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Abstract

Demand forecasting works as a basis for operating, business and production planning de-

cisions in many supply chain contexts. Yet, how to accurately predict the manufacturer’s

demand for components in the presence of end-customer demand uncertainty remains

poorly understood. Assigning the proper order quantities of components to suppliers thus

becomes a nontrivial task, with a significant impact on planning, capacity and inventory-

related costs. This paper introduces a multivariate approach to predict manufacturer’s

demand for components throughout multiple forecast horizons using different leading in-

dicators of demand shifts. We compare the autoregressive integrated moving average

model with exogenous inputs (ARIMAX) with Machine Learning (ML) models. Using

a real case study, we empirically evaluate the forecasting and supply chain performance

of the multivariate regression models over the component’s life-cycle. The experiments

show that the proposed multivariate approach provides superior forecasting and inventory

performance compared with traditional univariate benchmarks. Moreover, it reveals ap-

plicable throughout the component’s life-cycle, not just to a single stage. Particularly, we

found that demand signals at the beginning of the life-cycle are predicted better by the

ARIMAX model, but it is outperformed by ML-based models in later life-cycle stages.
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1. Introduction

Demand forecasting is a fundamental aspect in supply chain management (SCM) with

a significant impact on planning, capacity and inventory control decisions [1]. In the

inventory control context, underestimated and overestimated forecasts impose an increase

in backlog and holding costs. The resulting demand volatility is therefore one of the main

causes of order amplification from downstream to upstream supply chain (SC) players [2].

Time series forecasting has been the focus of extensive research studies across sev-

eral fields, including energy, transportation, fashion retailing, finance and SCM [see, e.g.,

3, 4, 5, 6, 7], but the generation of accurate SC demand forecasts still represents a chal-

lenging task for both researchers and practitioners [8]. One possible explanation for this

may be the fact that sales forecasts are often prone to errors primarily given their depen-

dence on exogenous and nonlinear variables (e.g., retail price and advertising) that, all

together, potentially hamper the development of effective forecasting models. While it is

well-known that demand variability may lead to large cost implications to upstream SC

echelons (even when it is not amplified but simply transmitted) [9], understanding of the

processes that lead to improvements of demand forecasting at the manufacturer stage is

limited. It is interesting to note here that demand forecasting at the manufacturer level is

quite challenging, mainly for two reasons: first, it is in practice very difficult to accurately

predict end-customer demand based on market information, due to its erratic behavior.

As a corollary, demand signals from end-customers to manufacturers can be increasingly

distorted. Second, even the minutest shift in the end-customer demand signals can lead to

significant levels of uncertainty at the upstream levels of the SC network. Indeed, this holds

true mainly when the levels of cooperation between SC members are low. Such information

asymmetry makes the estimation of the quantities to be ordered for various components1

to different suppliers a challenging task, especially when the market information that feeds

end-customer demand signals is highly erratic. This gives rise to an interesting research

question we aim to answer in this paper: How can we promote accurate manufacturer’s de-

mand for components in the presence of end-customer demand forecast uncertainty while

maintaining suitable service levels and decreased inventory-related costs? The objective

of this research is to explore a new multivariate approach to forecast demand for compo-

1A component is here defined as an inventory item, other than a finished product, that goes into higher

level items in the bill of materials.

2



nents that takes advantage of different leading indicators of manufacturer’s demand shifts.

Following an unconditional (ex ante) forecasting setup, we explore several Machine Learn-

ing (ML) models together with the statistical ARIMAX model to assess the viability of

the proposed approach over the component’s life-cycle. Interestingly, note that the ARI-

MAX model has recently achieved good forecasting results on series with different levels

of volatility [10]. To empirically evaluate our forecasting approach, we joined forces with

a major automotive electronics organization – Bosch Automotive Electronics, Portugal

– considered to be one of the largest business units belonging to the Bosch group. The

performance of the multivariate regression models is then compared to that of traditional

univariate statistical ones and evaluated according to the forecasting errors as well as to

the overall inventory-related costs derived therefrom. The proposed approach could act as

an intelligent decision support system (DSS) for logistics planners at the upstream-end of

automotive electronics SCs. In a nutshell, the contribution of this research to the extant

literature on demand forecasting is threefold:

i. By resorting to ARIMAX and ML-based models, we explore a simple yet effective

multivariate approach for multi-step forecasting of manufacturer’s demand based

on suitable leading indicators. Using a realistic rolling origin forecasting setup,

the stability of the proposed approach is assessed across the component’s life-cycle

stages, and the forecasting results obtained are compared with those derived from

traditional pure statistical methods, including Näıve benchmarks.

ii. We highlight the usefulness of the proposed forecasting approach by addressing a

real-life problem faced by a major make-to-order (MTO) automotive electronics or-

ganization (Bosch Automotive Electronics, Portugal), that operates with multiple

suppliers and end-customers worldwide.

iii. We consider the accuracy-cost trade-off when comparing the performance of the

forecasting models such that company managers can assess what kind of impact can

be expected from forecast variations on the overall inventory performance.

This paper is structured as follows. In the next Section, we provide a literature overview

on SC demand forecasting models. In Section 3, we describe the problem at stake. Section

4 provides details on the proposed framework, including the multivariate regression models

considered. Section 5 outlines the experimental design and the model evaluation criteria.

We further present and discuss the empirical results in Section 6. Here, the implications of
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our work for decision support are also provided. Finally, conclusions are drawn in Section

7.

2. Related work

Typically, SC demand forecasting studies carried out to date have been proposed to: 1)

forecast intermittent demand patterns [11, 12, 13, 14, 15]; 2) predict new product demands

over its life-cycle using product differentiation information [16]; or even 3) forecast spare

parts demand for regular products [17]. Table 1 provides an overview of the discussed

literature on SC demand forecasting. In the overwhelming majority of the cases, the

presented models rely on statistical-based techniques to grasp important forecast implica-

tions in several contexts. ML-based forecasting approaches have, however, been explored

to capture the complex dynamics of SC demand. Neural networks (NNs) are the most

popular ML models concerning time series forecasting [18], and have proven to be effective

in forecasting very challenging contexts associated with lumpy demand [19] and demand

with incomplete data [20], sometimes outperforming traditional univariate methods such

as exponential smoothing and multiple regression [21]. Oftentimes, NN-based models are

also exploited in combination with other methods to form hybrid approaches. Aburto

and Weber [22] introduce a hybrid intelligent demand forecasting system that combines

traditional statistical ARIMA models and NNs. The authors show that this combination

provides more accurate forecasts than the methods individually. Jaipuria and Mahapatra

[23] present an integrated approach, based on the combination of discrete wavelet trans-

forms and NNs, applicable to linear, nonlinear, stationary or non-stationary data series.

Though NNs have been successfully applied to diverse SC contexts, Abolghasemi et al.

[10] provide evidences that simple statistical forecasting models can outperform some ML

approaches when demand series is highly volatile. Nikolopoulos et al. [24] also show that

forecast accuracy performance can be deteriorated when using nearest neighbor approaches

to forecast demand series with high levels of intermittence.

In summary, a notorious progress has been made in proposing novel or improved models

to forecast SC demand under different circumstances. Yet, there is no clear evidence that

ML models outperform traditional statistical forecasting methods, and previous research

studies [25, 26] corroborate these findings. This is not surprising as the performance of

forecasting models strongly depends on the nature of the time series and no forecasting

method is a panacea for all forecasting problems. There are also other factors that come
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into play here, such as the length of the series and the forecast horizon.

Apart from the fact that the overwhelming majority of the works listed in Table 1 con-

sider univariate information extrapolating from the past when forecasting SC demand, we

further observe that the academic literature is rather scarce in terms of demand forecast-

ing applications relying on the manufacturer level (hereafter referred to as upstream-end

side). For instance, Carbonneau et al. [27] studied the effectiveness of ML strategies in

forecasting distorted demand signals as they move through upstream SC echelons. It is

shown that despite NN models reveal to be more accurate than linear regression, the dif-

ferences are not statistically significantly different. This supports the claim that simple

baseline benchmark models should be considered to attest the superiority of ML tech-

niques. A second example is the work of Mukattash and Samhouri [28], who proposed a

forecasting framework to improve supply planning using a multivariate regression model,

without having to resort to the bill of materials (BOM).

Depending on the nature and complexity of the SC, many different variables may im-

pact on the dynamics of demand. Recent published research has found improvements in

forecast accuracy by including leading indicators in the forecasting process [29, 30]. Unfor-

tunately, understand how logistics leading indicators may improve manufacturer’s demand

for components remains an important unresolved question demanding appropriate answers,

especially in the context of inventory management in assembly industries. In this context,

to the best of our knowledge, this is the first paper combining different leading indicators,

encompassing product structure information and end-customer demand behavior, into a

multivariate forecasting framework able to predict manufacturer’s demand. In this paper,

we contribute to the demand forecasting literature by proposing a multivariate framework

able to forecast manufacturer’s demand throughout the entire component’s life-cycle. Fur-

thermore, we study the dynamics of the proposed framework using both forecast accuracy

and inventory performance measures.
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Table 1: Overview on supply chain demand forecasting literature.

Authors Forecast approach Forecast technique(s)a Target Empirical

frequencyb data

Willemain et al. [11] Univariate Bootstrap, Croston, ES M Yes

Syntetos and Boylan [12] Univariate SBA, SMA, SES, Croston M Yes

Carbonneau et al. [27] Univariate MLR, NN, RNN, SVM M Yes

Näıve, MA, Trend

Gutierrez et al. [19] Univariate NN, Croston, SES, SBA D Yes

Efendigil et al. [20] Univariate NN M Yes

Ferbar et al. [31] Univariate Wavelet denoising, ES – No

Sayed et al. [32] Univariate SES, HW, GA M Yes

Yelland [33] Univariate Bayesian method, SSM Q Yes

Mukattash and Samhouri [28] Multivariate MLR, VAR – No

Petropoulos et al. [13] Univariate Croston-Theta, SBA, SMA M Yes

Näıve, SES

Lau et al. [21] Univariate NN, ES; MLR M Yes

Kourentzes [14] Univariate NN, Crostonc, Näıve, MA, SES M Yes

Jaipuria and Mahapatra [23] Univariate DWT, NN, ARIMA M Yes

Rego and Mesquita [17] Univariate Bootstrap, SMA, SBA W, M Yes

Nikolopoulos et al. [24] Univariate k-NN, SES, SBA, TSB, M Yes

Croston

Huber et al. [34] Uni/Multivariate ARIMAX, ARIMA D Yes

Afrin et al. [16] Univariate DDI-EWMA Y Yes

Murray et al. [35] Univariate ARIMA W Yes

Fu and Chien [15] Univariate MA, ARIMA, Croston, W Yes

k-NN, SBA, TSB, SVM,

RNN, MAPA

Abolghasemi et al. [10] Uni/Multivariate ETS, ETSX, ARIMA, SVM W Yes

ARIMAX, NN, DLR, Theta

Current study Uni/Multivariate SVM, NN, RF, ARIMAX W Yes

AutoML, ERNN, ARIMA

Theta, Näıve

a ES: Exponential Smoothing, SMA: Simple Moving Average, SES: Single Exponential Smoothing, MLR: Multiple Linear Re-

gression, NN: Neural Networks, RNN: Recurrent Neural Networks, SVM: Support Vector Machines, MA: Moving Average, SBA:

Syntetos-Boylan Approximation, HW: Holt Winter’s, GA: Genetic Algorithm, SSM: State Space Model, VAR: Vector AutoRe-

gression, DWT: Discrete Wavelet Transforms, ARIMA: AutoRegressive Integrated Moving Average, TSB: Teunter-Syntetos-Babai

approximation, ARIMAX: ARIMA with eXogenous information, DDI-EWMA: Demand Differentiation Index-Exponential Weighted

Moving Average, k-NN: Nearest Neighbor, MAPA: Multiple Aggregation Prediction Algorithm, ETSX: Exponential Smoothing in

the state space framework, DLR: Dynamic Linear Regression, RF: Random Forest, AutoML: Automated Machine Learning, ERNN:

Elman Recurrent Neural Network.

b Target frequency legend: D=Daily, W=Weekly, M=Monthly, Q=Quarterly, Y=Yearly, –=Not reported.

c Different Croston-based methods are used as modeling approaches.
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3. Problem formulation

Consider a classical SC topology consisting of a single manufacturer linked with differ-

ent suppliers and end-customers (Fig. 1), in which there exists an information flow (dashed

line) from the market to the different suppliers and a material flow (solid line) from the

suppliers to the end-customers. We will speak of end-customers as the original equipment

manufacturing (OEM) buyers. Forecasted demands for finished products are used to de-

termine the component order sizes to suppliers. The supplied components {c1, c2, . . . , cj}
are then assembled by the manufacturer to further produce a set of finished products

{p1, p2, . . . , pr}, with r ≤ j, and fulfill end-customer requests. We consider that the pro-

duction of finished products is MTO and happens continuously over time. Under this

topology, demand forecasts for finished products may serve as input for the development

of daily production plans.

Figure 1: Information (- -) and material flow (—) in a classical supply chain (SC) topology.

Typically, the manufacturer determines the component’s order sizes by considering prod-

uct structure information (BOM), safety stocks, inventory levels and transportation lead

times. From a modeling perspective, there are two classical approaches for forecasting

manufacturer’s demand for components. The first consists of using univariate time series

forecasting models directly on historical records of manufacturer’s demand for compo-

nents, but such strategy can be biased since it uses no information from the customer(s)

demand behavior. The second approach is aligned with the material requirements plan-

ning (MRP) methodology [36] and takes advantage of the BOM to provide the component

requirements for future time periods based on finished product forecasts [37]. Neverthe-

less, if a given component is used to produce a large set of finished products, it would be

necessary to use forecasted demands of all these products in order to further provide the

component requirements via BOM-explosions. In the end, this procedure would lead to
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both significant cumulative forecasting errors and inventory-related costs (especially if the

component is used more than once in the different products), which impact strongly on

sourcing commitments and transportation decisions. Besides, erratic market information

may also easily generate distorted end-customer demand signals to manufacturer, entail-

ing several implications for management. In particular, if the real end-customer demand

is higher than the end-customer demand forecast, then the manufacturer may need to

resort to last minute emergency shipments (called premium freights) in a bid to avoid

stock-outs, delay risks and/or production line stoppages. Conversely, if the end-customer

demand forecast is higher than the real end-customer demand, the manufacturer incurs in

additional holding costs. To face demand uncertainty, organizations often tend to increase

the safety stocks for components at early life-cycle stages.

Hence, because end-customer demand signals are naturally error-prone, our goal in this

study is to enhance manufacturer’s demand forecasting, as in [27], but without considering

merely past information relating to component consumptions/orders.

Let c be a given component and let F = {pi}ri=1 be a finite and unordered set of different

finished products that make use of c in their BOM-structures. Hereinafter, we will speak of

finished products as only those that make use of c in their product structure. In addition

to previous component’s demand, we propose to include three leading indicators that can

capture the fundamental dynamics of manufacturer’s demand for c over the course of its

life-cycle. The first is the cardinality of F (#F ). The manufacturer’s demand for c tends

to increase whenever the demand for finished products pi ∈ F (of which c is a component

part) increases, especially when #F is large. As both new assignments of components

to a given BOM and major engineering change requests (ECR) in the finished product

structure are typically planned and created weeks ahead of the realization of the actual

manufacturer’s demand, #F can be updated accordingly and thus enabling to anticipate

future increases or declines in the manufacturer’s demand for c. This indicator is strictly

related to the concept of component commonality [38]. The second is the total amount

of units of c required for producing each finished product pi ∈ F (U), which strongly

reflects the magnitude of the manufacturer’s demand: high levels of U tend to lead to an

increased demand for c, whenever there exists demand for pi ∈ F . This indicator contains

product structure information and, for the same reasons as those given in the justification

of #F , it is also an early leading indicator of component’s demand. The third is the

field intelligence information regarding production orders, planned in the current period
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for the future, of finished products pi ∈ F (P ). Logistics planning experts operate in

close liaison with sales department and end-customers to develop dynamic weeks-ahead

production plans for finished products that may account for internal capacity constraints,

expected events across the planning horizon and adjustments to possible misaligned end-

customer demand signals. This makes it possible to use the resulting planned orders to

generate a more refined estimation of future finished product production volume, thereby

anticipating manufacturer’s demand for c. This indicator reveals fundamental insights

about the future behavior of end-customer(s) demand, and it is less prone to sharp under

and overestimations as it happens in the case of initial end-customer forecasts. It is worth

mentioning that previous studies have already shown that expert information may lead

to improved forecasting performance [e.g., 29]. To account for different leading effects of

each indicator, we consider lagged versions of #F,U and P . In addition, as #F can vary

significantly over time t, especially in highly volatile SC environments with frequent ECR

at product level, we consider the last two above-mentioned input features in an aggregate

form for all the finished products pi ∈ F , rather than separately (as single regressors) for

each one of them.

The central problem in this paper can thus be formulated in a typical regression fashion

as follows. Given an output sequence of past demands for c lagged by k time periods up to

time T ([Dt]t=(T−k):T ), and an input vector xt that integrates the time lags for the leading

indicators #F (cardinality of finished products), U (total number of units of c necessary

for producing each pi ∈ F ) and P (planned finished product production volume) in the

same time intervals, our purpose consists in predicting future demands D̂T+1 to D̂T+H ,

where H > 1 denotes the maximum forecast horizon. More formally, this multivariate

framework can be formulated as:

[
D̂T+h

]
h=1:H

= f([Dt]t=(T−k):T , [xt]t=(T−k):T ; θ) + ωT+h, k ∈ {1, . . . , d} , (1)

where d denotes the maximum order of time lags, ωT+h is the error term, and θ is a vector

of parameters of the regression function f(·). The objective is to find the function f(·) for
which the forecast error is minimal. For each horizon h, we impose that k ≥ h to ensure

that only observed values are used as inputs for forecasts (see Section 4.2 for details).
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4. Methodology

4.1. Proposed forecasting framework

We propose a two-stage forecasting framework for manufacturer’s demand forecasting,

which is presented in Fig. 2 and detailed throughout subsequent Sections. In such a

setting, we firstly build a multivariate dataset of time series input sequences for each

component, using the leading indicators described previously. Then, we adopt a sliding

time window [39] to create a set of training instances defined by a pre-specified number

of time lags related with each input feature. At this point, since future values of the

leading indicators are typically unknown [29], and only information that is available at the

time when the forecast is generated can be used to predict future manufacturer’s demand,

we formulate an unconditional forecasting setup (see Section 4.2). Further, we design a

rolling origin forecasting scheme (see Section 5.2) to collect multiple forecasting errors

using different forecast origins and test sets, which allows to increase the reliability of

the results. This scheme serves as basis for the modeling and evaluation processes, which

include the selection of the suitable time lags, the model training and validation, and the

assessment of the generalization capability of the model to unseen data.

In a second stage, the optimized model is used for modeling the relationship between

the selected inputs and the target variable, to ultimately forecast manufacturer’s demand

and help SC managers in making decisions for improving inventory management and order

plans to suppliers. We believe that the proposed forecasting framework is flexible enough to

allow its implementation in general supply chain networks involving assembly operations,

as is the case with the automotive, manufacturing, semiconductor and computer industries.

Figure 2: Proposed multivariate forecasting framework.
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4.2. Unconditional forecasting

In contrast with conditional (or ex post) forecasting, in which later information on the

regressors is assumed to be known, unconditional (or ex ante) forecasting uses only the

information that is available up until the forecast origin at period T [40]. Concretely, since

future values of the leading indicators are generally unknown, lower orders lags cannot be

used when forecasting higher order horizons, since they will have no data available. Hence,

we adjusted the regression models for each horizon in such a way that only time lags

greater or equal to the current forecast horizon are included as regressors. For instance,

when forecasting horizon is h = 1 all the lagged indicators are considered. Yet, when

forecasting horizon is h = 2 only variables lagged by 2 or more time periods can be used,

as the values of lower order lags are unknown. In the limit, when forecasting a maximum

forecast horizon of h = H only indicators lagged by k ≥ H periods are used in the process.

Following this strategy, only observed values are considered as inputs for forecasts.

Obviously, this setup implies the design and training of H different forecasting models.

Despite this apparent modeling complexity, a natural and important advantage of un-

conditional forecasting is that it avoids the need to predict all regressors separately, and

therefore the addition of noise to the forecasting process. Besides, such a setting allows

considering hard-to-predict turning points captured by the leading indicators [29] that

would not be included in the model if, for instance, a vector autoregressive (VAR) ap-

proach was employed. Note that the unconditional setup setting is commonly used in

other contexts, such as in tactical sales forecasting [29] and tactical capacity planning [30].

4.3. Models

In this Section, we elaborate on the choice of the regression models. We investigated

a multivariate expansion of the Auto-Regressive Integrated Moving Average (ARIMA)

model, commonly known as ARIMAX, that allows the inclusion of exogenous inputs apart

from the autoregressive and moving average parameters. In addition, we considered three

flexible and popular supervised ML regression models: multilayer perceptron (MLP), sup-

port vector regression (SVR) and random forest (RF). Here, these models are considered as

implemented in the rminer package [41] of the R statistical computing language [42]. The

use of these non-parametric ML-based models may represent an advantage with respect to

the conventional statistical-based forecast techniques, as they can cope with complex non-

linear mappings with increased tolerance to noise. In effect, these ML regression models
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were previously applied to multi-step forecasting of univariate time series [39], obtaining

competitive results when tested with several small sized series (from 108 to 192 observa-

tions), and compared with the statistical ARIMA and Holt-Winters forecasting methods.

4.3.1. ARIMAX model

The ARIMAX model can be mathematically expressed in the form ARIMAX(p, d, q, r),

which combines the AutoRegressive (AR) model with order p, the Integrated (I) with

degree of differencing d, the Moving Average (MA) with order q and the eXogenous (X(r)),

where r denotes the maximum number of exogenous variables included in the model, i.e.,

yt = ρ+

p∑
i=1

βiyt−i +

r∑
j=1

ωjxj +

q∑
j=1

θjzt−j + zt , (2)

where yt is a dependent variable at time t; ρ is a constant; yt−i is a dependent variable

lagged by i periods and βi are the respective coefficients; xj denotes the exogenous variables

and ωj are the respective coefficients; zt−j is the error at time t − j with coefficient θj

and zt ∼ N (0, σ2) is a white noise process. We followed a variation of the Hyndman-

Khandakar algorithm [67] for an automatic ARIMAX modeling.

4.3.2. Multilayer perceptrons (MLP)

The MLP is a feedforward artificial NN that consists of an input layer, followed by

one or more hidden layers comprised by nonlinearly-activating neurons (nodes), and an

output layer. In this work, we adopt a MLP architecture composed by m inputs, a single

hidden layer with H neurons and a single neuron in the output layer. The choice of

this configuration relies strongly upon its ability to perform, under certain conditions,

universal approximations of continuous functions on compact subsets of Rn [43]. We have

considered the identity function as the activation function for the output node and the

sigmoid activation function φ(v) = 1/(1 + e−v) for the hidden layer nodes. During the

MLP learning process, the synaptic weights are constantly adapted based on the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm [44]. The final MLP solution

is, however, strictly dependent on an initial configuration of synaptic weights. To overcome

this problem, we considered an ensemble of Nr distinct trained MLPs, in which the final

output is given by an unweighted average of the individual predictions given by each MLP.

Since smaller synaptic weights may result in better generalization for the trained networks,

we further optimize the weight decay regularization parameter [45].
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4.3.3. Support vector regression (SVR)

The support vector regression (SVR) [46] is a powerful learning method resulting from

an adaptation of support vector machines [47] to cope with nonlinear regression problems.

Suppose we are given n training observations in a set G = {(xi, yi)}ni=1 ⊂ R
m × R, where

xi is a m–dimensional vector of input features and yi is the corresponding target output.

Following common practice [39], we consider the ε-SVR model, in which the ultimate

purpose is to find a suitable and flat function f(x) that deviates at most by ε from the

target outputs yi for all training data (see [46] for details). For the SVR training, the

rminer R-package adopts the Sequential Minimal Optimization (SMO) algorithm [48].

The SVR formulation is also typically dependent on a kernel function κ(x,x′). Here, we

tried the polynomial kernel κ(x,x′) = P (〈x,x′〉), where P (·) is an arbitrary polynomial

with positive coefficients, and the common Gaussian kernel (or the Radial Basis Function

(RBF)) κ(x,x′) = exp(−||x−x′||2/2σ2) since it allows to generate an infinite dimensional

feature space only depending on σ > 0, which denotes the width of the kernel. In the case

of the popular Gaussian kernel, particular attention should be given to the selection of

the hyperparameters σ, ε and C, which specifies the trade-off between model fit and the

flatness of the mapping. Yet, special emphasis is placed in the first hyperparameter, σ,

as it is the one with the greatest potential impact on the performance of ε-SVR [49]. For

a better generalization, such a selection should be conducted in a reduced input space by

choosing suitable time lags to feed the ε-SVR model [39].

Overall, due to the existence of a single global minimum and its ability to build flexible

and nonlinear regression estimating functions, SVR has proven to perform well in a wide

variety of regression datasets [50], including in time series forecasting [51].

4.3.4. Random forest (RF)

Developed by Breiman [52], a random forest is a non-parametric model consisting of

an ensemble of randomly generated decision trees. The resulting forest predictions are

based on a given aggregation method, which depends on the nature of the problem, i.e.,

classification or regression. In random forest regression, the forest can be algebraically

defined as an ensemble of R trees {T1(x), T2(x), . . . , TR(x)} that produces R individual

predictions {Ŷ1 = T1(x), Ŷ2 = T2(x), . . . , ŶR = TR(x)}, where Ŷi : i = 1, . . . , R, is the

prediction derived by the ith decision tree. During the training process, in which the

ultimate goal is to generate multiple de-correlated trees, each decision tree of the ensemble

is grown using distinct bootstrap samples with replacement from the original training set,
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under the random subspace method [53]. For each bootstrap sample, each tree is grown

by choosing, at each node, the best split among a given subset of random features. The

resulting forest prediction is then formed by averaging the individual predictions derived

from the different R regression trees using bootstrap aggregation (or bagging, in [54]),

which minimizes the variance related to prediction. This is particularly important in

order to reduce the propensity of overfitting, which is a serious handicap of decision trees.

Bootstrap aggregation also generates de-correlated trees from different training samples,

giving to the RF an increased tolerance to noise.

By definition, RF has several hyperparameters. Yet, two of them are deemed relevant

[55] to achieve satisfactory results, namely the number of trees (R) and the number of

random features (mtry) considered at each split in the forest.

5. Empirical evaluation

This Section presents and describes the research methodology carried out in order to (i)

empirically evaluate the merits of including multivariate information in the manufacturer’s

demand forecasting process and (ii) examine the performance of the derived forecasts, from

both a statistical accuracy and supply chain perspective. For this purpose, we adopted a

case study approach as it is well-suited to research topics for which relatively little work

has been conducted [56]. In what follows, we rely on [57] to outline the research design as

well as to describe the underlying research question and methodologies considered in the

evaluation part of this study.

5.1. Case study design and unit of analysis

Our research setting is the logistics department of Bosch Automotive Electronics Por-

tugal (AE/P). Although fairly profitable when compared with global competitors, Bosch

AE/P tends to keep high inventories and safety stocks of components upholding the highest

standards of service level. While it is desirable to maintain a high customer service level,

it is likewise vital to minimize inventory holding costs. Currently, manufacturer’s demand

for components is determined using the classical MRP concept. Complementarily, even

though less frequently, univariate forecasting techniques can also be used for this purpose.

In the former context, end-customer demand forecasts form the basis for the determination

of gross requirements which, in turn, are used to determine the net requirements for com-

ponents over time. The supplied components are further assembled by the manufacturer
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in order to produce finished products. However, the company constantly faces increases,

reductions, cancelations and forward-backward movements of finished product orders by

the end-customers. This, together with the fact that the maintenance of MRP system

parameters is not always efficient, makes it difficult to find suitable supply orders for com-

ponents. After several face-to-face meetings with several senior experts from the logistics

department of Bosch AE/P, we joined forces to study a strategy to improve manufacturer’s

demand forecasting.

The investigated case examines the dynamics of our multivariate demand forecasting

approach throughout the component’s life-cycle. At this point, we consider the evolution

of the forecasting and supply chain performance derived from our approach as the core

unit of analysis of this study.

5.1.1. Research question and hypothesis

Our experimental study addresses the following research question: To what extent can

the introduction of multivariate information improve upon the performance of univariate

forecasting, inventory and operational management?

Here, we hypothesized that our multivariate forecasting approach can help us to ac-

curately predict manufacturer’s demand throughout the different component’s life-cycle

stages, which are likely to impact on demand forecast accuracy. If this hypothesis is

accepted, the manufacturer can set more adequate empirical safety stocks across the com-

ponent’s life-cycle, leading to a better management of demand variability. In addition,

we expect that the smaller forecast deviations from true manufacturer’s demand resulting

from the application of our approach will provide an opportunity to improve customer

service levels and inventory management by better matching manufacturer’s demand and

supply. In practice, this will enable to foster the buyer-supplier relationship by reduc-

ing the bullwhip effect, which govern how good the manufacturer can cope with future

downstream needs.

5.1.2. Data collection and analysis

We considered empirical data, covering the period from the year 2008 up until 2016,

related with three procurement components identified by the company experts as key items

with a high turnover rate. The data were collected from an enterprise resource planning

(ERP) system. Following the forecasting framework described in Section 3, the collected

data for every component include weekly information related with each input feature (4
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time series per component). As the manufacturer’s demand in the week 52 is relatively

small in all components, we aggregated the data of week 52 into week 51, resulting in time

series with 459 samples (51 weeks × 9 years).

For illustration, Fig. 3 depicts the weekly manufacturer’s demand (D) for each com-

ponent together with the leading indicator P . Each point in the P curve was collected

10-weeks ahead of the realization of the manufacturer’s demand for components (D). From

the zoomed parts of this figure, one may argue that weeks-ahead estimations for future

finished product production volume (P ), resulting from field intelligence information, can

serve as an interesting leading indicator for actual demand D. The time series are found

to be seasonal with period 51, as verified by the Friedman’s test [58] (p < 0.05), and non-

stationary by the Augmented Dickey-Fuller (ADF) test [59]. Note that, for the component

3, the time series D and P are quite related in terms of magnitude because it is only used

once in the product structure of all finished products pi ∈ F . In contrast, for the remain-

ing components, we see a difference in magnitude between the curves D and P inasmuch

as one component can be used more than once in the different pi ∈ F . The unimodal

curve associated with each of the time series can be explained by the three component’s

life-cycle stages. First is the launch stage, typically characterized by a growing demand

for components in alignment of the increasing sales of finished products. After reaching

its peak, the demand becomes relatively stable for a finite time period called the maturity

stage. Entering into the end-of-life (EOL) stage, the demand for components gradually

falls back towards zero as more finished products reach their lifetime.

Although there is a relatively small sample size of components in this study, the respec-

tive demand time series exhibit several demand spikes that, without causal information,

are challenging to predict. This makes such time series interesting for forecasting purposes.

Figure 3: Planned production orders from field intelligence information (P ) as a leading indicator of weekly

manufacturer’s demand (D) for the different components, from 2008 up until 2016.
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5.2. Forecasting design and evaluation

To measure the performance of the forecasting models, we devised a realistic rolling

origin forecasting scheme [40] in such a way that the initial training set gradually increases

to generate forecasts for h = 1 to h = H periods ahead from several forecasting origins,

which roll forward in time over the component’s life-cycle. This setup goes as follows. In

the first iteration of the scheme, the oldest W data records are used to fit the prediction

model constructed in an ex ante fashion. The trained model then produces the forecasts

for the next H periods, starting from t = W + 1. In the second iteration, the training set

W is increased by K periods and the forecasting model is retrained to generate new H

forecasts, starting from t = W + K + 1. Following this process, the training window W

grows up to t = S −H, where S is the available sample size. This rolling origin setup is

robust since it allows to compare several forecasts over different training and test sets.

In such a setting, we now discuss the evaluation measures used to assess the perfor-

mance of the forecasts. We have considered forecasting and supply chain performance

measures, computed separately for each horizon h ∈ {1, . . . , H}, and aggregated over n

forecast origins.

5.2.1. Measuring forecasting performance

We used the Normalized Mean Absolute Error (NMAE) as a measure to statistically

evaluate and compare the predictions derived from the application of the models:

NMAEh =
MAEh

Ymax − Ymin
=

1

n

n∑
i=1

|Y (i)
T+h − Ŷ

(i)
T+h|

Ymax − Ymin

MAEh =
1

n

n∑
i=1

|Y (i)
T+h − Ŷ

(i)
T+h| ,

(3)

where T is the last known time period for the rolling iteration i, Y
(i)
T+h is the actual

demand at time T +h for i , Ŷ
(i)
T+h is the target demand, whereas Ymax and Ymin represent

the maximum and the minimum target values of the test set. The NMAE is easy to

interpret, as it expresses the error as a percentage of the range of the target values,

and it has desirable statistical properties. First, in sharp contrast with the MAE, it

is scale independent, which allows to compare forecasting errors for data with different

ranges of values. Secondly, contrary to other absolute error measures (e.g., Mean Absolute

Percentage Error), NMAE is able to cope with zero target values or with aggregation of

single errors that could be zero.
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5.2.2. Measuring supply chain performance

Recalling that, depending on the component’s nature, different magnitudes of forecast

errors translate into different implications for the organization (e.g., in terms of produc-

tion planning and service level), it also important to consider the potential impacts of

the forecast errors in the SCM process. Focusing on inventory management, practitioners

often concern about the standard deviation of the forecast errors during the lead time L2

when establishing appropriate safety stock levels to hedge against stock-outs and demand

uncertainty. Therefore, we studied the implications of forecast deviations on the dimen-

sioning of safety stocks as a function of the target service level α∗. For that, we adopted

the well-known formulation for the classical safety stock dimensioning problem [60]:

SS = Φ−1(α∗)σL , (4)

where Φ(·) is the standard Gaussian cumulative distribution function and σL is the stan-

dard deviation of forecast errors over a given lead time L > 0. Following common practice

[61], we considered an empirical estimation where σL can be directly estimated from the

lead time forecast errors according to the following parametric approach:

σL =

√∑N
j=1 [εj(L)− ε(L)]

2

N
, (5)

where εj(L) =
∑L

h=1

[
Y

(j)
T+h − Ŷ

(j)
T+h

]
is the lead time forecast error, ε(L) =

1

N

∑N
j=1 εj(L)

is the average error for the L under consideration, and N is the number of forecasts of

length L considered. Instead of assuming that forecast errors are independent and iden-

tically distributed (i.i.d.), as in the theoretical approach, the above-mentioned empirical

estimation relaxes the independent variance assumption by allowing σL to vary over time.

While the results of most research do not include the financial impacts of forecasting

errors in the SC and, when they do so, the case study approach is typically not considered

[1], we adopted a cost function to measure the expected inventory-related costs (TC), in

terms of holding and backlog inventory, induced by a given forecasting deviation at h:

TCh =
1

n

n∑
i=1

[
ck max

(
Ŷ

(i)
T+h − Y

(i)
T+h, 0

)
+ cb max

(
Y

(i)
T+h − Ŷ

(i)
T+h, 0

)]
(6)

2We define lead time as the moment between a component order is placed by the manufacturer to a

supplier and the moment at which the components actually arrive to the plant.

18



where ck and cb represent the fixed weight factors for holding and backlog costs, respec-

tively, of a given component. The backlog costs cover all the premium freight costs incurred

to face stock-out risks. Note that Eq. (6) allows to reflect the potential effects caused by

forecast deviations in terms of inventory holding costs, when Ŷ
(i)
T+h > Y

(i)
T+h, and in terms

of backlog costs when Ŷ
(i)
T+h < Y

(i)
T+h. As in [62], we have assumed that holding and backlog

costs evolve linearly as a function of the inventory-on-hand and backlog levels, respectively.

Of interest, we also examined both the loss rates (LR) and fill rates (FR) generated by

the different forecasting models as follows:

LRh =
1

n

n∑
i=1

max
(
Ŷ

(i)
T+h − Y

(i)
T+h, 0

)
Y

(i)
T+h

(7)

FRh = 1− 1

n

n∑
i=1

max
(
Y

(i)
T+h − Ŷ

(i)
T+h, 0

)
Y

(i)
T+h

(8)

where LR represents the fraction of components that need to be discarded over the actual

manufacturer’s demand due to an overestimated forecast, and FR traduces the fraction

of demand that is fulfilled by the forecast [34].

5.3. Baseline & benchmark models

We start by comparing the forecast results with those of three traditional univariate

benchmark models, including the Näıve (random walk), Theta and ARIMA, commonly

adopted in researches on demand forecasting based on the M3 competition data [62]. The

Näıve method is a simple yet fundamental benchmark for forecasting, in such a way that

any other forecasting model should outperform it to ensure its appropriate use. In this

method, the forecast for the next period equals the last observed value. The Theta method

[63] is a decomposition approach that modifies the local curvature of a time series, leading

to the creation of two or more Theta-lines that are extrapolated and combined to cap-

ture the short and long-term dynamics of the original data. For additional benchmark

purposes, we have also considered the well-established Elman Recurrent Neural Network

(RNN) model [64] (ERNN) and a recently Automated ML (AutoML [65]) model that is

implemented in the rminer R-package. The ERNN model presents a similar structure to

the MLP but the former contains local feedback recurrent connections allowing storage and

the use of past output information to forecast future values. The AutoML is particularly

appealing for non expert ML users, since it automatically performs a ML model selection
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and its hyperparameter optimization. In particular, the adopted AutoML model automat-

ically trains and tunes a Generalized Linear Model (GLM), an eXtreme Gradient Boosting

(XGBoost) model, and a Stacked Ensemble (SE) method, in addition to the SVM, MLP

and RF. The SE method (or stacked regression, in [66]) combines the predictions of the

above-mentioned base learners by using a second-level ML algorithm. The AutoML model

then selects the best performing method on the validation set to be used on unseen data.

It is noteworthy that, so far, the literature is quite scarce when it comes to applications

of AutoML to time series forecasting.

Since the company considered in this study takes advantage of the ARIMA model as

one of its forecasting methodologies, we used it as a separate baseline to compare the

performance of our multivariate regression models.

5.4. Modeling setup

Based on business intuitive knowledge, we have restricted the time lags to be of an order

less or equal to 15 weeks (k ≤ 15), a period considered to be sufficiently long to grasp

demand patterns by the company experts. The section managers of the case company are

interested in short to mid-term forecasts over the entire component’s life-cycle. Thus, we

distinguished the life-cycle stages and respective duration for the different components.

We considered the final 30 weeks of each component’s life-cycle stage as test set to execute

three rolling origin forecasting iterations with H = K = 10 as described in Section 5.2.

This yields to three forecasting origins for each life-cycle stage, and therefore nine model

updates for each component. In such a setting, we considered a number of different training

window sizes (W ) for each component (Table 2), since the length of the life-cycle stages

varies from one component to another. For each iteration of the rolling origin scheme, the

training set is further split into training and validation subsets in a timely ordered fashion

[40]. Here, we consider the last 10 values of each training set as the validation subset.

Each training set is used to identify which of the time lags for the different features have

a considerable influence on the manufacturer’s demand. For that, we adopted a forward-

and backward-stepwise regression based feature selection procedure [45]. On the other

hand, each validation subset was used for tuning the hyperparameters of the regression

models, in which the lowest MAE hyperparameter configuration is selected.

We set the number of MLP architectures used in the NN ensemble to Nr = 7, which is

also adopted in other multi-step forecasting experiments [69]. Each MLP in the ensemble

follows the architecture described in Section 4.3.2 and was trained with 100 epochs of the
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BFGS algorithm. A grid search was performed to determine the weight decay and the

number of nodes in the hidden layer. Building on [70], we sequenced over all combinations

of decay ∈ {10−5, 10−4, . . . , 10−1} andH ∈ {1, 2, . . . , 10}. In the case of SVR, the hyperpa-

rameters were searched over the hyperrectangle [σmin, σmax]× [Cmin, Cmax]× [εmin, εmax],

where σmin = 2−8, σmax = 20, Cmin = 2−1, Cmax = 25, εmin = 2−9, εmax = 2−1. Regard-

ing the RF hyperparameters, we set the number of trees, R, for each model using a grid

search from 10 to 500 in increments of 25. The number of random features (mtry) consid-

ered at each split in the forest was left at the default value of mtry = m/3 for regression,

where m is the number of input features. Finally, the ERNN model was constructed with

the R-RSNNS package [71] using the same MLP inputs and output node, and a hid-

den layer with 4 nodes (other values were tested, such as 6 or 8 hidden nodes, leading

to similar results), trained with 1000 epochs of a backpropagation with momentum al-

gorithm. Once the best hyperparameters were obtained for the different algorithms, the

final model performance was derived by retraining the model with all training data and

applying them to the out-of-sample evaluation set, which contains examples that remained

unseen throughout the whole process of model validation.

Prior to starting the fitting of the forecasting models, the data were also carefully

normalized by mapping them to the range [0, 1] using maximum and minimum values

computed over the training data only. This scaling is necessary to ensure an efficient

training as well as to smoothen the numerical convergence [45]. The resulting model

predictions are then post-processed with the inverse of the standardized function.

Table 2: Experimental settings of the rolling origin forecasting setup.

Dataset Training window sizes (W )

Component 1 W ∈ {108, 118, 128, 313, 323, 333, 414, 424, 434}
Component 2 W ∈ {75, 85, 95, 253, 263, 273, 414, 424, 434}
Component 3 W ∈ {79, 89, 99, 301, 311, 321, 414, 424, 434}

6. Results and discussion

6.1. Performance over the life-cycle stages

We start by distinguishing the forecasting performance evaluation across the entire

component’s life-cycle. Table 3 presents the results for the different forecasting models,

with respect to %NMAE, at the different life-cycle stages. The forecasting errors are

averaged over all time series, forecast origins and horizons.
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Table 3: Forecasting performance evaluation (expressed in %NMAE) throughout the life-cycle stages (best

values are highlighted in boldface).

Multivariate information Univariate information

Life-cycle stage MLP RF SVR AutoML ERNN ARIMAX Näıve ARIMA Theta

Launch 15.36 19.24 15.49 17.17 15.69 13.02 31.99 20.05 19.55

Maturity 11.32 14.25 12.30 14.14 11.76 13.50 26.76 22.13 22.70

EOL 11.82 13.90 13.83 13.11 18.22 15.57 36.62 22.94 24.47

The results show that, whatever the life-cycle stage, models with multivariate infor-

mation generate the lowest forecasting errors and outperform the univariate benchmark

models in terms of forecast accuracy, including the company benchmark ARIMA. Inter-

estingly, we found that ARIMAX outperforms ML-based models at the launch stage. Yet,

its forecasting performance tends to worsen throughout the component’s life-cycle. We

argue that the underperformance of ML-based forecasts at early life-cycle stages may be

due to the lack of sufficient training data that hinders a proper generalization capability

of the models to unseen data. A generalized deterioration of forecasting performance at

later life-cycle stages is also observed for the benchmark pure statistical models, in sharp

contrast with the results of ML-based models. Of note, multivariate forecasting meth-

ods generally exhibit a good overall forecast accuracy at the EOL stage. This finding is

particularly meaningful if one consider that such stage depends on an increased forecast

accuracy to minimize the risk of overstock and the resulting obsolescence of discontinued

components when their demand decreases faster towards the end of the life-cycle.

To probe deeper into the importance of the leading indicators across the life-cycle

stages, we further conducted a comprehensive ablation analysis (Table 4). We shall first

note that the forecasting results generally degrade from the full model, which includes all

the leading indicators, to the simple univariate framework. Recall that the full ARIMAX

model performs better than ML-based forecasters at the launch stage (Table 3). Here,

the ablation results provide further evidence that the ARIMAX forecasting performance

improves when using only the inputs D and P . This holds for the remaining life-cycle

periods. As such, when forecasting at early life-cycle stages (with necessarily less training

data), we favor the use of a more simple statistical-based approach, rather than nonlinear

complex ML-methods. Nevertheless, as we move from the launch to the maturity and EOL

stages, the ML-based models trained with all indicators start to outperform ARIMAX.
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Table 4: Ablation analysis of influence of feature interactions on the forecasting performance for the

different multivariate models across life-cycle stages. The last column shows the average (Avg) %NMAE

values (best values in boldface) for each interaction and the ranking within the column.

Launch stage, for 1–10 weeks ahead

Feature interactions MLP RF SVR AutoML ERNN ARIMAX Avg (rank)

#F + U +D + P 15.36 19.24 15.49 17.17 15.69 13.02 16.00 (1)

#F + U +D 34.69 24.59 25.73 30.22 24.06 23.69 27.16 (3)

D + P 16.29 20.94 16.52 18.28 17.02 11.50 16.76 (2)

D 27.51 26.47 28.19 26.71 31.42 25.27 27.59 (4)

Maturity stage, for 1–10 weeks ahead

Feature interactions MLP RF SVR AutoML ERNN ARIMAX Avg (rank)

#F + U +D + P 11.32 14.25 12.30 14.14 11.76 13.50 12.88 (1)

#F + U +D 26.45 25.72 23.31 27.19 23.29 26.70 25.44 (3)

D + P 12.35 16.32 12.87 13.44 14.92 13.11 13.84 (2)

D 29.06 30.13 28.00 26.73 26.81 25.72 27.74 (4)

EOL stage, for 1–10 weeks ahead

Feature interactions MLP RF SVR AutoML ERNN ARIMAX Avg (rank)

#F + U +D + P 11.82 13.90 13.83 13.11 18.22 15.57 14.41 (1)

#F + U +D 25.98 22.68 20.37 21.13 22.93 30.41 23.91 (3)

D + P 14.74 14.73 14.53 14.44 20.59 14.93 15.66 (2)

D 29.49 31.52 25.75 24.81 21.00 24.28 26.14 (4)

A comparison between the results obtained with and without the indicator P clearly

reveals the sizable impact of that indicator on the general improvement of forecasting

performance over the component’s life-cycle. At the same time, while multivariate mod-

els based merely on the indicators #F and U tend to perform close to (or even worse

than) univariate benchmarks, it is interesting to observe that the combination of #F

and U with the indicator P yields a notable additive forecasting performance effect in

all models, whatever the underlying life-cycle stage. When compared to pure univariate

benchmarks, the underperformance of multivariate forecasting models using only #F,U

and D is essentially motivated by two reasons: (i) the leading indicators #F,U contain

only product structure information, which may be useful in anticipating the magnitude

of manufacturer’s demand but not its variation; (ii) in contrast, despite D might contain
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important information on demand’s variation, it is a lagging (not leading) indicator of

manufacturer’s demand behavior. In short, this is a special case of feature engineering

[73], in which the indicators #F and U appear to be irrelevant (or weakly relevant) in

isolation but relevant in combination with P . Overall, these results justify the use of the

full model in the subsequent analyses.

Let us now discuss the implications of forecasting errors on inventory management, in

particular on the dimensioning of safety stocks over the life-cycle. For the sake of brevity,

we focused our attention on Component 1. Safety stocks were directly calculated from

Eq. (4) with L = 10 weeks, since longer lead times amplify the differences in performance

among the tested forecasting models, enabling improved comparisons. We highlight that

10-week lead times are reasonable in real-life SCs, especially those operating with trans-

portation services by sea worldwide, as is the case of the case study company. Figure 4

shows the required safety stocks over the different life-cycle stages as the target service level

α∗ varies for the multivariate forecasting methods and the company benchmark ARIMA.

Naturally, the required levels of safety stock increase with the target service level. Compar-

ison between the results obtained on each life-cycle stage suggest that more safety stocks

are required at the initial phase to cope with the forecast error variance. In contrast, the

required size of safety stocks tends to decrease towards the end of the life-cycle. Such

considerations are strictly related with the magnitude of the forecast errors observed in

each life-cycle stage. Overall, the good performance of the multivariate forecasting models

potentially translates into lower safety stock levels and, in the limit, lower holding costs

when compared to current forecasting strategy adopted by the case study company. The

above-mentioned results hold for the remaining components.
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Figure 4: Required safety stocks as a function of target service level for Component 1 and L = 10.
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6.2. Overall forecasting performance

To examine the overall forecasting performance of the tested models as a function of

h, the nine individual %NMAE values obtained per horizon across the different life-cycle

stages of each component are now aggregated vertically to derive an estimated median error

with corresponding 95% confidence intervals via the non-parametric Wilcoxon signed-rank

test [58]. Table 5 presents the forecasting performance of each model across the forecast

horizons, together with its ranking in terms of average %NMAE.

Table 5: Forecast accuracy (expressed in %NMAE) across forecast horizons (best values are highlighted in

boldface; Avg – denotes the average). The numbers in round brackets represent the model rank in terms

of average forecasting performance.

%NMAE for h: 1 2 3 4 5 6 7 8 9 10 Avg

MLP (1) 15.54 9.48 11.77 9.46 9.50 8.51 9.79 12.66 13.78 20.37 12.09∗

RF (6) 17.13 13.27 11.88 11.92 14.48 13.65 14.46 12.88 14.58 27.03 15.13

SVR (2) 17.69 10.31 12.34 8.93 12.93 13.04 13.53 12.33 11.28 19.68 13.21

AutoML (4) 16.52 10.52 12.65 9.83 15.57 10.38 11.86 13.96 14.45 23.65 13.94

ERNN (5) 14.60 12.64 16.19 10.31 14.59 12.96 13.97 11.99 15.08 24.17 14.65

ARIMAX (3) 19.62 13.13 12.42 9.63 10.68 11.07 11.98 13.83 12.71 17.45 13.25

Näıve (9) 27.76 30.24 25.82 23.73 31.71 30.99 41.12 31.34 32.94 31.71 30.74

ARIMA (7) 18.53 21.79 19.30 15.96 18.45 19.12 26.11 21.49 18.93 32.94 21.26

Theta (8) 19.45 22.23 16.40 17.86 20.74 22.03 29.37 20.42 20.12 29.92 21.85

*Statistically significant when compared with all univariate benchmark models at the 95% significance level.

Comparing the different forecasting models, MLP is ranked first in terms of forecasting

performance, followed by SVR, ARIMAX and AutoML. The ERNN is among the less

accurate ML-based methods. This is not surprising, as a recent study of Makridakis

et al. [25] using a large subset of time series used in the M3 Competition has already

shown that more advanced ML-based methods, such as RNN, do not necessarily guarantee

enhanced forecasting performance. For all horizons, our results demonstrated that demand

forecasting is enhanced whenever forecasting models are built on multivariate information

rather than univariate information (Fig. 5). In terms of overall forecast accuracy, we

found that multivariate models outperform (with statistically significant differences) all

the univariate benchmark models. A possible reason for the superiority of multivariate

models over univariate techniques might be related to the existence of several demand

spikes in the different time series that are challenging to predict with just univariate

information. Yet, we found no statistical evidence that the overall differences between the

forecasts generated by the different multivariate models are significant over horizons.
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In light of the above considerations, the statistically significant difference between

the forecasting performance in the multivariate and univariate frameworks supports our

hypothesis about the role played by our multivariate approach in improving the manufac-

turer’s demand forecasting process across the component’s life-cycle.
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Figure 5: Forecast accuracy obtained using multivariate (left panel) and univariate information (right

panel). The whiskers represent 95% confidence intervals for each Wilcoxon median value.

6.3. Supply chain performance

Focusing on the forecasting errors only, multivariate models seem to outperform uni-

variate benchmark models. Nevertheless, when choosing a suitable forecasting method,

the impacts of overestimated and underestimated forecasts on the SC performance should

not be overlooked either. To quantify these impacts, we have considered three evaluation

measures: inventory-related costs (TC), loss rate (LR) and fill rate (FR). Likewise, the

calculation of each measure follows the same aggregation strategy across forecasts used for

examine the overall forecasting performance of the different models. Table 6 presents the

TC (in e), formulated as in Eq. 6, produced by each forecasting method over all horizons.

For the sake of business confidentiality, the values of the factors ck and cb considered for

each component are omitted.

The results show that regardless the forecasting model, the inventory-related costs

generally increase whenever the forecast horizon is increased, and the models with multi-

variate information consistently perform best in the sense of minimizing inventory-related

costs over all horizons. Interestingly, ERNN is among the bottom three methods in terms
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Table 6: Inventory-related costs across horizons. The numbers in round brackets represent the model rank

in terms of average (Avg) total cost performance (best values are highlighted in boldface).

TC for h : 1 2 3 4 5 6 7 8 9 10 Avg

MLP (3) 64.83 112.22 100.52 188.68 112.03 185.36 124.37 136.53 171.40 354.27 155.02

RF (4) 78.22 157.71 38.83 95.39 80.40 209.73 51.74 64.45 225.37 587.36 158.92

SVR (2) 97.25 116.11 148.16 61.99 131.87 152.04 137.55 128.11 78.54 268.11 131.97

AutoML (6) 62.46 213.24 216.30 277.95 262.94 225.11 218.74 126.91 207.54 418.31 222.95

ERNN (1) 61.80 102.89 131.25 87.10 105.08 181.24 91.32 60.73 98.25 304.71 122.44

ARIMAX (5) 204.31 150.07 178.45 156.81 258.40 276.90 209.31 181.74 159.13 388.04 216.32

Näıve (7) 187.47 201.39 194.00 164.23 247.47 248.95 256.70 198.30 219.51 583.68 250.17

ARIMA (9) 79.32 328.79 262.02 272.58 308.60 489.05 378.49 279.99 300.96 778.34 347.81

Theta (8) 109.76 270.05 179.63 181.92 208.88 318.01 273.82 252.66 257.03 804.52 285.63

of %NMAE, but it is ranked first in terms of averaged TC. This is particularly due to

component 2, for which ERNN forecasts tend to overestimate demand over several rolling

origins and ck is residual. As, by definition, TC depend heavily on the factors ck and cb,

the potential disagreement between forecasting performance and inventory-related costs

can be easily explained by the magnitude of these factors for the different components. By

way of example, for a sufficiently small factor ck of a particular component, if ck << cb and

the forecasts tend to overestimate demand over several rolling origins, then the TC derived

therefrom tend be low. From the reported results, one may also realize that whenever the

company benchmark ARIMA is adopted the TC induced by forecast deviations from the

actual demand values are substantially higher than those obtained by using multivariate

approaches, and, to a lesser extent, than those derived by Theta and Näıve methods. No-

tably, a substantial averaged cost reduction is observed whenever the multivariate models

are employed. For instance, the adoption of the AutoML model, which is the worst multi-

variate performing model in terms of TC, results in 35.9% averaged cost savings over the

standard forecasting strategy employed by the case study company.

For added confidence and validation of our results, we studied the SC performance of

all models in terms of loss and fill rates (Table 7). The results are clear. The average

fraction of demand that is fulfilled by the forecasts tends to be slightly higher whenever

multivariate information is considered during the forecasting process. Moreover, compared

with all multivariate models, the forecasted demands generated by the company bench-

mark ARIMA are more often overestimated than underestimated, potentially leading to

increased loss rates and holding costs. To a greater extent this is also true for the Näıve

27



and Theta methods. Overall, MLP is ranked first in terms of averaged loss and fill rates.

Besides, it presents the lowest %NMAE and is among the top three methods in terms of

TC, thus supporting the conclusion that it is the best performing model for our data.

Table 7: Averaged loss and fill rates generated by multivariate and univariate forecasting models (Avg:

Average; SD: Standard Deviation; best Avg values are highlighted in boldface).

Forecasting approach Models Loss rate Fill rate

Avg SD Avg SD

Multivariate MLP 0.09 0.06 0.90 0.04

RF 0.13 0.15 0.89 0.02

SVR 0.11 0.10 0.90 0.02

AutoML 0.09 0.04 0.89 0.05

ERNN 0.16 0.09 0.90 0.02

ARIMAX 0.12 0.08 0.90 0.04

Univariate Näıve 0.41 0.23 0.77 0.03

ARIMA 0.24 0.15 0.89 0.03

Theta 0.27 0.13 0.89 0.03

6.4. Practical & managerial implications

Our study shows that the proposed multivariate ML approach might provide relevant

insights to enhance upstream demand forecasting, helping company managers in the sense

of improving their complex operational logistic decisions and defining suitable procurement

strategies in a data-driven fashion. Of note, according to a Gartner report3, decision

intelligence is pointed out as a major trend shaping the evolution of digital businesses.

For decision-makers of Bosch AE/P, we highlight several managerial implications.

First, our findings have supported the idea that the generation of accurate manufac-

turer’s demand forecasts at the launch stage of the life-cycle can be a challenging task.

Typically, the company is forced to increase the safety stocks at this stage in order to

cope with end-customer demand fluctuations. When compared to the traditional univari-

ate benchmark methods, the usage of the proposed forecasting strategy is able to address

these issues by providing improved demand forecasts throughout the entire component’s

life-cycle. In particular, when less training data are available, we argue in favor of the

3Gartner (2019). Five Major Trends Shaping the Evolution of Analytics and Business Intel-

ligence. URL:https://www.gartner.com/en/newsroom/press-releases/2019-10-02-gartner-reveals-

five-major-trends-shaping-the-evoluti, last accessed on September 7, 2020.
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adoption of ARIMAX with the indicator P , as it increases our ability to produce better

forecasts than those derived from more complex nonlinear models. As a result, accurate

forecasts lead to smoother safety stocks and decreased inventory-related costs. The rea-

sonably good performance of the multivariate models at the EOL stage also confirms the

opportunity to minimize the holding costs associated with the overstock of discontinued

components. In any case, we strongly suggest an increase of collaboration efforts between

downstream and upstream SC players to minimize major demand signal distortions.

Second, of note, a potential advantage of the proposed approach over traditional

methodologies is that sharp demand turning points captured by the leading indicators

are included in the forecasting models. Therefore, we believe that the smaller forecast de-

viations from true manufacturer’s demand resulting from the application of our approach

would provide an opportunity to improve inventory service levels, by better matching

manufacturer’s demand and supply. This reasoning is especially relevant in the automo-

tive industry, in which holding costs are typically high. Moreover, in Vendor-Managed

Inventory (VMI) settings, enhanced manufacturer’s demand derived from the adoption of

our approach could be shared with suppliers, leading to improved collaboration among

upstream supply chain players. This is not the case with indicators #F and U , which

given the confidential nature of product structure information are not, in general, shared

with traditional suppliers with standard contracts with the manufacturer. Yet, in the

presence of information exchange or, ideally, synchronized SC collaboration schemes [74]

with strategic suppliers, there may be opportunities to share product information towards

the improvement of forecasting performance [75]. Such sharing would allow, for instance,

improved anticipation of demand drops towards the ramp down stage of finished products

that make use of a given component.

However, it is worth pointing out that since ML-based algorithms have not been fully

explored in the context of SCM [10], company managers need to understand the complex-

ities inherent to their application in real-life environments with multiple components, as

well as to identify the resources with the necessary skills to successfully implement them

in a productive system. Bridging this gap is critical for the overall success of the proposed

forecasting initiative. Finally, it is also noteworthy that company experts should play a

fundamental role in the definition and maintenance of a potential decision support system.

Their business sensitivity to the market dynamics ought to be considered as an important

factor to re-training the models with new relevant information for the forecasting process.
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Future research may develop in (i) finding different strategies to acquire other relevant

inputs from domain experts able to support the demand forecasting process, (ii) evaluating

the application of transfer learning models for predicting new component’s demand, (iii)

trying different ways to leverage different types of time series features (e.g., via automated

feature engineering [72]), and (iv) extending this work to include a broader range of com-

ponents, which allow us to obtain more representative results and a more comprehensive

comparison between statistical and ML-based forecasting methods. We also intend to

assess the applicability of the proposed approach in other assembly industries.

7. Conclusions

Multi-step demand forecasting is a complex problem with serious repercussions at eco-

nomic, tactical and operational level in real-life supply chains. Focusing on the upstream-

end side, distorted demand signals induced by erratic market information can seriously

hamper the proper assignment of component order quantities to suppliers for further pro-

duction of finished products. We have derived a flexible multivariate approach for enhanc-

ing multi-step demand forecasting at the upstream-end side of general supply chains with

assembly operations. Rather than only using univariate information, we take advantage

of several leading indicators of demand shifts that serve as model inputs to forecast fu-

ture manufacturer’s demand. Our approach resorts to the statistical ARIMAX model as

well as to Machine Learning (ML) models adapted for time series forecasting. Numeri-

cal data collected from a major automotive electronics manufacturer (Bosch Automotive

Electronics, Portugal) provided context for the proposed forecasting methodology. All

the forecasting methods were compared to univariate benchmark models, including the

one currently used by the case study company, under a realistic rolling origin forecasting

procedure. When forecasting manufacturer’s demand, our results demonstrated that the

inclusion of multivariate information provides additional explanatory power above that

provided by traditional univariate forecasting techniques. In particular, we found that the

proposed approach provides more accurate forecasts than univariate benchmark models

across all life-cycle stages (launch, maturity and end-of-life), in addition to generating

lower inventory-related costs and loss rates, resulting from smaller forecast deviations. We

have also discussed the practical implications of forecast deviations on dimensioning safety

stocks across the component’s life-cycle. Our results provided evidence on the usefulness

of our approach in improving forecasts at early life-cycle stages, where accurate demand

forecasts are more difficult to obtain. Particularly, in the multivariate context, we found
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that ARIMAX provided the best forecasts for the launch stage of component’s life-cycle,

while the ML-based models produced the most accurate predictions in the remaining two

life-cycle stages.

From a practical standpoint, this work may provide a suitable benchmark for logistic

decision-makers of general supply chains with assembly operations, especially in contexts

where demand is subject to high levels of uncertainty.
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