in case the specificity is not switched, until
the cofactor specificity of the target enzyme is switched or a predefined maximum
value for M is reached.

As elaborated above, the switching can be established by the classifier that
determines the cofactor specificity particularly based on a cofactor specificity
probability.

According to another embodiment of the invention, the amino-acid sequence of the
target enzyme having the cofactor specificity switched from the first cofactor to the
second cofactor is determined by the steps of:
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)] before the interaction matrix is provided to the classifier, particularly the
support vector machine in step v), determining particularly using the
interaction matrix of the target enzyme and the impact matrix or maximum
impact matrix, N amino-acid residues of the target enzyme with the N
largest feature weights for the first cofactor, wherein N is a natural
number, particularly 10,

[l)  repeatedly performing a stochastic evolutionary method for replacing the
N amino-acid residues with other amino-acid residues in the interaction
matrix, and for each cycle of the stochastic evolutionary method and for
each amino-acid sequence retrieved from the cycle determining the
cofactor specificity and the cofactor specificity probability with step v) with
the classifier,

[l) after step v), selecting at least one target enzyme with a switched
cofactor specificity.

With the selection of the N, particularly ten most suitable mutable residue positions
for cofactor specificity reversal respectively switching, and given the possibility of
each residue position being mutated by the remaining particularly 19 amino acid
residues, it is computationally expensive to predict/determine the cofactor specificity
of every mutant combination for each theoretically possible enzyme variant.

To overcome this issue, the stochastic evolutionary method particularly implements a
stochastic evolutionary algorithm. These optimization algorithms perform an evolution
of a population by mimicking biologic events such as natural selection, here for

example the random replacement of one or more of the N amino acids.

According to another embodiment of the invention, the evolutionary algorithms used
in the stochastic evolutionary method for efficiently predict the optimal set of
mutations to reverse cofactor specificity are implemented using inspyred [16], an
open source framework for creating biologically-inspired computational intelligence
algorithms in Python.

According to another embodiment of the invention, the stochastic evolutionary
method executes a predefined number of evolution cycles, particularly 100 evolution
cycles.

According to another embodiment of the invention, a plurality of evolutionary
algorithms, particularly thee or five evolutionary algorithms, are comprised in the
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stochastic evolutionary method, wherein a first evolutionary algorithm replaces only
one of the amino acid residues of the N amino acid residues having the highest
feature weight for the first cofactor during a cycle of the stochastic evolutionary
method, wherein a second evolutionary algorithm replaces two of the amino acid
residues of the N amino acid residues having the N highest feature weights for the
first cofactor during a cycle of the stochastic evolutionary method, wherein a third
evolutionary algorithm replaces three of the amino acid residues of the N amino acid
residues having the N highest feature weight for the first cofactor during a cycle of
the stochastic evolutionary method and so on for the rest of the remaining
evolutionary algorithms of the plurality of evolutionary algorithms.

The amino acids are replaced in the interaction matrix by randomly chosen amino
acid.

According to another embodiment an elitism value was set to 2, keeping the best 2
scoring enzyme variants for the next cycle, wherein the score is determined form the

cofactor specificity probability.

According to another embodiment, the next best scoring 50% of all enzyme variants,
particularly 50 enzyme variants, are recombined using mutation operators, with a
crossover rate of 0.9 and a mutation rate of 0.1. The crossover operator particularly
uses the parameters of two variant enzymes and combines them, generating two
new enzyme variants, while the mutation operator substitutes one element of the
enzyme variant by another, randomly generated, wherein the remaining lowest
scoring 48% of enzyme variants are discarded and newly generated enzyme variants
with random mutations in the available mutable positions are incorporated in the
population. The stochastic evolutionary method is particularly terminated when the

maximum number of cycles is reached.

According to another embodiment of the invention, in step Il) selected amino
sequences are provided to a next cycle of the stochastic evolutionary method,
wherein the amino-acid sequences are selected based on the highest cofactor
probability for the second cofactor.

This allows a convergence of the stochastic evolutionary method to a switched

enzyme variant.

According to another embodiment of the invention, the first cofactor is selected from
one of the redox pairs NAD / NADH and NADP / NADPH, and the second cofactor is
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the other of the redox pairs, or vice versa, and wherein the target enzyme or the
enzyme variant is either specific to NAD(H) or NADP(H).

NADH is also referred to NAD(H), NADPH is also referred to as NADP(H) and the
two cofactors are also referred to NAD(P)(H) in an indiscriminatory fashion.

According to another embodiment of the invention, the first cofactor is selected from
one of the redox pairs FAD / FADH2 and NADP / NADPH, and the second cofactor is
the other of the redox pairs, or vice versa. FAD is short form for a flavin adenine
dinucleotide.

According to another embodiment of the invention, the first cofactor is selected from
one of the redox pairs FAD / FADH2 and NAD / NADH, and the second cofactor is
the other of the redox pairs, or vice versa.

According to another embodiment of the invention, the target enzyme and/or the
enzyme variant is synthesized or the amino-acid sequence of the enzyme variant
and/or the determined cofactor specificity of the target enzyme or the enzyme variant
is stored in an electronic storage or provided to a user of the method.

The problem is furthermore solved by a computer program and/or a computer
program product comprising particularly the computer program instructions which,
when the program is executed by a computer, cause the computer to carry out the
method according to the invention.

The computer can for example be general purpose computer.

In the following exemplary embodiments of the inventions are disclosed fore
illustrative purposes.

Figure description

In Figure 1 a cofactor neighbor residue profile matrix generation is schematically
depicted. Starting with the target enzyme-cofactor structure, the location of the
cofactor as a reference is selected and the positions of the selected cofactor atoms
are registered. For each selected cofactor atom the surrounding amino acid residues
are selected, particularly those within 6 A. The complete process is performed
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automatically. The end result encompasses a matrix of interactions between each
cofactor atom and neighboring residues. The presented enzyme structure depicts a
Dihydropteridine Reductase bound to NAD+ from Rat liver, with the EC 1.5.1.34.
PDB id: 1DIR.

In the CNRPM the cofactor atoms are listed along the rows, wherein the amino acids
are listed along the columns.

Figure 2 shows a flow diagram of an exemplary execution of the method according to
the invention for target enzyme cofactor specificity prediction, also referred to as
NiCofactor. Three input steps are performed upon provision of the amino acid
sequence of the target enzyme that are related to file handling and data conversion
to a suitable data format that is referred to as “Seq1.PIR” . In order to determine the
estimated the target enzyme-cofactor structure, the sequence is used for a homology
search for identifying a molecular structure that is close, i.e. whose enzyme has a
most similar amino acid sequence, the molecular structure associated to the enzyme
having the highest degree of homology is then selected and used as a molecular

structure template.

In a next step, the target enzyme sequence is aligned (step “sequence alignment and
Model building”) with the molecular structure template in order to generate a
presumable structure of the target enzyme bound to one of the cofactors.

The aligned sequence and the associated target enzyme-cofactor structure is then
transferred in a PDB file format (“Seq1.PDB”). This format is particularly suitable and

common for protein structures.

From the target enzyme-cofactor structure, the interaction matrix is determined by
counting the amino acid residues of the target enzyme within a predefined distance,
for example within 6A, of each selected co-factor atom (steps “Cofactor neighbour
residues search” and “CNRPM”). The interaction matrix, particularly the entries of the
interaction matrix, CNRPM, serve as features for the trained support vector machine
and are therefore provided ot the SVM classifier. The support vector machine outputs
a cofactor specificity probability for the target enzyme for being specific to one of the
two cofactors. This is done n form of a classification score. If the score is above a
predefined threshold value the target enzyme is considered to be specific for the
respective cofactor.

Figure 3 shows schematically the process of identification of the amino acid residues
of a target enzyme that have the highest features weights. With the CNRPM and the
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maximum impact matrix the ten amino acids having the highest feature weight are
identified.

Some or all of these amino acid residues are replaced with another amino acid.
Depending on the embodiment — a deterministic replacement method or a stochastic
evolutionary method is applied.

In Figure 4 an embodiment of the stochastic evolutionary method is shown for
replacing amino acids in the target enzyme to generate an enzyme variant with a

switched cofactor specificity.

An initial population of altered enzymes is generated by randomly replacing at least
one amino acid residues from the ten highest scoring amino acid residues of the
target enzyme. Five evolutionary algorithms are used, wherein each evolutionary

algorithms replaces a different number of amino acid residues, between one and five.

Form this initial population comprising 100 altered enzymes, the cofactor specificity is

determined according to the method of the invention in an “Evaluation step”.

In this evaluation step, the two highest scoring altered enzymes are selected as elite
candidates, the next 50 highest scoring altered enzymes are altered again by means
of recombination provides. The score is particularly the cofactor specificity probability
for the other cofactor. The remaining 48 altered enzyme having the 48 lowest scoring
cofactor specificity probabilities for the other cofactor are discarded and new random
mutations are introduced so that again 100 altered enzymes are provided for the next
cycle. This process can be executed for each of the five evolutionary algorithms,
such that for each number of replaceable amino-acids the best scoring altered
enzyme can be identified. The stochastic evolutionary method is executed for 100
cycles. The best altered enzymes are the altered enzyme with the highest cofactor
probability for the other, i.e. second cofactor (wherein the original target enzyme is
specific to the first cofactor).

In the following various examples and exemplary embodiments for the reduction to

practise are given.

1. Examples of cofactor specificity determination

1.1.1 Structure analysis and CNRPM generation

The generation of the cofactor neighbor residue profile matrix (CNRPM) for each
NAD(P)(H) bound enzyme structure is built using the python computer programming
language. Each target enzyme-cofactor structure is automatically handled and the
distances between each selected cofactor atom and the amino acid residue
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neighbourhood (surrounding) are retrieved using the PDB module of the Biopython

package [2].

Interactions between cofactor atom and neighbor residue are assembled in an

interaction matrix and outputted, in order to be processed by the machine learning
algorithm, particularly the classifier, more particularly the support vector machine.

1.1.2 CNRPM dataset extraction

All enzymes bound to one of the following ligand IDs: NAD/NAI/NAP/NDP,
representatives of NAD*/NADH/NADP*/NADPH respectively, were sought after in the
PDB and automatically retrieved and analyzed using the PDB module of the
Biopython package.

Entries whose enzyme or cofactor structure were incomplete or disrupted were
discarded. In order to overcome the problem of overfitting/biasing with structure
duplicates or point mutations of the same enzymes with different entry codes, a
redundancy threshold was set and applied to the sequences coding the retrieved
enzyme structures. The selected threshold was set to 95% similarity in 90% of the
sequence length, allowing the removal of duplicates and point mutations of the same

enzymes.

1.1.3 Machine learning

Machine learning was used for solving the classification problem in the form of
supervised learning. A support vector machine, the selected method, is applied using
the scikit-learn library for python [3]. LIBSVM was the employed library and the radial
basis function (RBF) was the chosen kernel function.

The developed CNRPM dataset was used as a training set and handled with the
NumPy library for python [4]. Model performance was evaluated by measurements
including accuracy, precision, Matthew’s correlation coefficient (MCC) and area
under curve of the receiver operating characteristics (AUC ROC). Accuracy refers to
the closeness of a measured value to a standard or known value, precision refers to
the closeness of two or more measurements to each other. MCC measures the
prediction quality, taking into account over- and under- predictions and giving a
complementary measure of the prediction performance [5]. MCC of 1 means a
perfect prediction, and 0 denotes a completely random prediction. The receiver
operating characteristic (ROC) curve [6], plots true positive rate on the y-axis against

the false positive rate on the x-axis. The normalized area under curve of the receiver
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operating characteristics (AUC ROC) states a perfect prediction if the AUC value is 1,
and a random guess if the value is 0.5.

1.1.4 Comparative modeling for structure analysis

Homology models are created using Modeller [7] and the modeller package for
python, where sequence similarity search for template selection is performed using
the Smith-Waterman local alignment [8], [9] in a local database composed by
structures from PDB bound to one of the cofactors NAD(P)(H). Structural similarity
evidencing a suitable template was assume when two proteins share a sequence
identity above 25%

The structure of the Cofactor is correctly allocated in the modelled structures by
allowing Modeller to transfer these molecules from the template to the modelled

structure.

1.1.5 NiCofactor tool construction

The method for determining the cofactor specificity of an target enzyme is termed
NiCofactor allowing high throughput NAD(P)(H) cofactor specificity prediction was
built using the python programming language. For each sequence in the FASTA
format used as input, the method initiates an individual project. The steps for
generating CNRPMs and performing machine learning were also integrated in
NiCofactor. Results are outputted by attributing to each analyzed sequence a
cofactor specificity prediction and subsequent prediction score, indicative for the
cofactor specificity probability.

1.1.6 NiCofactor result validation dataset

Curated information on cofactor, cofactor specificity, EC number, organism,
sequence, literature and source information on enzymes using NAD(P)(H) were
retrieved automatically from brenda-enzymes using SOAPpy, a tool for building
SOAP clients and servers, implemented in python [10].

1.2 Besults

1.2.1 Cofactor neighbor residue profile matrix (CNRPM) development

Characterizing structural information is a challenging task due to the overwhelming
amount of information associated with the structure of a protein. The main focus was
to retrieve all possible interactions between each cofactor atom and the nearest
residues in the binding pocket of the target enzyme. With that in mind a tool that,
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given a characterized structure bound with NAD(P)(H) (in the PDB format),
automatically returns a matrix of interactions between each cofactor atom and the
surrounding amino-acid residues, at a distance of 6 A By ignoring the atoms related
to the phosphate in the adenosine moiety of NADP(H), it is possible to create similar
cofactor neighbor residue profile matrices (CNRPM) for both NAD(H) and NADP(H)
cofactors, which is crucial to a well performing machine learning method, such as the
support vector machine. Figure 1 depicts the cofactor neighbor residue profile matrix
building process.

In these CNRPM, where each line refers to a selected cofactor atom (44 atoms) and
each column refers to one of the twenty natural amino-acids, each value refers to the
number of residues found. If, within the surroundings of an atom, a specific residue is
not present, the value of that interaction is set to 0 (zero) in the interaction matrix.
Thus, an interaction matrix with 20x44 entries is generated that encompasses 880

interaction values.

1.2.1.1 Building a comprehensive and representative CNRBPM dataset

With the intent of applying the developed method in the construction of an accurate
and representative dataset of CNRPMs, for unveiling the molecular determinants of
cofactor specificity, a database of enzyme structures bound to NAD(P)(H) is
assembled. To do so, (in January 13" 2016) all enzyme structures bound to one of
the cofactors NAD(P)(H) from the PDB were retrieved and analyzed. The total
amount of structures collected was 2742, from which 148 were discarded due to
incompleteness. With the removal of protein sequence redundancy, the final dataset
encompassed 921 structures, being 491 structures bound to NAD(H) and 430 to
NADP(H). Once the database was assembled and validated, the developed method
was applied to all structures and a CNRPM was retrieved for every enzyme.

1.2.2 CNRPM dataset analysis and processing using Machine learning

Having built a large representative dataset of 921 CNRPMs, a support vector
machine (SVM) algorithm was used to attribute cofactor preference/specificity based
on the CNRPMs, while evaluating the performance of the method. The SVM training
algorithm works by building a model, with categorized training examples, such as the
CNRPMs (which are categorized as belonging to NAD(H) or NADP(H)), and
representing them as points in a high-dimensional hyperplane, separated by category
and divided by a clear gap between them. This allows the algorithm to assign a
category to uncategorized new examples, based on the side of the hyperplane they
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fall. Performance is assessed by measuring how fine the division of categories is
achieved [11].

By applying this algorithm to the CNRPMs dataset as a training set, an SVM model
was created whose evaluation and performance parameters can be found in table
1.1. The created model achieved an accuracy of 96.2%, being able to correctly
classify 886 CNRPMs as corresponding to NAD(H) or NADP(H) cofactors, with a
precision of 96.03% and a Matthews correlation coefficient (MCC) of 0.92. The
computed area under the receiver operating characteristic curve (AUC ROC)
coefficient is 0.96. The confusion matrix displayed in table 3.1 evidences the high
sensitivity and specificity of the model, with similar misclassification values in both
NAD(H) and NADP(H) CNRPM.

Table 1.1 depicts the evaluation and performance parameters of the created SVM
model. Accuracy, precision, MCC (Mathews correlation coefficient) and AUC ROC
(area under the receiver operating characteristic curve) values (top) display the
overall performance of the mode, indicating a well performing model. The Confusion
matrix (bottom) evaluates sensitivity and specificity of the model.

Table 1.1
Accuracy Precision MCC AUC ROC
SVM model 96.20% 96.03% 0.92 0.96
Real cofactor
NAD(H) NADP(H)
474 17 NAD(H)
Predicted cofactor
18 412 NADP(H)

These results put in evidence that the type and number of residues present in the
cofactor binding site have a crucial role in the specification of cofactor preference in
the enzyme. Such results also demonstrate the possibility to predict/indicate cofactor
preference in an enzyme by analyzing its cofactor neighbor residue profile using the
method according to the invention.

1.2.2.1 SVM feature weights extraction and interpretation

The SVM model training works by attributing weights to features in the dataset (in
this case a feature is a cofactor atom-residue interaction), allowing the correct
separation of the instances in the hyperplane. Such separation is what enables the
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algorithm to classify a CNRPM as originated from an enzyme bound to NAD(H) or
NADP(H). The extraction and interpretation of such metrics are of great importance
in the identification of the crucial interactions between residue and cofactor atoms,
and should allow to exactly pinpoint the set of relations in the CNRPM responsible for
providing the cofactor preference to an enzyme. The exiracted data, composed by
880 features and their respective weight in the SVM model, are presented in table A1
of the appendix. The highest extracted weight values correspond to 0.44991 for
NADP(H) and 0.23609 for NAD(H). Despite the large amount of features, feature
weight values from both NADP(H) and NAD(H) decrease rapidly from the heaviest
values, leveling out in lighter features. This indicates that, despite the contribution of
all features to the classification of the CNRPMs, some relations have a more
significant role in classifying cofactor preference than others.

When analyzing the results, it was possible to observe that selected cofactor atoms
from all parts of the cofactor structure contribute to specificity, despite the only
difference between both cofactors being the presence of a phosphate molecule in the
ribose from the adenine moiety. In fact, the fifteen heaviest features for both
cofactors encompass atoms from adenine, ribose from adenosine, phosphates,
ribose from nicotinamide ribose and nicotinamide.

Table 1.2 displays the fifty heaviest features for each cofactor along with the
respective weight.

Table 1.2 shows the SVM model feature weight distribution for NAD(H) (left) and
NADP(H) (right). Feature weight is distributed in a decreasing order, starting from the
heaviest. Columns depict the type of atom, amino acid (AA) and feature weight.
Feature weights are divided into two sub columns for each cofactor.

NAD(H) NADP(H)
Atom  AA Weight | Atom  AA Weight | Atom  AA Weight | Atom  AA Weight

C8A ASP 0.238 C4B ARG 0.144 02B ARG 0.450 C4N LEU 0.145

04B SER 0.214 N3A ASP  0.143 02B SER 0.265 C4A  ASN 0.137
C4B ASP 0.212 02B LEU 0.142 02B LYS 0.262 N9A TYR 0.137
CsB ASP 0.212 03B GLU  0.141 C2B ARG 0.229 02D ALA 0.135
O5B ASP  0.202 N9A LEU 0.139 03 GLY 0.223 0O2A ALA 0.134
C5A LYS 0.199 Ci1B  ALA 0.137 O3B ALA 0.218 0O5B SER 0.133
02D VAL 0.193 C4D TYR 0.135 C4D ASN 0.217 N1A  PRO 0.132
C2B GLU 0.179 | OIN ARG 0.134 O1A  ALA 0.186 N7N  ASN 0.129
N6A ALA  0.179 C3N GLU 0.128 02B GLY 0.180 O1A  LYS 0.127
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CsB TRP 0.177 | O5D ALA 0.128 N1A  SER 0.168 N7N  ALA 0.127
OIN LEU 0.176 N7N  ILE 0.126 C5B LEU 0.164 O3B LYS 0.124
C2B GLY 0.174 N9A GLU 0.125 C1B ARG 0.164 C5D ALA 0.123
N7A  PHE 0.165 O1A ARG 0.125 03D TYR 0.161 C2B SER 0.123
O2N LEU 0.162 O3B ILE 0.125 O7N  CYS 0.159 C4N  GLY 0.119
N7N ASP  0.157 C8A MET 0.122 PN GLU 0.159 C8A TYR 0.117
O2N PHE 0157 | O5D THR 0.122 C2N ILE 0.158 03 ASN 0.116
O3B PHE 0.155 ] OIN ASN  0.121 C5A TYR 0.157 | 04D THR 0.115
Cs5B ALA 0.153 | O7N ARG 0.120 O2N  ASP 0.153 C4A ALA 0.114
O3B GLY 0.152 N3A LYS 0.120 C3N LYS 0.150 C4B LEU 0.114
02B GLU 0.152 N1A  PHE 0.120 05D ILE 0.149 N1N ASP 0.114
OIN TYR  0.152 N9A ILE 0.120 C4D THR 0.148 C5B CYS 0.113
N3A TYR  0.151 C3B ILE 0.118 N7A  TYR 0.148 04B GLY 0.112
N9A ASP  0.150 Ci1B SER 0.118 C2B LYS 0.147 C2B THR 0.112
05D GLN  0.149 C5A PRO 0.117 O1A  SER 0.146 O7N  HIS 0.111
C2B PRO 0.148 C3D HIS 0.117 C6A VAL 0.145 C8A SER 0.110

In Table 1.2, not only cofactor atoms from the entire cofactor structure are present,
but also a large majority of the 20 natural amino acids residues are present in
features from both cofactors. In the case of NAD(H), besides Aspartate, also
Glutamate, Alanine, Leucine, Phenylalanine, Arginine and Isoleucine residues are
frequently present in the displayed features, dispersed in interactions with atoms
from the entire NAD(H) structure, being Cysteine the only amino acid residue not
present in the first fifty features. In the case of NADP(H), again the most important
interactions occur in atoms belonging to the adenosine moiety, with Arginine residues
near the atom O2B being the heaviest feature, possibly due to the presence of the
phosphate connected to that atom in NADP(H). Serine, Lysine, Glycine, Alanine,
Asparagine and Tyrosine residues are the most frequent amino acid residues present
in the first features, being absent from this group Tryptophan, Phenylalanine,
Glutamine and Methionine residues.

1.2.3 NiCofactor cofactor specificity prediction method development

For prediction of target enzyme cofactor specificity for enzymes with an unknown
target enzyme-cofactor structure, comparative modelling methods are used, as these
methods not only allow processing newly sequenced enzymes or organisms, but also
cope with the large existing gap between available sequences in Uniprot (93 million)
and structures in PDB (almost 135 thousand, with only 42572 being directly linked to
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Uniprot as of October, 2017). To do so, a method was developed that implements
functions for comparative modelling of protein structures using Modeller [7], a
software that performs modelling by satisfaction of spatial restrains, through
sequence alignment of the target sequence and known related structure templates.
Through the integration of the developed methods with the resulting SVM model, a
method was created that automatically performs cofactor preference prediction. With
only the input of an amino acid sequence, a machine learning analysis of the
modelled structural environment around the cofactor is performed. Figure 2
represents the pipeline developed within the built framework that enables the
prediction of cofactor specificity. The developed framework is implemented in a

computer program.

Figure 2 shows the developed framework pipeline. The displayed planes depict the
sequence of events for cofactor specificity prediction. Starting from the left top, a
Fasta file composed by the target enzyme amino acid sequence is provided to the
method according to the invention, where they are structurally modelled, analyzed
and classified.

1.2.3.1 Validation of NiCofactor cofactor specificity prediction tool using curated

information

In order to validate the developed method and the machine learning model, a dataset
with curated information on enzyme specificity was constructed. For that, Brenda-
enzymes [1] was used and curated information on cofactor, cofactor specificity, EC
number, organism, sequence, literature and source were retrieved. Firstly, the
database was filtered for enzyme entries with NAD*, NADH, NADP™ or NADPH as
cofactor, subsequently the cofactor commentary field was filtered for expressions

»oou

indicating high cofactor specificity, such us, “absolute specificity”, “specific”, “totally
specific”, “dependent on”, “strict’, “no activity” or “required”. This step enabled us to
create a dataset of 404 distinct amino acid residue sequences of different enzymes
with high cofactor specificity experimentally determined, originated from a
combination of 198 EC numbers and 180 organisms. From the total amount of
enzyme amino acid sequences, 189 are specific for NAD(H) and 215 for NADP(H).
With the retrieved information present on the dataset, the amino acid sequences
encompassed in the dataset were arranged and displayed in Fasta format, in a single
Fasta file. This file was then uploaded and processed in the developed tool

NiCofactor and predictions of NAD(P)(H) cofactor specificity were performed.
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When analyzing the results obtained from the developed tool it was possible to
observe that from the total 404 sequences analyzed, composing the dataset of
curated information, the developed tool performed a cofactor prediction for 327 (81%)
as around 11% (45) of the enzymes analyzed had their structure characterized and
approximately 70% (282), despite not having their structure characterized, were
found to have a suitable structural template, enabling structure inference by
homology modeling. For 19% (77) of the enzymes analyzed, no structural template
was found, impairing the possibility of a cofactor prediction. The overall accuracy in
prediction of the method according to the invention was 83.5%. By further analyzing
the machine learning model prediction output, it is possible to retrieve the predictions
probability, which is an estimate from the model on how probable the prediction is
correct. When plotting the prediction probability results we observed that the
accuracy of the model tends to increase with the prediction probability, which opens
the possibility of establishing a probability threshold that should improve the
framework predictive capabilities.

The vast majority of predictions made by the SVM, have a very high probability
score, with nearly 50% of the analyzed sequences having a cofactor prediction
probability of at least 95%, according to the model. In fact, 73.4% (240) of the
outputted predictions have a prediction probability above 80%. This results indicate
that most of the prediction performed by the developed SVM model have a high
probability of being correct. It is also possible to observe that the accuracy of the
predictions made increases with the prediction probability score outputted by the
model, which validates the prediction probability score. When the outputted
prediction has a probability of at least 80%, the accuracy of the predictions increases
to from 83.5% to 90%, and when the prediction probability surpasses 95%, model
accuracy is 96%. The presented results validate the developed tool for performing
NAD(P)(H) cofactor preference predictions on enzymes, using only the enzyme’s
amino acid residue sequence as input, which enables the prediction of cofactor
preference in newly sequenced enzymes, or enzymes whose structures are yet to be
characterized. To improve the prediction accuracy of the developed tool, a prediction
probability threshold of 80% was set, which means that if the prediction probability of
an analyzed sequence is, at least, 80%, the prediction is accepted as correct.

1.2.3.2 NiCofactor sensitivity analysis with case studies

In order to demonstrate the performance sensitivity of the method two experimentally
characterized case studies encompassing homologue enzymes using distinct
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cofactors, were further analyzed. First, the case of Azospirillum brasiliense’s a-
Ketoglutaric Semialdehyde Dehydrogenase Isozymes (KGSADH) is presented.
According to Watanabe et al. [12] in A. brasiliense, KGSADH is involved in the
conversion of a-ketoglutaric Semialdehyde to o-Ketoglutarate in an alternative
pathway of L-arabinose metabolism. In his study it is described that this bacterium
encodes for two different KGSADH isozymes, D-glucarate/D-galactarate-inducible
KGSADH-1I and hydroxy-L-proline-inducible KGSADH-III with significantly similar
sequences. After physiological characterization, they revealed that KGSADH-II and
KGSADH-11I showed similar high substrate specificity for a-ketoglutaric semialdehyde
and different cofactor specificity, being KGSADH-1I, NAD" dependent and KGSADH-
[ll, NADP™ dependent. KGSADH-II and KGSADH-III have a sequence identity of
62.41%, with 332 identical residues in an alignment length of 532.

The second case presented regards to two alkyl alcohol dehydrogenase (ADH)
genes from the long-chain alkane-degrading strain Geobacillus thermodenitrificans
NGB80-2 characterized by Liu, et al. [13]. Both ADH1 and ADH2 are able to oxidize a
broad range of alkyl alcohols up to at least C30, as well as 1,3-propanediol and
acetaldehyde, and share a sequence identity of 26%. For either enzyme, both NAD”"
and NADP* can be used as electron acceptor. However, NAD" is the preferred
cofactor for ADH1, while NADP” is the preferred cofactor for ADH2.

With the presented information we went on to perform cofactor prediction and assess
the capability of the developed tool to predict the cofactor preference of such similar
enzymes. With none of the structures of the analyzed enzymes characterized, the
framework applied structure modelling in order to perform a prediction. After
processing all sequences using NiCofactor for performing cofactor predictions, the
resulting output was analyzed. The method according to the invention classified the
analyzed enzymes correctly, being KGSADH-II classified as NAD(H) binding with a
prediction probability of 99.2% and KGSADH-1Il as NADP(H) with 64.7% probability,
whereas for the ADH genes, ADH1 was classified as NAD(H) specific with a
prediction probability of 80.6% and ADH2 predicted as NADP(H) specific with 95.7%
of probability.

These results demonstrate the robustness of the method according to the invention,
in correctly attributing NADP(P)(H) cofactor preference to enzymes, using the amino
acid sequence of the target enzyme as input. The results from the performed
predictions are displayed in table 1.3. In the case of KGSADH, possibly due to their
similarity, the selected structure template for both enzymes was the same, 1EZ0.pdb,
a NADP™ dependent Aldehyde dehydrogenase from Vibrio harveyi, characterized by
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Ahvazi et al. [14]. This enzyme has a sequence similarity of 48% with KGSADH-II
and 47% with KGSADH-III, being its structure characterized with NADP™ in the
binding pocket. Regardless of the type of bound cofactor in the template enzyme
structure, the developed method was still able to correctly classify cofactor
preference in the subject enzymes, being the prediction with higher probability from
the opposite cofactor. ADH1 structure was modelled using an alcohol dehydrogenase
structure from Thermotoga maritima (PDB: 102D), with a sequence identity of 37%,
while ADH2 model template was a butanol dehydrogenase also from Thermotoga
maritma (PDB: 1VLJ), with 48% sequence identity.

Table 3.3 - Cofactor specificity prediction. KGSADH Il and KGSADH Il from
Azospirillum brasiliense cofactor specificity prediction analysis show the predicted
cofactor and associated probabilty. ADH1 and ADH2 from Geobacillus
thermodenitrificans NG80-2 cofactor specificity prediction analysis show the
predicted cofactor and associated probability. Template information is also displayed
with PDB ID and crystalized cofactor, as well as subject and template amino acid
sequence alignment identity percentage.

. Alignment
Fasta_ID Predicted cofactor Probability Selected template _
identity %
KGSADH-1I  NAD(H) 0.992 1EZ0.PDB (NAP) 48
KGSADH-1II  NADP(H) 0.647 1EZ0.PDB (NAP) 47
ADH1 NAD(H) 0.806 102D.PDB (NAP) 37
ADH2 NADP(H) 0.997 1VLJ.PDB (NAP) 45

The fact that homologue enzymes are usually specific for only one of the cofactors
impairs a deeper analysis of case studies with homologues that use different
cofactors. Nonetheless, the studied cases still present a good indicator of the
performance sensitivity achieved. These case studies also help demonstrating that
enzymes within the same environment, and with very similar functions and
sequences, do not necessarily use the same cofactors for catalysis, which is a
common assumption when annotating enzymes using sequence homology

information.
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Table A1 — The presented table encompasses all extracted feature weights from the

developed support vector machine.

NADP weight NADP weight NADP weight NADP weight
02B_ARG 0.449913142 | O3B_MET 0.079733928 | OIN_LYS 0.048374441 | PN_PHE 0.020487316
02B_SER 0.265379606 | C5A_LEU 0.079072527 | C5D_ARG 0.048085877 | PN_VAL 0.020312879
02B_LYS 0.261630434 | O5D_HIS 0.078422943 | O2N_PRO 0.048039874 | C6A_ARG 0.020247682
C2B_ARG 0.228622965 | N3A_GLY 0.078126706 | C1B_GLY 0.047830205 | C5A_ASN 0.020164465
03_GLY 0.222471342 | C2D_ILE 0.077926803 | 04D _PHE 0.047278498 | C2A_PHE 0.019981824
0O3B_ALA 0.217947335 | O1A_ILE 0.07767809 O5B_GLY 0.047202217 | C3D_THR 0.019211148
C4D_ASN 0.21647244 C3N_GLY 0.077661844 | C2N_TRP 0.046976252 | 0O3_PRO 0.019170498
O1A_ALA 0.186032894 | PA_VAL 0.076984447 | O3_TRP 0.046775668 | C1D_TYR 0.01907725
02B_GLY 0.180156852 | O4B_TYR 0.076807191 | C4A_GLN 0.046168774 | 04D _CYS 0.019057066
N1A_SER 0.167953722 | CBA_ALA 0.076797825 | O2B_TYR 0.046021503 | PN_GLN 0.018273416
C5B_LEU 0.164328457 | C1D_ASN 0.076774549 | O5B_ILE 0.045863598 | O2A_TYR 0.01808518
C1B_ARG 0.163757278 | C3N_SER 0.076468785 | C1B_TYR 0.045550284 | NIN_ARG 0.017754525
0O3D_TYR 0.161156286 | O3D_ASP 0.076355444 | N1A_ALA 0.045532792 | N3A_HIS 0.017404048
O7N_CYS 0.15867393 O1N_TRP 0.07594696 0O2A_PHE 0.04545846 0O5B_MET 0.016805257
PN_GLU 0.158627537 | O3B_ASN 0.07554993 C3D_MET 0.045343175 | OAD_MET 0.016554396
C2N_ILE 0.157813268 | N3A_ASN 0.07451086 C2A_VAL 0.044915605 | C2D_TYR 0.016524546
C5A_TYR 0.157211897 | N7N_LYS 0.074129083 | C4B_THR 0.043327963 | 02D_GLY 0.016109269
O2N_ASP 0.152875829 | C4D_LYS 0.07406761 C5N_HIS 0.043243281 | O3_TYR 0.015763729
C3N_LYS 0.149656203 | CAB_TYR 0.073339554 | N7A_ALA 0.04306512 N3A_VAL 0.01547717
O5D_ILE 0.14931893 N6A_ILE 0.073237285 | C1D_LYS 0.042897475 | O4AD_HIS 0.015401676
CAD_THR 0.148308899 | C5D_PRO 0.073147588 | O5D_TRP 0.042875009 | C3B_PHE 0.015107134
N7A_TYR 0.148010431 | C1B_THR 0.072608212 | O3D_LEU 0.042203353 | C4B_SER 0.015050321
C2B_LYS 0.146967824 | 02D_PRO 0.07220358 N9A_GLY 0.041931586 | O5D_TYR 0.015017127
O1A_SER 0.145495323 | C2N_VAL 0.0718949 N1A_ILE 0.04163029 0O1A_GLU 0.01475175
C6A_VAL 0.145139302 | C6N_ASN 0.071586964 | PA_ASN 0.041202421 | CBA_GLY 0.014641457
CAN_LEU 0.144604686 | O7/N_MET 0.071435417 | C5A_SER 0.041119304 | C3B_LYS 0.014594822
C4A_ASN 0.1366117 C5D_ASN 0.070929606 | O7N_SER 0.040917906 | CAD_MET 0.014577395
N9A_TYR 0.136561537 | C6A_GLY 0.070840069 | C2A_MET 0.040509358 | PN_PRO 0.014217951
02D_ALA 0.135126711 | CAD_ILE 0.070215604 | C6A_TYR 0.040119304 | C2A_CYS 0.01413095
02A_ALA 0.134424506 | O3_ALA 0.069690483 | C5A_GLN 0.039823784 | C5D_TRP 0.014000081
O5B_SER 0.13329123 O1N_HIS 0.069401062 | PA_ALA 0.039247128 | O2A VAL 0.013853835
N1A_PRO 0.131819349 | O3D_TRP 0.068758458 [ C6N_ARG 0.03923571 02A_THR 0.013831904
N7N_ASN 0.128466426 | N9A_THR 0.068569727 | C5N_MET 0.039171159 | O3D_ARG 0.013697525
O1A_LYS 0.127108198 | C6N_ALA 0.068517968 | N7A_ASN 0.039122243 | 02D_PHE 0.013391022
N7N_ALA 0.126482461 | C7N_GLN 0.068492631 | C5B_ILE 0.039102077 | C5B_TYR 0.013353805
03B_LYS 0.123755873 | PA_TYR 0.067210455 | C6A_SER 0.038986334 | C1D_TRP 0.013208285
C5D_ALA 0.123037613 | O2A_LEU 0.066556605 | 02B_GLN 0.038486753 | O5B_PHE 0.012902275
C2B_SER 0.122966829 | 04D_TYR 0.06595204 C5B_GLY 0.038076815 | O3B_PRO 0.012638936
CAN_GLY 0.11898915 04B_ARG 0.065935256 | O2B_ILE 0.037717059 | N7N_SER 0.012619455
C8A_TYR 0.116865395 [ CAN_ARG 0.065840612 | O1A_CYS 0.037609135 | CAN_ASP 0.012426783
03_ASN 0.115743489 | CAN_SER 0.065697869 | O3D_LYS 0.036670257 | CAN_MET 0.012024085
04D_THR 0.11469516 O2N_GLN 0.065514055 | C5D_TYR 0.036588347 | O2B_TRP 0.011954468
C4A_ALA 0.114322444 | C1D_GLU 0.065489345 | C2N_LYS 0.036131842 | C2D_SER 0.011876911
C4B_LEU 0.113631168 | CAN_HIS 0.065426674 | C2B_PHE 0.035967943 | N3A_PRO 0.011724681
NI1N_ASP 0.113602654 | O3D_HIS 0.064528665 | C5D_ILE 0.035936608 [ C1D_ARG 0.011535813
C5B_CYS 0.113187311 | C5N_SER 0.064480807 | 02D_ASP 0.035202961 | C5B_PHE 0.01140188
04B_GLY 0.111937545 | C3D_PRO 0.064476088 | 04B_VAL 0.035068685 | O2A_HIS 0.01126606
C2B_THR 0.111749487 | C1D_VAL 0.064134033 | N7A_ASP 0.034717747 | O5B_LYS 0.011256246
O7N_HIS 0.110573667 | N1A_ASP 0.064125337 | C5N_THR 0.034520477 | C2A_LYS 0.011124762
C8A_SER 0.110288278 | O7N_TYR 0.064086413 | C3N_ASN 0.034431891 | O2A_ARG 0.01061547
O5B_VAL 0.109365284 | PN_ASP 0.063669197 | C7N_LYS 0.03412763 O3B_TRP 0.010596586
03_ASP 0.108192747 | C2D_ALA 0.063214388 | C2D_ARG 0.034126311 | NIN_PHE 0.00998952
C1B_LYS 0.108082034 | 0O3_MET 0.062869632 | NIN_TYR 0.033524849 | C7N_ALA 0.00994264
C4D_LEU 0.107729603 | O1A _TRP 0.062853765 | C5N_TRP 0.033375128 | O2B_ASP 0.009908968
C1D_THR 0.107220378 | CAD_ASP 0.062836247 | C1D_SER 0.032376306 | N7N_TRP 0.009672741
N7N_GLN 0.107145492 | O7N_PHE 0.06270243 C5B_MET 0.032376033 | N9A_SER 0.009415228
C2A_ALA 0.105908542 | C5B_THR 0.062417335 | C6A_GLN 0.031523082 | N1A_LEU 0.009285992
C3N_THR 0.105248594 | C6N_MET 0.062197946 | C2N_ARG 0.031276336 | O5B_PRO 0.009048099
C6A_ASN 0.104591342 | PN_TRP 0.061994385 | PN_HIS 0.030665142 | C3D_ARG 0.00856326
C5N_ILE 0.104010781 | C2D_VAL 0.061925295 | O2N_GLY 0.030550952 | N1A_CYS 0.008427029
N7N_PRO 0.102646095 | PN_LYS 0.061636747 | O7N_PRO 0.030053576 | C6A_LEU 0.008178712
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C2N_PHE 0.10249854 C3B_CYS 0.061045003 | O4D_TRP 0.029930128 | CAN_GLN 0.008101571
N3A_ARG 0.101773524 | O1A_MET 0.060950449 | C3B_GLY 0.029781147 | CAA_VAL 0.008086476
C2A_THR 0.101567253 | C8A_ARG 0.060817792 [ N1A_ARG 0.029752999 | O5D_GLY 0.007969447
N6A_GLN 0.101434154 | PA_CYS 0.060276098 | C7N_GLY 0.029649647 | C3B_ASN 0.007766154
NIN_GLN 0.100911738 | C6N_TRP 0.059803838 | O2B_HIS 0.029521975 | C2B_TRP 0.0072598
C2D_GLU 0.100833855 | O1A_ASN 0.059279603 | C3N_ILE 0.028964874 | N6A_ASN 0.007186107
C2N_ASN 0.099646904 | PA_PHE 0.058835203 | O2N_TRP 0.028578168 | C2A_ARG 0.006983245
C2B_CYS 0.098308531 | O5D_PRO 0.057889556 [ O7N_ASN 0.028227782 | C1D_PHE 0.006853563
C2N_THR 0.097889728 | CAN_PRO 0.057582026 | N6A_LYS 0.027873306 | N7N_LEU 0.006283492
N6A_ASP 0.097880648 | 04B_CYS 0.05742591 O2N_LYS 0.027710043 | C5D_GLN 0.00605615
C3D_TYR 0.097789016 | CAD_SER 0.057417109 | C3D_LYS 0.027588124 | C3N_PRO 0.005892243
C3D_ASN 0.096020327 | N9A_PRO 0.056977578 | N1A_GLN 0.027196561 | C7N_VAL 0.005799317
N7N_ARG 0.095925003 | O4B_LEU 0.056890567 | N6A_VAL 0.027155871 | O1A_GLY 0.00542776
PA_GLU 0.095654393 | C3N_VAL 0.056484245 | C2N_GLY 0.027000196 | O4B_ASN 0.005285506
C2A_HIS 0.094314915 | O7N_GLU 0.055914303 | C7N_HIS 0.026998926 | N1A_TRP 0.004883473
04D_VAL 0.093174086 | O5D_ARG 0.055821931 | O7N_LYS 0.026956111 | C4D_GLN 0.004734092
03D_PRO 0.092015331 | O3B_CYS 0.054819911 | C3B_SER 0.026905237 | N9A_ARG 0.004626553
O7N_VAL 0.091513198 | C2B_TYR 0.054126689 | O3D_ILE 0.026902842 | N3A_GLN 0.003542283
CAN_CYS 0.089453556 | C7N_MET 0.053802096 | NIN_ALA 0.02674033 03D_SER 0.003501124
C5N_ALA 0.088879631 | C1B_ASN 0.05365572 PN_ARG 0.026713488 | C3D_GLY 0.003266954
C1D_LEU 0.088099191 [ 03D _PHE 0.053469827 | C3B_GLN 0.02669302 05D_LYS 0.003223613
04D_GLY 0.086767653 | C3D_LEU 0.053229595 | C5N_CYS 0.026574053 | C5A_CYS 0.003056985
N7N_MET 0.086633406 | N3A_MET 0.053096854 | CAD_HIS 0.02642775 C6A_HIS 0.003020458
O2N_VAL 0.085984478 | C7N_GLU 0.05280589 02B_CYS 0.025727259 | C5D_GLU 0.00274718
C4A_PRO 0.085348112 | PA_LEU 0.0527438 C4B_CYS 0.025414997 | O5B_ASN 0.002626459
O7N_ILE 0.084973072 | O5B_ALA 0.052622602 | O3_SER 0.02531283 O2N_MET 0.00250402
C6N_PHE 0.084854801 | O3B_ARG 0.052168269 | C4A_HIS 0.025217149 | C2D_ASN 0.002268232
02A_MET 0.084659482 | O5D_LEU 0.052144021 | 02D_GLN 0.025168633 | 03_LYS 0.002168882
N7A_GLY 0.084155597 | 0O3D_CYS 0.051815901 | O1A_HIS 0.024616979 | N1A_HIS 0.001854708
02D_GLU 0.084149479 | C4A_SER 0.051093903 | C4D_PRO 0.024612369 | O1A_PHE 0.001652292
C2A_ASN 0.083940647 | PA_MET 0.051091304 | C6N_HIS 0.024028726 | NIN_THR 0.001652148
N7N_TYR 0.083794294 | C3D_VAL 0.05093086 C6N_ASP 0.023679437 | C2N_TYR 0.001482017
PA_ASP 0.083171344 | N3A_PHE 0.050731905 | N7N_PHE 0.023380668 | O5B_CYS 0.001317108
C4D_CYS 0.083049838 | 02D_TRP 0.050600777 | O5B_GLU 0.023362986 | C5B_SER 0.001232059
C1B_CYS 0.082678811 | C2B_HIS 0.050513385 | PN_MET 0.023060629 | N9A_CYS 0.001219865
02B_THR 0.082490082 | C6N_GLN 0.050409382 | OIN_GLN 0.022780128 | C5B_GLN 0.001179896
C3N_LEU 0.081724665 | N7A_SER 0.049681009 | N6A_LEU 0.022696971 | O2A_TRP 0.000815129
NIN_HIS 0.081721236 | C5N_ARG 0.04940221 C2B_GLN 0.022212051 | C5A_ILE 0.000680242
03_VAL 0.080908382 | C3B_LEU 0.049214786 | C2N_SER 0.021588548 | C5D_ASP 0.000586944
C3N_GLN 0.080883263 | C1D_PRO 0.049053943 | NIN_TRP 0.021172989 | C6N_GLY 0.000356168
NIN_ILE 0.080273148 | CAN_THR 0.0488634 C3B_ARG 0.021026055 | PA_ILE 0.0000763

O1A_TYR 0.048695887 | 02D_CYS 0.0206318
NAD weight NAD weight NAD weight NAD weight
C8A_ASP 0.236094258 | C4B_VAL 0.084678643 | C2A_GLY 0.04585673 PA_GLN 0.024167113
04B_SER 0.214267146 | CAN_GLU 0.084495222 | C8A_CYS 0.045674108 | N9A_HIS 0.023710343
C4B_ASP 0.211914031 | C1B_PHE 0.082788143 | C3D_ALA 0.045302776 | N7A_LEU 0.023256866
C5B_ASP 0.211619835 | 02B_PHE 0.082187984 | C3B_MET 0.045277989 | C8A_ILE 0.023221567
O5B_ASP 0.201497995 | O3_ILE 0.081837268 | PN_CYS 0.045070493 | C3B_TYR 0.023129246
C5A_LYS 0.199153626 | 04D_GLU 0.081724154 | C7N_TYR 0.044696847 | C2B_VAL 0.02300447
02D_VAL 0.192728146 | CAA_LYS 0.081269877 | CAD_ARG 0.044656503 | 02B_VAL 0.022694831
C2B_GLU 0.1793113 C4D_GLY 0.080939478 | C5A_TRP 0.044048925 | C5N_TYR 0.022381938
N6A_ALA 0.178674412 | C6A_GLU 0.080923251 | N6A_TRP 0.044048925 | CAN_TRP 0.022043873
C5B_TRP 0.177316428 | C3N_TYR 0.080480348 | C1D_ILE 0.043144806 | O2N_ASN 0.021764038
O1N_LEU 0.176228984 | C1D_CYS 0.080016833 | 02D_HIS 0.042941727 | C2A_SER 0.021614551
C2B_GLY 0.174419789 | O4B_PHE 0.079708441 | PA_ARG 0.042894018 | N6A_GLY 0.02146111
N7A_PHE 0.16528297 02D_SER 0.07945322 C5A_VAL 0.042803352 | C3D_CYS 0.02135515
O2N_LEU 0.161914369 | O1IN_VAL 0.078945222 | C2B_MET 0.042765752 | O5D_GLU 0.021243463
N7N_ASP 0.156998091 | C5D_SER 0.078576218 | C3B_ASP 0.042701922 | N7A_VAL 0.021039061
O2N_PHE 0.156590241 | C6A_LYS 0.077817193 | C4A_CYS 0.042634678 | N1A_TYR 0.020921701
03B_PHE 0.155184371 | C8A_ASN 0.077790099 | PN_ALA 0.042627867 | OIN_THR 0.020897222
C5B_ALA 0.152835734 | N3A_LEU 0.077742066 | C5A_ASP 0.042546411 | N6A_CYS 0.020775768
03B_GLY 0.151913164 | N6A_PRO 0.077616001 | C2N_GLU 0.042497144 | 03_GLU 0.020196977
02B_GLU 0.151898457 | C2N_ALA 0.077249401 | O5B_GLN 0.042340288 | C5N_LEU 0.02009685
O1N_TYR 0.151450549 | C7N_CYS 0.076845666 | C1D_ASP 0.041495819 | C4AB_GLN 0.019926272
N3A_TYR 0.150626291 | 03D_GLY 0.076306045 | N9A_TRP 0.04128563 C1B_GLN 0.019633755
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N9A_ASP 0.149611431 | C3D_GLN 0.075904853 | C2A_TRP 0.041271331 | N7N_GLY 0.019561879
05D_GLN 0.148609502 | C5D_CYS 0.075202986 | N3A_TRP 0.041271331 | C4B_ILE 0.019405753
C2B_PRO 0.147532603 | C6N_GLU 0.074741328 | C2B_ALA 0.041255388 | C7N_ARG 0.019372093
CAB_ARG 0.143967247 | C5A_THR 0.074527957 | N1A_THR 0.041026461 | O1A_ASP 0.019244841
N3A_ASP 0.14300716 C2N_ASP 0.074459978 | C2N_LEU 0.040888207 | O2D_LYS 0.019194013
02B_LEU 0.141964964 | O2A _GLY 0.073382866 | O5D_VAL 0.040156633 | O1IN_PHE 0.019158342
03B_GLU 0.141180163 | O4B_HIS 0.073219477 | O3B_GLN 0.039927468 | C5D_THR 0.019113421
N9A_LEU 0.139362426 | C6N_LYS 0.072117998 | O3D_ALA 0.039896181 | C8A_GLN 0.018997788
C1B_ALA 0.136457677 | C1B_TRP 0.070639586 | N1IN_GLY 0.039653791 | C3N_ARG 0.018983506
CAD_TYR 0.13469436 C5A_ALA 0.069382114 | O3B_HIS 0.039458724 | 0OAD_SER 0.018702347
O1N_ARG 0.133895846 | 02D_THR 0.069185612 | C3D_ILE 0.039401154 | C3N_ASP 0.018453586
C3N_GLU 0.127710335 | C3B_VAL 0.069108754 | N6A_ARG 0.039362501 [ C6A_CYS 0.018355811
O5D_ALA 0.127675979 | C5N_ASN 0.069004812 | O1N_CYS 0.039281688 | O3D_GLN 0.018256316
N7N_ILE 0.126107558 | C5N_GLY 0.068747065 | N6A_SER 0.03921673 02N_GLU 0.01817712

N9A_GLU 0.125364201 | C2B_ILE 0.0686374 C2D_MET 0.03895439 C1D_GLN 0.017972709
O1A_ARG 0.124914545 | 02D_LEU 0.068182443 | C5D_VAL 0.038878843 | C3B_HIS 0.017919884
O3B_ILE 0.124643569 | C6N_LEU 0.068135623 | C5D_LEU 0.038872236 | CAN_PHE 0.017696368
C8A_MET 0.122164263 | OIN_GLU 0.068107524 | C1B_MET 0.038286853 | C2D_TRP 0.01744367

0O5D_THR 0.122063447 | C5B_ARG 0.068011606 | O4D_PRO 0.038198556 | C2D_CYS 0.016935276
O1N_ASN 0.121086105 | CAD_TRP 0.067954707 | O1IN_PRO 0.03813499 04D_LYS 0.016476418
O7N_ARG 0.119867381 | O4D_ASP 0.066602311 | NIN_SER 0.038079186 | CAB_TRP 0.016383175
N3A_LYS 0.119833863 | C7N_THR 0.0658177 C6A_PHE 0.038067227 | C7N_ASP 0.016178585
N1A_PHE 0.119547183 | C3N_HIS 0.065214102 | C5D_GLY 0.038048449 | PA_LYS 0.016159851
N9A_ILE 0.119507247 | C8A_THR 0.065129865 | C5B_ASN 0.038045075 | C2A_PRO 0.016101081
C3B_ILE 0.117697785 | O7N_LEU 0.064726578 | C6A_ASP 0.037830366 | C5N_VAL 0.016097103
C1B_SER 0.117485882 | CAD_PHE 0.064478493 | N7A_LYS 0.037771646 | N3A_SER 0.015498109
C5A_PRO 0.116871565 | C1D_ALA 0.064318425 | O1A_THR 0.037593202 | C3D_SER 0.015402666
C3D_HIS 0.116540224 | C5D_LYS 0.063959291 | C4A_ARG 0.037365628 | NIN_MET 0.015128158
C8A_HIS 0.115036079 | CAN_LYS 0.063207444 | C6A_TRP 0.037202519 | C5B_PRO 0.015098312
C1B_GLU 0.114836695 | O3D_MET 0.062607471 | O7N_TRP 0.037119054 | C2D_LEU 0.014951664
04B_PRO 0.114719939 | O5B_LEU 0.061997954 | O3D_VAL 0.036711513 | O2A _CYS 0.014949863
C5A_GLY 0.114416309 | O2A_ASN 0.061732721 | C8A_LEU 0.036654066 | O3D_GLU 0.014843767
C2A_ASP 0.113940715 | N6A_THR 0.061577713 | NIN_GLU 0.036633975 | O2N_SER 0.014469964
C3N_ALA 0.113621507 | C7N_ILE 0.061382838 | C4A_ILE 0.036210335 | 02B_MET 0.014381374
PN_ASN 0.113168012 | O3_GLN 0.061367368 | CAA_TRP 0.036192205 | C3D_GLU 0.013753582
N6A_HIS 0.113024505 | C2N_HIS 0.061266738 | C2N_GLN 0.035567033 | 02A_PRO 0.013548182
C5A_MET 0.112329829 | C2N_PRO 0.060988083 | C3B_TRP 0.034880319 | N7A_GLN 0.012765498
PA_GLY 0.11165329 C6N_THR 0.060959542 | O5B_HIS 0.03477746 C3D_TRP 0.012640582
02A_GLU 0.111244424 | PA_THR 0.060328547 | C1D_MET 0.0347337 OIN_ALA 0.012390965
04B_GLU 0.109619937 | C6N_TYR 0.060307835 | C5N_ASP 0.034172545 | O4B_THR 0.012108389
CAD_ALA 0.108202492 | N7N_VAL 0.060165214 | O4B_ALA 0.034119062 | 04D_GLN 0.012038157
02B_ASN 0.108147068 | O5D_CYS 0.059410492 | C4A_GLY 0.033689269 | N1N_ASN 0.011838299
02D_ARG 0.108038157 | C3N_PHE 0.059088755 | O4D_ALA 0.033586427 | NSA_LYS 0.011775881
C7N_ASN 0.107213425 | O2N_CYS 0.059056218 | O1N_GLY 0.033556184 | C2D_GLY 0.011721179
O1IN_ILE 0.106640874 | N1A_ASN 0.058117727 | C4B_GLY 0.033344892 | O7N_GLN 0.011160851
C2A_TYR 0.106180162 | PN_GLY 0.057992715 | O3_PHE 0.033049727 | OIN_MET 0.011066817
C8A_PHE 0.105426384 | O5D_ASN 0.057907553 | C3B_THR 0.032956614 | C1B_HIS 0.010953044
N3A_THR 0.104176435 | O2N_ARG 0.057788184 | C3B_PRO 0.032916451 | C3B_ALA 0.010883357
N1N_PRO 0.102629164 | C4D_VAL 0.057773452 | C5B_GLU 0.032826056 | PN_TYR 0.010703707
05D_SER 0.10245746 C2N_CYS 0.057688219 | C7N_TRP 0.032662711 | N9A_ALA 0.010443668
C4B_GLU 0.102381935 | N9A_ VAL 0.057370037 | C5N_GLN 0.032605112 | C4B_ASN 0.010442276
O7N_ALA 0.102269399 | C1B_ILE 0.05698411 04B_TRP 0.032570682 | N9A_GLN 0.009324513
C5B_LYS 0.102210074 | O2B_ALA 0.056981668 | C4B_PHE 0.032417942 | N7A_GLU 0.00883231

C2A_GLN 0.101828872 | CAN_TYR 0.056651445 | C5B_HIS 0.03236729 C5A_PHE 0.008825354
O1A_GLN 0.101685897 | C3D_ASP 0.056555527 | N1A_GLY 0.03232162 03B_LEU 0.008819554
C8A_GLU 0.100650034 | C6A_PRO 0.056529942 | N3A_CYS 0.032317815 | C6N_PRO 0.008639054
N7N_THR 0.099880328 | C1D_HIS 0.056345666 | C1B_PRO 0.031301457 | NIN_LEU 0.008632498
O7N_THR 0.099664754 | O3D_ASN 0.056314177 | O2B_PRO 0.03121384 C5D_HIS 0.007959814
CAN_ALA 0.0987018399 | C4B_HIS 0.056175761 | O4D_ASN 0.030787145 | C2D_ASP 0.00768146

0O3D_THR 0.097248115 [ C4A_ASP 0.055724142 | N7A_TRP 0.030680017 | O1A LEU 0.007670774
04B_ASP 0.096754876 [ C8A_TRP 0.055617695 | PN_LEU 0.029719512 | C5A_HIS 0.007650503
C8A_LYS 0.095315866 | C5N_PRO 0.055392821 | O2A_GLN 0.029703758 | O3B_TYR 0.007502293
C1B_ASP 0.094624659 | 03_CYS 0.055226603 | O5D_MET 0.029487202 | C2D_GLN 0.007488351
N6A_GLU 0.094601341 | N6A_PHE 0.054991735 | PA_TRP 0.029056729 | C2A _LEU 0.007471721
N7N_CYS 0.094435354 | C4A_GLU 0.05479858 03_THR 0.029037937 | O3_ARG 0.006893838
N3A_GLU 0.094044915 | C2B_LEU 0.053824457 | O2D_ILE 0.028969805 | PN_THR 0.006589932
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C2N_MET 0.093635101 | O5B_ARG 0.05370051 C2D_PHE 0.028951052 | C6N_ILE 0.006317509
C7N_SER 0.093273592 | C3N_TRP 0.053645898 | C2D_THR 0.028863737 | O3B_SER 0.00628109
N7A_PRO 0.092887422 | C5N_LYS 0.053172349 | C6A_THR 0.028566318 | N1N_CYS 0.006183564
C2A_GLU 0.092512112 | O4B_GLN 0.053113516 | C7N_PHE 0.0284569 O2N_HIS 0.006143172
C8A VAL 0.092039322 | N1A_VAL 0.052949956 | C2D_HIS 0.028138399 | C4B_ALA 0.005844543
C2D_PRO 0.091974416 | N7A_ILE 0.052668712 | O2A_SER 0.027907848 | O2A_ASP 0.005816768
C5A_ARG 0.091774884 | C2B_ASN 0.052129331 | C8A_PRO 0.027839496 | O2N_ILE 0.00570703
O7N_GLY 0.091607528 | O2A_LYS 0.052029338 | C2D_LYS 0.027755749 | N3A_ILE 0.005557604
CAA_PHE 0.091478957 | O5B_TRP 0.051926206 | C5B_VAL 0.027696387 | C4D_GLU 0.005447283
N7A_HIS 0.091434955 | PN_ILE 0.051876557 | CAN_VAL 0.027305555 | O1N_ASP 0.005178466
C3B_GLU 0.09139035 C3N_CYS 0.050868751 | O2N_ALA 0.027160743 | O3B_VAL 0.004899055
C4A_LEU 0.090872072 | C4AB_MET 0.050634 C7N_LEU 0.027019403 | CAN_ASN 0.003532887
03B_ASP 0.090720383 | C6A_ILE 0.050325083 | 02D_ASN 0.026645431 | C3D_PHE 0.003504186
C4B_PRO 0.09067722 O1N_SER 0.049049516 | O3_LEU 0.026576686 | C6N_VAL 0.003094678
N7A_ARG 0.090528536 | O7N_ASP 0.048624583 | O5D_PHE 0.026565767 | O5B_TYR 0.002555715
N7A_MET 0.090306467 | N6A_MET 0.048577237 | PA_HIS 0.026455381 | C3N_MET 0.002362533
C1B_LEU 0.089465086 | 04D_ARG 0.048423773 | O5B_THR 0.026232191 | C5N_GLU 0.002179866
C5A_GLU 0.088046164 | 02D_TYR 0.048363667 | C6A_MET 0.026165631 | O3B_THR 0.001955582
N7A_THR 0.088005608 | PA_PRO 0.048103131 | C4B_LYS 0.026110914 | O1A PRO 0.001622565
N7N_GLU 0.087465764 | C6N_CYS 0.047847513 | C5D_MET 0.025805668 | C1D_GLY 0.001541014
N3A_ALA 0.087417513 | C6N_SER 0.047755285 | N1A_LYS 0.025796286 | C4A _TYR 0.001506384
N9A_MET 0.087399922 | 02D_MET 0.047508299 | C5N_PHE 0.025618651 | O4B_ILE 0.000794275
N9A_ASN 0.08732569 02A_ILE 0.047073498 | N1A_MET 0.025546119 | N7A_CYS 0.00025527
O2N_TYR 0.087107984 | PA_SER 0.046824837 | C4A_THR 0.02553769 05D_ASP 0.000240182
N9A_PHE 0.086900914 [ N7N_HIS 0.04665957 N1A GLU 0.025466655 | 04D_LEU 0.000196388
03_HIS 0.08674575 C1B_VAL 0.04659479 C2A_ILE 0.025021287 | C5D_PHE 0.000107303
04D_ILE 0.086687568 | C7N_PRO 0.04631959 CAA_MET 0.024798013 | PN_SER 0.000103847
O2N_THR 0.086066019 | 04B_MET 0.046008828 | CAN_ILE 0.024773603 | O1A VAL 0.0000672
C6A_ALA 0.085894582 | N6A_TYR 0.045938949 | O4B_LYS 0.024320924 | NIN_VAL 0.0000641
C2B_ASP 0.085308204

2.0 Examples of switching the cofactor specificity of an enzyme

Here, detailed embodiments of a method for the in silico efficient conversion of
NAD(P)(H) cofactor specificity in structurally non-characterized enzymes are
disclosed.

Firstly, a method for identifying and producing an ordered list containing the most
influential residues for cofactor specificity in a given enzyme structure was
developed, using the SVM predictive model and CNRPM (Cofactor Neighbor
Residue Profile Matrix) as elaborated previously. The created list is assumed as
containing the theoretical optimal set of residue positions suitable for point mutations
conferring cofactor specificity reversal.

Secondly, two methods were developed in order to identify the optimal set of point
mutations required for achieving cofactor specificity change. For that, two distinct
approaches were implemented, being one deterministic, using the gathered
information on the most influential residues for both cofactor specificities; and the
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other stochastic, using evolutionary algorithms to locate the optimal set of mutations
capable of reverting cofactor specificity.

2.1 Methods

2.1.1 Aminoacid residue sequences and protein structure templates

The wild-type amino acid residue sequences from the selected case-study enzymes
were retrieved from Uniprot, while mutant sequences were replicated in silico
according to the specifications presented in the literature. Uniprot IDs from the four
selected enzymes are as following: Pichia stipitis’s xylose reductase: P31867;
Gluconobacter oxydans’s xylitol dehydrogenase: Q8GR61; Pichia stipitis’s xylitol
dehydrogenase: P22144; Tramitichromis intermedius’s leucine dehydrogenase:
Q60030.

Gluconobacter oxydans’ xylitol dehydrogenase had its structure already
experimentally characterized (PDB id: 1ZEM), being therefore used as a template for
modeling the structure of the predicted mutants. As for the remaining three enzymes,
since their structures were not experimentally characterized, the structures of the
wild-type and corresponding mutants were generated using comparative modeling.
Pichia stipitis’ xylose reductase structure was modeled using the homologue
structure of Arabidopsis thaliana’s aldo-keto reductase (PDB id: 3H7R) with 47%
identity; Pichia stipitis’ xylitol dehydrogenase structure was modeled using the
homologue structure of Homo sapiens’ sorbitol dehydrogenase (PDB id: 1PL6) with
44% identity and Tramitichromis intermedius’ leucine dehydrogenase structure was
modeled using the homologue structure of Rhodococcus sp. M4’s phenylalanine
dehydrogenase (PDB id: 1BW9) with 37% identity.

2.1.2 Cofactor specificity prediction

Predictions on cofactor specificity change were performed using NiCofactor, the
method described previously in the description, for allowing the high throughput
NAD(P)(H) cofactor specificity prediction. NiCofactor was built using the python
programming language. Input sequences are required to be in FASTA format. For
each sequence, the tool initiates an individual project. The tools for generating
CNRPMs and performing machine learning were also integrated in NiCofactor.
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Results are outputted by attributing to each analyzed sequence a cofactor prediction
and subsequent prediction score. The default probability score threshold used is 0.8.

2.1.3 Evolutionary algorithm implementation

The evolutionary algorithms used in the stochastic method for efficiently predict the
optimal set of mutations to reverse cofactor specificity were implemented using
inspyred [16], an open source framework for creating biologically-inspired
computational intelligence algorithms in Python.

Five evolutionary algorithms were implemented, with the only difference between
them being the maximum candidate size allowed. Each algorithm was configured to
run through 100 generations, being the initial population composed by 100
individuals. Each individual was randomly created according to the candidate
maximum size, which varied between 1 and 5. This corresponds to the creation of
mutant amino acid residue sequences derived from the original target aminoacid
residue sequence, containing between 1 and 5 mutations each. Elitism value was set
to 2, keeping the best 2 scoring individuals for the next generation. The next best
scoring 50 individuals were recombined using mutation operators, with a crossover
rate of 0.9 and a mutation rate of 0.1. The crossover operator uses the parameters of
two individuals and combines them, generating two new individuals, while the
mutation operator substitutes one element of the individual by another, randomly
generated. The remaining lowest scoring 48 individuals were discarded and newly
generated individuals with random mutations in the available mutable positions were
incorporated in the population. The optimization process is terminated when the

maximum number of generations is achieved.

2.1.4 Protein structure visualization

Wild-type and mutant enzyme structures were visualized using PyMol [17] a free and
user-friendly molecular graphics system for molecular visualization written in Python

programming language.
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2.2 Resulis and discussion

2.2.1 Identification of mutable residue positions for cofactor specificity reversal

As previously stated, the SVM model, trained with a large dataset of CNRPMs,
performed the attribution of importance scores to the features in the dataset, allowing
the correct separation of the instances in the hyperplane. In this case, the features
are composed of relations between the atoms in each cofactor and the
corresponding neighbor amino acid residues. Then, the score, i.e. the feature weight,
attributed to each feature, reveals the impact of each interaction in the binding
preference of the cofactors, with higher scoring features having a higher impact on
cofactor specificity. Figure 3 depicts a representation of the process undertaken for
the selection of mutable residue positions for cofactor specificity reversal. Through
the analysis of the CNRPM generated from a target enzyme’s structure, and by
combining this information with the data stored in the SVM model, the sorting of the
best features for cofactor specificity is performed. When the most influential features
for cofactor specificity in a given protein structure are sorted, the corresponding
residue position in the sequence is retrieved and stored for each feature. When
features from ten distinct residues in the sequence are retrieved, the list is closed.

The end result is an ordered list of the most influential residues in cofactor specificity
for a given target enzyme, being assumed that, due to their influence in cofactor
specificity, this list contains the optimal mutable residues for cofactor specificity

reversal.

Despite the developed method's utility in precisely pinpointing suitable target
residues for cofactor specificity reversal mutations, the computational costs or
comparably high due to the combinatory amount of total mutant possibilities. In order
to optimize this task, two distinct approaches were undertaken, resulting in the
development of two different methods for determining the optimal set of mutations

necessary to achieve cofactor specificity reversal.

2.2.2 Cofactor specificity reversal — Deterministic method

With the intent of surpassing the overwhelming amount of combinatorial mutations
necessary for the screening of all suitable mutable residue positions to achieve the
optimal cofactor specificity reversal mutant, a deterministic method was developed.
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This deterministic approach is based on the formulation of a hypothesis regarding
both cofactor's most influential features. With this in mind, the suggested hypothesis
states that: if, for each atom composing a cofactor, there is a specific neighbor amino
acid residue with the highest impact in the cofactor specificity, then, if this interacting
amino acid residue is replaced by the amino acid residue with the highest impact for
the opposite cofactor, the binding specificity should be affected. Therefore, if enough
amino acid residues with high impact on cofactor specificity are changed, the
cofactor specificity should be reverted.

In order to implement the stated hypothesis, the extracted SVM feature weights
present in appendix, in table A1, were further examined. For each selected cofactor
atom, the strongest feature present for NAD(H) and NADP(H) specificity was
selected, and the associated amino acid residue retrieved. The resulting chart,
displayed in table 2.1, represents, for each selected cofactor atom, the amino acid
residue interaction with highest impact on cofactor specificity, and consequently the
candidate for performing point-mutations in that area of the binding spot.

Table 2.1. Point-mutation selecting chart. Each selected cofactor atom and
corresponding molecular localization is represented in the column “cofactor atom”.
For each atom, the corresponding NAD(H) and NADP(H) specificity is represented in
columns “NAD(H) specific’ and ’NADP(H) specific’ respectively. This table
corresponds to the impact matrix.

Cofactor NAD(H) NADP(H) Cofactor NAD(H) NADP(H)
atom specific specific atom specific specific
PA GLY GLU 03 HIS GLY
O1A ARG ALA PN ASN GLU
02A GLU ALA O1N LEU TRP
O5B ASP SER O2N LEU ASP
C5B ASP LEU 05D GLN ILE
C4B ASP LEU C5D SER ALA
04B SER GLY C4aD TYR ASN
C3B ILE CYsS 04D ILE THR
03B PHE ALA C3D HIS TYR
C2B GLU ARG 03D THR TYR
02B GLU ARG C2D PRO GLU
CiB ALA ARG 02D VAL ALA
N9A ASP TYR CiD CYsS THR
C8A ASP TYR N1N PRO ASP
N7A PHE TYR C2N MET ILE
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C5A LYS TYR C3N GLU LYS
C6A ALA VAL C7N ASN GLN
N6A ALA GLN O7N ARG CYS
N1A PHE SER N7N ASP ASN
C2A ASP ALA C4N ALA LEU
N3A TYR ARG C5N ASN ILE
C4A PHE ASN C6N GLU PHE

2.2.2.1 Implementation of the deterministic method for cofactor specificity conversion

The implementation of the deterministic method for the conversion of NAD(P)(H)
cofactor specificity, starts with the structural analysis of the subject enzyme and
respectively CNRPM assembly with NiCofactor. If the subject enzyme’s structure is
not characterized, homology modelling with a suitable structural template is
performed automatically by NiCofactor.

Once created, CNRPM features are sorted and the one with the highest impact is
selected. The amino acid residue sequence position from the residue present in the
feature is retrieved, while the atom present in the feature is searched in the point-
mutation selecting chart displayed in table 2.1, being the candidate amino acid

residue mutant selected.

The wild-type amino acid residue is replaced by the mutant candidate in the amino
acid residue sequence. The mutant sequence is retrieved and its cofactor specificity
is predicted using NiCofactor.

If a prediction is performed, with a probability score above the threshold value, and
the cofactor predicted for the mutant sequence is changed, the mutant sequence is
accepted as having its cofactor specificity successfully altered. If, on the other hand,
the cofactor prediction did not change, the conversion method continues with the
mutant sequence and the second highest impact feature is used. This step is
performed iteratively, with mutations being incremented in the sequence until the
cofactor prediction is changed. If after 10 consecutive mutations the cofactor

prediction remains unaltered, the mutation is regarded as unviable.

For example, for the NAD(H) dependent target enzyme structure, the atom-amino
acid residue interaction with highest impact on cofactor specificity is originated by the
presence of a Phenylalanine (F) near the atom O3B, in the ribose from the adenine
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moiety. By consulting table 2.1 it is possible to observe that the residue originating
the atom-amino acid residue interaction, with atom O3B, with the highest impact on
cofactor specificity for NADP(H) is an Alanine (A). Being the sequence position of the
selected Phenylalanine, position 42, a point mutation is performed and the
Phenylalanine is substituted by an Alanine. Despite this mutation, the cofactor
specificity prediction of the target enzyme was not altered, being therefore selected
the second highest impact interaction, the Aspartate (D) near the atom O5B. With the
substitution of Aspartate by a Serine (S) not rendering an altered cofactor specificity
prediction, the third highest impact interaction was selected. This time, the Aspartate
near atom C8A was mutated into a Tyrosine (Y) and the resulting mutant
F42A/D23S/D71Y was successfully predicted as having reverted its original cofactor
specificity.

The presented deterministic method is a fast and precise approach for the complex
problem of selecting the optimal set of mutations capable of reverting cofactor
specificity in a target enzyme. Despite its overall efficacy, robustness and time
efficiency, the deterministic characteristics of this approach mean that there are
multiple mutation combinations that are not taken into consideration, with the
possibility of better results for a set of cofactor specificity reverting mutations being
overlooked. Due to these constraints, and in order to analyze the highest number of
mutation combinations possible, a stochastic method was developed, with the

incorporation of an evolutionary algorithm.

2.2.3 Cofactor specificity reversal — Stochastic method

With the selection of the ten most suitable mutable residue positions for cofactor
specificity reversal, and given the possibility of each residue position being mutated
by the remaining 19 amin oacids residues, it becomes clear the impossibility of
predicting the cofactor specificity of every mutant combination. To overcome this
issue, a stochastic method was developed through the implementation of an
evolutionary algorithm. These optimization algorithms perform the evolution of a
population by mimicking biologic events such as natural selection. Each individual in
a population is evaluated through a fitness function and compared with newly
generated individuals created by the application of reproduction operators to selected
parents. As in nature, only the fittest individuals are allowed to continue in the
population and reproduce [18].
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Figure 4 is depicts a representation of the implemented evolutionary algorithms.
Given the target amino acid residue sequence and the list of 10 mutable positions, an
initial population of 100 mutant amino acid residue sequences (individuals) was
generated, with random mutations in the available mutable positions. In this work, 5
evolutionary algorithms were implemented, with the only difference being the
maximum candidate size allowed, varying between 1 and 5 mutations per individual.
The optimization process was run for 100 generations. During each generation, the
cofactor specificity of each individual was predicted using NiCofactor. After
evaluating the entire population, the two best scoring individuals were maintained for
the next generation, while the next best 50 undertook a recombination process, being
90% by crossover, where two individuals are crossed over to generate two new
individuals, and 10% by mutation, where an individual’s suitable aminoacid residue is
randomly mutated. The remaining lowest scoring 48 individuals were discarded and
newly generated individuals with random mutations in the available mutable positions
were incorporated in the population. In the end of the optimization process, the five
mutant sequences, containing 1 to 5 mutations, with the highest cofactor prediction
score for the opposite cofactor were retrieved and outputted as result.

2.2.4 Case studies

With the intent of assessing the performance of the developed methods for cofactor
specificity reversal, four case studies were replicated in silico and their cofactor
specificity reverted, using the developed methods. From the group of cofactor
engineering studies published by Khoury and coworkers [19], the four enzymes that
were found to have completely reverted specificity or largely decreased affinity for
one of the cofactors, increasing the affinity of the other, were selected as case
studies. These were the cases of xylose reductase from Picchia stipitis (PsXR) [20],
xylitol dehydrogenase from Gluconobacter oxydans (GoXD) [21], xylitol
dehydrogenase from Pichia stipitis (PsXD) [22] and leucine dehydrogenase from
Tramitichromis intermedius (TiLD) [23]. For these enzymes, NiCofactor was able to
correctly predict the cofactor specificity of both wild-type and specificity reversed
mutants. With that in mind, the four enzymes’ amino acid residue sequence were
retrieved and processed using the above described methods with the intent of
showcasing the results achieved in silico, and comparing them to the experimentally
determined data on cofactor specificity reversing mutations.
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From the four enzymes analyzed, three are part of the xylose metabolism, an
extremely important pathway due to its great economical potential. Being a major
component of hemicellulose and only second to glucose as the most abundant sugar
in nature, D-xylose can be bioconverted from agricultural biomass wastes into
biofuels, such as ethanol, through fermentation processes. However,
Saccharomyces cerevisiae, the best adapted microorganism for producing ethanol, is
not genetically equipped for metabolizing xylose. To solve this problem, xylose
fermenting genes have been cloned in S. cereviseae from other organisms capable
of metabolizing this sugar, such as Pichia spitipis [20], [22] and Gluconobacter
oxidans [21]. Xylose reductase (EC 1.1.1.21) reduces xylose into xylitol using
NADPH and xylitol dehydrogenase (EC 1.1.1.9) oxidizes, posteriorly, xylitol into
xylulose, using NAD+. Nonetheless, this difference in cofactor specificity creates an
intercellular redox unbalance, hindering ethanol production yields and promoting
xylitol excretion. An elegant solution implemented to solve this problem is the
cofactor specificity reversal of xylose reductase from NADPH to NADH [20] or, by
alternative, the specificity reversal of xylitol dehydrogenase from NAD+ to NADP+,
taking advantage of the often higher availability of NADP+ in the cell [21], [22].

The remaining enzyme, Leucine dehydrogenase from Thermoactinomyces
intermedius uses NAD+ for catalyzing the reversible deamination of L-leucine to its 2-
oxo analogue, 4-methyl-2-oxopentanoate. As biosynthesis reactions generally use
NADP+ as cofactor, leucine dehydrogenase cofactor specificity reversal might

improve this reaction’s efficiency [23].

2.2.4.1 PsXR — Pichia stipitis xylose reductase

Xylose reductase (PsXR), from Pichia stipitis, was the only enzyme in the analyzed
group with cofactor specificity for NADP(H), with the remaining enzymes being
specific for NAD(H). In table 5.2 the results achieved for the in silico cofactor
specificity change of PsXR are displayed.

As previously stated, NiCofactor was able to correctly predict the cofactor specificity
from both wild-type and literature cofactor reversed mutant, being the results
achieved by the deterministic and stochastic methods only outputted when the
prediction score threshold is achieved.
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Table 2.2. Mutations, cofactor predictions and prediction scores from literature
experimental data, as well as from the implementation of both methods for reversing
cofactor specificity in silico of PsXR. The deterministic method outputs only one
mutant, while the stochastic method outputs five different mutants with the best found
set of mutations for specificity reversal, according to the maximum candidate size
allowed by the method, with the number on the gene name corresponding to the

number of mutations selected.

Predicted Prediction

Gene name Mutation cofactor  score
PsXR Wild-type NADP 0.8764
PsXR Literature K2708/S271G/N272P/R276F NAD 0.8792
PsXR Deterministic S271E/R276E NAD 0.9747
PsXR Stochastic 1 R276D NAD 0.8661
PsXR Stochastic 2 K270D/S271D NAD 0.9773
PsXR Stochastic 3 K270D/S271D/R276D NAD 0.9996
PsXR Stochastic 4 S215R/K270D/S271D/R276D NAD 0.9995
G217D/1268R / NAD 0.9999

PsXR Stochastic5 (701 5071 p/R276D

When analyzing table 2.2 it is also possible to observe the amount and type of point
mutations recommended by the developed methods in order to achieve cofactor
specificity reversal. Being the literature mutant composed by four point-mutations,
achieved through the implementation of a combinatorial active-site saturation
mutagenesis method, we can observe that both deterministic and stochastic methods
here implemented were able to predict mutants with fewer point-mutations and higher
predicted reversed cofactor specificity. In this case, PsXR Deterministic is composed
by only two point-mutations, with an Arginine (R) and a Serine (S) being substituted
by a Glutamate (E). In the case of PsXR stochastic, the evolutionary algorithm was
able to find a mutant with predicted reversed cofactor specificity with only one point-
mutation, being this individual, due to its lower amount of point-mutations, considered
the best hypothesis for performing in vivo cofactor specificity reversal. When
analyzing the remaining stochastic mutants, it is observed that the mutants with
higher amounts of point-mutations tend to incorporate the point-mutations predicted
for the stochastic mutants with fewer point-mutations, indicating a strong effect of
these mutations for the reversal of cofactor specificity. We can also see, in the
stochastic mutants, that the cofactor prediction scores increase with the amount of
point-mutations predicted, however, preference should be given to mutants with
fewer mutations in order to preserve the structural stability of the enzyme.
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2.2.4.2 GoXD —Gluconobacter oxydans xylitol dehydrogenase

Xylitol dehydrogenase (GoXD), from Gluconobacter oxydans, oxidizes xylitol into
xylulose and has been shown to use exclusively NAD+ as a reaction cofactor [21].
Table 5.3 displays the results achieved for the in silico cofactor specificity change of
GoXD from NAD+ dependent to NADP+.

Table 2.3. lists mutations, cofactor predictions and prediction scores from literature
experimental data, as well as from the implementation of both methods for reversing
cofactor specificity in silico of GoXD. The deterministic method outputs only one
mutant, while the stochastic method outputs five different mutants with the best found
set of mutations for specificity reversal, according to the maximum candidate size
allowed by the method, with the number on the gene name corresponding to the

number of mutations selected.

Predicted Prediction

Gene name Mutation cofactor  score

GoXD Wild-type NAD 0.9678
GoXD Literature D38S/M39R NADP 0.9541
GoXD Deterministic D38Y/A92Q/G93R NADP 0.8822
GoXD Stochastic 1 D38R NADP 0.8668
GoXD Stochastic 2 D38R/A92R NADP 0.9752
GoXD Stochastic 3 D38R/D64R/A92R NADP 0.9944
GoXD Stochastic 4 G16K/D38R/D64S/G93R NADP 0.9957
GoXD Stochastic 5 G14S/G16T/D38R/D64R/A92R NADP 0.9999

The results displayed in table 2.3 show a high score for the prediction of cofactor
specificity of wild-type and literature experimental data, increasing the confidence
level on the agreement between predicted and experimental results. In the analyzed
case-study, the literature mutant was achieved with only two point-mutations, while
the deterministic method required three mutations to achieve the same cofactor
specificity prediction. As to GoXD stochastic results, the developed method was able
to output a predicted reversed cofactor specificity mutant encompassing only one
point-mutation, being it considered the best hypothesis for performing in vivo cofactor
specificity reversal with minimal interventions. When further analyzing the achieved
results, it is possible to observe that both the literature mutant and the selected
stochastic mutant share similar features despite being originated from different
approaches. From these approaches, the one described in the literature is the most

laborious, involving structure characterization and structural alignment with other
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enzymes, together with the multiple selections of conserved amino acid residue

positions. In the literature mutant an Aspartate residue in position 38 was deleted and

an Arginine residue was incorporated in position 39, whereas in the stochastic

mutant, this event occurred in the same spot, position 38. A common characteristic

that the predicted mutations appear to possess, in order to successfully reverting

cofactor specificity in this case, is the promotion of Arginine (R) inclusion and the

exclusion of Aspartate (D) in the analyzed sequences.
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1. A method for determining a cofactor specificity of a target enzyme, wherein the

target enzyme is expected to use one of a first cofactor and a second cofactor

based on an amino-acid sequence of the target enzyme, and/or for determining

an amino-acid sequence of a target enzyme variant, wherein the variant is

characterized by a cofactor specificity differing from that of the target enzyme,

the method comprising at least the steps of:

i)

i)
ii)

providing an atomic structure for each of both cofactors, wherein each
atomic structure comprises cofactor atoms, and wherein cofactor atoms
in the atomic structures that are located at the same corresponding
locations in both atomic structures are selected,

providing the amino-acid sequence of the target enzyme,

determining an estimated target enzyme-cofactor structure comprising
information on a spatial structure of the target enzyme bound to one of
the cofactors,

generating an interaction matrix for the target enzyme-cofactor structure,
wherein the interaction matrix comprises entries relating the selected
cofactor atoms to surrounding amino-acid residues of the target enzyme,
particularly wherein for each selected cofactor atom, entries are
generated in the interaction matrix that comprise the counts of each
amino-acid residue of the target enzyme within a predefined distance to
the selected cofactor atom,

determining a cofactor specificity of the target enzyme by providing the
interaction matrix, particularly the entries of the interaction matrix, to a
trained classifier that is configured to classify the cofactor specificity of
the target enzyme based on the provided interaction matrix to either the
first or the second cofactor.

2. The method according to claim 1, wherein particularly if the target enzyme-

cofactor structure is unknown, the following steps are executed for determining

the estimated target enzyme-cofactor structure:

performing a homology search with the amino-acid sequence of the
target enzyme in a protein structure database comprising information on

molecular structures of enzymes bound to the first or the second cofactor,
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assigning the molecular structure comprising the enzyme that exhibits a
highest degree of homology to the amino-acid sequence of the target
enzyme as a molecular structure template,

from the molecular structure template determining the target enzyme-
cofactor structure for the amino-acid sequence of the target enzyme
bound to the cofactor particularly by aligning the amino-acid sequence of
the target enzyme to the molecular structure template.

3.  The method according to any one of the preceding claims, wherein the

classifier is trained by

providing information on molecular structures of a plurality of enzymes,
wherein each molecular structure represents an enzyme bound to the
first or the second cofactor,

for each molecular structure, generating the interaction matrix, wherein
each interaction matrix is associated to the respective cofactor of the
molecular structure,

training the classifier with the interaction matrices so that the classifier is
configured to classify the cofactor specificity for the first or the second

cofactor of an enzyme based on the entries of the interaction matrix.

4.  The method according to any one of the preceding claims, wherein the trained

classifier provides a cofactor specificity probability for the first and/or the

second cofactor for the interaction matrix for classifying the cofactor specificity

of the target enzyme, wherein if said probability exceeds a predefined threshold

value, the target enzyme is classified to be specific to the respective cofactor.

5.  The method according to any one of the preceding claims, wherein the amino-

acid sequence of the target enzyme having the cofactor specificity switched

from the first cofactor to the second cofactor is determined by the steps of:

particularly providing the target cofactor enzyme structure with a target
enzyme being specific to the first cofactor,
prior to step v), replacing at least one amino-acid in the interaction matrix,
determining whether the cofactor specificity determined in step v) is
switched from the first cofactor to the second cofactor,
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d) particularly repeating the steps b) to ¢), particularly until the cofactor
specificity determined in step v) is switched from the first cofactor to the
second cofactor.

The method according to any one of the preceding claims, wherein for each of
the two cofactors and for each of the selected cofactor atoms and for each
amino-acid, a feature weight indicative of a cofactor specificity strength is
determined or provided, particularly wherein the trained classifier determines
and/or provides the feature weights after being trained, particularly wherein
said feature weights are provided in form of a computer readable look-up table.

The method according to claim 6, wherein a maximum impact matrix is
determined or provided relating each selected cofactor atom to the amino-acid
having the largest feature weight for the cofactor specificity for the first cofactor
and the second cofactor, particularly wherein the maximum impact matrix is
determined and/or provided by the trained classifier, particularly wherein the

maximum impact matrix stored as a computer readable look-up table.

The method according to any one of the preceding claims, wherein the amino-
acid sequence of the target enzyme having the cofactor specificity switched
from the first cofactor to the second cofactor is determined by the steps of:

- before the interaction matrix is provided to the trained classifier in step v),
replacing M amino-acid residues in the interaction matrix corresponding
to the amino-acid residues of the target enzyme with the M largest
feature weights for the first cofactor, with the corresponding M amino-acid
residues for the same cofactor atoms having the largest feature weight
for the second cofactor, wherein M is a natural number,

- particularly providing the such altered interaction matrix to the trained
classifier as the interaction matrix in step v),

- after step v), determining whether the specificity of the enzyme variant
associated to the interaction matrix is switched with respect to the target

enzyme.

The method according to claim 8, wherein starting from an initial value for M,
particularly M =1, the steps of claim 8 are repeated, wherein M is incremented



10

15

20

25

30

35

WO 2020/115269 PCT/EP2019/083950

10.

11.

12.
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14.
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by one or more during each repetition, until the cofactor specificity of the target

enzyme is switched or a predefined maximum value for M is reached.

The method according to any one of the claims 5 to 9, wherein the amino-acid
sequence of the target enzyme having the cofactor specificity switched from the
first cofactor to the second cofactor is determined by the steps of:

) before the interaction matrix is provided to the trained classifier in step v),
determining N amino-acid residues of the target enzyme with the N
largest feature weights for the first cofactor, wherein N is a natural
number, particularly 10,

[l)  repeatedly performing a stochastic evolutionary method for replacing the
N amino-acid residues with other amino-acid residues in the interaction
matrix, and for each cycle of the stochastic evolutionary method and for
each amino-acid sequence retrieved from the cycle determining the
cofactor specificity and the cofactor specificity probability with step v) with
the trained classifier,

[l) after step v) of claim 1, selecting at least one target enzyme with a
switched cofactor specificity.

The method according to claim 10, wherein in step Il) selected amino
sequences are submitted to a next cycle of the stochastic evolutionary method,
wherein the amino-acid sequences are selected based on the highest cofactor
probability for the second cofactor.

The method according to one of the preceding claims, wherein the first cofactor
is selected from one of the redox pairs NAD / NADH and NADP / NADPH, and
the second cofactor is the other of the redox pairs.

Method according to one of the preceding claims, wherein the target enzyme is
synthesized.

A computer program comprising instructions which, when the program is
executed by a computer, cause the computer to carry out the method according
to any of the claims 1 to 12.

* ke kK
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O4B SER | 0.214 N3A ASP | 0.143 O2B SER | 0.265 C4A ASN 0.137
C4B ASP | 0.212 O2B LEU | 0.142 O2B  LYS 0.262 NSA TYR | 0.137
C5B ASP | 0.212 3B GU | 0.141 C2B ARG | 0.229 02D ALA | 0.135
05B ASP | 0.202 NSA LEU | 0.139 [ex] GLY | 0.223 O2A ALA | 0.134
C5A LYS | 0.199 Ci1B ALA | 0.137 O3B ALA | 0.218 O5B SER | 0.133
2D VAL | 0.193 C4D TYR | 0.135 C4D ASN 0.217 N1A PRO | 0.132
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Isoleucine 268

Lysine 77
Serine 215

Serine 214




WO 2020/115269

Fig. 4

4/4

PCT/EP2019/083950

Evolutionary Algorithm

Target protein aminoacid sequence

EGRIERED P,
e b bR

2l
LT SR T T
T T

Ordered list of most influential
Residues in Cofactor Specificity

B
et
Sk
A
fe )

Fini

[rnrr——
R
i

Tyreien
Tl
iaptiy
arinns

Sriva

Initial population

100 Sequences with random mutations in the available mutable pasitians

]

Mew population:
100 candidates

N
Y \k’\

10

'

Cofactor prediction
using MiCofacter

\

B

tion ¢

Crossover rate: L8
Mutation rates 0.1

didates: 50

Mew sequences with
random mutations

Evaluation

Prediction score

Y

Maximum candidate
size allowed was
varied between 1
and & mutations per
SEQUEnCe

Mutant sequence with the highest cofactor prediction scere for the opposite cofactor is retrieved and stored




INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2019/083950

A. CLASSIFICATION OF SUBJECT MATTER

INV. G16B15/30 G16B15/20
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

G16B

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, BIOSIS, COMPENDEX, EMBASE,

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Jackson Cahn ET AL:

Design",

XP055593786,
Retrieved from the Internet:
URL:http://www.che.caltech.edu/g

page 3, paragraph 1

page 4, paragraphs 2,3

Sections 4.2.2, 4.2.2.1, 4.2.2.2
4,2.3.1

"Cofactor Specificity
Reversal Structural Analysis and Library

i December 2015 (2015-12-01), page 15,

CSRSALAD/CSRSALAD Documentation_

1-14

roups/fha/
Decl5.pdf

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other

means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

7 February 2020

Date of mailing of the international search report

18/02/2020

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Thumb, Werner

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2




INTERNATIONAL SEARCH REPORT

International application No

information for predicting NAD(P)(H)
cofactor specifi" by Tiago Resende, Isabel
Rocha et al.",

28 September 2017 (2017-09-28),
XP055593860,

Retrieved from the Internet:
URL:https://dc.engconfint].org/enzyme xxiv
[75/

[retrieved on 2019-06-04]

the whole document

PCT/EP2019/083950

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2004/072245 Al (GUSTAFSSON CLAES [US] 1-14

ET AL) 15 April 2004 (2004-04-15)

abstract

paragraphs [0006], [0066] - [0071],

[01601], [0102], [0194] - [0202]; figures

1,13
A NICKOLAY A. KHAZANOV ET AL: "Exploring 1-14

the Composition of Protein-Ligand Binding

Sites on a Large Scale",

PLOS COMPUTATIONAL BIOLOGY,

vol. 9, no. 11,

21 November 2013 (2013-11-21), page

el003321, XP055593801,

DOI: 10.1371/journal.pcbi.1003321

the whole document

in particular Table 4.
A Claudio Soares: ""Using strucutral 1-14

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2019/083950
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2004072245 Al 15-04-2004 AU 2003216507 Al 16-09-2003
DK 1493027 T3 17-11-2014
DK 2278509 T3 15-12-2014
DK 2315145 T3 25-01-2016
DK 2390803 T3 27-01-2014
EP 1493027 A2 05-01-2005
EP 2278509 Al 26-01-2011
EP 2315145 Al 27-04-2011
EP 2390803 Al 30-11-2011
ES 2564570 T3 23-03-2016
HU E028524 T2 28-12-2016
JP 5319865 B2 16-10-2013
JP 2005519384 A 30-06-2005
JP 2009277235 A 26-11-2009
SI 2315145 T1 31-03-2016
US 2004072245 Al 15-04-2004
WO 03075129 A2 12-09-2003

Form PCT/ISA/210 (patent family annex) (April 2005)




