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Abstract

iiiiiiEnvironmental sustainability is one of the biggest concerns nowadays. With environmental increasingly

latent negative impacts, it is substantiated that future generations may be compromised. Thus, this re-

search addresses this topic, in particular, the air quality and atmospheric pollution, as well as water issues

regarding a wastewater treatment plant.

This study comes from a combination of Machine Learning supervised models to predict multiple pa-

rameters regarding environmental sustainability. Through the application of regression and classification

models, the study target involves the air and the water quality in Guimarães city. Therefore, the key re-

search goals are to predict attributes such as the Ultraviolet index, Carbon Monoxide air concentration,

and water pH. Using Decision Trees, Random forest, Multilayer Perceptron, and Long Short-Term Memory,

these parameters were forecasted. In this way, this study describes these models’ implementation and

optimization processes, as well as the results generated.

Predicting parameters of this nature will allow the anticipation of problematic situations, enabling

preventive actions. Further, it grants the optimization and reallocation of resources, promoting the best for

the population and the common good.

After the entire implementation process, several conclusions arose from this research. First, from the

Ultraviolet index levels (defined by the World Health Organization) prediction, was achieved a maximum

accuracy of approximately 93%. Moreover, regarding this parameter prediction using regression models,

the best result showed a Mean Absolute Error of 0.36. Besides, this index was further predicted based

on a time series, resulting in a Mean Absolute Error of about 0.15. Additionally, also using a time series

approach, the Carbon Monoxide air concentration was forecasted, achieving a Mean Absolute Error of

1.345 × 10−7. Finally, considering the water pH problem was reached, as the lowest Mean Absolute Error,

a value equal to 0.11.

Keywords: Deep Learning , Environmental sustainability, Machine learning, Supervised Learning
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Resumo

iiiiiiA sustentabilidade ambiental é uma das maiores preocupações da atualidade. Com impactos negativos

ambientais cada vez mais latentes, está provado que as gerações futuras podem estar comprometidas.

Assim, esta pesquisa vem abordar este tópico, em particular, a qualidade do ar e a poluição atmosférica,

bem como as questões hídricas no contexto de uma estação de tratamento de águas residuais.

Este estudo advém de uma combinação de modelos de aprendizagem supervisionada com o objetivo

de prever vários parâmetros referentes à sustentabilidade ambiental. Através da aplicação de modelos

de regressão e classificação, o alvo da investigação envolve a qualidade do ar e da água na cidade de

Guimarães. Por conseguinte, os principais objetivos da pesquisa passam por prever atributos como o

índice de radiação ultravioleta, a concentração de monóxido de carbono no ar e o pH da água. Usando

Árvores de Decisão, Random Forest, Perceptron Multicamadas e Long Short-Term Memory, esses

parâmetros foram alvo de previsão. Deste modo, este estudo descreve os processos de implementação e

otimização desses modelos, bem como os resultados gerados.

A previsão de parâmetros desta natureza permitirá a antecipação de situações problemáticas, pos-

sibilitando ações preventivas. Ademais, permite a otimização e realocação de recursos, promovendo o

melhor para a população e o bem comum.

Após todo o processo de implementação, várias conclusões surgiram desta pesquisa. Em primeiro

lugar, da previsão dos níveis do índice ultravioleta (definidos pela Organização Mundial da Saúde), foi

alcançada uma precisão máxima de, aproximadamente, 93 %. Além disso, em relação à previsão deste

parâmetro por meio de modelos de regressão, o melhor resultado apresentou um Erro Médio Absoluto

de 0,36. Além do mais, esse índice foi alvo de previsão com base em uma série temporal, resultando em

um Erro Médio Absoluto de cerca de 0,15. Ainda, também utilizando uma abordagem de série temporal,

a concentração de monóxido de carbono no ar foi prevista, atingindo um Erro Médio Absoluto de 1,345

×10−7. Por fim, considerando o problema do pH da água foi atingido, como o menor Erro Médio Absoluto,

um valor igual a 0,11.

Palavras-chave: Aprendizagem Supervisionada, Deep Learning, Machine learning, Sustentabili-

dade ambiental
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1. Introduction

1.1 Contextualization

The world is living in a data age, illustrated by the fact that a vast amount of data are being produced

continuously, like never before. Given this growing emergence of data, it is essential to note that this may

be a valuable asset for many organizations, whether business or public entities. Thus, this large-scale data

may be collected and study to extract meaningful information from it and helps entities to act in accordance

(Sandryhaila and Moura, 2014; Lima, Novais, Costa, Bulas Cruz, and Neves, 2010).

Machine Learning (ML) is a field from Artificial Intelligence (AI) that has been growing in the last

decades (Qiu, Wu, Ding, Xu, and Feng, 2016). This field concerns data collection, analysis and then predict

several important parameters, or find important patterns from them. Further, ML is based on learning from

data without being expressly programmed for that.

ML is used in many areas nowadays, once it is recognized as a field that can provide some solutions,

allowing the extraction of information from the available data. The various entities that operate in the most

diverse areas can, through ML, acquire the ability to act before something occur, avoiding negative impacts

(Qiu, Wu, Ding, Xu, and Feng, 2016).

Since ML can be implemented in a vast range of areas, it is interesting to apply it in a way that can make

a difference, aiming for the common good. From this emerges an area that requires so many concerns

today: environmental sustainability.

Sustainable development, from an environmental point of view, has been a major problem for coun-

tries for decades since its negative impacts are increasingly perceived and verified (Isabel Molina-Gómez,

Rodríguez-Rojas, Calderón-Rivera, Luis Díaz-Arévalo, and López-Jiménez, 2020). This topic is one of the

main concerns nowadays. Due to the registered population growth, the demand for natural resources has

been consequently increased. Further, the industrial activities are increasingly pronounced in developed

countries, which is a key for its economic sustainability, arising the need to find a balance between en-

vironmental and economic sustainability. All of this generates anthropogenic emissions, which damage

the environment, causing visible impacts such as public health problems, climatic changes, and so on.

Therefore, all of this can compromise future generations. To avoid this risk, the responsible entities need

to make decisions in order to reduce its negative impacts, and consequent risk for the population, now

and in the future (Sarkodie, 2021).

In sum, ML techniques are highly useful for entities once they can look to data and to ML models to
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guide the decision-making process (Hino, Benami, and Brooks, 2018). This research can help overcome

some challenges once, by forecasting several future values of relevant parameters (in the environmental

sustainability scope), makes it possible to anticipate problematic situations. Thus, it allows one to act in a

preventive way to provide the best for the population and the future generations, allocating resources and

consequently, reduce negative effects and maximize the potential benefits.

1.2 Motivation

The motivation for carrying out this dissertation comes from the high interest in the ML field, acquired

in the course unit Similarity-Based Systems, inserted in the Master of Systems Engineering. There, I had

a closer contact with AI, more specifically with ML. Realizing that it is an area with application in the most

assorted areas, and after having contact with a practical approach, the idea of doing a dissertation in this

field has grown.

After concluding my bachelor in business management, I felt the need to enroll for something different

that, in the future, would work as a complement to my base area. Thus, the opportunity to enter in the

Master of Systems Engineering arose. After experiencing many new and highly interesting areas, it was

ML that stood out. I perceived it to be a very relevant field, with applications in several areas, and that

would be, of course, a complement to my base area. Consequently came the opportunity to carry out this

dissertation, with the possibility of learning more in this field.

Since it is a field that can be applied in a wide range of areas, environmental sustainability emerged

as an interesting one. Combining the suggestion of the supervising professor, the availability of data, and,

as previously mentioned, the constant concerns about this issue nowadays (once there is a continuing

perception that this sustainability can be being compromised, causing a risk to life on Earth), this topic

arose. So, in addition to a field of high interest for me, there was the possibility of adapting this to an area

that deserves special attention nowadays, being able to contribute for the common good.

2



CHAPTER 1. INTRODUCTION

1.3 Research Methodology

The methodology used in this research is Cross Industry Standard Process for Data Mining (CRISP-

DM). This methodology is the most used methodology for data mining projects (Mariscal, Marbán, and

Fernández, 2010).

This consists of six distinct phases, as figure 1.1 shows.

Figure 1.1: Cross Industry Standard Process for Data Mining methodology (Chapman et al., 2000).

These phases are:

• Business understanding: This initial step focuses on identifying the project goals and specifica-

tions (such as costs, resources available, among others) and, from this information, define a data

mining problem, understand, and plan how to achieve these goals;

• Data understanding: This phase starts with an initial collection of data. After that, the data is

explored, to be familiar with it, identifying some data issues, and understand the data behave,

aiming to get some information from it;

• Data preparation: This phase regards the process that covers all activities required to transform

the initial raw data into the final data set on which the project will be based. These tasks are about

fix data issues, cleaning, construct, integrate, and reformat data;

• Modeling: Different modeling techniques are chosen and implemented in this step. Further, their

parameters are tuned to find the optimal values. Some techniques have particular requirements for

the data type. So, it is always appropriate to return to the data preparation stage;

• Evaluation: Was developed a model (or models) at this point of the project that appears to be

of quality, from a data analysis perspective (a model that achieves good results). It is important to
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analyze the model more closely and review the steps taken to create the model before moving to

the final implementation to ensure that it achieves the business goals correctly;

• Deployment: Organize the knowledge extracted, as well as to present it in a way that makes sense

to the project. Thus, this is the step in which is perceived what actions would need to be carried

out to use the models generated and the knowledge and information extracted from it.

1.4 Objectives

This research will make use of supervised ML models in an environmental context, with a view to the

common good: the best for current and future generations. Thus, this is a contribution to understand,

forecast, and help the decision-making process concerning environmental sustainability.

The main goals of this project are:

• Understand and forecast air characteristics and quality. This goal is based on an exhaustive analysis

of the available data set concerning air pollutants, weather, and Ultraviolet (UV) index, in Guimarães

city. The forecast involves the UV index, using regression and classification models, as well as the

Carbon Monoxide (CO);

• Understand and forecast water characteristics and quality. This goal is based on an exhaustive anal-

ysis of the available data set concerning a WWTP, also in Guimarães, to understand the wastewater

quality in the several WWTP sections. The forecast concerns the water pH at the moment that it is

discharged to the hydric sources;

• Understand what are the relevant attributes in the research, for each data set, concerning the

forecasts quality:

• Understand how each model (Decision Trees, Random Forest, Multilayer Preceptron (MLP), and

LSTM) behaves for each approach and dataset and tune it;

1.5 Document Structure

Besides this chapter (Introduction), this dissertation has more five chapters.

Chapter number two concerns the state of art. There it is explored the environmental sustainability

issues relevant to the research. Accordingly, it is covered the atmospheric pollution, the water quality

issues, and the treatment processes (in specific, the wastewater treatment), regarding its role and impact

on environmental sustainability. Besides that, this chapter shows also the ML state of art, exploring the

models used in this research, and the metrics to evaluate them.

Chapter number three is the materials and methods chapter. Here, both datasets used are explored,

describing each attribute meticulously. Further, all the transformations made in the raw data are described,

along with the description of the technologies used.
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Chapter number four is the chapter that exposes the research experiments. Here are shown the built

data scenarios and the models’ conception, as well as its tuning process.

Chapter number five shows the results obtained in this research, for all the models and datasets,

concerning classification and regression problems.

Finally, chapter number six shows the conclusions and future work of this study.
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2. State of art

2.1 Environmental sustainability

Environmental problems have been increasing in recent years, mostly caused by the demographic ex-

pansion and the higher development of the industrial activity. Today’s society produces a large amount

of daily waste (from solid, liquid, and gaseous form), promoted by the growing consumption of natural

resources, used to meet current needs. All of which leads to environment disturbances, fostered by an-

thropogenic action, causing changes in soil, water, and air quality (Wright, Richard T., 2019; Abdel-Shafy

and Mansour, 2018).

Sustainable businesses are a keyword in the twenty-first century world. The long time survival of a

company is crucial, but think about other kinds of sustainability is also important. Once industries are the

largest responsible for several environmental negative impacts, there’s a need for these to invest in actions

that promote the environmental sustainability. Thus, they may change their processes to put into practice

green management to create sustainable products and services (Schoenherr, 2012).

2.1.1 The atmospheric pollution and the environmental sustainability

Atmospheric pollution, more specifically, air pollution is an important environmental concern, primarily

linked to urban conditions and industrial emissions. There are many challenges in trying to manage the air

quality according to what is considered ideal for the population, allowing its well-being and health, bearing

in mind current and future generations is the main .

Air pollution contributes to the emerging of several diseases. This issue has growth, resulting from the

increase of polluting industries. In addition, there is an air pollution index rise on countries with low and

medium/low incomes (Cohen et al., 2017). As previously mentioned, air pollution has its main source of

human activity. Thus, the major anthropogenic air pollutants are divided into two categories, the primary

and the secondary pollutants (table 2.1):
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Table 2.1: Main anthropogenic air pollutants, adapted from Wright, Richard T., 2019.

Primary pollutants

Suspended particulate matter
(PM):

A complex combination of solid particles and smoke, metals,
dust, and salts. Decreases lung function and cardiovascular
function (Wright, Richard T., 2019).

Volatile organic compounds
(VOC):

As its main source in incomplete combustion of fossil fu-
els and plants, become carcinogenic components (Wright,
Richard T., 2019).

CO: Has its main source in the incomplete combustion of fu-
els, also. This gas is invisible, odorless, and tasteless. This
pollutant is poisonous because of the ability to bind to
hemoglobin and block oxygen delivery to tissues and aggra-
vates cardiovascular diseases (Wright, Richard T., 2019).

Nitrogen Oxides (NO𝑥 ): From fuel and wood burning. This gas is lung irritant, and
aggravate respiratory diseases. Contribute to acid rains and
ozone formation (Wright, Richard T., 2019).

Sulfur Dioxide (SO2): Has its main source in the combustion of coal. It is a poi-
sonous gas that impairs breathing. Contributes, also, to acid
rain (Wright, Richard T., 2019).

Lead (Pb): Its main sources are the batteries manufacture, combustion
of leaded fuels, and solid wastes. It is toxic at low concen-
trations and damages the children’s brain (Wright, Richard
T., 2019).

Air toxics: The fuel combustion in vehicles and industrial processes
are the principal sources. Some examples are benzene, as-
bestos, vinyl chloride, known human carcinogens (Wright,
Richard T., 2019).

Radon (Rn): Comes from rocks and soil. It is a radioactive gas that can
compromise humans’ lungs. (Wright, Richard T., 2019).

Secondary pollutants

Ozone (O3): Photochemical reactions between VOCs and NO𝑋 . It is toxic
to animals and plants and highly reactive for the human
lungs (Wright, Richard T., 2019).

Peroxyacetyl nitrates (PAN): Results, also, from a photochemical reaction between VOCs
and NO𝑋 . Damages plants and forests, and, in humans,
cause irritations of mucous membranes of eyes and lungs
(Wright, Richard T., 2019).

Sulfuric acid (H2SO4): Produces acid deposition and damages lakes, soils, artifacts
(Wright, Richard T., 2019).

Nitric acid (HNO3): Oxidation of NO𝑋 , and produces, also, acid deposition, dam-
aging lakes, soils, and artifacts (Wright, Richard T., 2019).
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2.1.1.1 Carbon Monoxide

The CO is a colorless and odorless gas with natural and anthropogenic sources. Causes such as forest

fires and volcanic activity are the main natural source of this atmospheric pollutant. Although, the main

cause is not natural, and it is due to the combustion processes, from industries and fuel combustion

products such as gas, coal, or wood (Fenger, 1999). This atmospheric pollutant needs special attention

regarding non-natural causes, once the natural causes emit less than 1 p.p.m (a small slice). Thus, the

main percentage of CO in the air has anthropogenic sources (J.Clifford, 2008).

The growing need to control the level of this pollutant is because, at high levels, it causes several prob-

lems for the population, fauna, and flora. The biggest issue and themost well recognized pathophysiological

effect of CO is tissue hypoxia (oxygen deficiency in tissues), due to its capability to bind the hemoglobin,

blocking the tissues to enough oxygen (K. K. Lee, Spath, Miller, Mills, and Shah, 2020). Besides that,

studies show that exposure to CO can cause deleterious neurologic sequels in humans in general, and

neurocognitive impairment and behavioral abnormalities in children (Block et al., 2012). This pollutant, in

high concentrations, also shows some other effects, such as oxidative stress, inflammation, and endothe-

lial dysfunction (Thom, Xu, and Ischiropoulos, 1997; Thom, Fisher, Xu, Garner, and Ischiropoulos, 1999;

Lo Iacono et al., 2011).

The most practical way to perceive and act accordingly to reduce risks is to constantly measure the

levels of CO and check if they comply with the reference values. According to Portuguese Agency for the

Environment (PAE) (PAE, 2013), the reference values to CO air concentration are the ones presented in

the table 2.2.

Table 2.2: Carbon Monoxide reference values.

Classification 𝜇g/m 3 ppm
Min Max Min Max

Very bad 400 — 40.4 —
Bad 200 399 15.4 40.3
Medium 140 199 11.8 15.3
Good 100 139 9.4 11.7
Very Good 0 99 0 9.3

These values represent the pollutant concentration in the air. Usually these concentrations are mea-

sured in units of the mass of chemical (milligrams, micrograms, nanograms, or picograms) or in Parts per

Million (ppm) (10−6) or in Parts per Billion (ppb) (10−9).

2.1.1.2 Sulfur Dioxide

With a lifetime of one week on average (Seinfeld, Pandis, and Noone, 1998), SO2 might be found in

the atmosphere caused by natural and anthropogenic sources. It is estimated that 35-65% of total SO2

emissions (Cheremisinof, 2002) stand out from the volcanic eruptions and organic matter decomposition
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(Liu, Pellikka, Li, and Fang, 2019). However, the main source of SO2 resulting in human activities is the

combustion of fossil fuels, once this generates small proportions of other sulfur components, such as Sulfur

Trioxide (SO3), H2SO4, and sulfates (Gimeno, Marín, Del Teso, and Bourhim, 2001). Besides that, thermal

power plants burning high-sulfur coal or heating oil, industrial boilers, nonferrous metal smelters, domestic

coal burning, and even emissions from vehicles are other anthropogenic sources of SO2 (Cheremisinof,

2002). Further, SO2 is a big precursor of sulfate, which is one of the principal causes of the formation of

fog-haze (A. K. Lee, 2015).

Ambient SO2 may directly impact human health since it is a precursor of sulfate (Knibbs et al., 2018).

Beyond this, studies show that this pollutant might cause cardiovascular, ischaemic heart, and respiratory

diseases once the it dissolves into the watery fluids of the upper respiratory system and is absorbed into

the bloodstream (Sunyer et al., 2003; Wang et al., 2018; Zhang, Di, Liu, Li, and Zhan, 2019). The principal

symptoms are irritation of the eyes, nose, and throat. To risk groups, such as children, the elderly, and

those already suffering from respiratory ailments (e.g asthmatics) are especially at risk. Health impacts

can occur even to brief exposures (concentrations above 1,000 pg/m3).

Studies have shown that plants also suffer from expose to this pollutant once they may lose their

foliage, become less productive, or die prematurely. Some species are so sensitive that they manifest

negative impacts, even with small concentration exposure. Thus, it presents a risk to the normal ecosystem

behavior (Cheremisinof, 2002).

According to PAE (PAE, 2013), the reference values to SO2 air concentration are the ones presented

in the table 2.3.

Table 2.3: Sulfur Dioxide reference values.

Classification 𝜇g/m 3 ppm
Min Max Min Max

Very bad 500 — 1004 —
Bad 350 499 703 1001
Medium 210 349 210 349
Good 140 209 162 329
Very Good 0 139 0 160

These concentration values are also usually measured in units of the mass of chemical (milligrams,

micrograms, nanograms, or picograms), ppm, or ppb.

2.1.1.3 Ultraviolet radiation

The UV index was created to inform the population of the UV radiation index risk and are needed to

better inform populations-at-risk and cultivate changes in mindset and attitudes against exposure to the

sun (Igoe, Parisi, and Carter, 2013).

Several factors can be appointed as aspects that affect the solar UV index:

9



CHAPTER 2. STATE OF ART

• Atmospheric attenuation of incident solar radiation. This angle (between the sun’s rays and the

normal on a surface), when minimum, corresponds to the minimum index. This angle is influenced

by time of day, latitude and season (Allaart, van Weele, Fortuin, and Kelder, 2004; McKenzie,

Aucamp, Bais, Björn, and Ilyas, 2007);

• An Ozone and atmospheric aerosol concentrations, along with cloud cover, affect the clear-sky

influence of the incident angle by increasing solar UV attenuation through scattering and absorption

processes (Klumpp et al., 2006). Ozone strongly attenuates UV radiation. The depletion of the

ozone layer is likely to aggravate existing health effects caused by exposure to this radiation, onve

stratospheric ozone is an effective UV radiation absorber. As the ozone layer becomes thinner,

the protective filter provided by the atmosphere is progressively reduced. Consequently, human

beings and the environment are exposed to higher UV radiation level, having a dangerous impact

on humans, animals, and marine organism’s health, as well as in the plant’s life (Wright, Richard

T., 2019);

• The atmospheric absorption by aerosols (e.g., dust, smoke, and anthropogenic pollutants such as

vehicle exhausts) tends to reduce incident radiation at the earth’s surface, absorb the radiation,

and, consequently, the UV index (Madronich, McKenzie, Björn, and Caldwell, 2003; Kirchstetter,

Novakov, and Hobbs, 2004; Román et al., 2013; Downs, Butler, and Parisi, 2016);

• Clouds cover might reduce the UV Index when compared to a cloud-free situation (Kuchinke and

Nunez, 1999), but, in contrast, a day with clouds can present a higher UV index when compared

with a cloud-free condition, depending on the surface UV radiation (Mayer and Kylling, 2005).

As mentioned earlier, high UV radiation causes impacts on human health. This impacts might be

negative or positive. Since part of the UV radiation comes from the sun, it has benefits for human health:

it suppresses negative thinking and stress, improves sleep, prevents some illness, increases production

of vitamin D in the human body (which is necessary for keeping muscles and bones healthy). On the

other hand this may cause eye problems such as ocular melanoma, skin problems, such as skin cancer

(melanoma and non-melanoma skin cancers), besides the premature skin aging (Norval et al., 2011).

According to World Health Organization (WHO) (World Health Organization, 2017), the reference values,

to UV index levels are defined between 1 and 11+, as presented in the table 2.4.

Table 2.4: Ultraviolet Indexes reference values.

Level Value
Low 1-2
Medium 3-5
High 6-7
Very high 8-10
Extreme 11+
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2.1.2 The role of water in Environmental Sustainability

The sustainability of life in today’s society is largely based on an essential element, the water. Therefore,

the quality of this resource is very important once, when it is compromised, it becomes unfeasible to serve

the population and aquatic living beings. Thus, an entire ecosystem can be compromised.

It is essential to understand that one of the main causes of the aquatic ecosystem contamination are

the anthropogenic activities, responsible to release waste into the aquatic environment, every day. The

main waste accountable for water contamination accrue from domestic and industrial water utilization.

Water from those activities is called wastewater. This wastewater characterizes itself for the presence of

substances like solids, oils, fats, organic material, nutrients, and toxic substances (Spellman, 2013). If this

wastewater returned to water resources again (without any treatment) would be harmful to the environment.

Due to these consequences, adequate treatment is necessary so that environmental aggression, arising

from the discharges of such residues, shall be reduced. Therefore, it is clear that wastewater management

has a central role in sustainable development, and, in this context, WWTP emerges, responsible for such

management (Mendonça et al., 2013).

2.1.2.1 Operations of a Wastewater Treatment Plant

Water is used in many contexts: at home, industries, agriculture, among others. But, it is important

understand what happens to the residual water that results from that use. First, this water is collected

and transported to a plant in water pipes (a network that connects the water sources to the plant). In

this plant, the residual water, commonly called wastewater, is treated and returned to water sources, in

environmentally safe conditions. This plant is called a WWTP.

Further, there are two main lines in a WWTP: a wastewater line and a sludge line. The first one, a liquid

line, regards the wastewater treatment to fulfill the conditions required in the discharge license. On the

other hand, the sludge line concerns the solids treatment, the ones removed from the wastewater.

Figure 2.1 shows a schematic representation of how a WWTP works.

Figure 2.1: Scheme of a WWTP operation.
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As previously mentioned, a WWTP works fundamentally through two lines: the line accountable to the

wastewater treatment itself, and the line that handles the sludge. The wastewater treatment line follows

several phases, described in detail below (Metcalf and Eddy, 2003):

1. Pre-treatment

The pre-treatment is the first wastewater treatment process phase. Here occurs the removal of

coarse solids and floating materials. This first step is crucial once remove some components that

may damage the WWTP equipment.

• Bar Screening: In this stage, the solids pass through a bar screening that works as a large

filter to remove large residues.

2. Primary Treatment

The second phase is the primary treatment. Here, part of the suspended solids are removed (smaller

than the previous ones) as well as organic matter from the effluent wastewater.

• Primary Clarifier: Using a clarifier some remaining solids are removed by the action of the

gravity. The solids resulting from this process are called primary sludge.

3. Secondary Treatment

In the secondary treatment occurs the biodegradable organic matter removal (suspended or in solu-

tion), along with suspended solids and nutrients (such as nitrogen and phosphorus). The biological

process of this phase, may happens into two fundamental kind of conditions: aerobic and anaerobic

conditions. The produced biomass is removed afterwards from the system by decanting.

• Aeration tank: Here occurs a biological process, in which the organic matter that is considered

a pollutant is removed from the water, consumed by microorganisms present in this tank. This

tank has two distinct zones: an aerated zone and an anoxic zone. The first one represents

an oxygen-rich zone, while the second presents an oxygen deficient environment. Thus, the

microorganisms and processes that require a high oxygen presence act in the aerated zone

while those that don’t need act in the anoxic zone.

• Secondary Clarifier: In this clarifier, the remaining suspended solids (many of these resulting

from the previous biological process) are separated from water, by the action of the gravity.

4. Tertiary Treatment

In this phase, the remaining solids (not eliminated in the secondary treatment) are removed, to-

gether with organic matter and toxic compounds. The disinfection step also occurs here, by remov-

ing the remaining nutrients (several times using UV radiation to disinfect the water).
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5. Discharge to surface water

The last phase is the process in which water is returned to the hydric resources, safely, without

compromising the ecosystems.

After understanding how a wastewater treatment line works, it is essential to mention how the solid line

works as well. It constitutes the solids treatment (the ones removed from residual water in the liquid phase)

called sludge. The principal treatment in this line is, therefore, the sludge treatment. This sludge is treated

to inactivate pathogenic organisms and reduce the sludge’s volume. Besides, they may produce bio-gas,

which may be used to produce energy, used in the WWTP process, promoting the economic sustainability

of the plant.

2.1.2.2 Wastewater characteristics and quality

There are some wastewater characteristics that may be explored to determine its quality. Further, there

are psychical, chemical, and biological parameters that may be studied and evaluated in a WWTP. As

physical wastewater parameters, it is possible to highlight some, such as:

1. Solids

Depending on the size and source, solids are the main attribute that works as water contaminants.

There are dissolved and suspended forms. Depending on size, even the smallest are considered a

problem, once provides the accumulation of harmful agents (chemical and biological), being a risk

for human beings. In the wastewater treatment process, there are several phases to erase these

solids (Spellman, 2013; B.Baird, D.Eaton, and W.Rice, 2017). In the wastewater, the total solids

concentration is usually between 350 and 1200 mg/L (Spellman, 2013). Table 2.5 present the

range of solids that can be evaluated in a WWTP system.

Table 2.5: Type of existing solids in a Wastewater Treatment Plant (B.Baird, D.Eaton, and W.Rice, 2017).

Solids designation Description

Total Solids
In a water sample, the total solids are the left ones af-
ter evaporation and subsequent oven drying at a defined
temperature (usually 150ºC).

Total Suspended Solids (TSS)
The quantity of solids in a water sample that passes
through a filter with a pore size equal to 1.2 𝜇m.

Total Dissolved Solids (TDS)
The quantity of solids that keep retained in the filter, this
is, bigger than 1.2 𝜇m.

Fixed solids
The total amount of solids, suspended or dissolved, re-
maining in a sample after a calcination process, in a tem-
perature rounding 550ºC.

Volatile solids
The total amount of solids, suspended or dissolved, lost
from a sample after the calcination process mentioned
in the preceding point.
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2. Turbidity

This is related with the water’s clarity. This is measured considering how absorbed or diffused is the

light by the suspended material. The principal source contributing to water turbidity are detergents,

soaps, and general emulsifying agents. This parameter has special attention in drinking water. As

previously mentioned, the wastewater disinfection process may be done using UV radiation. For this

process works accurately it is vital the UV radiation penetrates the water. Turbid water difficult this

action and, consequently, the disinfection process (Spellman, 2013).

3. Color

Water considered pure is colorless. The color comes from substances such as vegetation, mineral,

and aquatic organisms. In the water treatment process, the color is generated by dissolved solids

that remain after the removal of suspendedmatter. In wastewater treatment, color is just an indicator

of the wastewater state. In a primary stage, the wastewater is light brownish-gray color. Furthermore,

the water containing Dissolved Oxygen (DO) (another important water parameter) is usually gray.

At the end of the process, the water should be colorless (Spellman, 2013).

4. Odor

Odor is an important characteristic of wastewater treatment. The odor of the wastewater comes from

industrial waste, anaerobic conditions, and operational problems. In wastewater, this characteristic

requires special attention, once people are residing nearby. Usually, these odors are generated by

gases from organic matter or substances that are added to this wastewater (Spellman, 2013).

5. Temperature

In a WWTP, the wastewater temperature varies according to the stage at which the water is along the

system. Wastewater is generally warmer when compared with the regular water. In the wastewater

treatment process, the temperature is a very important parameter that once influences the role of

the microbial population in the gas transfer rates and the sedimentation process of the biological

solids (Spellman, 2013). Besides that, it is important to refer that when the DO in the wastewater

reduces, the temperature of the wastewater increases (Colacicco and Zacchei, 2020). The limit

temperature value for superficial water is around 28º (PAE, 2013).

6. Conductivity

This parameter represents the concentration of ions with a capacity to conduct electric current.

Therefore, the presence of a large amount of these ions in a wastewater sample implies a higher

electrical conductivity value (B.Baird, D.Eaton, and W.Rice, 2017).

As mentioned before, there are also chemical wastewater characteristics:
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1. Organic parameters

Proteins, proteinaceousmaterials, oils, greases, and carbohydrates are themain wastewater organic

components that come mostly from food. Oils and greases may come also from spills, or other

small discharges containing petrol. Besides that, activities such as agriculture are the main users

of pesticides and herbicides, that are harmful to water quality. Additionally, detergents are also

organic molecules that are presented in wastewater. This kind of components, when not controlled,

may cause problems in the WWTP (Spellman, 2013):

• High levels of grease can produce clogging of filters, nozzles, and sand beds. Additionally, if

the grease is not removed before the WWTP discharge , this can damage the normal water

biological processes and contribute to the appearance of floating matter;

• The presence of detergents, pesticides, and herbicides may influence the biological processes

in the WWTP, once reduce the oxygen uptake in this procedures. Further, may kill useful living

organisms with a significant role in the WWTP processes.

2. Inorganic Parameters

• Alkalinity: Alkalinity is the capacity of the water to neutralize the acid. High values of alka-

linity make water unpleasant, with some impact on human and aquatic health. Alkalinity

in wastewater treatment has a crucial role once holds its neutral pH during the biological

treatment processes (Spellman, 2013);

• pH: pH refers to the hydrogen ions concentration in water. This concentration is responsible

for many reactions in living organisms. A pH of less than 5 indicates acid water, greater than

9, alkaline. Identify the pH value in a WWTP is essential since this is a controlling agent of the

biological and physical-chemical wastewater functions. The pH must be maintained between

certain appropriate levels (6-9) for the maintenance of microbiological community, and its

development in the treatment process. Domestic wastewater has a pH very close to neutrality,

nevertheless, when it comes from industrial sources, it can assume very different values

(alkaline water). This parameter deserves special attention, mainly in the aeration thank. Here,

occurs a biological treatment, with the action of several microorganisms (that need the right

conditions to develop its role). In the secondary clarifier, the pH values should be monitored

since it allows spotting some dysfunctions. At the exit of a WWTP (the discharge process),

the pH value must comply with the emission limit values considered by law. According to

PAE (PAE, 2013), these values must be included between 6.5 and 8.5 to be classified as

“excellent” and between 5.5 and 9 to be considered “good” (Spellman, 2013);

• Nitrogen (N): In a WWTP, N can be found in several forms: nitrate (NO3−), nitrite (NO2−),
ammonia (NH3), and organic nitrogen (in order of decreasing oxidation) (B.Baird, D.Eaton,

and W.Rice, 2017). This is an important component in wastewater treatment once take part of
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the nitrification and denitrification processes. The nitrification process concerns the oxidation

of ammonia to nitrite and then to nitrate, performed by bacteria, in order to obtain energy.

This process occurs in an aerated environment, which means, a high presence of oxygen

(once ammonia is unstable in this context). At the denitrification process occurs the nitrate

reduction to nitrites and subsequently to Nitrogen gas (N2), released after to the atmosphere

(3.2–10% of the total anthropogenic emission of nitrogen) (Law, Ye, Pan, and Yuan, 2012).

This activity take place in the anoxic zone, an environment with low presence of oxygen (Sun,

Cheng, Sha Li, Liu, and Sun, 2013). Nitrogen data are essential for evaluating the treatment

of wastewater by biological processes (Spellman, 2013);

• Phosphorus: Phosphorus is a macronutrient that is necessary for all living cells. Municipal

wastewater may contain 10 to 20 mg/L phosphorus, much of which comes from detergents

(Spellman, 2013). Further, this parameter is related to the water conductivity, once a higher

conductivity implies a higher phosphorus amount in a water sample (Bayo, López-Castellanos,

and Puerta, 2016);

• Heavy metals: Heavy metals are toxicants and are found, mainly, in industrial wastewater, es-

pecially the automotive industries. This component affects the biological treatment of wastew-

ater once is toxic, even to the microorganisms (Spellman, 2013);

• DO: It is possible to find DO in water. The main impact of this parameter is in the the aeration

tank microorganisms’ functionality, once they need oxygen to perform several processes,

because of the role it plays in pH and alkalinity (Spellman, 2013);

3. Bacterias and Viruses

In wastewater, it is possible to find some bacteria and viruses. Bacteria are found, as previously

mentioned, in the biological processes, such as nitrification and denitrification. Besides, they are

also found in the degradation of organic matter processes. Further, other bacteria are presented in

the wastewater, in which human and animal wastes are the primary source. These are a problem

and have to be eliminated (Spellman, 2013). It is possible, also, to detect viruses in wastewater,

mainly excreted by humans. This constitutes a problem, once are difficult to detect. (Spellman,

2013).
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2.2 Machine Learning

A significant difference between humans and computers is how humans can automatically change

their behavior through learning from previous mistakes. Humans try to solve problems, correcting them,

or finding a new way to deal with them (J. Carneiro, Saraiva, Martinho, Marreiros, and Novais, 2018).

Besides, they rely on common sense to draw their conclusions. Analyzing traditional computer programs,

they do not look at the results of their tasks and, therefore, are unable to improve their behavior. Thus,

the concept of ML appears, addressing this problem. Its essence is the creation of models and tools that

can learn and consequently improve their performance, through continuous data collection, resulting in

experience and expertise (Global, Llp, Corporation, Llp, and Global, 2017; Analide, Novais, Machado, and

Neves, 2006).

Being a field of computer science, more specifically a field of AI, ML shares knowledge with mathe-

matics, statistics, game theory, and optimization, among others. It does not seek to automatically imitate

intelligent human behavior, but rather to use it as special strengths and abilities of computers to com-

plement human intelligence, allowing the development of tasks that go beyond the human capacities D.

Carneiro, Novais, Miguel Pêgo, Sousa, and Neves, 2015. For example, the ability to examine and pro-

cess large amounts of data, once ML models can detect patterns that are unattainable for human capacity

(Mitchell, 1997). Thus, this field focuses on building algorithms to detect patterns and predict classes from

data. Its task is identifying a function 𝑓 : 𝑥− > 𝑦, where 𝑥 represents the input , and 𝑦 the output, this

is, the predictions or patterns (Bekkerman, Bilenko, and Langford, 2011; Zhou, Tang, and Zheng, 2015).

To be aligned with the ML concept it is important to understand the notion of learning. Learning is the

process to convert experience into expertise or knowledge (Bekkerman, Bilenko, and Langford, 2011). A

learner model input is expressed by training datasets, that represent the experience. On the other hand,

the output is the expertise, which, usually, are models that can develop tasks, find meaningful patterns,

and predict with good precision (Shalev-Shwartz and Ben-David, 2013).

2.2.1 Learning paradigms

There are three main learning approaches (Libbrecht and Noble, 2015).

2.2.1.1 Supervised Learning

In the supervised learning the data used by the learner model has information about the result. This

type of learning uses labeled examples, using inputs with known and corresponding outputs to train the

models. It is used when historical data is available, and the goal is predicting future outcomes. For this

reason, it is possible to compare the values created by the system with the expected ones. There are

many examples of models that use supervised learning: Decision Trees, Random Forest, Support Vector

Machine, Naive Bayes Classifier, Bayesian Networks, Neural Networks, among others (Qiu, Wu, Ding, Xu,

and Feng, 2016).
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2.2.1.2 Unsupervised Learning

Models based on unsupervised learning use unlabeled data to the training process, emerging expertise

as an output. The system does not know the answer, just find out the data patterns, using only inputs

for that. In this type of models, is available the input data, but the outcomes are unknown before the

models being implemented and performed (Qiu, Wu, Ding, Xu, and Feng, 2016). K-means and K- Nearest

neighbors are examples of unsupervised learning models.

2.2.1.3 Reinforcement Learning

Reinforcement Learning is the training of ML models to make a sequence of decisions. The agent learns

to achieve a goal in an uncertain complex environment. Facing several situations, the solutions are find

using trial and error. For the machine understand what are the goals, receives rewards or penalties for the

actions it performs. Thus, the goal is to maximize the total reward (Song, Li, Quan, Yang, and Zhao, 2021).

2.2.2 Machine Learning Models

Aforementioned, there are several ML models. Following will be addressed four supervised learning

models, with an increasing degree of complexity.

2.2.2.1 Decision Trees

The most popular algorithms for the construction of Decision Trees are Iterative Dichotomiser 3 (ID3),

C4.5, and Classification And Regression Tree (CART). ID3 was developed by J. Ross Quinlan, during the

70s, which created a simple tree construction from the roots to the leaves (top-down construction). De-

spite this, this algorithm presented a clear limitation, it was only able to deal with nominal variables and,

consequently, be used in classification problems. To solve this problem, Quinlan created a new algorithm,

the C4.5, considered an improvement of ID3. Thus, it allows continuous numerical variables, being able

to deal with regression problems (in addition to the classification problems). Besides, other improvements

emerged, such as the trees pruning possibility. This last is considered an important addition since it allows

removing branches that cause “noise” in the data and, consequently, an improvement in the prevision’s

accuracy. Another algorithm developed by a group of statistics (L. Breiman, J. Friedman, R. Olshen, and

C. Stone), in parallel with the mentioned before, is CART. This is an algorithm with a very similar approach

to C4.5, used for classification and regression models, also (Han, Kamber, and Pei, 2012).

Decision Trees are generated from a set of training data, resulting in the creation of a tree-shaped

structure used to classify new cases. Each case is described as a set of features or attributes associated

with each case of the training data. The output is the value/name of the class, that is, the target feature,

the one that is predicted (Quinlan, 1993). Usually, a Decision Tree adopts the structure represented in

figure 2.2.
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Figure 2.2: Example of a Decision Tree regarding a credit assignment, adapted from Han, Kamber, and
Pei, 2012.

As the main constituents of a tree, arises:

• Root node: Represents a variable, and it is the first Decision Tree node;

• Branch: Represents the outcomes of each test executed in a node. Each Decision Tree test is

based on conditions if-then and the result of each test is used to decide which branch is followed

next;

• Internal Node: Represents also a variable and involves all the tree nodes other than the root node

and the terminal nodes;

• Leaf Nodes: These are the Decision Tree terminal nodes. When a test feature reaches a leaf node

it contains class labels instead of the tests from the other tree nodes. In this way, as soon as the

feature reaches this terminal node, a class is assigned.

As mentioned before, the Decision Tree model adopts a top-down construction, following some impor-

tant steps and parameters (Han, Kamber, and Pei, 2012).

As input the model uses:

• A training dataset, a set of tuples and the corresponding classes, represented by 𝐹 ;

• An attribute list, a list of all the features that belong to the training dataset;

• The chosen attribute selection method, the procedure responsible to establish the partition method

that best split training data tuples into individual classes.
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As an output the model creates a Decision Tree, capable to classify each case. The Decision Tree

building process follows some steps (Han, Kamber, and Pei, 2012):

1. The tree begins with a single node, 𝐷 , that, at this instance, represents all the training dataset (the

root node);

2. If all tuples from 𝐹 belongs to the same class𝐶, the node𝐷 becomes a leaf with that class assigned;

3. Otherwise, the algorithm defines the splitting criterion according to the attribute selection method

chosen. The splitting criterion define:

• Which attribute test at node 𝐷 , which define the best way to partition the training dataset into

individual classes;

• Which branches to grow from node 𝐷 , according to the outcomes of the tests carried out in

the previous node.

4. The node 𝐷 is labeled with the splitting criterion. Each branch that grows from this node is one of

the splitting criterion outcomes. Let 𝑋 be the splitting attribute, with 𝑣 distinct values, 𝑥1, 𝑥2, 𝑥3𝑥𝑣

and three possible splitting scenarios:

a) X as a discrete value: The test outcomes at node 𝐷 are all the different possible values

from 𝑋 , represented by each branch that grows from the node, 𝑥𝑣 . The partition 𝐹 𝑗 is the

subset of 𝐹 that contains all the tuples with the 𝑥𝑣 value, from 𝑋 . Once all the tuples in each

partition 𝐹 𝑗 have the same value for 𝑋 , there’s no need to be partitioned anymore. For this

reason, 𝑋 is removed from the attribute list. The figure 2.3 shows an example of this.

Figure 2.3: Example of a discrete attribute, adapted from Han, Kamber, and Pei, 2012.

b) X as a continuous value: In this case, there are two possibilities as test outcomes: 𝑋 ≤
𝑠𝑝𝑙𝑖𝑡 𝑝𝑜𝑖𝑛𝑡 and 𝑋 > 𝑠𝑝𝑙𝑖𝑡 𝑝𝑜𝑖𝑛𝑡 . The split point is defined by the attribute selection

method chosen. Two branches result from node 𝐷 and each one represents the possible

outcome. The tuples are split such that 𝐹1 is a subset where all the tuples respect the condition

𝑋 ≤ 𝑠𝑝𝑙𝑖𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 and the subset 𝐹2 the remaining ones, as figure 2.4 shows.
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Figure 2.4: Example of a continuous attribute, adapted from Han, Kamber, and Pei, 2012.

c) X as a discrete value that can generate a binary tree: This specific case depends on

the used algorithm and attribute selection measure chosen. The test performed at node 𝐷

follow the condition “𝑋 ∈ 𝑆𝑋 ?”, where 𝑆𝑋 represents a subset of tuples from𝑋 , which results

from attribute selection measure chosen as a splitting criterion. A value from 𝑋 , 𝑥𝑣 , is tested

in the following away: if 𝑥𝑣 ∈ 𝑆𝑥 , then the test at the node 𝐷 is positive. Two branches are

grown from the node,and, by convention, the left branch is labeled “yes” and the right one

labeled “no”. As a result, there are two subsets, 𝐹1, corresponding to the tuples that satisfy

the test, (labeled “yes”) and 𝐹2, the remaining ones (labeled “no”) as figure 2.5 shows.

Figure 2.5: Example of a discrete attribute that can generate a binary tree, adapted from Han, Kamber,
and Pei, 2012.

5. The process stops and the classes are assigned when:

• All the tuples from 𝐹 belongs to the same class 𝐶;

• There are no left attributes on which the tuples may be partitioned. In this specific case, the

majority voting is used, the node becomes a leaf and is labeled with the most frequent class;

• There are no remaining tuples, that is, the partition 𝐹 𝑗 is empty. A leaf is created and the

most common class in 𝐹 is assigned.

Decision Trees are considered a good approach once they allow us to know the importance and impact

of each variable in the result. That is, a variable located closer to the root of the tree produces a better

effect on the result than a variable closer to the leaf nodes of the tree (Raglio et al., 2020).

21



CHAPTER 2. STATE OF ART

An attribute selection measure is a heuristic to appoint the splitting criterion that separates a given

training data partition, 𝐹 , classified individually. If 𝐹 is divided into smaller partitions according to the

division results, ideally, each partition would be pure, that is, all instances that end up in each partition

would belong to the same class. For this reason, the best measure chosen is the one that considers this

“pure” concepts and makes the best split according to that. Besides that, attribute selection measures

determine how the instances at a given node are to be split and, due to that, are also denominated splitting

rules (Han, Kamber, and Pei, 2012). Thus, there are three attribute selection measures, described below:

• Information Gain

Information Gain is an attribute selection measure based on entropy in its reckoning. It is the

measure used in the ID3 algorithm. Entropy is an uncertainty measure that allows figure out which

attribute should take place in each tree position. It is associated with a set of objects that allows

identifying the degree of data disorder (low purity), calculated for each one of the attributes under

study (Han, Kamber, and Pei, 2012). The entropy calculation is based on the formula (equation

2.1) (Yin, Langenheldt, Harlev, Mukkamala, and Vatrapu, 2019):

𝐸 (𝐹 ) = −
𝑚∑
𝑖=1

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖 (2.1)

Where 𝑝𝑖 presents the probability of each class 𝑖 appears in a dataset, computed over a total of𝑚

classes.

Entropy varies in a range between 0 and 1. Values closer to 1 meaning a high level of data disorder

and a low level of purity. On the other hand, values closer to 0 meaning the opposite. If values

are closer to 0 this represents, also, that the data is distributed in a homogeneous way, there is

no predominance of classes in that dataset. The graph from figure 2.6 shows how entropy varies

according to the probability (𝑝) of each class 𝑖 appears in the dataset.
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Figure 2.6: A graphical view of entropy.

The information gain measures the expected reduction in entropy as the dataset is partitioned. The

attribute with the greatest reduction in entropy and, consequently, the greatest gain in information
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is considered the one that must take up the tree root (since it produces a better effect). Occupying

the root position allows reducing the tree depth (Mingers, 1989).

The calculation of the information gain is given by the expression 2.2 (Yin, Langenheldt, Harlev,

Mukkamala, and Vatrapu, 2019):

𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛(𝑋 ) = 𝐸 (𝐹 ) −
𝑣∑
𝑗=1

|𝐹 𝑗 |
|𝐹 | × 𝐸 (𝐹 𝑗 ) (2.2)

The expression represents:

– 𝐸 (𝐹 ) : Entropy before the partitioning of dataset 𝐹 ;

–
∑𝑣
𝑗=1

|𝐹 𝑗 |
|𝐹 | × 𝐸 (𝐹 𝑗 ): Quantifies how much more information do we still need (after the par-

titioning) to the partition be pure, this is, all the tuples from 𝐹 𝑗 subset belong to the same

class:

*
|𝐹 𝑗 |
|𝐹 | : It represents the weight of 𝑗𝑡ℎ partition, in the total dataset;

* 𝐸 (𝐹 𝑗 ) : The entropy of the subset F 𝑗 that results from the partitioning at the attribute

𝑋 . The lower this value, the purer the partition.

So that, by the formula analysis, the information gain results from the difference between the original

requirement of information (before the partitioning) and the new current requirement (after parti-

tioning). So, tells how much information gained when dividing the attribute𝑋 into several branches.

The process is repeated for all the constituent attributes of the training dataset. These would occupy

the tree from the top to the bottom according to information gain (the higher the closer to the root).

The information gain measure tends to be skewed against tests with numerous outcomes (e.g.

attributes that acts as a unique identifier, such as Id’s). In this case, each partition is pure, once each

one contains only one tuple of data and, consequently, the information gain with being maximal.

Certainly, this situation would be useless to classification problems. To solve this problem, another

measure is used, the gain ratio, addressed below.
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• Gain Ratio

As previously mentioned, this measure of attribute selection has been solving some of the limita-

tions and specificities of information gain. Thus, this measure is used in the algorithm C4.5 (ID3

successor) and is considered an extension of the information gain. The following equation (2.3),

shows the potential information that is created through the partitioning of the training data set, 𝐷 ,

in a total of 𝑣 outcomes, resulting from the test at the attribute 𝑋 (𝑣 partitions).

𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑙𝑖𝑡 𝑖𝑛 𝑋 𝑔𝑎𝑖𝑛(𝐹 ) = −
𝑣∑
𝑗=1

|𝐹 𝑗 |
|𝐹 | × 𝑙𝑜𝑔2(

|𝐹 𝑗 |
|𝐹 | ) (2.3)

Here, to each outcome, it considers the number of tuples that have that possibility, in the total

number of tuples in 𝐹 . The difference between this measure and information gain,is that this last

just considers the classification that is obtained based on the same partitioning. Finally, the gain

ratio is calculated as the following equation, 2.4, shows (Han, Kamber, and Pei, 2012):

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 (𝑋 ) = 𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝑋 )
𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑙𝑖𝑡 𝑖𝑛 𝑋 𝑔𝑎𝑖𝑛(𝐹 ) (2.4)

• Gini index

This measure is applied in the CART algorithm. Is used to measure the impurity of a dataset or

subset (in this specific case, the dataset 𝐷 or a data partitioning resulting from it). Gini index is

computed as equation 2.5 shows (Han, Kamber, and Pei, 2012):

𝐺𝑖𝑛𝑖 (𝐹 ) = 1 −
𝑚∑
𝑖=1

𝑝𝑖
2 (2.5)

Where 𝑝𝑖 represents the probability that a tuple in 𝐷 belongs to class𝐶 𝑗 , computed over a total of

𝑚 classes. This measure contemplates a binary split for each attribute. There are two possibilities

to consider: the attribute as a discrete value or as a continuous value (Han, Kamber, and Pei, 2012).

Considering the case where 𝑋 is a discrete-value, and there is 𝑣 distinct values to that attribute, in

𝐷 . In this case, to evaluate the best binary split on 𝑋 , we analyze all the potential subsets which

can be generated using the values of𝑋 . Each subset, 𝑆𝑋 , can be considered as a binary test for the

attribute 𝑋 of the form “X ∈ 𝑆𝑋 ?”. Given a tuple, this test is satisfied if the value of 𝑋 for the tuple

is among the values listed in 𝑆𝑋 . If 𝑋 has 𝑣 possible values, then there are 2𝑣 possible subsets. Is
excluded the set with all the possible outcomes, 𝑎1, 𝑎2, 𝑎𝑣 , and the empty set, { }. For this reason,

there are 2𝑣−2 possibilities to form two partitions resulting from 𝐷 , form by a binary split on 𝑋 .

When considering a binary split, it is calculated a weighted sum of the impurity of each resulting

partition, the Gini Index of 𝐷 , giving a binary partitioning, represented by 2.6 (Han, Kamber, and

Pei, 2012):
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𝐺𝑖𝑛𝑖 𝑖𝑛 𝑋 (𝐷) = |𝐹1 |
|𝐹 | ×𝐺𝑖𝑛𝑖 (𝐷1) +

|𝐹2 |
|𝐹 | ×𝐺𝑖𝑛𝑖 (𝐷2) (2.6)

The expression represents a split on partitions𝐷 into two,𝐷1 and𝐷2. For every one attribute, each

of the possible binary splits is considered. In the specific case of discrete values, the subset with

a minimum Gini index for that attribute is selected as its slipping subset (Han, Kamber, and Pei,

2012).

On the other and, for continuous-valued attributes, split-points must be considered. The strategy of

the midpoint (between each pair of adjacent values), is used as a possible split-point. For a possible

split-point of 𝑋 , 𝐷1 is the set of tuples in 𝐷 satisfying 𝑋 ≤ 𝑠𝑝𝑙𝑖𝑡 𝑝𝑜𝑖𝑛𝑡 , and 𝐷2 is the set of tuples

in 𝐷 satisfying 𝑋 > 𝑠𝑝𝑙𝑖𝑡 𝑝𝑜𝑖𝑛𝑡 . The reduction in impurity that would be incurred by a binary split

on a continuous attribute 𝑋 , is presented in equation 2.7 (Han, Kamber, and Pei, 2012):

Δ𝐺𝑖𝑛𝑖 (𝑋 ) = 𝐺𝑖𝑛𝑖 (𝐷) −𝐺𝑖𝑛𝑖 𝑖𝑛 𝑋 (𝐷) (2.7)

The attribute that maximizes the minimum Gini index value, that is, the one that maximizes the reduc-

tion in impurity, is selected as the splitting attribute (Han, Kamber, and Pei, 2012).

Further, another important issue about Decision Trees is the tree pruning. The tree pruning is the

process of deleting internal-nodes from a Decision Tree (Ayyadevara, 2018). Pruning methods have been

developed to allow a Decision Tree model to stop until it is no longer possible to split it (Mingers Bsrcd,

1989). This happens because can occur overfitting, and the tree pruning may help to solve this. Overfitting

occurs when the data fits so well the training dataset, that when the model is confronted with the real

“world”, that is, a new input (different from the training dataset) the model turns out to be poor (Shalev-

Shwartz and Ben-David, 2013). Thus, the tree pruning allows noisy data or redundancies to be eliminated

from the model. The tree pruning process may use two different techniques: The pre-pruning and the

post-pruning. The first one concerns that the tree construction process stops when it is considered that

there are not advantages to have more splits in the tree. However, the post-pruning is based on let the tree

grow as far as it can, and after prune the unneeded nodes (Mingers Bsrcd, 1989).

Last, Decision Trees model has some advantages but also some limitations. When compared with

other models, Decision Trees are considered simple and good models once achieve good predictions with

reduced endeavors. For this reason, there are advantages to using Decision Trees (Kashyap, 2017;Han,

Kamber, and Pei, 2012)). Decision Trees are a fast, simple, intuitive, and inexpensive model. Besides this,

this model provides a good view of which attributes and fields are the most significant for classification

and prediction, and can deal with categorical and numerical data. Even so, present some limitations, that

can be pointed out. This is a model that does not produce good results if there are many uncorrelated

variables in the data set. Further, for this model, data sets more complex would generate tress also more

complexes. So, although simple to implement, this huge tree has numerous divisions and many sub-trees,

which takes a lot of time and can become computationally expensive.
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2.2.2.2 Random Forest

Another ML model considered is Random Forest. This model has Decision Trees in its constitution and

it is considered a model with good results and high precision predictions (Kumar, 2017; Qi, Jin, Li, and

Qian, 2020).

In Random Forest, each Decision Tree is constructed using a subset of data chosen randomly from the

training data. Each subset will create a tree, and so, when testing the model with an input, each tree will

classify with the respective class. Thus, the output that will result from a this model will be, for example,

the mode of the classes generated by the individual trees (Pal, 2005).

Figure 2.7 shows an example of how the Random Forest model works.

Figure 2.7: Scheme of a Random Forest model operation.

This model also has its advantages and limitations. It operates successfully on large datasets and

handles fairly well with outliers and models “noise”. Further, requires less computational efforts, when

compared to other tree ensemble models. Furthermore, just like the Decision Trees, this model enables

us to understand which variables are important. Although this model usually obtains better results when

compared to Decision Trees, it requires higher computational efforts (Kumar, 2017).

2.2.2.3 Artificial Neural Networks

Artificial Neural Network (ANN) are a deep learning model, with a higher degree of complexity, when

compared with the models previously mentioned. ANN is a deep learning model that performs based on

human brain functioning. The basic unit of an ANN is the artificial neuron (units, cells, or nodes), which

also represents the human neuron. Equally to the human brain, these neurons are connected between

them, creating a network (Fausett, 1994).
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In ANN models, neurons are responsible to process information. Thus, the signs generated from each

neuron are transmitted to the next neurons, between a communication link. These links have a weight,

which is responsible to multiply the transmitted signals. To create an output, each neuron applies an

activation function for every input that reaches it. The ANN training process consists of that weights updated

over iterations until produce meaningful results. These iterations are called epochs and are an important

parameter in ANN models (Heaton, 2012). Thus, an ANN is constituted by layers of neurons, that are

connected between them.

A neural network with more than two layers is considered deep, as figure 2.8 shows. The first research

about deep neural networks was developed by Pitts and McCulloch, in 1943 (McCulloch and Pitts, 1943).

Figure 2.8: Example of an artificial neural network (Gao and Su, 2020).

Two main processes happen in a ANN, the feedforward process, and the backpropagation.

The feedforward process involves the flow of information from the input layer to the output layer, while

the backpropagation occur from the output to the input layer. This last process is responsible for the

learning process, at the same time that corrects the network weights.

The feedforward process follows the maths represented above.

𝐼𝑛𝑝𝑢𝑡 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 𝐵𝑖𝑎𝑠
𝑥1

𝑥2

...

𝑥𝑛


×


𝑤11,𝑤12, ...,𝑤1𝑖, ...,𝑤1𝑛
𝑤21,𝑤22, ...,𝑤2𝑖, ...,𝑤2𝑛
...................................

𝑤 𝑗1,𝑤 𝑗2, ...,𝑤 𝑗𝑖, ...,𝑤 𝑗𝑛


+


𝑏1

𝑏2

...

𝑏 𝑗


=


𝑥1 ×𝑤11 + 𝑥2 ×𝑤12 + ... + 𝑥𝑛 ∗𝑤 𝑗1 + 𝑏1
𝑥1 ×𝑤12 + 𝑥2 ×𝑤22 + ... + 𝑥𝑛 ∗𝑤 𝑗2 + 𝑏2

......................................................

𝑥1 ×𝑤1𝑛 + 𝑥2 ×𝑤2𝑛 + ... + 𝑥𝑛 ∗𝑤 𝑗𝑛 + 𝑏 𝑗


That said, for each 𝑗 neurons, in the hidden layer (equation 2.8):

𝑂 𝑗 =
𝑛∑
𝑖=1

𝑤 𝑗𝑖𝑥𝑖 + 𝑏 𝑗 , ∀ 𝑗 (2.8)
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Where 𝑏 𝑗 is the bias (a number added responsible to help and speed the learning process), 𝑤𝑖 𝑗 the

link weights (from the input node 𝑖 to hidden layer node 𝑗 ), and the 𝑥𝑖 represents the input data. Bias

works as an addition, allowing the output (that comes from the activation function) to move its values to

the left or right, in the axis of abscissas (Heaton, 2012).

The most simple ANN is the MLP in which a neuron in a single layer receives input and transforms it

into output as figure 2.9 shows.

Figure 2.9: Schematic representation of a ANN neuron operation (Vasilev, Slater, Spacagna, Roelants, and
Zocca, 2019).

From each neuron results an output that works as input for the next layer neurons. Thus, after the

process before described (equation 2.8), for each neuron, is applied an activation function. From here

results the final neuron output. This function application follows the following equation, 2.9:

𝑦 𝑗 = 𝑓 (𝑂 𝑗 ) = 𝑓
(∑𝑛

𝑖=1𝑤 𝑗𝑖𝑥𝑖 + 𝑏 𝑗
)

(2.9)

There are many known activation functions. Among the most popular are three highlighted in this

research: the sigmoid, the Hyperbolic Tangent (Tanh) and the Rectified Linear Unit (RELU), next presented

in tables 2.6, 2.7, and 2.8, respectively (Vasilev, Slater, Spacagna, Roelants, and Zocca, 2019):
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Table 2.6: Logistic function (or sigmoid).

Logistic function (or sigmoid)

𝑓 (𝑎) = 1
1+𝑒𝑥𝑝−𝑎

Its output is between 0 and 1

−6 −4 −2 0 2 4 6

0

0.5

1

Table 2.7: Tanh function.

Tanh function

𝑓 (𝑎) = 1−𝑒𝑥𝑝 (−2𝑎)
1+𝑒𝑥𝑝 (−2𝑎)

Its output is between -1 and 1

−6 −4 −2 0 2 4 6

−1

0

1

Table 2.8: Rectified Linear Unit function.

Rectified Linear Unit function

𝑓 (𝑎) =
{
𝑎 𝑖 𝑓 𝑎 ≥ 0
0 𝑖 𝑓 𝑎 < 0

−6 −4 −2 0 2 4 6
0
1
2
3
4
5
6
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The weight matrix is the only parameter that varies during the ANN training process. As the weights are

corrected, the neural network efficiency improves, converging to the smallest possible error. These update

process is the backpropagation, in which the information flows in the opposite feedforward flow (output

layer -> hidden layer(s) -> input layer).

In ANN models, the only parameter that varies among the training process is the weights matrix. The

neural network performance improves as the weights are corrected, converging to the smallest possible

error. Thus, come out the backpropagation concept. The output flows in the opposite way when compared

with the feedforward. To correct the weights (output layer -> hidden layer(s) -> input layer). This process

occurs through several steps, following mentioned (Heaton, 2012).

1. From the feedforward process, an output value results (𝑎). To understand how well the ANN works,

and how far these output results are closer to the expected ones, is used a Loss function (𝐶𝑜 ).

There are several loss functions, among them:

a) Absolute error Is the most simple metric. Is the difference between the predicted value (𝑝)

and the actual value (𝑎) (equation 2.10).

𝐸 = 𝑝 − 𝑎 (2.10)

b) Mean Absolute Error (MAE)

This metric results from the absolute error, squared and sum, and then divided by the to-

tal number of cases (equation 2.11). This error, since it is squared, deletes negative error

numbers.

𝑀𝐴𝐸 =
1
𝑛

𝑚∑
𝑖=1

(𝑝 − 𝑎)2 (2.11)

c) Root Mean Square Error (RMSE)

The RMSE method is identical to the Mean Absolute Error (MSE), except for the reason that

the square root is added to the sum (equation 2.12).

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑚∑
𝑖=1

(𝑝 − 𝑎)2 (2.12)

2. The second key concept in ANN is the gradient descent. As previously mentioned, train ANN consist

of a search for the best set of weights that generates the outputs with the lowest error. As a first ap-

proach, the proposal of finding the best set of weights, experimenting all the possible combinations

comes up. This is, test the model with all the possible weights and find which returns a small error.

Obviously, it turns out an disapproved possibility once it is almost impossible, because takes a lot

of time and almost infinity computer capacity (Heaton, 2012). So, the train process use iterations

to find the best set of weights, called epochs.
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Here, the only set of weights that are known are the current ones of each iteration. That’s not

possible to find an error curve to all the weights but, it is feasible to know the instantaneous slope

of the error function at a specific weight, which means, the derivative (Heaton, 2012).

It is essential understand how to calculate the partial derivative (concerning the weight) for the

output of each neuron. In this process, the chain rule is applied. The chain rule deals with composite

functions, which happens when a function is used as input of another function. To calculate the

derivative across the ANN this technique is used since a neural network is, also a complex composite

function.

But how to calculate the gradient? The gradient is the slope of a straight line, that is, the tangent to

the error function. Using notation: 𝑦 =𝑚𝑥 + 𝑏, the gradient is represented by the𝑚, and it is the

significant part of this process.

To understand the gradient descent and the chain rule it is imperative to give special attention to

figure 2.10 and the equations below (equation 2.13, 2.14, 2.15). In the figure it is represented a link

weight (𝑤 ) connecting two neurons, between the layer 𝐿 − 1 and 𝐿.

Figure 2.10: Link between two neurons, layer 𝐿 − 1 and 𝐿.

Representing the cost function as 𝐶𝑜 , the equations above allow us to understand better how the

chain rule works.

𝑍 (𝐿) = (𝑤 (𝐿) .𝑎(𝐿−1) + 𝑏 (𝐿)) (2.13)

𝑎(𝐿) = 𝑓 (𝑤 (𝐿) .𝑎(𝐿−1) + 𝑏 (𝐿)) (2.14)

𝑎(𝐿) = 𝑓 (𝑍 (𝐿)) (2.15)

Be of importance to understand how sensitive the cost function is for small changes in the weight,

𝑊 𝐿. For this, it is computed the 𝜕𝐶𝑜
𝜕𝑤𝐿 , this is, the gradient. Based on the chain rule technique, this

gradient is calculated based on the following equation, 2.16:

𝜕𝐶𝑜
𝜕𝑤𝐿

=
𝜕𝑍𝐿

𝜕𝑤𝐿
× 𝜕𝑎𝐿

𝜕𝑍𝐿
× 𝜕𝐶𝑜
𝜕𝑎𝐿

(2.16)
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3. Now that all the values are calculated, it is viable to apply the backpropagation method. This method

is used to train the neural network and use the gradient values to update the weights. As the gradient

values go down (the error varies less with the variation in the weights), the neural network error

goes down, also (Heaton, 2012).

In this process, there are two crucial concepts: the batch and the epochs. Each batch is a set of

training elements that are used to train the model. Here, the weights are not updated for every single

training set element. Instead, the gradients for each training set element are summed. Once every

training set element has been used, the neural network weights may be updated. At this point,

the iteration is considered complete. Here enter the concept of epoch, which are the iterations

responsible for updating weights in the neural network (Heaton, 2012).

The main goal is to minimize the loss function and, to do so, it is necessary a method to update

the internal weights of neural networks, responsible for this reduction. Using the gradient descent

to train the model the weights are updated through the following equation (2.17):

△𝑊(𝑡) = △𝑊(𝑡−1) + 𝛼
𝜕𝐶𝑜
𝜕𝑊

(2.17)

Where 𝛼 represents the learning rate. This rate is responsible for scale the gradient and slow down

or speed up the learning process (Heaton, 2012).

2.2.2.4 Recurrent Neural Networks

Traditional neural networks can not use previous information to help understand the later one. Under

those circumstances, when an input arrives in a neuron, an activation function is applied, giving rise to an

output. Then, this output will be transmitted to the next layer neuron, without storing any information in

the current neuron. Recurrent Neural Networks (RNN) have a particularity, using loops, they can keep that

information. Further, in this type of neural networks sequential data of different length may be processed.

Here, instead of generating output and just transmitting it to the next neuron, the RNN neuron will transmit

this information to the neuron of the next layer, but also to itself again. In this way, the neuron is able to

store that information, as figure 2.11 shows.

Figure 2.11: RNN diagram (Vasilev, Slater, Spacagna, Roelants, and Zocca, 2019).
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In the figure above, the 𝑥 is the neuron input, whereas the 𝑦 represents the output. There is well

represented how an RNN works. The input 𝑥 reaches the neuron and result and output (𝑦) from that. This

output is transmitted to the next neuron but also re-transmitted to the current neuron again. Thereby, this

neuron can store this information, and, in the future, will use this to create the next output. Considering

that 𝑠𝑡 is the actual state, to create the 𝑦𝑡 will use the information store in the neuron resulting from the

𝑠𝑡−1 output (𝑦𝑡−1), and so on, as shown in the figure.

There are three weights responsible in this process: the 𝑈 , which transform the input to the current

state 𝑠𝑡 , the𝑊 , that transform the previous state (𝑠𝑡−1) to the current one (𝑠𝑡 ) and the 𝑉 responsible to

map the 𝑠𝑡 to the output, 𝑦𝑡 .

The process takes place following the subsequent equations, in which 𝑓 represents the activation

function (Vasilev, Slater, Spacagna, Roelants, and Zocca, 2019):

𝑠𝑡 = 𝑓 (𝑠𝑡−1 ∗𝑊,𝑥𝑡 ∗𝑈 ) (2.18)

𝑦𝑡 = 𝑠𝑡 ∗𝑉 (2.19)

RNN are used for various purposes, one of which is the time series. When compared with the re-

gression and classification problems, the time series add the temporal dependency between observations

(Brownlee, 2018). Besides that, it is important to refer that RNN models can give good answers when

there is a small gap between the relevant information and what is needed at the moment. On the contrary,

when the gap between the relevant information and the moment when it is needed is too wide, the RNN

becomes an inefficient model (Yoshua Bengio, Patrice Simard, and Paolo Frasconi, 1994). To fix this, in

1997, Hochreiter and Schmidhuber introduced the LSTM model, capable to handle “Long-term dependen-

cies” (Hochreiter and Schmidhuber, 1997; Oliveira et al., 2020). A LSTM model operates as figure 2.12

shows.

Figure 2.12: LSTM model operating process (Olah, 2015).

The LSTM cell represented in the figure above shows a horizontal line on the top of the diagram. This

line is responsible for some small transformations and allows the information to be transported through
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the cell.

In LSTM cells, there are structures called gates. These are the structures that allow remove or add

information to the cell. In an LSTM cell, there are three gates, as represented in the figure. These gates

use a sigmoid function, and consequently, from its resulting values between 0 and 1. A value equals

to 1 represents the information that can pass and it is important, on the other hand, 0 represents the

information that cannot be stored at all (because it is not useful). Hereupon, a LSTM cell works following

four fundamental steps (Vasilev, Slater, Spacagna, Roelants, and Zocca, 2019):

1. The first is the first cell gate, a forget gate. Here, is determined which information keeps in the cell

and the one that is eliminated, following the equation 2.20:

𝑓𝑡 = 𝜎 (𝑊𝑡 ∗ 𝑥𝑡 +𝑈𝑡 ∗ ℎ𝑡 − 1) (2.20)

2. The next step regards another cell gate, the input gate. First, it is used ℎ𝑡 − 1 and 𝑥 as inputs,

and then a sigmoid is applied, creating, also, a value between 0 and 1. Here, 0 represents that no

information is added to that cell block’s memory. This process follows the equation 2.21:

𝑖𝑡 = 𝜎 (𝑊𝑡 ∗ 𝑥𝑡 +𝑈𝑡 ∗ ℎ𝑡 − 1) (2.21)

After this, using ℎ𝑡−1 (previous output) and the 𝑥𝑡 , the input of this state, is applied a Tanh function,

creating a candidate input to be added, 𝑐′𝑡 , as the following equation, 2.22, shows:

𝑐′𝑡 = 𝜎 (𝑊𝑐 ∗ 𝑥𝑡 +𝑈𝑐 ∗ ℎ𝑡 − 1) (2.22)

3. Once the forget gates and input gates chose which new and old information should be included (cre-

ating the total amount of information considered important), they are related to the transformations

that occur in the top horizontal line of the cell (equation 2.23).

𝑐𝑡 = 𝑓𝑡 ⊗ 𝑐𝑡−1 ⊕ 𝑖𝑡 ⊗ 𝑐′𝑡 (2.23)

4. Finally, the LSTM model needs to define what is the output. First using ℎ𝑡−1 and the 𝑥𝑡 , a Tanh

function is applied, in the last gate, the output gate, following the equation 2.24:

𝑜𝑡 = 𝜎 (𝑤𝑜 ∗ 𝑥𝑡 +𝑈𝑜 ∗ ℎ𝑡−1) (2.24)

After this, and as the final step to create the output, is used the 𝑐𝑡 (the actual cell state) through

a Tanh function, to give an output between -1 and 1, and multiply this to the output gate (equation

2.25), resulting:

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡 ) (2.25)
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2.2.3 Evaluation Metrics

To evaluate the ML models’ performance there are a several metrics that can be used, to understand

the quality of the predictions generated.

2.2.3.1 Classification Accuracy

The accuracy is the simplest metric and commonly used in classification problems. This metric results

from the number of correct predictions divided by the total number of examples, as the following equation

shows (equation 2.26).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
(2.26)

2.2.3.2 MSE

This function calculates the average of the squared model errors (equation 2.27). That is, smaller

differences are less important, while larger differences are given more weight.

𝑀𝑆𝐸 =
1
𝑛

𝑚∑
𝑖=1

(𝑦 − 𝑦)2 (2.27)

2.2.3.3 RMSE

There is a variation of MAE, which facilitates interpretation: the RMSE. It is simply the square root of

the MAE (equation 2.28). In this case, the error returns to the original units of measure of the dependent

variable.

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑚∑
𝑖=1

(𝑦 − 𝑦)2 (2.28)

2.2.3.4 MAE

In this case, instead of assigning a weight according to the magnitude of the difference, it assigns the

same weight to all differences, in a linear way (equation 2.27).

𝑀𝐴𝐸 =
1
𝑛

𝑚∑
𝑖=1

|𝑦 − 𝑦 |2 (2.29)
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3. Materials and methods

3.1 Data Exploration

Data exploration is a crucial phase in data mining projects. Visualize and understand data is a funda-

mental step to allow its correct preparation and achieve the best results. Thence, this chapter presents

the data sets that were used in this research, respecting a case study in the city of Guimarães.

3.1.1 Air quality dataset

In the first instance, the data collected relates to the UV index, CO and SO2 air concentration, as well

as some features concerning the weather, in the city of Guimarães. This data represents several important

parameters to this research, especially to extract some conclusions in the air quality and atmosphere

problems domain.

3.1.1.1 Ultraviolet Index

The first dataset concerns the UV Index in the city of Guimarães. Table 3.1 depicts the dataset features.

Table 3.1: Ultraviolet Index dataset constitution.

Feature Description Data type

UV Value The UV index. Number(Double)
Date Register time stamp. Local date time

This dataset has in its constitution 5776 rows and a time range defined from 24-07-2018 (14:00:00)

to 23-03-2020 (14:00:00).

On average, this dataset presents by day, 12 registers (every two hours). However, some days don’t

exhibit any observation, due to a registration failure, a total of 102 missing timesteps:

• From 13-12-2018 to 14-01-2019 • From 27-07-2019 to 07-08-2019

• From 07-03-2019 to 28-03-2019 • From 20-11-2019 to 05-12-2019
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• From 04-04-2019 to 09-04-2019 • From 30-01-2020 to 10-02-2020

• Day: 02-05-2019

Besides, do a statistical analysis of the dataset allow a deeper data exploration. Thus, table 3.2 shows

statistics measures, relating to the UV index dataset. Metrics such asminimum,maximum,mean, standard

deviation, and variance are displayed, granting a better data understand.

Table 3.2: Ultraviolet index dataset statistical analysis.

Metrics UV index

Minimum 1.110
Maximum 10.290
Mean 5.077

Standard Deviation 2.775
Variance 7.700

In the following figures, 3.1 and 3.2 , are represented the UV Index mean by year and month, in the

dataset time range.

Figure 3.1: Ultraviolet index mean by month and year.Figure 3.2: Ultraviolet index mean by month (2018-
2020)

Analyzing the graphs above it is possible to realize that the months with lower values of the UV index

are November, December, and January, reaching the higher values between April and August. For this

reason, it is perceptible that the UV Index varies according to the month, showing very similar values for

the same months, in different years.
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After explore the dataset it was noticed that UV Index does not presents a significant variation in a day.

Figure 3.3 shows the variation of the UV Index in a day, displaying a random sample of days.

Figure 3.3: Example of Ultraviolet index variation by day.

3.1.1.2 Atmospheric Pollutants (CO and SO2)

This dataset regards the atmospheric pollutants, in particular CO and SO2, also in the city of Guimarães.

In table 3.3 are represented the dataset features.

Table 3.3: Atmospheric pollutants dataset constitution.

Feature Description Data type

CO Value Carbon Monoxide concentration, in ppm. Number (double)

SO2 Value Sulfur Dioxide concentration, in ppm. Number (double)

Date Register time stamp. Local date time

This dataset reveal 5776 rows and a time range from 24-07-2018 (14:00:00) to 23-03-2020 (14:00:00).

Further, it has the same time registers as the UV Index dataset, once were recorded at the same time

intervals.

Table 3.4 shows the statistical information about the the features that constitute this dataset.

Table 3.4: Atmospheric Pollutants dataset statistical analysis.

Metrics CO SO2

Minimum 2.70 ×10−6 1.36 ×10−9
Maximum 6.25 ×10−6 1.07 ×10−6
Mean 4.23 ×10−6 -4.06 ×10−11

Standard Deviation 8.12 × 10−7 4.43 ×10−10
Variance 6.59×10−13 1.97 ×10−19
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The graph from figure 3.4 depicts the CO evolution over time, whereas the graph from figure 3.5

represents the mean “CO value” by month.

Figure 3.4: CO air concentration over time. Figure 3.5: Mean monthly CO concentration (2018-
2020).

When evaluated, the “CO value” evolution over time shows some blank spaces. It is possible to deduce

that these represent the previously mentioned missing timesteps. Both figures, 3.4 and 3.5, allow assumes

that CO values are higher in November and December, and reach the lowest values in July.

As the UV index, the CO air concentration does not show a significantly variation in a day, figure 3.6.

This graph shows a sample of days, to display this insignificant variation.

Figure 3.6: Example of Carbon Monoxide air concentration variation by day.

The graph from 3.7 shows the evolution of SO2 concentration over time.
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Figure 3.7: Sulfur Dioxide air concentration over time.

As the graph shows, SO2 concentration reaches negative values, a fact that does not exist from a

scientific point of view. These negative values may occur, possibly, due to the sensor exposed to nitrogen

dioxide, which causes a negative interference in this sensor. Once there are no registers in the dataset of

nitrogen dioxide, the negative values are considered important, since, even negative, it represents the real

interference of another pollutant.

3.1.1.3 Weather Indicators

This dataset includes data related to the weather conditions in the city of Guimarães. Table 3.5 represent

some dataset characteristics.

Table 3.5: Weather dataset constitution.

Feature Description Data type

Weather description Weather description at a given day and hour. String

Temperature Temperature recorded at a given date and hour, in
degrees Celsius (ºC).

Number (integer)

Atmospheric pressure Atmospheric pressure at a given day and hour, in
millibars.

Number (integer)

Humidity Percentage of humidity at a given day and hour. Number (integer)

Clouds Percentage of clouds at a given day and hour. Number (integer)

Precipitation Precipitation level at a given day and hour. Number (integer)

Date Register time stamp. Local Date Time
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The dataset has 11817 rows in its constitution in a time range defined from 24-07-2018 (14:00:00) to

23-03-2020 (14:00:00).

Table 3.6 shows the dataset statistical metrics.

Table 3.6: Weather dataset statistical analysis.

Metrics Temperature Atm pressure Humidity Clouds Precipitation

Minimum 0 985 14 0 0
Maximum 35 1035 100 100 2
Mean 14.80 1018.31 81.58 35.42 5.9 ×10−4

Standard Deviation 5.32 6.50 17.18 34.85 0.03
Variance 28.27 42.26 294.99 1214.47 9.31 ×10−4

This dataset present more observations per day when compared with the two other mentioned before.

On average, has 24 records in a day, which indicates an hourly record (with exceptions). Just like the

others, this dataset has some days that do not present any observation (a total of 102 days). The missing

timesteps are:

• From 13-12-2018 to 14-01-2019 • From 27-07-2019 to 07-08-2019

• From 06-03-2019 to 27-03-2019 • From 20-11-2019 to 05-12-2019

• From 04-04-2019 to 09-04-2019 • From 30-01-2020 to 10-02-2020

• Day: 02-05-2019

Then, an overview of each of this dataset’s constituent features is shown in the following items.

- Weather description

Represented as a string, the “Weather description” feature shows thirty-one different values among

which ”trovoada”, ”nuvens dispersas”and ”aguaceiros”.

There are some unfamiliar characters at the “Weather description” values. This may constitute an

error, requiring special attention in the data preparation process.
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- Temperature

One of the features from this dataset is the registered temperature. Its variation over time and the

monthly mean are depict in the following figures, 3.8 and 3.9, respectively.

Figure 3.8: Temperature over time, in ºC. Figure 3.9: Mean monthly temperature, in ºC
(2018-2020).

After evaluate the graphs from the figures above, it is possible to apprehend that the higher tem-

perature values are recorded from July to October. On the other hand, the smallest value is verified

in January. Figure 3.8 shows some blank spaces due to the missing dates steps referred.

- Atmospheric pressure

The third feature is the “Atmospheric Pressure”. The graph from the figure 3.10 shows its variation

over time.

Figure 3.10: Atmosphere pressure over time, in millibar.

It is possible to realize that the atmospheric pressure does not vary significantly. Besides, does not

present a particular behavior, that points to an upward or downward trend, according to the time of

the year.
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- Humidity

The following graphs, figure 3.11 and 3.12, present the humidity variation, considering the year and

the month.

Figure 3.11: Humidity (%) by month and year. Figure 3.12: Mean monthly humidity (%) (2018-
2020).

From the graphs above, it is possible to conclude that the months with the highest percentage are

July, November, and December. The smallest humidity percentage registered is in May, regarding

the data available. However, the humidity percentage does not presents significant different values

between months.

- Clouds

The “Clouds” behavior is delineated in the figure 3.13 and 3.14.

Figure 3.13: Clouds (%) mean by month and
year.

Figure 3.14: Mean monthly clouds (%) (2018-
2020).

As the figures show, November, December, January and March are the months with higher clouds

percentage registered.
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- Precipitation

In a total of 11817 records, the “Precipitation” feature presents 11817 records equals to zero. The

remaining five observations are presenting in the table 3.7.

Table 3.7: Precipitation values.

Precipitation Date

2 2020-01-17 00:00:00
2 2020-01-17 01:00:00
1 2020-01-17 02:00:00
1 2020-01-17 03:00:00
1 2020-03-19 16:00:00

After an evaluation of this feature, it was concluded that it has inconclusive values. Thence, it might

be removed in the future.

3.1.1.4 Missing values

The blank spaces aforementioned do not constitute missing values, but missing timesteps. That said,

it is of relevant importance to mention that, in the three datasets, missing values were not found.

3.1.1.5 Correlation between features

After analyzing all the three datasets were investigated the correlation between its features, putting them

all together. This analysis made use of a correlation matrix, showing the Spearman rank correlation. This

correlation measure was used once the “UV value” (target feature) has some ordinal nature in it, once

can be converted into levels (as mentioned before). Further, this correlation does not take into account the

data distribution.

Figure 3.15: Correlation matrix concerning the air quality dataset.
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The matrix shows that there are not a significant correlation between the features that are not used

as a target. Further, the only considerable correlation showed is a positive correlation between the “UV

Value” and the “Temperature”, as well as a negative correlation between “CO Value” and the “UV Value”

features. This may indicate that these features must be used to train the model.

3.1.2 Water quality dataset

The second dataset explored in this research concerns the water quality. This dataset regards a WWTP

located, also, in Guimarães. It presents three distinct datasets, according to the WWTP unit, from where

results information about relevant parameters.

Figure 3.16 depicts a schema about the data available in the WWTP under study. This schema allows

a better understanding of the available features.

Figure 3.16: Schema showing the available features in the dataset concerning a WWTP.

The data set presents fourteen features, among three units, as the figure above shows. The pre-

treatment unit is the first one, representing the wastewater at the moment that arrives in the WWTP.

These features concern the water that comes from the domestic, industrial, agriculture, among other

sources, without any treatment yet. From this WWTP unit, there are two features available in the dataset.

The secondary treatment is divided into two sub-units, the aeration tank (that has an anoxic zone and

an aerated Zone) and the secondary clarifier. Each one of these sub-units (the aeration thank and the

secondary clarifier) is, further, divided into two lines (line 1 and line 2). From the secondary treatment

unit, the dataset present has a total of 10 features. The last unit is the tertiary treatment, which represents

the last phase. Here it is presented the water before being returned to water natural sources, showing two

available features. Even being a single dataset, it will be analyzed by unit to facilitate the data exploration

process.

The first step is to analyze the “Date” feature, separately, once is common to all the units. This feature

is the register time stamp, using a “Local date time” format. In general, the dataset presents a total of

2379 rows and presents a time range from 2016-01-01 (08:00:00) to 2020-05-28 (08:00:00). Analyzing
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the dataset, it is possible to conclude that there are daily registers, at 08:00:00 and 16:00:00, with some

exceptions. Despite this, there are days without any observation (as table A.1 from appendix A shows).

Further, from the beginning of 2018, the registers are not so frequently, with a single registration by day

(on most days, also with some exceptions).

3.1.2.1 Pre-treatment

The first unit to be explored is the pre-treatment unit. The table 3.8 shows the features available, and

the respective designation, for this unit.

Table 3.8: Pre-treatment data set features.

Feature Description Data type

pH pH value, measured with a fixed meter. Number (double)

Conductivity Conductivity value, measured in microsiemens (𝜇𝑆 ). Number (double)

Missing values

This dataset presents several missing values, as table 3.9 shows.

Table 3.9: Pre-treatment - Missing values

Feature Missing Values

pH 729
Conductivity 730

Numbers considered not meaningful

From a chemical point of view, the “pH” presents three numbers that do not make sense, once pH

takes values between 0 and 14 only. The registers containing these values are thus listed in table 3.10 and

are likely to result from incorrect readings/insertion errors.

Table 3.10: Non meaningful pre-treatment pH observations.

Date pH

2017-02-14 16:00:00 5015.0
2016-03-03 08:00 69.47
2017-10-04 16:00 20.0
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After removing these observations, since they difficult the analysis, the statistics from this data set

were computed, as table 3.11 shows.

Table 3.11: Pre-treatment features statistic analyzes.

Metrics pH Conductivity

Minimum 0.0 0.0
Maximum 9.43 6392.0
Mean 4.430 441.351

Standard Deviation 2.373 839.079
Variance 5.633 704054.1

The minimum values, for both features, are zero. Analyzing the high numbers of standard deviation

and variance for the “Conductivity” feature, it is possible to conclude several items: the data points are not

close to the mean values and the feature presents a high range of values, as well as a big spread between

them. Besides, it is possible to mention that these features present a high number of observations equal

to zero. Consequently, it results in a very high spread between the values, higher in the “Conductivity”

feature, once it presents higher values.

Figures 3.17 and 3.18 allow perceive the “pH” and “Conductivity” behavior, as well as a visual per-

ception of the missing data.

Figure 3.17: Pre-treatment wastewater pH over time. Figure 3.18: Pre-treatment conductivity over time.

After analyzing the figure 3.18, it is possible to understand that there are only data available until

2018-05-25. After this date, until day 23-09-2018, there are only observations equal to zero. After that, all

are missing values. This interval leads to the conclusion that the values equal to zero may indicate values

not recorded, and, instead of that, replaced by 0.

The figure 3.17 shows a similar circumstances. There are only meaningful data available until 2016-

09-06. After this, until 2018-09-23, there are only values equal to zero (except 2018-01-12). Hereafter all

the registrations are missing values.
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3.1.2.2 Secondary Treatment

This data set is related to the secondary treatment phase. Here there are two units available, the aeration

thank and the secondary clarifier. Also, there are two lines through which wastewater crosses. The table

3.12 shows the features of this data set.

Table 3.12: Secondary treatment data set features.

Line 1

Feature Description Data type

pH-Anoxic Zone pH value, measured with a fixed meter, in the aera-
tion thank anoxic zone (line 1).

Number (double)

pH-Aerated Zone pH value, measured with a fixed meter, in the aera-
tion thank aerated zone (line 1).

Number (double)

pH-Secondary clarifier pH value, measured with a fixed meter, in the sec-
ondary clarifier (line 1).

Number (double)

Line 2

Feature Description Data type

pH-Anoxic Zone pH value, measured with a fixed meter, in the aera-
tion thank anoxic zone (Line 2).

Number (double)

DO-Anoxic Zone (p) Dissolved oxygen (mg/L) measured with a portable
meter (p), in the aeration thank anoxic zone (Line
2).

Number (double)

pH-Aerated Zone pH value, measured with a fixed meter, in the aera-
tion thank aerated zone (line 2).

Number (double)

DO-Aerated Zone (p) Dissolved oxygen (mg/L) measured with a portable
meter (p), in the aeration thank aerated zone (Line
2).

Number (double)

DO-Aerated Zone (f) Dissolved oxygen (mg/L) measured with a fixed me-
ter (f), in the aeration thank aerated zone (Line 2).

Number (double)

pH-Secondary clarifier pH value, measured with a fixed meter, in the sec-
ondary clarifier (Line 2).

Number (double)

Solids Amount of solids (mg/L) that result from the aera-
tion thank , in the aeration thank (Line 2).

Number (double)

Line 1

For a more meticulous data exploration, the lines from the secondary treatment will be analyzed

separately, starting with the line 1.

Missing values

During the exploration process, from the line 1 data set, were found a total of 1149 missing values in

a total of 7137 records. Table 3.13 shows the number of missing values by feature, for line 1.
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Table 3.13: Secondary treatment (Line 1) - Missing values.

Feature Missing Values

pH- Anoxic Zone 455
pH- Aerated Zone 523

pH- Secondary clarifier 171

Table 3.14 indicates the statistical parameters of this dataset.

Table 3.14: Secondary treatment (Line 1) features statistical analysis.

Metrics pH- Anoxic Zone pH- Aerated Zone pH- Secondary clarifier

Minimum 1.0 1.0 1.0
Maximum 11.0 11.0 9.95
Mean 2.712 1.650 7.0298

Standard Deviation 2.870 1.924 1.290
Variance 8.238 3.702 1.664

From the table above arise several conclusions. Concerning the standard deviation and the variance

present values that may indicate that: the data, for each feature, are not spread out over a large range

of values and that these values tend to be reasonably close to its mean value. This conclusions may be

supported by the graphs in the figure 3.19, 3.20, and 3.21, showing the features behavior over time.

Figure 3.19: pH-Anoxic Zone. Figure 3.20: pH-Aerated Zone (p). Figure 3.21: pH- Sec. clarifier (p).

Graph 3.19 shows that the pH from the anoxic zone presents most values equals to 1. It is estimated

that these values represent the default of registration once exist in large portions and at well-defined

intervals. Regarding this, there are three main time intervals to focus: 2016-01-01 to 2017-10-27, 2017-12-

15 to 2018-02-07, and 2019-03-02 to 2020-02-06. Thus, this feature shows a few relevant information.

In addition, the graph 3.20 manifests, for pH at the aerated zone values, a similar data behavior (when

compared with the pH from the anoxic zone). Here, there are even less meaningful values. The main lack

of information is between 2016-01-01 and 2018-08-10 and between 2018-10-19 and 2020-02-06.

The last graph (figure 3.21) shows that the pH value in the secondary clarifier is, until this point, the

most complete feature. It shows a small lack of meaningful information. Thus, the highlight intervals (the

only ones with observations equal to 1) are 2016-05-04 to 2016-05-20 and 2017-11-14 to 2018-02-28.

49



CHAPTER 3. MATERIALS AND METHODS

Line 2

Line 2 has more available features than the previous one. However, present more missing values, as

table 3.15 shows.

Table 3.15: Secondary treatment (Line 2) - Missing values.

Feature Missing Values

pH- Anoxic Zone 174
DO-Anoxic Zone (p) 152
pH- Aerated Zone 174

DO- Aerated Zone (p) 153
DO- Aerated Zone (f) 153

pH- Secondary clarifier 170
Solids 732

Like the previous dataset, here were found some values considered wrong. Thus, table 3.16 shows

this values, and consequently, the registers deleted from the dataset to facilitate the data analysis.

Table 3.16: Non meaningful secondary treatment (Line 2) registers.

Date
DO Anoxic
Zone (p)

DO Aerated
Zone (p)

DO Aerated
Zone (f)

2018-08-29 08:00:00 72.4 - -
2018-02-28 08:00:00 - - 20.3
2018-02-17 08:00:00 - - 19.6
2018-02-15 08:00:00 - - 17.78
2018-02-03 16:00:00 - - 20.2
2017-04-23 16:00:00 - - 21.41
2017-04-16 16:00:00 - 19.4 -
2017-03-14 08:00:00 - - 52.43
2017-02-15 16:00:00 - 232.0 -
2016-10-08 16:00:00 - 168.0 183.0
2016-03-09 16:00:00 - - 240.0
2016-02-05 08:00:00 - 18.2 20.0

After delete the wrong registers, the statistics were computed. So, the table 3.17 shows the different

metrics for each feature.
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Table 3.17: Secondary treatment ( Line 2) feature statistical analysis.

Metrics
pH An.
Zone

DO An.
Zone (p)

pH Aer.
Zone

DO Aer.
Zone (p)

DO Aer.
Zone (f)

Solids

Minimum 1.0 0.0 1.0 0.0 0.0 0.0
Maximum 9.86 2.5 8.92 7.84 4.86 8101.0
Mean 6.869 0.059 6.864 1.8448 1.847 3018.267

Standard Deviation 1.535 0.101 1.529 0.649 0.650 2293.572
Variance 2.356 0.010 2.340 0.422 0.422 5260475.1777

It is possible to conclude that the “Solids” shows a high value of standard deviation and variance. It

happens because this feature show a very high amount of registers equals to zero. So, there are a high

range of values in the dataset, with high dispersion between them.

The below items provide a thorough exploration of the features available from the line 2 .

- pH

The graphs in the figure 3.22, 3.23 and 3.24, shows the pH behaviour over time in the aerated

zone, in the anoxic zone and in secondary clarifier, respectively (in line 2).

Figure 3.22: pH-Aerated Zone. Figure 3.23: pH-Anoxic Zone. Figure 3.24: pH- Sec. clarifier.

After analyzing the graphs, it can be conclude that these features have a similar behavior as the

pH values represented in the graph 3.21.

- DO

The amount of DO in the water, over time, is represented in the graphs from the figure 3.25, 3.26,

and 3.27.

Figure 3.25: DO-Aerated Zone (p). Figure 3.26: DO-Aerated Zone (f). Figure 3.27: DO-Anoxic Zone (p).
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The variation over time is very similar when DO is measured with a portable and a fixed meter

(figure 3.25 and 3.26, respectively).

The aerated zone has higher values of DO when compared with the anoxic zone. This is expected

once, as previously mentioned, the aerated zone is characterized by the presence of oxygen, while

the anoxic zone reveals the contrary. These discrepancies of DO values (between zones) are due to

the nitrification and denitrification processes. In the anoxic zone, there are some oxygen registered

once, there are a small amount of oxygen “bound” in some molecules, such as nitrates and nitrates

(due to denitrification process).

- Solids

The variation over time of solids presented in the wastewater, in the aeration thank, are presented

in figure 3.28.

Figure 3.28: Amount of solids presented in the wastewater, in the aeration thank.

Analyzing the graph it is possible to conclude that the amount of solids in the aeration thank presents

meaningful values until 2017-07-18. After that, until 23-09-2018, present values equal to zero.

Henceforth only exhibit missing values. It is the main reason for the high variance recorded for this

feature (table 3.17).

3.1.2.3 Tertiary treatment

The tertiary treatment requires special attention once depicts the last wastewater phase. For that reason,

this phase determine the water condition before being returned to the water environment.

The data available concerns the pH and the temperature in this WWTP unit, represented in the table

3.18.
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Table 3.18: Tertiary treatment data set constitution features.

Feature Description Data type

pH-Tertiary treatment pH value in the tertiary treatment unit. Number (double)

Temperature Temperature value, measured in degrees Celsius
(ºC).

Local date time

After, the missing values were found as figure 3.19 shows.

Table 3.19: Tertiary treatment - Missing values.

Features Missing Values

pH-Tertiary treatment 169
Temperature 147

After analyzing the dataset, were recognized, also, values outside the normal range. This values are

represented in the table 3.20.

Table 3.20: Non meaningful tertiary treatment observations.

Date pH-Tertiary treatment Temperature

2018-08-02 08:00:00 757.0 -
2018-02-07 08:00:00 - -17.5
2017-03-11 16:00:00 722.0 -

After remove the observations from the table above, the statistics were calculated, as table 3.21 shows.

Table 3.21: Tertiary treatment features statistical analysis.

Metrics pH-Tertiary treatment Temperature

Minimum 0.0 0.0
Maximum 9.56 31.9
Mean 7.076 21.384

Standard Deviation 11.329 4.747
Variance 1.766 22.537

The “Temperature” does not vary significantly, the reason why presents a small standard deviation.

The graphs from the figures 3.29 and 3.30 shows the pH and the temperature behaviour over time, in the

tertiary treatment unit.
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Figure 3.29: pH in tertiary treatment. Figure 3.30: Temperature in tertiary treatment.

Analyzing the graphs, may be concluded that pH value has a similar behavior when compared with the

pH values from the secondary treatment. Also, both features (“pH-tertiary treatment” and “Temperature”)

present a considerable number of registers when compared with other feature previously explored. It is

substantiated by table 3.19, which presents a small number of missing values.

Besides, both features mostly comply with the defined limits, demonstrated in the chapter 2, as the

horizontal lines in the graphs show.

3.1.2.4 Correlation between features

After analyzing all the features, some revealed themselves with scarcity of meaningful observations.

Thus, to explore the features correlation were only used the ones that support more information. Figure

3.31 shows a correlation matrix, using, also, the spearman’s rank correlation coefficient.

Figure 3.31: Correlation matrix concerning the water quality dataset.
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Analyzing the matrix above it is possible to conclude that all the pH values available are highly cor-

related. Further, the DO measured with a fixed and portable meter, in the aerated zone, shows a high

correlation, also. It was expected once, as mentioned before, some pH values features have similar be-

havior, as well as the DO in the aerated zone (meter with different approaches, fixed and portable meter,

but resulting in similar observations).

3.2 Data preparation

Data preparation subsection addresses both dataset, previously explored. Thus, the main changes are

next presented.

3.2.1 Air quality dataset

3.2.1.1 String Manipulation

In a first analysis, some observations presented some unexpected characters as well as not meaningful

words, according to the known weather descriptions, in Portuguese. To leave no doubts, it was necessary

to manipulate some strings, to make the data readable and understandable. The manipulations performed

were:

(a) Some words exhibited defective characters (“Ã©”). Words such as “cÃ©u claro”, “nÃ©voa” and

“cÃ©u limpo” were found and considered wrong. So, the correct words should be: “céu claro”,

“névoa” and “céu limpo”, respectively. For this reason, the characters “Ã©” were replaced for “é”,

using a KNIME node “String Manipulation”;

(b) Using the same node, the “nuvens quebrados” was replaced for “nuvens quebradas”, in the overall

dataset;

(c) The third, and last incongruity related to strings in this data set, was the string “chuva de intensidade

pesado”. For the same reasons presented in the previous item, the string “chuva de intensidade

pesado” was replaced by the string “chuva de intensidade pesada”.

This process were implemented in KNIME and is shown in the figure B.1 of appendix B.

3.2.1.2 Join Data

After the data analysis, and realizing that the recorded dates were almost the same, among the three

datasets (UV, atmospheric pollutants, and weather), these were joined, resulting in a single dataset (the

air quality dataset).

To join the data, and match it, was used the attribute “Date”. As consequence, it was lost a day (06-

03-2019), once was the only date not common to the three datasets. From the transformation resulted
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a single dataset, with 506 observations. This process was also implemented in KNIME, and is shown in

figure B.2 from appendix B.

3.2.1.3 Remove “Precipitation” feature

As mentioned in a previous subsection, 3.1, the feature “Precipitation” has values that are inconclusive

and do not allow to extract meaning and, further, present an extremely small standard deviation. For this

reason, this feature was removed from the dataset.

Using the “Column Filter” node, in KNIME, the attribute “precipitation” was removed. Also, the same

process was executed in python, by using the pandas’ function “drop”. The figure B.3 and B.7 from the

appendix B, show this process, respectively.

3.2.1.4 Group data by date (day, month and year)

Once the UV index and the “CO Value” (target features) do not vary significantly in a day, the data were

grouped by day. In a first instance was necessary to manipulate the “Date” attribute, to remove the hour,

from it. To do this was used a “String Manipulation” node. After this, the date presented a string format.

Thus, was necessary to convert the string to a correct date form, using the “String to Date&Time” node.

Finally, the data were ready to be grouped by day. The metrics used to group the data were:

• Mean of “UV Value”, “CO Value”, “SO2 Value”, “Temperature”, “Atmospheric pressure”, “Humid-

ity” and “Clouds” features;

• Mode of “Weather description”, the most frequent description in a day;

• A list of “Weather description”, an array representing all the descriptions in a day. This attribute

was aggregated twice, using different metrics, in view of the different scenarios tested, explained

further below, in Chapter 4.

These transformations are exhibited in the figure B.5, B.6 and B.7 from appendix B, respectively.

3.2.1.5 One-Hot Encoding

The “Weather description” attribute was converted through one-hot encoding. This process was made

using the “Java snipped” KNIME node, used to prepare the data to implement in Decision Trees and

Random Forest. Once the data was grouped by day, and a “Weather description” list created (for each

day), is easier for the models to read each value, using the One-Hot encoding technique.

By creating a column for each “Weather description” value, and using a Java switch statement, each

value from the list is verified. Then, is assign “1” if the “Weather description” match with the header, and

“0” in the remaining ones. This process were implemented in KNIME, and demonstrated in the figure B.8

from the appendix B.
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3.2.1.6 Label encoding

“Weather description”, a categorical feature, shows twenty-seven different values (after data join). Once

neural networks just accept and read numerical values, there was a need to convert these features into

numerical data. Using a simple block of code, was possible to assign a number to each different value of

the attribute “Weather description”, resulting in twenty-seven different numbers, from 0 to 26.

Figure B.9, from appendix B, shows the process deployed in python.

3.2.1.7 Data binning

As previously mentioned, this research also addresses classification models. To enable this, the target

value, UV Index, was binned, according to the WHO reference levels (table 2.4). Using the KNIME node

“Numeric Binner”, the data was processed (figure B.10 from appendix B).

Using the reference table, the process resulted in four different values: “Low”, “Moderate”, “High”,

and “Very High” (there were not verified UV indexes higher than 11). Thereby, a new column was created,

the “UV Value binned” column.

3.2.1.8 Extract data fields

A column with each observed month was added to the model. Using the KNIME node “Extract data

field”, the month was extracted and an additional column was created, the “Month(name)” feature (figure

B.11 from appendix B). Further, regarding the ANN model, the “Date” feature become infeasible to use,

since this model only accept numerical values. Thus, the day, month and year were extracted from the

date, in python, as figure B.12 from appendix B shows.

3.2.1.9 Data normalization

Once the data has several features with different ranges and units of measure, it was necessary to

normalize it. This data transformation grant that all the numeric dataset features use a common scale

after its implementation. Figures B.13 and B.14 (from appendix B) shows the normalization data process,

using KNIME and python, respectively. Using MinMaxScaler (in python), each attribute is scaling to a

range, between zero and one, except the LSTM prediction. Here, this normalization range takes values

between -1 and 1.

3.2.1.10 Missing timesteps

In a time series forecast, the previous information is crucial to understand the later one. Thus, as

mentioned before, the datasets show some missing timesteps. Once were used an LSTM to predict the

“UV Value” and the “CO Value”, it is essential not to have missing timesteps. Consequently, were created

the observations to cover these missing timesteps and then were filled with a value equal to 1.1. This

process, implemented in python, is represented in the figure B.16, from appendix B.
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3.2.1.11 Missing values

As previously mentioned, missing values were not find in the entire datasets. Therefore, no adjustments

were made in the dataset.

3.2.2 Water quality dataset

3.2.2.1 Features removal

In this dataset were removed several features:

(a) From the pre-treatment unit: “‘pH” and “Conductivity” since they present a high number of missing

values;

(b) From the secondary treatment unit: all the pH features from line 1 were removed. These features

are the “pH- Anoxic Zone” and “pH- Aerated Zone”, because are features with incomplete registers,

and consequently considered incomplete information. “pH-Secondary clarifier” were also removed

once presents a behavior similar to the remaining pH features from the dataset, and would make

the training dataset redundant.

Concerning the line 2 were removed the “Solids”, once present also very incomplete information.

Further, some pH features from this line were likewise removed (“pH-Anoxic Zone” and “pH-Aerated

Zone”) due to the redundancy issue. Due to this problem, the attribute “DO-Aerated Zone (f)” was

dropped, once has similar registers when compared with the DO measured with the portable meter.

After this removal, the remaining features are:

• The “Date” attribute;

• A set of features concerning the line 2: “pH- Secondary Decanter”, “DO- Anoxic Zone (p)”, “DO-

Aerated Zone (p)” features;

• Two features from the tertiary treatment, the “Temperature” and the “pH-tertiary treatment” (target

feature).

To remove this set of features was used the “Column filter” KNIME node (also used in the air quality

dataset).

3.2.2.2 Missing values

To deal with the missing values in the dataset, some criteria were taken:

(a) The “pH-tertiary treatment” has a special attention in the preparation step since it is the target

feature. As mentioned before, this attribute (among others) presents some values equal to 1 and 0
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that may represent missing values. It is may be conclude because, after a detailed analysis, it was

possible to realize that they are presented in well defined time intervals and do not make sense

when compared with close values, that is, the days immediately after and before this intervals.

Thus, these values (equal to 0 and 1) were converted into missing values and then removed from

the dataset.

(b) After this removal, the attribute “DO-Aerated Zone (p)” also presents values equal to 1 and 0, with

the same pattern mentioned in the previous item. In this way, these values were converted into

missing values and the corresponding rows subsequently removed from the dataset.

After these transformations, the dataset, previously with 2363 rows, was left with 2149 rows.

Finally, after these adjustments, the other remaining features (“Temperature”, “DO-Anoxic Zone”, and

“pH-secondary decanter”) still presented some punctual missing values. Thus, these missing values were

replaced by meaningful values through linear interpolation. It is a process that adapts a function to the

data available and extrapolates the missing values using this function. This process was made in python

and it is demonstrated in figure B.15 from appendix B.

3.3 Technologies

This research was mainly supported by the python programming language and KNIME analytic soft-

ware. These two technologies were crucial throughout all the process since the raw data analyzes to the

exploration of the results. The python programming language was used to explore and prepare part of the

available data. Further, this was mainly used to construct and train the MLP and LSTM models, using

TensorFlow and Keras, as main libraries. Part of the work was developed in the spyder Integrated devel-

opment environment (IDE), mostly the model’s construction. To tune and train these models the Google

Colaboratory cloud service were used. This service uses a Jupyter notebook environment and runs totally

in the cloud, using computing resources, such as GPUs. Besides, other important libraries such as pandas,

matplotlib, NumPy, and scikit-learn were also used.

The KNIME software was used also to explore and prepare data. Besides, the Decision Trees and

Random Forest models were constructed and trained using this software. This process occurred in an

ACER computer with an Intel(R) Core(TM) i3-4005U CPU @ 1.70GHz processor, RAM of 8,00 GB, and an

NVIDIA Geforce 920M graphic card.
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4.1 Experimental Setup

To find the best solutions and the most beneficial data preparation techniques, several scenarios were

constructed and tested in this research.

4.1.1 Ultraviolet Index prediction data scenarios

Considering the air quality dataset a set of scenarios were built. Among the created scenarios, the

features used are different, as well as the preparation/transformation process. Moreover, these scenarios

differ according to the used models. Table 4.1 shows the scenarios used to train the Decision Tree and

Random Forest models.

Table 4.1: Scenarios construction regarding UV index prediction (Decision Tree and Random Forest).

Tree UV Scenario 1 • Date • CO Value • SO2 Value • Temperature • Clouds • Month

Tree UV Scenario 2 • Date • CO Value • SO2 Value • Temperature • Clouds • Month

Tree UV Scenario 3 • Date • CO Value • SO2 Value • Temperature • Clouds • Month

Tree UV Scenario 4 • Date • CO Value • SO2 Value• Temperature • Clouds • Month

Tree UV Scenario 5 • Date • CO Value • SO2 Value • Temperature • Clouds • Month
• Weather description (Mode)

Tree UV Scenario 6 • Date • CO Value • SO2 Value • Temperature • Clouds • Month
• Weather description (One-hot encoded)
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The setup presents these configurations mainly to understand the impact of the features in the model

results. The first scenario, uses only the atmospheric pollutants (“CO value” and “SO2 value”) and the

“Date” as features. Then, the “Temperature” is added, next the “Clouds”, subsequently the “Month”, and

finally, the “Weather description”. This last feature is differently configured, as long as presents a vast

range of different values. It may result in an attempt to understand the data preparation impact in the

models results.

To train the MLP model were used the scenarios outlined in the table 4.2.

Table 4.2: Scenarios construction regarding UV index prediction (Multilayer Perceptron).

MLP UV Scenario 1 • Day • Month • Year• CO Value • SO2 Value • Temperature

MLP UV Scenario 2 • Day • Month • Year• CO Value • SO2 Value • Temperature

MLP UV Scenario 3 • Day • Month • Year• CO Value • SO2 Value • Temperature
• Clouds

MLP UV Scenario 4 • Day • Month • Year• CO Value • SO2 Value • Temperature
• Clouds • Weather description (Label encoded)

Here, there was a need to create new features such as “Day”, “Month”, and “Year”, since the ANN

only accept numeric values as input (which make the “Date” an infeasible feature). Besides, the “Weather

description” was label encoded, instead of the one-hot encode process. So, the configuration is very similar

when compared to the scenarios created to the tree-based models. Further, also enables us to understand

the impact of the same features in the model.

Since the model’s goal is to predict the UV index, this features does not configure in the tables above.

Therefore, these are the “UV Value” and “UV Value binned” features, regarding regression and classification

approaches, respectively.

Besides these models, the UV index was also predicted using an LSTM model, based on a time series

approach. On this wise, the model was deployed using only the “UV Value” as a feature.

4.1.2 Carbon Monoxide value prediction data scenarios

Considering that for CO forecasting only a time series approach was followed, the “CO Value” was the

only feature used, similarly to the LSTM UV index forecast.
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4.1.3 Water pH prediction data scenarios

Concerning the water quality dataset, were created four different data scenarios. Further, these were

applied to Decision Trees, Random Forest, and MLP models. For the reasons previously mentioned, it is

not feasible for MLP models to use the “Date” as input. Consequently, this feature was replaced by new

four: “Day”, “Month”, “Year”, and “Hour”.

Table 4.3 shows the features used to train the MLP model. Once again, the only difference between

these data scenarios and the ones used in the tree-based models is the “Date” feature.

Table 4.3: Scenarios construction regarding water pH prediction (Multilayer Perceptron).

Scenario 1 • Day • Month • Year • Hour • pH-Secondary clarifier i
• DO-Aereated Zone (p) • DO-Anoxic Zone (p) • Temperature

Scenario 2 • Day • Month • Year • Hour • pH-Secondary clarifier i
• DO-Aereated Zone (p) • DO-Anoxic Zone (p) • Temperature

Scenario 3 • Day • Month • Year • Hour • DO-Aerated Zone (p)
• DO-Anoxic Zone (p) • Temperature• DO-Anoxic Zoneeeeii

Scenario 4 • Day • Month • Year • Hour • pH-Secondary clarifier
• Temperature• Month..aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaai

These scenarios were created to understand the DO, the temperature, and the pH (from another zone

of the WWTP) impacts in the models results (concerning the water pH prediction in the tertiary treatment

unit).

4.2 Tree-based models

This subsection shows the conception and tuning process of the simplest models explored, the tree-

based models (Decision Trees and Random Forest). These exhibit some simplicity once they are easy to

construct and achieve good results without requiring high computational efforts.

4.2.1 Decision Trees

The first tree-based model explored are the Decision Trees. This model, as mentioned before, was

constructed, tuned, trained, and deployed using the KNIME software. Further, were used regression and

classification models to forecast some parameters according to the nature of the target features.
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4.2.1.1 Model conception

Classification

Figure 4.1 shows the classification Decision Tree construction and deployment process, in KNIME.

Figure 4.1: Classification Decision Tree model conception, in KNIME.

The model construction exhibit a node “X-Partitioner” that allows the model cross-validation. Here,

the technique used is K-fold cross-validation. This technique consists of split all the dataset in 𝐾 subsets

(mutually exclusive) and, from there, a subset is used to test the model, while the remaining ones (𝐾−1) are
used to train the model and validate it. Cross-validation is a commonly used technique since it allows the

model generalization, and consequently, decreases the occurrence of overfitting. In this tree construction

process ten iterations are used, which means, a 𝐾 value equal to 10. Thus, all the trees implemented in

this research use ten validations at the cross-validation process.

Further, the model construction uses a “Decision Tree Tree Learner”, the node that allows the

model train process, and the target attribute choice (must be a nominal value). In this study, the only

target feature used, regarding a classification problem, is the “UV Value binned”. Besides, using the C4.5

algorithm, this node also allows to define the regression tree parameters, which are:

− Quality measure: To select the quality measure. The Available options are the “Gini Index” and the

“Gain Ratio”;

− Pruning method: The available options are the Minimal Description Length (MDL) or none;

− Reduced Error Pruning: If checked (default), a simple pruning method is used to cut the tree in

a post-processing step: starting by the leaves, each node is replaced with its most popular class,

but only if the prediction accuracy doesn’t decrease. Reduced error pruning has the advantage of

simplicity and speed;

− Min number records per node: To select the minimum number of records at least required in each

node. If the number of records is smaller or equal to this value the tree is not grown any further. It

corresponds to a stopping criterion (pre pruning).
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After this, a “Decision Tree Predictor” node is used for the prediction process, as well as a X-

Aggregator. This node is the end of a cross-validation loop. It extracts the results from the predictor

node, collecting all the ten iterations results. Finally, to perceive the model performance, and ideal to

evaluate classification models, a “Scorer” node is used. The output of this node is a set of metrics, such

as the accuracy (%), the error(%), the number of correctly classified, the number of wrongs classified, and

the Cohen’s Kappa (k). Besides, this node generates a confusion matrix, used to compare which classes

are correctly and wrong predicted.

Regression

As mentioned before, regression Decision Trees were also implemented. This model construction was

made using KNIME, as figure 4.2 shows.

Figure 4.2: Regression Decision Tree model conception, in KNIME.

“Simple Regression Tree Learner” is the node that enables the learning process. Here, it is applied

the CART algorithm with some simplifications. Further, it enables us to define the target feature, which

must be a numerical value. Varying according to the dataset, the target features in the present research

are the ”UV Value”and the ”Water pH”.

The regression Decision Tree parameters are:

− Missing value handling: There are two available options : XGBoost and Surrogate. The first one acts

as the default value. In this case, the tree learner must determine which direction is appropriate for

missing values, by sending these in each direction of a split. The direction from which the biggest

gain results is used as a default direction for missing values. The other option, Surrogate, compute

for each split alternative splits, approximating the optimal one;

− Limit number of levels (tree depth): The number of tree levels in which the model will learn;

− Minimum split node size: The minimum number of records in a Decision Tree node to attempt the

next split. For this reason, this parameter does not make implications in a terminal node, once there

is no next split. This number needs to be at least twice as large as the minimum child node size;
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− Minimum node size : The minimum number of records in child nodes (can have at most half of the

minimum split node size). This parameter is not used for nominal splits;

The “Simple Regression Tree Predictor”, as the name implies, is the node responsible for the

predictions. The “Numeric Scorer” allows understanding the model performance once it calculates

individual statistics, computed between the effective values and the predicted ones. So, it uses statistics,

such as: R²-coefficient of determination, MSE, MAE, RMSE, Mean signed difference, and Mean absolute

percentage error.

4.2.1.2 Model tuning

To tune the ML models several parameters were used. According to the model, it was established a

range of values for each parameter, to further find its best combination. Using loops to vary these values

(numeric or nominal), several iterations resulted from the process, finding the optimal combination for

each model and dataset.

Classification

For the classification Decision Tree model, the parameters used to tune the model are presented in

table 4.4.

Table 4.4: Set of parameters used to tune the classification Decision Trees.

Nominal parameters

Quality measure [’Gini Index’, ’Gain ratio’]

Pruning method [’No pruning’, ’MDL’]

Reduced error pruning [’True’, ’False’]

Numerical parameters

Start value Stop Value Step size

Minimun records per node 1 15 1

Using these parameters the model was tuned, using all the possible combinations. The classification

Decision Tree tuning process was implemented using the workflow presented in the following figure, figure

4.3.

65



CHAPTER 4. EXPERIMENTS

Figure 4.3: KNIME Workflow to carry out the classification Decision Tree tuning process.

Using a “Table creator” node were defined the different possibilities of nominal parameters, the ones

presented in the table 4.4. After, using the node “Table Row to Variable Loop Start”, the model can

run using each one of the nominal parameters, defined in the previous step. Next, using the “Parameter

Optimization Loop Start”, the numerical parameters (from table 4.4) can be defined, allowing the

model execution using each one of this numerical options. As previously mentioned, the “X-Partitioner”

node is responsible for the model cross-validation. Consequently, the model will execute ten times for each

parameter combination. Thereafter, the learning process occurs in the node “Decision Tree Learner”

(ten times for each combination), for later, in the “Decision Tree Predictor” node, to occur the prediction

process. The “X-Aggregator” node collects all the results from the 10 validations, to then, compute the

mean error (%), using the “Group by” node. Since the model performance is evaluated based on this

metric, the mean error resulting from this step needs to be converted to a variable, using the “Table Row

to Variable” node. Afterward, to have the desired results, the “Parameter Optimization Loop End”

save the best combination of numerical parameters (the combination with the reduced error(%)), for then

convert this into a variable (using the “Table Row to Variable” node). The last step is the “Variable

Loop End” that saves the best combinations for each nominal parameter.
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Regression

Using the parameters from table 4.5, the Decision Tree regression model was tuned.

Table 4.5: Set of parameters used to tune the regression Decision Trees.

Nominal parameters

Missing value handling [’XGBoost’,’Surrogate’]

Numerical parameters

Start value Stop Value Step size

Limit number of levels (tree depth) 1 20 1

Minimum node size 1 15 1

Using each combination of nominal and numerical parameters the model was evaluated. The deploy-

ment process to tune this model (regression Decision Tree) is presented in figure C.1 from appendix C.

This tune workflow is similar to the one from the figure 4.3, being the model used (a regression tree) the

only difference pointed out.

4.2.2 Random Forest

The other tree-based model used was a Random Forest. Alike, this model was implemented making

use of the software KNIME, as a classification and regression model.

4.2.2.1 Model conception

Classification

The classification Random Forest conception is represented in the figure 4.4.

Figure 4.4: Classification Random Forest model conception, in KNIME.

This model is implemented similarly to the regression Decision Tree model. The main differences are

the “RandomForest Learner” and “RandomForest Predictor” nodes. The first, as known, supports
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the Random Forest train process, allowing the assigning of the target attributes, in this research, the “UV

value binned”. The second provides the prediction process.

Besides, the parameters assigned in the “Random Forest Learner” are different, these being:

− Split Criterion: Here is choosen the split criterion. Gini index, information gain and gain ratio are

the possibilities;

− Limit number of levels (tree depth): Number of tree levels in which trees will learn;

− Minimum child node size: The minimum number of records in child nodes. If each tree fits perfectly

in the training dataset (the training dataset does not have equivalent rows with different labels), this

number is equal to 1;

− Number of models: The number of Decision Trees to be learned.

Regression

Equally to the Decision Tree model, the Random Forest was implemented using regression and clas-

sification models (figure 4.5).

Figure 4.5: Regression Random Forest model conception, in KNIME.

This model construction shows many similarities with the Decision Trees conception process. Thereby,

use also a “X-Partitioner” to perform the model cross-validation (ten validations). The main differences

are in the following two nodes: the “Random Forest Learner (Regression)” and the “Random For-

est Predictor (Regression)” (the predictor node). The first one is the node responsible for the learning

process. This node allows the model to learn using an ensemble of regression Decision Trees. Here, the

target attribute is chosen. According to the problem over study, these target features are the ”UV Value”and

the ”Water pH”. Additionally, this “Random Forest Learner (Regression)” is also where the Random

Forest parameters are assigned. These parameters are:

− Limit number of levels (tree depth): Number of tree levels to be learned;

− Minimum child node size : The Minimum number of records in child nodes;

− Number of models: The number of regression trees to be learned.
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4.2.2.2 Model tuning

Classification

The model was tuned using the parameters from the table 4.6. Further, the model was evaluated using

every combination of nominal and numerical parameters, regarding the classification Random Forest.

Table 4.6: Set of parameters used to tune the classification Random Forest.

Nominal parameters

Split criterion [’InformationGain’, ’InformationGainRatio’,’Gini’]

Numerical parameters

Start value Stop Value Step size

Limit number of levels (tree depth) 1 25 1

Minimum child node 1 15 1

Number of Models 100 1200 100

The workflow to implement this tuning process is presented in the figure C.2, from the appendix C.

This workflow has similarities with the one explained above (from figure 4.3), except for the model used

(now a Random Forest classifier).

Regression

In the regression Random Forest model, only numerical parameters were tuned, as table 4.7 shows.

Table 4.7: Set of parameters used to tune the regression Random Forest.

Numerical parameters

Start value Stop Value Step size

Limit number of levels(tree depth) 1 15 1

Minimum child node size 1 15 1

Number of Models 100 1200 100

The resources used to tune these model are in figure C.3 from the appendix C. This process is similar

to the tuning workflows mentioned before but simplest, once only use loops to the numerical parameters.

4.3 Deep learning models

Deep learning models are more complex and require more computing efforts when compared with

tree-based models. Thus, the MLP and the LSTM are the models used in this context. Following, the mod-

els’ conception and tuning processes are presented. Here, it is used the python programming language,

supported by Keras and Tensorflow.
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4.3.1 Multilayer Perceptron

4.3.1.1 Model conception

The first step of the model conception was build the ANN (using python) responsible to the MLP imple-

mentation, as figure 4.6 shows. This model was implemented for regression and classification problems.

def build_model(h_layers = 2, neurons = 128,
activation = 'relu',
learn_rate = 0.001):

model = keras.Sequential ()

model.add(layers.Dense(neurons, activation = activation, input_shape = [(len(data.keys()))]))

if h_layers==1:
model.add(layers.Dense(neurons, activation = activation))

elif h_layers==2:
model.add(layers.Dense(neurons, activation = activation))
model.add(layers.Dense(neurons, activation = activation))

else:
model.add(layers.Dense(neurons, activation = activation))
model.add(layers.Dense(neurons, activation = activation))
model.add(layers.Dense(neurons, activation = activation))

model.add(layers.Dense(1))

optimizer = tf.keras.optimizers.RMSprop(learning_rate=learn_rate)

model.compile(loss = rmse,
optimizer = optimizer,
metrics = ['mae' , rmse])

return model

Figure 4.6: Multilayer Percepetron model, in python.

The MLP model was constructed using a function, called “build_model”. In its constitution, this func-

tion has several particularities that deserve special attention. First, the MLP has one input layer. It is a

dense layer that implements the operation: output = activation(dot(input, kernel) + bias), where “activa-

tion” refers to the activation function and the “neurons” to the layer number of neurons. These parameters

will be tuned (4.3.1.2) to understand which ones fit better and, consequently, produce greater results. Be-

sides, this model presents one, two, or three hidden layers, with a respective activation function. The

hidden layers’ optimal number will be also determined, further ahead. Additionally, the model has one

output layer that is defined also, as a dense layer, with a single neuron.

Further, the model has an RMSprop optimizer Keras class which is an optimizer that implements

the RMSprop algorithm. This algorithm maintains a moving average of the square of gradients, and divide

the gradient by the root of this average. Moreover, is here where the learning rate is defined.

Furthermore, the model compile works as a training Application Programming Interface (API) and

enables us to define the evaluation metrics list, used during the training and test process (in this particular

example, the RMSE and MAE). Besides, here is assigned the optimizer used (RMSprop), and defined the

loss, this is, the metric to be minimized by the model.
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The model from the figure concerns the regression prediction. Additionally, as previously mentioned,

the MLP model was also implemented as a classification problem (presenting few differences when com-

pared with the regression one). The main differences between these two are the evaluation metrics, once

is used the accuracy for the classification problem. Further, the output layer has also a different configu-

ration, using four neurons (regarding the “UV value binned” prediction, the four classes available: “Low”,

“Moderate”, “High”, and “Very High”).

The split into train and test dataset was made using cross validation, using three iterations (figure 4.7).

seed = 7
numpy.random.seed(seed)
kfold = KFold(n_splits=3, shuffle=True, random_state=seed)

for train, test in kfold.split(dataset):
#Build data
x_train = dataset.iloc[train]
y_train = labels[train]
x_test = dataset.iloc[test]
y_test = labels[test]

#Build model
model = build_model()

#Fit the model
model.fit(x_train,y_train, epochs=200, batch_size=16, verbose=0)

#Evaluate the model, using predictions

#Predict using the x_test
predictions = model.predict(x_test)

#Invert the normalization of predicted y values
real_predictions = normalizers['Uv Value'].inverse_transform(predictions)

#Invert the normalization of real y values
y_test = y_test.values.reshape(-1,1)
real_y_test = normalizers['Uv Value'].inverse_transform(y_test)

#Variables to save the predicted and true values (denormalized), by iteration
y_true_summary.append(real_y_test)
pred_true_summary.append(real_predictions)

#Compute the MAE and save it, by iteration
real_mae = mean_absolute_error(real_y_test,real_predictions)
mean_ae.append(real_mae)
print(real_mae)

# Compute the RMSE and save it, by iteration
real_rmse = sqrt(mean_squared_error(real_y_test,real_predictions ))
root_ms.append(real_rmse)
print(real_rmse)
print(”------”)

Figure 4.7: Multilayer Percepetron deplyoment, using cross-validation, in python.

The code from the figure above shows the model’s train and test process. First, it is applied the neural

network previously defined (figure 4.6). Further, it is used the dataset, which represents each scenario

(a set of features). From that, for each iteration, is defined the x_train, representing the train dataset,

and the x_test (representing the test dataset), using also y_train and y_test as labels, for each one,

respectively. Moreover, to train the model (for each iteration) is used the model.fit. Here, is assigned
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the training dataset and the respective labels. Also, is here defined the batch_size and the number of

epochs. Finally, after the training process, the model is tested, to posteriorly calculate the MAE and the

RMSE. To create meaningful results the labels were denormalized.

4.3.1.2 Model tuning

Using MLP model, the tuning process was implemented using the parameters following exposed, table

4.8.

Table 4.8: Set of parameters used to tune the MLP model.

Activation Function [’relu’, ’tanh’, ’sigmoid’]

Hidden Layers [1,2,3]

Learn Rate [0.001, 0.005, 0.01]

Neurons [16, 32, 64, 128]

Batch Size [16, 23, 30]

To find the best parameters for the model (the parameters combination that results in the smaller

error/best performance) the model tuning was made.

The first step consists of finding the best number of epochs. To determine this number the model was

deployed using the values of the smallest and highest parameters (from the defined ranges presented in

the table 4.8) for each activation function.

Accordingly, as the values of the lowest and highest parameters, were used:

Lowest

Hidden layers: 1

Learn rate: 0.001

Neurons: 16

Batch Size: 16

Highest

Hidden layers: 3

Learn rate: 0.01

Neurons: 128

Batch Size: 30

Further, using these parameter combinations, the evaluation metrics were analyzed to understand

which would be the ideal epochs number. Consequently, it was created a learning curve (for each com-

bination), showing the evaluated metrics (RMSE, MAE, and accuracy) by epoch. This iterative process

consists in perceiving, through the analysis of the graphs, around which epoch these metrics stop vary

significantly. After recognizing this, for each activation function, the maximum number obtained among

these tests is chosen to ensure that the model will train for sufficient epochs.

Moreover, to tune the remaining parameters was used the Grid Search hyper-parameters optimization

technique. This technique allows us to establish a grid of parameter values, train the model, and give an

evaluation metric for each combination (with all combinations being tested). The Grid Search implemen-

tation was made in python, as figure 4.8 shows.
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model = KerasClassifier(build_fn = build_model, epochs = 200 , verbose = 0, batch_size = 16)

activation = ['relu', 'tanh', 'sigmoid']
h_layers_v = [1, 2, 3]
learn_rate = [0.001, 0.005, 0.01]
neurons = [16, 32, 64, 128]
batch_size = [16,23,30]

param_grid = dict(h_layers = h_layers_v,
activation = activation,
learn_rate =learn_rate,
neurons = neurons,
batch_size = batch_size)

grid = GridSearchCV(estimator = model, param_grid = param_grid, cv=3,
scoring = ”neg_mean_absolute_error”)

grid_result = grid.fit(dataset_train, train_labels)

print(grid_result.cv_results_)
print (”Best: %f using %s” % (grid_result.best_score_, grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']

for mean, stdev, param in zip(means, stds, params):
print(”%f (%f) with: %r” % (mean, stdev, param))

Figure 4.8: Multilayer Perceptron tuning process using Grid Search.

The dict function made the MLP model parameters vary, using all the parameters combinations, from

the table 4.8. TheGridSearchCV enable to define the scoringmetric, using the “neg_mean_absolute_error”,

in this case. The designation “neg” is because the algorithm chose the higher value. Once it is an error

metric, the idea is to choose the smallest error value from the best combination, among all. Here was

used three iterations to split the training dataset (here, defined as 80% of the dataset ). So, is used the

training dataset to train the model, and consequently, to evaluate the combinations.
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4.3.2 Long Short-Term Memory

4.3.2.1 Model conception

The LSTM model deployment was done using python. Figure 4.9 shows the script that generated the

recurrent network, responsible for the process.

def build_model(timesteps, features,
h_layers = 1,
neurons = 16,
activation = 'relu',
learn_rate = 0.001):

model = keras.Sequential ()

model.add(layers.Masking(mask_value=1.1VER,input_shape=(timesteps, features)))

if h_layers==1:
model.add(layers.LSTM(neurons, return_sequences=False, activation = activation))

elif h_layers==2:
model.add(layers.LSTM(neurons, return_sequences=True, activation = activation))
model.add(layers.LSTM(neurons, return_sequences=False, activation = activation))

else:
model.add(layers.LSTM(neurons, return_sequences=True, activation = activation))
model.add(layers.LSTM(neurons, return_sequences=True, activation = activation))
model.add(layers.LSTM(neurons, return_sequences=False, activation = activation))

model.add(layers.Dense(1))

optimizer = tf.keras.optimizers.RMSprop(learning_rate=learn_rate)

model.compile(loss = rmse,
optimizer = optimizer,
metrics = ['mae' , rmse])

return model

Figure 4.9: LSTM model, in python.

This construction is similar to the MLP model conception, represented in the figure 4.6. Here, the

main differences are latent right in the input layer, once is used a Masking layer. This layer is used to

mask the missing timesteps in the sequence. Each timestep with a missing observation will gain a value

equal to 1.1, and, due to this layer, this value will be masked, skipping to the next timestep. 1.1 was chosen

to not interfere with the known values, which, once normalized, these take values between -1 and 1. The

second difference to point out is the layer applied. Here is used LSTM layer instead of the Dense layer

used in the MLP model.
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Once the LSTM model was implemented as a time series forecast, there was the need to put the data

into the right shape. The logic behind this is to create a sequence of values (corresponding to consecutive

days) with a timestep size. It is the parameter that will define how many days the forecast will be based

on. The idea is forecast the day after the last day of that sequence, using, next, the real value to evaluate

the prediction quality. For this, the function from figure 4.10 was used.

def to_supervised(df, timesteps, uv_value_col=0):
data = df.values
X, y = list(), list()
#iterate over the training set to create X and y
dataset_size = len(data)
for curr_pos in range(dataset_size-timesteps):

#end of the input sequence is the current position + the number of timesteps of the sequence
input_index = curr_pos + timesteps
#end of the labels corresponds to the end of the input sequence + 1
label_index = input_index + 1
#if we have enough data for this sequence
if label_index < dataset_size:

X.append(data[curr_pos:input_index, :])
y.append(data[input_index:label_index, uv_value_col])

return np.array(X).astype('float32'), np.array(y).astype('float32')

Figure 4.10: Function to reshape the data to LSTM time series forecast.

Using the complete sequence of data (“UV Value” and “CO Value”) and the number of timesteps, the

data is splitting using the deduction mentioned above. First, the iteration process is doing through the

entire sequence minus the timesteps value. This happens to ensure that the entire sequence of values

has always an available value for evaluating the forecast (a real label at the end of the sequence), and

further, to evaluate the model. After this, from that data (used as input), are created two variables, the X

and the y. The X is the sequence of values, with the size equal to timesteps and the y is the value after

the last day of that sequence, the value that will also be forecast. Besides, y includes only one value, since

we are making recursive multi-step forecast. In a dataset, the number of sequences created is equal to

dataset_size-timesteps, as well as the number of y labels.

To forecast the values is used a function (figure 4.11), allowing the blind and known forecast. The blind

forecast uses the prediction values to forecast. As the values are predicted, the actual values are replaced

by these forecasts, allowing further predictions. For example, use the prediction values of the next day to

forecast the day after. On the other hand, the known forecast use only the known values to predict the

values, without replacing it.
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def forecast(model, X_test, y_test, timesteps, multisteps, features, scaler, uv_value_col=0, blind=True):
#using three dys
days = 3
input_seq = X_test[-days:, :, :]
labels_seq = y_test[-days:, :]
#iterate over the day
results = list()
for i in range(len(input_seq)-(multisteps-1)):

inp = input_seq[i].copy()
lab = labels_seq[i].copy()
#for each step of the multistep
labels = list()
predictions = list()
rmse_scores = list()
mae_scores = list()
for step in range(1, multisteps+1):

#reshape
inp = inp.reshape(1, timesteps, features)
lab = lab.reshape(1, 1)
#predict the value for the next timestep
yhat = model.predict(inp, verbose=0)
#invert normalized values
lab_inversed = scaler.inverse_transform(lab)
yhat_inversed = scaler.inverse_transform(yhat)
#compute rmse and mae between true value and prediction
rmse_val = mean_squared_error(lab_inversed, yhat_inversed)
mae_val = mean_absolute_error(lab_inversed, yhat_inversed)
#store results
labels.append(lab_inversed[0][0])
predictions.append(yhat_inversed[0][0])
rmse_scores.append(rmse_val)
mae_scores.append(mae_val)
#insert a new value into the input sequence to predict the next timestep.
#if blind we will use our prediction
#If not blind we will use the real, known, value
if blind:

if step != multisteps:
#add yhat(the forecasted value) to input sequence
new_line = input_seq[i+step][-1].copy()
np.put(new_line, uv_value_col, yhat)
new_line = new_line.reshape(1, features)
inp = np.concatenate((inp[0], new_line))
inp = inp[-timesteps:]
#update label to the next timestep
lab = labels_seq[i+step]

else:
if step != multisteps:

#add the real value to input sequence
inp = input_seq[i+step].copy()

#update label to the next timestep
lab = labels_seq[i+step]

results.append((np.array(labels), np.array(predictions), np.mean(rmse_scores), np.mean(mae_scores)))
return np.array(results)

Figure 4.11: LSTM forecast function.

This function allows the predictions based on the multistep values, the number of the days we want

to forecast. First, the sequences are defining (input_seq), based on the x_test (the sequences used to

test the model). The x_test stores individual sequences, an amount equal to the days chosen. These

sequences have the size of the timestep value. Then, the labels sequence (labels_seq) is also defined.

This number of labels is equal, also, to the days variable number. After this, the function computes

the prediction, using model.predict. Since the predictions (yhat) and the corresponding labels (lab)

are normalized, it is necessary to invert this. Subsequently, the RMSE and MAE are calculate, using the
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denormalised data. These results are stored in a variable in each iteration. Then, if the blind approach is

chosen, the yhat value, previously computed, will replace the real values in the sequence. In contrast, if

the known values approach is chosen, the values are forecasted, using just the real values of the sequence.

Finally, the function returns an array, with the labels (the effective values), the predictions (depending on

the approach chosen), and the RMSE and MAE values.

After the model construction and the data reshape, the model is ready to be trained. To train the model

there are some important parameters (tuned ahead) to assing. The figure 4.12 shows the parameters used

in the LSTM model deployment.

timesteps = 21 #the sequence size
multisteps = 3 #how much to predict
features = 1 #number of attributes used
batch_size =30

h_layer = 1 #number of hidden layers
h_neuron = 32 #number of neurons in each layer
activation = 'sigmoid' #LSTM layers activation function
learn_rate = 0.001 # Learn Rate

Figure 4.12: Example of LSTM parameters values, in python.

After all, the model can be trained, as figure shows 4.13.

def split_dataset(training, perc=10):
train_idx = np.arange(0, int(len(training)*(100-perc)/100))
val_idx = np.arange(int(len(training)*(100-perc)/100+1), len(training))
return train_idx, val_idx

X, y = to_supervised(dataset, timesteps)

tscv = TimeSeriesSplit(n_splits=3)
hist_list=[]
loss_list=[]
backtesting_loss = defaultdict(list)
evaluate_loss = defaultdict(list)

for train_index, test_index in tscv.split(X):
#further split into training and validation sets
train_idx, val_idx = split_dataset(train_index, perc=10)
#build data
X_train, y_train = X[train_idx], y[train_idx]
X_val, y_val = X[val_idx], y[val_idx]
X_test, y_test = X[test_index], y[test_index]

#build model
model = build_model(timesteps, features, h_layers=h_layer, neurons=h_neuron, activation=activation,
learn_rate=learn_rate)

#fit the model
history = model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=150,
batch_size=batch_size, shuffle=False, verbose=0)
hist_list.append(history)

#evaluate model
metrics = model.evaluate(X_test, y_test, verbose=0)
loss_list.append(metrics[2])
evaluate_loss['RMSE'].append(metrics[2])
evaluate_loss['MAE'].append(metrics[1])

Figure 4.13: LSTM deplyoment, using cross-validation, in python.
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In this process was used cross-validation, using three iterations. The train and test indexes are defining

by the cross-validation and, consequently, the train and test dataset. From the training dataset, 10% are

removed to form the validation dataset, using the split_dataset function. Further, the parameters are

assigned, building the model. Moreover, the training process occurs (due tomodel.fit). Here, the number

of epochs (in which the model will be trained), the batch size, and the validation data (the validation dataset)

are assigned. Besides, the model is evaluated (model.evaluate), using the test data. Finally, the forecast

function was applied to predict the desired days. In this specific case, were used the last three days

of the dataset, using a blind and known forecast (as previously mentioned). The figure 4.14 shows the

employment of this function.

blind_results = forecast(model,
X,
y,
timesteps,
multisteps,
features,
scaler['CO Value'],
uv_value_col=uv_value_col,
blind=True)

known_results = forecast(model,
X,
y,
timesteps,
multisteps,
features,
scaler['CO Value'],
uv_value_col=uv_value_col,
blind=False)

Figure 4.14: LSTM forecast (blind and known predictions), in python.

4.3.2.2 Model tuning

The LSTM model parameter optimization was implemented using the values shown in the following

table 4.9.

Table 4.9: Set of parameters used to tune the LSTM model.

Activation Function [’relu’, ’tanh’, ’sigmoid’]

Hidden Layers [1,2,3]

Learn Rate [0.001, 0.005, 0.01]

Neurons [16, 32, 64, 128]

Batch Size [16, 23, 30]

Timesteps [7, 14, 21]

When compared with the MLP model, the parameter values are the same, except for the “Timesteps”.

This parameter is crucial once determine the sequence of days used to predict.
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The first step consists in find the best number of epochs. To decide this number is used the iterative

process explained in 4.3.1.2. Using the values of the smallest and highest parameters from the defined

ranges (shown in the table above), for each activation function, are created learning curves regarding the

RMSE. Accordingly, as values of the lowest and highest parameters were used:

Lowest

Hidden layers: 1

Learn rate: 0.001

Neurons: 16

Batch Size: 16

Timesteps: 7

Highest

Hidden layers: 3

Learn rate: 0.01

Neurons: 128

Batch Size: 30

Timesteps: 7

Here, the parameter combinations are among the variables in the figure 4.15.

uv_value_col = 0

#main variables
timesteps_list = [7,14,21]
multisteps = 3
features = 1
batch_size_list = [30]
cv_splits = 3

#model hyperparameters
h_layers = [1,2,3]
h_neurons = [16,32, 64, 128]
activations = ['relu','tanh','sigmoid']
learn_rates = [0.001,0.005,0.01]

Figure 4.15: LSTM parameters used to tune the model.

Using a for loop, all the parameters value were combined, giving a result for each iteration. In this

way, all the parameter combinations previously defined are executed. For each combination, the process

explained in 4.3.2.1 is deployed. First, the data is split to achieve the ideal format for the time series

forecast. Second, the cross-validation (using tree iterations) occurs. Then, the train, test, and validation

index are defined, and consequently, the train, test, and validation datasets. Further, assigning each current

parameter to the model it is fitted (train process) and evaluated, using the test data (X_test and y_test).

Furthermore, the values are predicted based on a blind and known (real) forecast, using the forecast

function before defined (figure 4.11). Finally, a set of metric results from this process. It is important to

give particular attention to the blind forecast since it is the correct method of evaluating a prediction (even

if it results in, often, worse results). Thus, the evaluation metrics from the blind forecast will allow defining

the optimal set of parameters, the combination that produces the small error when used the blind forecast.

Thw following figure, 4.16, depicts this process.
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for batch_size in batch_size_list:
for timesteps in timesteps_list:

for h_layer in h_layers:
for h_neuron in h_neurons:

for activation in activations:
for learn_rate in learn_rates:

#create supervised problem with a one-timestep shift
X, y = to_supervised(df_road, timesteps, uv_value_col=0)

#Timeseries split for model validation
tscv = TimeSeriesSplit(n_splits=cv_splits)

for train_index, test_index in tscv.split(X):
#further split into training and validation sets
train_idx, val_idx = split_dataset(train_index, perc=10)
#build data
X_train, y_train = X[train_idx], y[train_idx]
X_val, y_val = X[val_idx], y[val_idx]
X_test, y_test = X[test_index], y[test_index]

#build model
model = build_model(timesteps, features, h_layers=h_layer, neurons=h_neuron,
activation=activation, learn_rate=learn_rate)

#fit the model
history = model.fit(X_train, y_train, validation_data=(X_val, y_val),
epochs=150, batch_size=batch_size, shuffle=False, verbose=0)
hist_list.append(history)

#evaluate model
metrics = model.evaluate(X_test, y_test, verbose=0)
loss_list.append(metrics[2])
evaluate_loss['RMSE'].append(metrics[2])
evaluate_loss['MAE'].append(metrics[1])

#multistep forecast
blind_results = forecast(model, X_test.copy(), y_test, timesteps,
multisteps, features, scaler['Uv Value'], uv_value_col=uv_value_col, blind=True)
real_results = forecast(model, X_test.copy(), y_test, timesteps,
multisteps, features, scaler['Uv Value'], uv_value_col=uv_value_col, blind=False)

Figure 4.16: LSTM tuning process.

LSTM model conception code was produced based in existed researches (F. Fernandes et al., 2020)(B. Fernandes et al., (To appear))
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5. Results and discussion

5.1 Ultraviolet Index Prediction as a Classification Problem

The first approach concerns the prediction of the UV index levels, treating it as a classification problem.

Further, WHO reference indices were used. Accordingly, the target classes are the designation of each

level: “Low”, “Medium”, “High”, and “Very High”.

5.1.1 Decision Trees

The first results registered are the ones from the classification Decision Trees. The results obtained, by

scenario, are presented in table 5.1.

Table 5.1: Summary of classification Decision Tree tuning results, regarding UV index prediction.

Quality
measure

Pruning
method

Reduced
error pruning

Min no.
rec. p/ node

E (%) ACC (%)

Scenario 1 Gini index No pruning true 1 12.831 87.169
Scenario 2 Gain Ratio No pruning false 2 17.212 82.788
Scenario 3 Gain ratio No pruning false 4 20.745 79.255
Scenario 4 Gini index No pruning true 2 7.910 92.090
Scenario 5 Gain ratio No pruning false 1 9.094 90.094
Scenario 6 Gini index No pruning true 2 8.710 91.290

Scenario number one is the one with fewer features. This scenario uses only the “Date”, the “CO

Value” and the “SO2 Value” to train the model. From the parameter tuning process, and after analyzing

all the parameter combinations, the best result presents a mean error of 12.831 %.

The second scenario adds the “Temperature” to train the model (making a set of features correspond-

ing to “Date”, “CO Value”, “SO2 Value”, and the “Temperature”). Further, it is possible to realize that the

best combination produces a higher error, when compared with the previous scenario, of 17.212 %.

Scenario number three shows an error of 20.745 %, adding the “Clouds” feature, to train the model.

Showing an increase of more than 3% it is concluded that, for this model, the clouds percentage feature

(together with the four remaining features) is not a good addition, for the UV index levels prediction.

Scenario four shows a significant error decrease when compared with the previous one. Adding a

column to the training process containing the month name (“Month (name)” feature) the error reduced to
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7.910 %. So far, this is the best error produced. It is because, as previously analyzed, the UV index has a

well-defined monthly behavior, promoting the predictions quality.

The fifth scenario presents an error of 9.094 %. Here was added to the training process the mode of

the “Weather description” feature. The error obtained was higher compared with scenario number four

(an increase of 1,18 %).

Scenario number six shows a smaller error, a value of 8.710 %, representing a small improvement.

Here (when compared with the previous scenario) the mode of the “Weather description” attribute was

replaced by this feature one-hot encoded. It shows that, for this model, the preparation of the “Weather

description” attribute may result in a smaller error, but not considered a significant improvement.

Analyzing the whole table, it is possible to conclude that the scenario that shows, at this stage, the best

performance is scenario number four. Further, note that the optimal pruning method for all the scenarios,

is the “No pruning”. Here, don’t prone the tree produces better results, probably due to the low complexity

of the trees that are generated, from each scenario. So, all the branches are considered important and its

removal leads to a decrease in the model performance. Therefore, this allows us to assume that there are

not redundant splits and, consequently, unnecessary branches in the tree.

5.1.2 Random Forest

The results from the classification Random Forest tuning are presented in the table 5.2.

Table 5.2: Summary of classification Random Forest tuning results, regarding UV index prediction.

Split
criterion

Tree
depth

Minimum
node

Number
of Models

E (%) ACC (%)

Scenario 1 InformationGain 13 6 100 20.356 79.644
Scenario 2 InformationGain 10 2 200 16.206 83.794
Scenario 3 InformationGain 24 2 900 17.787 82.213
Scenario 4 InformationGainRatio 14 9 500 8.498 91.502
Scenario 5 InformationGain 24 1 800 8.696 91.304
Scenario 6 InformationGainRatio 20 1 600 11.660 88.340

The first analysis shows that scenario number four and five have very similar results, presenting the

best accuracy values registered (higher than 90 %).

Further, is shown that the scenarios with the smallest accuracy values and, consequently, a higher

error are scenario number one and number three.

Doing an overall analysis, it can be concluded that using a larger number of features can bring better

results. Besides, compared to scenario number five, scenario number six shows a higher error. It helps us

to find out that the model produces better results when implemented using only the most frequent weather

description in a day, instead of all one-hot encoded descriptions.
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5.1.3 Multilayer Perceptron

For MLP prediciton the number of epochs considered ideal was 600 (process explained in appendix D).

By evaluating the outcomes for all combinations (through 600 epochs), the remaining optimal parameters

were found. The table 5.3 shows the results from the tuning process, by scenario.

Table 5.3: Summary of classification MLP tuning results, regarding UV index prediction.

Activation
function

Hidden
Layer

Learn Rate Neurons
Batch
size

E (%) ACC (%)

Scenario 1 ’relu’ 3 0.001 64 23 6.548 93.452
Scenario 2 ’relu’ 3 0.005 16 16 8.929 91.071
Scenario 3 ’sigmoid’ 1 0.005 128 16 9.524 90.476
Scenario 4 ’sigmoid’ 1 0.005 64 16 10.714 89.286

The results from the table above able us to conclude that the scenario that exhibit the best result is

scenario number one. This scenario is the one that reflects the dataset with the fewest features used to

train the model.

In addition, it is also concluded that the number of hidden layers is smaller for scenarios with more

features (scenario numbers tree and four), this is, a single layer. However, it indicates a higher per-layer

number of neurons.

5.1.4 Comparative analysis

After known all the results from the classification models, in the UV index prediction, it is possible to

do a comparative analysis of the tree models deployed (Decision Trees and Random Forest), and MLP.

Figure 5.1 shows the performance of each classification model regarding each scenario (using as evaluate

performance the accuracy).

Figure 5.1: Comparative graph, concerning the accuracy for the UV index prediction.
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It should be noted that the current graph analysis gathers the results from the above three models

(Decision Tree, Random Forest, and MLP mode). The first conclusion is that the model that generally

produces better accuracy values is MLP. Nevertheless, the addition of the “Weather description” feature

constitutes an exception. Here, this attribute is expressed by the most frequent weather description in a

day (the mode), for all the three models over study. It must be noted that the only difference between

models is the label encoding process, deployed in the “Weather description” for the MLP model, since

this does not accept nominal features as input.

For scenarios constituted by a higher number of features, Random Forest and the Decision Tree models

produce similar result. Further, for the available scenario with the fewest features (scenario number one,

constituted by the “Date”, the “CO value”, and the “SO2 Value”) Decision trees show a better outcome

(when compared with Random Forest). It may allow us to conclude that, in this context, the Decision Tree

models show better results for a small number of features, when compared with Random Forest. Besides, it

is important to highlight the scenario that represents the addition of the “Month” feature (scenario number

four). Here is shown a marked accuracy improvement, when compared with the previous ones. Finally,

regarding this prediction, the best accuracy reached is equal to 93.452 %, using the MLP model and the

features from scenario number one to train the model.

5.2 Ultraviolet Index Prediction as a Regression Problem

The second approach was to predict the UV index, treating it as a regression problem. Here, the target

attribute is the numeric UV Index, the “UV Value” feature.

5.2.1 Decision Tree

Table 5.4 shows the best results obtained for each scenario, resulting from the tuning process.

Table 5.4: Summary of regression Decision Trees tuning results, regarding UV index prediction.

Missing value handling Tree depth Minimum node size RMSE

Scenario 1 XGBoost 18 4 0.09960
Scenario 2 XGBoost 11 4 0.12724
Scenario 3 Surrogate 8 6 0.13645
Scenario 4 XGBoost 6 5 0.05167
Scenario 5 XGBoost 10 14 0.05450
Scenario 6 XGBoost 6 4 0.05292

Concerning the model prediction error, in units of the target feature, MAE and RMSE were used as

evaluation metrics. As a regression problem, the error above was computed using normalized values.

Consequently, these outcomes do not represent the reality (once are not denormalized) and only enable a

comparative analysis. Even so, the smallest values still represent the best results.
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Considering the results, and as the main conclusion, scenario four is the one that present the smaller

RMSE. However, scenario number five and six presents very similar error values when compared to this

last. Further, the scenarios with higher error values are the number two an number three.

Deploying a Decision Tree regression model for the best combination of parameters (for each scenario),

the results from table 5.5 arose. This table shows the RMSE and MAE resultant from this process. Here,

the values were denormalized, which means that each value represents the correct error, in the same unit

as the target value, the UV index.

Table 5.5: Regression Decision Tree results, regarding UV index prediction.

MAE RMSE

Scenario 1 0.58864 1.07349
Scenario 2 0.78879 1.24379
Scenario 3 0.90122 1.30233
Scenario 4 0.37320 0.51738
Scenario 5 0.43311 0.58212
Scenario 6 0.36350 0.51335

As previously mentioned, the scenarios number four, five, and six present very similar error values.

Therefore, when the model is deployed with the best parameters (for each scenario) it shows better results

for scenario number six. This small variation is due to the randomness of the model, mainly due to the

cross-validation (creating small differences once there are small variations in the train and test datasets

split). Figure 5.2 shows the graph representation, for each scenario, of the predicted and the actual values.

Scenario 1 Scenario 2 Scenario 3

Scenario 4 Scenario 5 Scenario 6

Figure 5.2: Graphs of regression Decision Tree predictions, concerning the UV index prediction.
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Analyzing the graphs it is possible to reinforce the conclusions previously drawn. Scenario number

one, two, and three represent the higher difference between the actual and the predicted value. However,

scenario four, five, and six present predicted values more fitted to the actual ones.

The main conclusions go within the fact that the introduction of the variable “Month (name)” in the

dataset causes a significant improvement in the model. Thus, is understood that, for this type of model

and problem, the month name (extracted from the date), used as a feature, improves the model, since all

the scenarios in which it is present (scenario number four, five, and six), show a better performance.

5.2.2 Random Forest

As well as the regression Decision Trees, the regression Random Forest models were tuned. The table

5.6 shows the results from this process.

Table 5.6: Summary of regression Random Forest tuning results, regarding UV index prediction.

Tree depth Minimum child node size Number of Models MSE

Scenario 1 3 1 1000 0.00956
Scenario 2 8 1 200 0.01000
Scenario 3 3 1 500 0.01135
Scenario 4 11 1 1000 0.00311
Scenario 5 2 1 1100 0.05209
Scenario 6 13 1 900 0.00910

Analyzing the table above it can be concluded that the scenario presenting the best results, without

ambiguity, is scenario number four. After knowing the best parameters for each scenario, the model was

deployed using them. Thus, allowing us to understand the error values in the correct units of measurement,

the results are shown in table 5.7.

Table 5.7: Regression Random Forest results, regarding UV index prediction.

MAE RMSE

Scenario 1 1.438182 1.758826
Scenario 2 0.739012 1.044964
Scenario 3 1.128045 1.457048
Scenario 4 0.410235 0.5384606
Scenario 5 1.597893 1.839926
Scenario 6 0.703682 0.885547

Scenario number four shows the best result for both error metrics. Concerning the MAE and the

RMSE, the scenario with the features, “Date”, “CO Value”, “SO2 Value”, “Temperature”, “Clouds”, and

the “Month” is the one showing the best result (secnario number four).

The graphs in figure 5.3 allow emphasize the conclusions obtained and depicts the difference between

the predicted and actual UV Index values.
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Scenario 1 Scenario 2 Scenario 3

Scenario 4 Scenario 5 Scenario 6

Figure 5.3: Graphs of regression Random Forest predictions, concerning the UV index prediction.
.

Analyzing the graphs, scenario number four presents the most similar values between the actual

and predicted values. The scenario number five presents the scenario with the worst results, showing,

consequently, the higher gap between the actual UV index values and the predicted ones. Note that,

Random Forest model, in this particular instance, predicts above for higher index values, and below for

lower index values.

5.2.3 Multilayer Perceptron

In this instance, the model used is the MLP. The first parameter found was the ideal number of epochs,

to train the model. After the iterative process explained in subsection 4.3.1.2, the number of epochs

considered ideal (regarding the model and this particular problem) was 200 (explained in the appendix

E). Additionally, the remaining parameters were found through the analysis of the tuning process results.

Thus, the best results, for each scenario, are presented in table 5.8.

Table 5.8: Summary of regression MLP tuning results, regarding UV index prediction.

Activation
function

Hidden
Layer

Learn Rate Neurons
Batch
size

MAE

Scenario 1 ’relu’ 1 0.001 16 16 -0.417235
Scenario 2 ’relu’ 1 0.01 16 16 -0.417235
Scenario 3 ’relu’ 1 0.001 128 23 -0.417235
Scenario 4 ’relu’ 2 0.001 32 16 -0.417235
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Presenting equal MAE values for each scenario, the best parameters combination were found. Deploy-

ing the model using the optimal parameters the results from table 5.9 have been achieved.

Table 5.9: Regression MLP results, regarding UV index prediction.

MAE RMSE

Scenario 1 0.490354 0.600022
Scenario 2 0.514139 0.630862
Scenario 3 0.520870 0.558326
Scenario 4 0.452455 0.578217

As previously demonstrated, the results obtained are very similar. It is not correct to say that a specific

scenario shows better results than others. Thereby, use a dataset with more or fewer features will gen-

erate similar results, in this particular prediction. The graphs from the figure 5.4 allow understand these

conclusions.

Scenario 1 Scenario 2

Scenario 3 Scenario 4

Figure 5.4: Graphs of MLP predictions, concerning the UV index prediction.

All the graphs, representing each scenario, show both lines (blue and orange) quite fitted, which means

that the model predicts with a considered small error when compared with other models.

5.2.4 Comparative analysis

Once all the results of the UV forecast were assembled using regression models (Decision Tree, Ran-

dom Forest, and MLP) it is crucial to do a comparative analysis to understand which model has a better
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performance for a given dataset/scenario. The graphs from the figure 5.5 and 5.6 shows the MAE and

RMSE for each model, regarding the scenarios under study.

Figure 5.5: MAE comparative graph (UV prediction). Figure 5.6: RMSE comparative graph (UV prediction).

Doing an overall analysis, it is clear that the model that generally presents the worst results is the

Random Forest. It is followed by the Decision Trees, which presents better results, mainly (and with a

noticeable difference) in the first set of data (using the “Date”, the “CO value”, and the “SO2 value”) and

in the fifth one (using the “Date”, the “CO value”, the “SO2 value’, the “Temperature”, the “Clouds” and

the “Weather description” as main features to train the model). Further, for the tree-based models, the

month name adding shows an increase in these models’ performance (mainly for the Random Forest).

Furthermore, the MLP is the model that, in a general way, produces better results.

Concluding, the best result obtained was an MAE of approximately 0.36, resulting from the Decision

Tree prediction (scenario number six).

5.3 Ultraviolet Index prediction as a Time Series problem

Using the LSTM model, based on a time series forecast, the UV index was predicted. At this research,

the number of days to forecast the UV Index was three days, which means, a multistep value equal to 3.

The first parameter tuned was the number of epochs. This value was found using the iterative process,

resulting in 150 epochs (this process is presented in the appendix F, more detailed). Thus, the table 5.10

shows the remaining tuning parameters result, using blind MAE as the evaluated metric. This metric is used

once, as mentioned before, the blind forecast is the one that should be used to evaluate the model, once

allow further predictions and, uses the predicted values to predict the next ones. So, there are indicated the

three combinations that produced the better results, and the three that generated the worst, respectively.
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Table 5.10: Summary of LSTM tuning regarding UV index forecast.

Batch
size

Timesteps
Hidden
Layers

Neurons Activation
Learn
Rate

Blind
MAE

Blind
RMSE

16 21 1 16 tanh 0.01 0.150523 0.045132
30 21 1 16 relu 0.001 0.155112 0.079369
16 21 2 32 tanh 0.005 0.158052 0.045252

23 21 3 128 tanh 0.005 2.913609 11.051768
23 21 2 128 sigmoid 0.01 2.858105 11.265930
16 21 1 128 tanh 0.01 2.559773 14.616806

The following table, 5.11, shows the results from the known forecast (the forecast process using only the

known values to forecast the next ones, instead of the predictions) for the optimal parameter combination.

Table 5.11: Know results from the LSTM tuning best parameters combination (UV index prediction).

MAE
known result

RMSE
known result

0.133698 0.039279

Using the first combination of parameters from the table 5.10 (the optimal one), was predicted two sets

of three days, randomly chosen in the entire dataset. The days chosen were three in 2019 (2019-09-11,

2019-09-12, and 2019-09-13) and the remaining ones in 2020 (2019-09-11, 2019-09-12, and 2019-09-13)

. Table 5.12 shows, for that dates, the actual values, and the respective blind and known forecast.

Table 5.12: Blind and known predictions examples, using the LSTM model (UV index prediction).

Date UV index Blind Forecast Known Forecast

2019-09-11 6.883636 6.549842 6.549842
2019-09-12 6.4733334 6.2305017 6.4334965
2019-09-13 6.2633333 5.9936047 6.200255

2020-03-20 4.605 4.7148314 4.7148314
2020-03-21 4.465 4.737669 4.6896653
2020-03-22 4.386667 4.756311 4.6133194

Besides, each set of data predictions produced a mean MAE and RMSE values presented in the table

5.13.
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Table 5.13: Evaluation of blind and known predictions example (LSTM UV index prediction).

Date Blind MAE Blind RMSE Known MAE Known RMSE

2019-09-11
2019-09-12 0.28211817 0.08104643 0.1455698 0.038994793
2019-09-13

2020-03-20
2020-03-21 0.25071478 0.074349344 0.1870497 0.03796959
2020-03-22

Further, the figure 5.7 depicts the resulted predictions, using this model.

Figure 5.7: LSTM prediction examples, regarding blind and known UV index forecast.

The predictions presented above show always better results for the known forecast when compared

with the blind results. Even so, it is essential to look at these last results as being correct in the evaluation

of the model, for the reasons previously expressed.

5.4 Carbon Monoxide air concentration prediction as a Time

Series problem

As previously referred, one of the main air pollutants is CO. Thus, this pollutant was predicted using a

time series forecast model, the LSTM model. This single prediction, concerning CO, occurs due to a lack

of data in the available datasets, that would allow a logical prediction about air pollutants That is, features

referring to the city’s industries, as well as other pollutants. Consequently, the model was tuned using the
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CO data, as a uni-variate problem (using only the “CO Value” feature). In table 5.14 are presented the

results obtained from this process, showing the three best and worst parameters combinations.

Table 5.14: Summary of LSTM tuning regarding CO forecast.

Batch
size

Timesteps
Hidden
Layers

Neurons Activation
Learn
Rate

Blind
MAE

Blind
RMSE

16 21 1 16 relu 0.005 1.345×10−7 6.871×10−8
23 21 2 128 tanh 0.005 1.348×10−7 6.872 ×10−8
23 21 2 128 sigmoid 0.005 1.570×10−7 4.188 ×10−8

23 21 3 16 relu 0.005 1.380×10−6 3.212×10−6
30 21 2 128 tanh 0.01 1.380×10−6 2.953×10−6
23 14 3 64 tanh 0.01 1.316×10−6 1.934×10−6

Besides, the metrics from the known forecast were also computed, showing, for the optima parameters

combination, the values from the table 5.15.

Table 5.15: Know results from the LSTM tuning (CO prediction).

MAE
known result

RMSE
known result

1.16074×10−7 5.94929×10−8

Using these tuning optimal parameter, the model was deployed. For that, were used the same days as

the previous LSTM prediction, the UV index prediction. Thus, table 5.16 shows the actual values, and the

respective forecasts.

Table 5.16: Blind and known predictions examples, using the LSTM model (CO prediction).

Date CO Value Blind Forecast Known Forecast

2019-09-11 3.1364316 ×10−6 3.2964565×10−6 3.2964565 ×10−6
2019-09-12 3.4606148×10−6 3.2088833 ×10−6 3.0602096 ×10−6
2019-09-13 3.4606148×10−6 3.1101320 ×10−6 3.3413589 ×10−6

2020-03-20 4.3996315 ×10−6 4.0611071×10−6 4.0611071 ×10−6
2020-03-21 4.6099562 ×10−6 3.8132159 ×10−6 4.1562903 ×10−6
2020-03-22 5.2366045 ×10−6 3.6389376 ×10−6 4.4162643 ×10−6

Further, this set of predictions result in a mean MAE and RMSE value presented in table 5.17.
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Table 5.17: Evaluation of blind and known predictions example (LSTM CO prediction).

Date Blind MAE Blind RMSE Known MAE Known RMSE

2019-09-11
2019-09-12 2.5407977 ×10−7 7.0605×10−14 2.2656202×10−7 6.671811×10−14
2019-09-13

2020-03-20
2020-03-21 9.109772 ×10−7 1.1006444 ×10−12 5.375102 ×10−7 3.3112315 ×10−13
2020-03-22

Additionally, the figure 5.8 depicts the the predictions made, using this model, regarding the CO pre-

diction.

Figure 5.8: LSTM prediction examples, regarding blind and known CO forecast.

We can conclude, from these practical examples, that a small RMSE and also a higher MAE value

are generated, when compared to the tuning error. Even so, the MAE value is still maintained, at around

×10−7. On the other hand, the RMSE value shows smaller values, since the RMSE, by nature, help to

highlight higher error values.

5.5 Water pH prediction

Aiming for meaningful results, concerning the WWTP water problem, the water pH prediction was made.

The following tables show the tuning and final results, using Decision Trees, Random Forest, and MLP

models. Here, and since pH is a numeric target variable, only regression models were used.
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5.5.1 Decision Trees

The first model deployed, in respect of this problem, was the Decision Tree model. Table 5.18 shows

the tuning process results , for each scenario.

Table 5.18: Summary of regression Decision Tree tuning results, regarding water pH prediction.

Missing value handling Tree depth Minimum node size RMSE

Scenario 1 XGBoost 5 9 0.04962
Scenario 2 Surrogate 5 10 0.07465
Scenario 3 XGBoost 2 4 0.08023
Scenario 4 Surrogate 5 5 0.04887

After the tuning process, the real results (computed with the denormalized data) are presented in the

table 5.19.

Table 5.19: Regression Decision Trees results, regarding water pH prediction.

MAE RMSE

Scenario 1 0.10646 0.16259
Scenario 2 0.18416 0.24765
Scenario 3 0.19487 0.26201
Scenario 4 0.10586 0.16155

The table shows that the scenario number four presents the best results, exhibiting similar results for

scenario number one. Besides, the worst scenario is scenario number three. Along with the table above,

the figure 5.9 graphically represents the conclusions drawn.

Scenario 1 Scenario 2

Scenario 3 Scenario 4

Figure 5.9: Regression Decision Tree predictions, concerning the water pH prediction.
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First, by examining the graphs for each scenario, it is possible to visualize that, for scenario number

three, the model produce prediction values very close to each other. It reflects the higher error, since

the actual pH values have more pronounced variations. Moreover, as the scenario that produce worst

outcomes, this make only use of the DO features (at the anoxic and aerated zone) to train the model

(beyond the year, month, day, and hour, common feature to all the scenarios).

The best results come from scenario number four and number one. These scenarios are the ones with

the “Temperature” (in tertiary treatment) and the “pH-secondary clarifier” (line 2) in its constitution. Thus,

these features are demonstrated as relevant to predict the pH value, once all the scenarios of which they

are part together (one and four) show better results.

5.5.2 Random Forest

As mentioned before, the second model implemented, for water pH problem, was the Random Forest.

The tuning process results presented in the table 5.20 shows an early notion of the best scenarios, and

consequently, which features to use to train the model.

Table 5.20: Summary of regression Random Forest tuning results, regarding water pH prediction.

Tree depth Minimum child node size Number of Models RMSE

Scenario 1 4 8 500 0.047459
Scenario 2 3 4 500 0.073146
Scenario 3 7 5 1100 0.080355
Scenario 4 3 5 100 0.048461

The results of the deployment process are shown in the table 5.21, enabling the denormalized errors

to be understood.

Table 5.21: Regression Random Forest results, regarding water pH prediction.

MAE RMSE

Scenario 1 0.11375 0.169247
Scenario 2 0.18043 0.245012
Scenario 3 0.19329 0.26060
Scenario 4 0.12052 0.17760

After interpreting the table, it is possible to assume that the scenario with the best results is the number

one, also, with similar ones for scenario number four. Using the graphs from figure 5.10, it is possible to

reinforce the analysis.
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Scenario 1 Scenario 2

Scenario 3 Scenario 4

Figure 5.10: Regression Random Forest predictions, concerning the water pH prediction.

Compared to the Decision Tree results (before exhibited), the general conclusions regarding this model’s

predictions (regarding this waste water pH problem) are quite similar. So, the scenarios showing the best

results are the ones with the “Temperature” (from tertiary treatment) and the “pH” (from the secondary

clarifier) in its constitution (the scenario one and three).

Further, the worst results come from scenario number two, which use the DO features (at the anoxic

and aerated zone), plus the pH in the secondary clarifier. Furthermore, the scenario that includes only DO

values in its constitution (scenario number three) does not present the worst outcomes, however presents

a bad performance.

5.5.3 Multilayer Perceptron

The last model implemented, concerning the water pH prediction was the MLP. Here, the tuning was

made to find the optimal combination of parameters. As previously mentioned, the first step for this model

was to find the best number of epochs to train the model. Using the iterative process presented in sub-

section 4.3.2.1, the number of epochs established was 200 (described in the appendix H). Besides that,

the remaining parameters were tuned, resulting in the combinations presented in the table 5.22.
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Table 5.22: Summary of regression MLP tuning results, regarding water pH prediction.

Activation
function

Hidden
Layer

Learn Rate Neurons
Batch
size

MAE

Scenario 1 ’relu’ 3 0.001 16 16 -0.269315
Scenario 2 ’relu’ 2 0.001 64 16 -0.269315
Scenario 3 ’relu’ 1 0.001 16 16 -0.269320
Scenario 4 ’relu’ 3 0.005 64 16 -0.269315

Further, the model was deployed originating denormalized results, presented in the table 5.23.

Table 5.23: Regression MLP results, regarding water pH prediction.

MAE RMSE

Scenario 1 0.11859 0.17325
Scenario 2 0.14560 0.20719
Scenario 3 0.15402 0.21356
Scenario 4 0.11834 0.17148

The table shows that scenario number four present the better results, but with a high similarity when

compared with MAE and RMSE values for scenario number one. However, the graphs from figure 5.11

allow a more careful analysis.

Scenario 1 Scenario 2

Scenario 3 Scenario 4

Figure 5.11: Regression MLP predictions, concerning the water pH prediction.
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When compared with the two previous models, this one shows better results. Moreover, the main

conclusions concerning a scenarios comparative analysis are very similar, when compared with these two

models (Decision Tree and Random Forest), this is, scenario number one and four show the best results.

5.5.4 Comparative analysis

After analyzing the results, is now possible to do a comparative analysis for the pH water prediction.

Here, the scenarios used to train the model are the same among models (except for the date attribute,

explained before). Figure 5.12 and 5.13 depict the graphs comparing the models’ predictions, evaluated

by the MAE and RMSE, respectively.

Figure 5.12: MAE comparative graph (pH prediction).Figure 5.13: RMSE comparative graph (pH prediction).

The first conclusion arising from the graph analysis is that, for this instance, Decision Trees and Ran-

dom Forest produce very similar results. Further, for scenario number one, the prediction error is smaller,

and similar between models. However, it is possible to figure that MLP slightly presents the worst predictive

model for this set of features (DO features, the “pH-Secondary clarifier” and the “Temperature”). More-

over, the scenario number two show similar results for the Decision Tree and Random Forest prediction.

At the same time, contrary to what was verified in the previous scenario, the MLP model presents the best

result (the smallest error values) concerning this scenario (using the DO features and the pH value (from

the secondary clarifier)). Scenario number three shows also the worst results for the tree-based models

and the smallest error to the MLP predictions. Scenario number four shows a similar error between the

Random Forest and MLP predictions. Here is pointed the Decision Trees as the model that produces more

quality predictions (containing the pH value and the temperature, from the tertiary treatment, as features).

In addition, it is possible to conclude that, using all the data available (the pH value, the DO features, and

the temperature, scenario number one), the tree models predict quite well. The same happens in scenario

number 4. However, using only the DO combined with pH value (scenario two), or with temperature (sce-

nario number three), all the three models predictions reach the higher values. Finally, an approximate MAE

value of 0.11 is achieved, as the best prediction error. This error can be reached using the three applied
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models (the Decision Trees, the Random Forest, and the MLP) once they are all able to predict with this

approximate MAE values.
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One of the key challenges nowadays is environmental sustainability. With an growing population, many

of the planet’s negative impacts have been verified. With a high rate of anthropogenic emissions, it is

essential to give special attention to this topic once future generations may be compromised.

This research addresses a supervised learning approach to predict several parameters concerning

environmental sustainability. Regarding the air and water quality, these parameters were predicted using

four different models.

Initially, a primary investigation has been done, exposing some crucial concepts to this research. First,

it was understood which may impact the target features. Then, concerning the air quality, was grasped

information about the main factors that influence the concentration of the atmospheric pollutant, as well

as the UV index. Further, the reference values were found, according to the established by specialized

agencies, allowing a better data analysis. Concerning the water quality issues, some studies about WWTP

were conducted. Here, was displayed how a WWTP works and some important parameters that, after

perceived, may induce a better data analysis. Moreover, in this initial phase, all implemented supervised

models are explained and explored, showing how they operate as well as some advantages and limitations

that these may present.

The second part of this work contemplates a more practical approach. This part starts with an exhaus-

tive analysis of both datasets. Here, some inferences are made to understand the best data preparation

to achieve, as well as which are the best features to use to train the model. Besides that, the models were

constructed and tuned to achieve the best predictions, regarding the available data sets.

The first models constructed and implemented were the tree-based models, the Decision Trees, and

Random Forest. Then, more complex models were applied, using deep learning models, the MLP, and the

LSTM.

Concerning the air quality and atmospheric pollution, the parameters predicted were the “UV Value”

(using classification and regression models) and the CO air concentration (“CO Value” attribute). From

the data analysis respecting this problem, the main conclusions denote that the pollutants analyzed show

small values according to the reference values, and regarding the CO and the SO2, the classification of the

air quality is, according to PAE defined levels, “very good”. Further, looking at the UV index, the available

data does not show “extreme” values registered (+11), although, present “very high” levels, this ones

requiring special attention. Further, it was possible to conclude that, by analyzing the correlation between

features, there is a notorious negative correlation between the UV index and the CO value. Besides, it
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shows a similar but positive correlation between the UV index and the temperature.

Hence, in respect of the classification UV index prediction, the main conclusions are several. First,

the model that presents better predictions is the MLP, showing a higher accuracy for all the scenarios.

Second, using tree-based models, introducing the month name into the training dataset (as a new feature),

results in a significant improvement of the model performance. Further, were found the set of features that

generate the best accuracy for each model. Accordingly, considering the Decision Trees, the scenario that

shows the better performance is the one that contemplates the features: “Date”, “CO Value”, “SO2 Value”,

“Temperature”,“Clouds”, and “Month (name)” (scenario number four). Moreover, the MLP model shows

the best results for scenario number one, the scenario with the fewest features. This scenario holds the

“Day”, the “Month”, and “Year” besides the “CO Value”, and the “SO2 Value”. Last, the result with the

smallest error is produced by the MLP model, achieving an error of approximately 93%.

With regard to the UV index prediction as a regression problem there are several conclusions. First,

the Random Forest, in general, is the model that shows the worst results, with the MLP model showing

the best ones. Second, for the Decision Trees, introducing the month name produces also a significant

improvement. Accordingly, to predict using the Decision Trees, the better set of features to train the model

are: “Date”, “CO value”, “SO2 Value”, “Temperature”, “clouds”, “Month(name)”, and the “weather de-

scription” one-hot encoded (Scenario 6). Further, using the Random Forest, the scenario that presents the

smaller errors is scenario number four (using “Date”, “CO Value”, “SO2 Value”, “Temperature”, “Clouds”,

and “Month (name)” as features). Finally, the MLP predictions do not show quite a difference error be-

tween scenarios. It may allow us to conclude that the set of features is not so crucial to predict the UV

index by a regression MLP model, in this context. Finally, regarding this parameter prediction, is achieving,

as the best MAE, an approximately of 0.36 (produced by the Decision Tree model).

About the UV prediction as a time series forecast, using the LSTM model, there are some significant

conclusions. This model requires higher computational efforts (when compared with others). Moreover, the

tuning process takes time, requiring time for the construction and implementation of this model. However,

this model predicts, on average, with good results regarding this problem, reaching small errors (on average

an MAE value of 0.150523).

Concerning the prediction of CO using the LSTM model (as a time series forecast), the conclusions are

quite similar, when compared with the UV prediction using this model. Thus, it predicts with small errors,

and presents, therefore, a good performance. In this specific prediction, achieves an error of approximately

1.3 ×10−7.
In respect of the water pH problem in a WWTP context, there are numerous conclusions. Concerning

the data exploration, it can be concluded, after this research, that this process is crucial in the WWTP

processes. Accordingly, there are legally stipulated values to fulfill, and some issues to the population

and ecosystems that can be avoided beforehand, without even predict the parameters, just analyzing

them. Besides, this research shows a high correlation between the pH values among the WWTP units. So,

according to the above-mentioned concerns, the prediction target parameter is the water pH, in themoment

before it returns to the hydric sources. Hence, were used three models also: the Decision Tree, Random
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Forest, and MLP. From the water pH prediction aroused some conclusions. First, the model that shows

better predictions, in general, is the MLP. In respect of Decision Trees predictions, scenario number one

and scenario number four show the smallest error registered (very similar results). The scenario number

one is the one that assembles as features the “Date”, “pH- secondary clarifier”, “DO- Aerated zone (p)”,

“DO- Anoxic zone (p)”, and the “Temperature” (from tertiary treatment). Besides, the scenario number

four gather the “Date”, “pH- secondary clarifier”, and the “Temperature”. Further, Random Forest predicts

with the smaller error using also the features from scenario number one. Furthermore, the MLP model

also showed a high results similarity between scenario number one and number four, these being the ones

that register the lowest errors. This prediction shows (for all the models) that using only the DO and the

date (to train the model) the resulted predictions are the worst registered. Last, this water pH prediction

achieves a better error of approximately 0.11, with all three models showing the ability to achieve it.

The biggest challenges of this research are mainly based on the models’ tuning process. This process

requires a lot of time and a high computational capacity (mainly deep learning models). However, some

of these limitations were overcome by the use of google colab, which allowed to run models much faster.

Still, since there are several parameters and scenarios, it takes considerable time to obtain reliable results.

Finally, it is possible to conclude that this research may help to anticipate problematic situations, not

only through the forecasting process, but also through data analysis. Besides, it is possible to optimize

the resources used, react faster, and, consequently, provide the best to the population and responsible

entities. This research allows creating a bridge between ML field and environmental sustainability, to take

advantage of the data available (there are several sustainability parameters easy to obtain) and the existing

ML models.

Thus, as future work emerge:

• Regarding the air quality and the forecast process, use more data to train the models, in particular,

to forecast the CO air concentration. Taking advantage of more meaningful data, would be possible

to predict using the Decision Tree, Random Forest, and MLP for this attribute and test the model’s

performance;

• Concerning the WWTP, understand the impact of the weather on the wastewater characteristics.

Besides, regarding this, predict more meaningful parameters;

• Test more supervised models, and understand the results, making the trade-off between the diffi-

culty of application and results obtained;

• Create dashboards to display the forecast results, allowing an easier visualization and consequent

decision-making process.
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A. Data exploration appendix

Missing days
2016-05-28 to 2016-05-31 2016-06-17 to 2016-06-20 2016-10-24 to 2016-10-26
2016-11-05 to 2016-11-09 2017-01-08 2017-02-02

2018-01-04 2018-02-09 2018-02-16
2018-03-15 2018-03-26 2018-04-04
2018-04-24 2018-06-01 2018-06-03

2018-06-06 to 2018-06-17 2018-06-20 2018-06-25
2018-07-11 2018-08-31 2018-10-25
2018-10-29 2018-11-09 2018-11-12
2018-12-09 2018-12-15 2019-02-01
2019-02-05 2019-04-02 to 2019-04-04 2019-04-07
2019-04-09 2019-04-10 to 2019-04-15 2019-05-18
2019-05-21 2019-06-20 2019-06-25
2019-07-13 2019-07-14 2019-07-18
2020-01-10 2020-01-28 2020-02-12

Table A.1: Missing observations concerning the water quality data.
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B. Data preparation appendix

Figure B.1: String manipulation KNIME nodes and its configuration, regarding string manipulation process.

Figure B.2: Joiner KNIME node and its configuration, regarding data joining.
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APPENDIX B. DATA PREPARATION APPENDIX

Figure B.3: Column Filter KNIME node and its configuration, to remove ”Precipitation”attribute.

dataset = dataset.drop(columns = 'Precipitation')

Figure B.4: Precipitation’ column drop, in python.

Figure B.5: KNIME nodes and its configurations to date manipulation.
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APPENDIX B. DATA PREPARATION APPENDIX

Figure B.6: Group by KNIME node and its configuration.

dataset = dataset.groupby([”Day”,”Month”, ”Year”]).agg({'Uv Value' : 'mean',
'CO Value' : 'mean',
'SO2 Value' : 'mean',
'Temperature' : 'mean',
'Atmospheric Pressure' : 'mean',
'Humidity' : 'mean',
'Clouds':'mean',
'Weather description' : 'max'}).reset_index()

Figure B.7: Function to reshape the data to LSTM time series forecast.

Figure B.8: Java snippet KNIME node and its configuration.
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APPENDIX B. DATA PREPARATION APPENDIX

Weather = dataset.pop('Weather description')

w_list = list(set(Weather))

# >label encoding

le = preprocessing.LabelEncoder()

le.fit(w_list)

dataset['Weather description'] = le.transform(Weather)

Figure B.9: Label encoding of ”weather description”attribute, in python.

Figure B.10: Numeric binner node and its configuration, at KNIME.

Figure B.11: Extract date&time fields and its configuration, in KNIME.
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APPENDIX B. DATA PREPARATION APPENDIX

dataset['Date'] = pd.to_datetime(dataset['Date'])
dataset.dtypes
date = dataset['Date']

Year = date.dt.year
Month = date.dt.month
Day = date.dt.day
Hour = date.dt.hour

dataset= dataset.assign(Year = Year, Month = Month, Day = Day, Hour = Hour)

dataset = dataset.drop(columns = 'Date')

Figure B.12: Creation of the numeric ”day”, ”month”, ”year”and ”hour”attribute, in python.

Figure B.13: Normalizer KNIME node and is configuration.

# Data Normalization
def data_normalization(df, norm_range=(0, 1)):

dict_of_scalers = dict()
for col in df.columns:

if df[col].dtype != type(object):
scaler = MinMaxScaler(feature_range=norm_range)
df[[col]] = scaler.fit_transform(df[[col]])
dict_of_scalers[col] = scaler

return dict_of_scalers

Figure B.14: Function to normalize data, in python.
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APPENDIX B. DATA PREPARATION APPENDIX

column_names = ['Date', 'DO-Aerated zone (Line 2)','DO-Anoxic Zone (Line 2)','pH-Secondary Decanter',
'pH-tert. treatment','Temperature-tert. treatment']
raw_dataset = pd.read_csv(path, encoding ='latin-1', header = 0, index_col = False, names=column_names)

dataset = raw_dataset.copy()

dataset_v1 = dataset.copy()

#Replace values equals to 0 and 1by missing values (nan), for the ”pH-tert. treatment” attribute.
dataset_v1['pH-tert. treatment'][dataset_v1['pH-tert. treatment']==0] = np.nan
dataset_v1['pH-tert. treatment'][dataset_v1['pH-tert. treatment']==1] = np.nan

#Replace values equals to 0 and 1 by missing values(nan), for the ”DO-Anoxic Zone (Line 2)” attribute.
dataset_v1['DO-Anoxic Zone (Line 2)'][dataset_v1['DO-Anoxic Zone (Line 2)']==0] = np.nan
dataset_v1['DO-Anoxic Zone (Line 2)'][dataset_v1['DO-Anoxic Zone (Line 2)']==1] = np.nan

#Remove the missing values defined above
dataset_v2= dataset_v1.dropna(subset=['pH-tert. treatment'])
dataset_v2= dataset_v1.dropna(subset=['pH-tert. treatment'])

#Fill the remaining missing values through liner interpolation
dataset_v2 = dataset_v2.interpolate(method=”linear”, axis=0).ffill().bfill()

Figure B.15: Process to manipulate missing values regarding the water quality dataset.

#Create the range of dates over study
dates= pd.date_range(”2018-07-24”,”2020-03-23”)
#Transform the list of dates into a dataframe
dates = pd.DataFrame(dates)
#Transform to date time type
dates = dates[0].dt.date
dates = pd.DataFrame(dates)
dates = dates.set_index(0)

#Concat the existing data with the new dates, creating, now, missing values in the dataset
dataset = pd.concat([dataset,dates], axis =1)

scaler = data_normalization(dataset)

#Fill missing values with a value equal to 1.1
dataset = dataset.fillna(1.1)

dataset = dataset.sort_index(axis = 0)

Figure B.16: Handle missing time steps for LSTM predictions.
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C. Tuning process appendix

Figure C.1: KNIME Workflow to carry out the regression decision tree tuning process.

Figure C.2: KNIME Workflow to carry out the classification random forest tuning process.
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APPENDIX C. TUNING PROCESS APPENDIX

Figure C.3: KNIME Workflow to carry out the regression random forest tuning process.
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D. Appendix showing the process to find the

ideal number of epochs for UV classifi-

cation using MLPs

Here are presented the learning curves, used to understand the estimated number of epochs considered

ideal for train the MLP classification model, regarding the UV prediciton. These learning curves show the

Accuracy value by epoch.

The figure D.1 and D.2 shows the learning curves resulting from the ’relu’ activation function.

Activation function - Rectified Linear (’relu’)

Lowest Highest

Figure D.1: Learning curve, classification UV
prediction, for lowest values-relu.

Figure D.2: Learning curve, classification UV
prediction, for highest values-relu.

Using the “relu” function is possible to conclude that, for the lowest values, the accuracy starts to

stabilize its value around 250 epochs. However, for the highest values, the curve exhibits, around 100

epochs, the higher values. However, this curve shows some anomalous variations in accuracy, probably

due to the high learning rate value, which makes it a bit inconclusive.

The figure D.3 and D.4 shows the learning curves, using the activation function ’tanh’.
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APPENDIX D. APPENDIX SHOWING THE PROCESS TO FIND THE IDEAL NUMBER OF EPOCHS FOR UV
CLASSIFICATION USING MLPS

Activation function - Tanh

Lowest Highest

Figure D.3: Learning curve, classification UV
prediction, for lowest values-tanh.

Figure D.4: Learning curve, classification UV
prediction, for lowest values-tanh.

To the lowest values, the accuracy stops increasing in a significant way, around 600 epochs. On the

other hand, using the highest values, the curve is a bit inconclusive once there are verified a lot of accuracy

values variation.

At last, the figure D.5 and D.6 shows the process, using the ’sigmoid’ function.

Activation function - Sigmoid

Lowest Highest

Figure D.5: Learning curve, classification UV
prediction, for lowest values-sigmoid.

Figure D.6: Learning curve, classification UV
prediction, for lowest values-sigmoid.

Analyzing the graphs for the lowest parameters the learning curve stop increasing the accuracy value,

around 150 epochs, however, reaches low accuracy values (less than 70%). The second one shows a lot

of variations, as the previous two.
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APPENDIX D. APPENDIX SHOWING THE PROCESS TO FIND THE IDEAL NUMBER OF EPOCHS FOR UV
CLASSIFICATION USING MLPS

Finally, after analyzing all the learning curves, for the multilayer perceptron classification model, the

higher number of epochs considered ideal is 600, aiming for a training process through enough number

of epochs.
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E. Appendix showing the process to find the

ideal number of epochs for UV usingMLPs

Here, are explored the learning curves, to find the ideal number of epochs for the UV index MLP regres-

sion prediction. The following figures shows the iterative process for the “relu” function.

Activation function - Rectified Linear (’relu’)

Lowest Highest

Figure E.1: Learning curve, regression UV pre-
diction, for lowest values, MAE value-relu.

Figure E.2: Learning curve, regression UV pre-
diction, for highest values, MAE value-relu.

Figure E.3: Learning curve, regression UV pre-
diction, for lowest values, RMSE value-relu.

Figure E.4: Learning curve, regression UV pre-
diction, for highest values, RMSE value-relu.
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APPENDIX E. APPENDIX SHOWING THE PROCESS TO FIND THE IDEAL NUMBER OF EPOCHS FOR UV USING
MLPS

Using the rectified linear function as activation function, it is possible understand that: for lowest values,

the number of epochs from there is no significant decrease of MAE and RMSE is around 150 epochs, as

the figures E.1 and E.3 shows.

Further, using the highest parameters values, the number of epochs from which the errors stop de-

creasing significantly is around 70 epochs, figures E.2, and E.4.

Next is shown the iterative process using the “Tanh” activation function.

Activation function-Tanh

Lowers Highest

Figure E.5: Learning curve, regression UV pre-
diction, for lowest values, MAE value-tanh.

Figure E.6: Learning curve, regression UV pre-
diction, for highest values, MAE value-tanh.

Figure E.7: Learning curve, regression UV pre-
diction, for lowest values, RMSE value-tanh.

Figure E.8: Learning curve, regression UV pre-
diction, for highest values, RMSE value-tanh.

Using the Tanh activation function, for lowest parameters values, the number of epochs from which

there is no significant decrease of MAE and RMSE is around 200 epochs, as the figures E.5 and E.7 shows.

Using the highest parameters values the errors are higher (between 0.6 and 0.8). Here, the error is

approximately the same for all the epoch. For that reason, there are no conclusions about the number of

epochs in this specific combination of parameters, figures E.6, and E.8.
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APPENDIX E. APPENDIX SHOWING THE PROCESS TO FIND THE IDEAL NUMBER OF EPOCHS FOR UV USING
MLPS

The next figures show the process implemented using the ’sigmoid’ function.

Activation function - Sigmoid

Lowers Highest

Figure E.9: Learning curve, regression UV pre-
diction, for lowest values, MAE value-sigmoid.

Figure E.10: Learning curve, regression UV pre-
diction, for highest values, MAE value-sigmoid.

Figure E.11: Learning curve, regression UV pre-
diction, for lowest values, RMSE value-sigmoid.

Figure E.12: Learning curve, regression UV pre-
diction, for highest values, RMSE value-sigmoid.

With the sigmoid activation function, the learning curves for lowest parameters values, shows that

around 75 epochs the MAE and RMSE values stop present a significant decrease, figures E.9 and E.11

shows.

Using the highest values, the number of epochs from which the errors stop decreasing is around 200,

as presented in the figures E.10 and E.12.

Once analyzed all the scenarios, the extreme values show that the higher epochs value register (to

which the MAE and RMSE values stop decrease significantly) is 200. Hence, it is possible to conclude that

this number will be used to tune the model and deploy the model.
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F. Appendix showing the process to find the

ideal number of epochs for UV prediction

using LSTMs

In the UV index LSTM prediction were used curves from the third iteration of the cross-validation process

to create the learning curves. Here, were only evaluated curves using the RMSE as a metric. The figure

F.1 and F.2 shows that curves.

Activation function - Rectified Linear (’relu’)

Lowest

Figure F.1: Learning curve, LSTM UV prediction, for lowest values-relu.

Highest

Figure F.2: Learning curve, LSTM UV prediction, for highest values-relu.

Analyzing both curves is possible to conclude that, for the lowest parameters, the value from which

the RMSE value starts to stabilize is 20 epochs. Meanwhile, for the higher parameters, the curve is a bit

inconclusive.
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APPENDIX F. APPENDIX SHOWING THE PROCESS TO FIND THE IDEAL NUMBER OF EPOCHS FOR UV
PREDICTION USING LSTMS

The following figures (F.3 and F.4) show the process using the “Tanh” function.

Activation function - Tanh

Lowest

Figure F.3: Learning curve, LSTM UV prediction, for lowest values-tanh.

Highest

Figure F.4: Learning curve, LSTM UV prediction, for highest values-tanh.

The curves show, for the lowest parameters, a establish from between 100 and 200 epochs. However,

for the highest parameters, the curve presents a stabilization around the 10 epochs, showing very small

errors.
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APPENDIX F. APPENDIX SHOWING THE PROCESS TO FIND THE IDEAL NUMBER OF EPOCHS FOR UV
PREDICTION USING LSTMS

The figure F.5 and F.6 shows the process using the sigmoid function.

Activation function - Sigmoid

Lowest

Figure F.5: Learning curve, LSTM UV prediction, for lowest values-sigmoid.

Highest

Figure F.6: Learning curve, LSTM UV prediction, for highest values-sigmoid.

Analyzing the curves, for the lowest parameters the curve shows stabilization around 50 epochs.

Further, for the highest, the stabilization is around 40 epochs.

Finally, as a conclusion the optimal number to train the LSTM model, for the UV prediction , is around

150 epochs.
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G. Appendix showing the process to find the

ideal number of epochs for CO predic-

tion using LSTMs

To figure out the ideal number of epochs for the carbon monoxide prediction was used, also, a set of

curves, using the RMSE as an evaluation metric.

First, using the “relu” activation function, were generated the curves from the figure G.1 and G.2.

Activation function - Rectified Linear (’relu’)

Lowest

Figure G.1: Learning curve, LSTM CO prediction, for lowest values-relu.

Highest

Figure G.2: Learning curve, LSTM CO prediction, for highest values-relu.

Analyzing the curves it is possible to conclude several aspects. For the lowest values, the number of

epochs from which starts the stabilization is between 100 and 200. On the other hand, for the highest

values, the curve is inconclusive.
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APPENDIX G. APPENDIX SHOWING THE PROCESS TO FIND THE IDEAL NUMBER OF EPOCHS FOR CO
PREDICTION USING LSTMS

The following figures (G.3 and G.4) show the curves resulted using the “tanh” activation function.

Activation function - Tanh

Lowest

Figure G.3: Learning curve, LSTM CO prediction, for lowest values-tanh.

Highest

Figure G.4: Learning curve, LSTM CO prediction, for highest values-tanh.

For the lowest values, the RMSE start stops vary significantly around 100 epochs. For the highest ones,

this stabilization occurs around 30 epochs.
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APPENDIX G. APPENDIX SHOWING THE PROCESS TO FIND THE IDEAL NUMBER OF EPOCHS FOR CO
PREDICTION USING LSTMS

Last, using the sigmoid activation function resulted the curves from the figure G.5 and figure G.6.

Here, is shown the process for the lowest and higher parameters combinations,also.

Activation function - Sigmoid

Lowest

Figure G.5: Learning curve, LSTM CO prediction, for lowest values-sigmoid.

Highest

Figure G.6: Learning curve, LSTM CO prediction, for highest values-sigmoid.

For the lowest parameters, the RMSE stabilizes around 60 epochs. Further, analyzing the curve for the

highest values, it is possible to conclude that this stabilization occurs about the 40 epochs.

Finally, the number of epochs considered enough to train the LSTM model ( regarding the Carbon

Monoxide prediction) is 150 epochs.
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H. Appendix showing the process to find the

number of epochs forwater pH usingMLPs

To the water pH prediction, the number of epochs is defining, using the MLP regression model. The

figure H.1 and H.2, shows the learning curve, using the MAE value to the lowest and highest values,

respectively. At the same time, the figure H.3 ad H.4 show the Learning curve, using the RMSE value, for

the lowest and higher values. All of this using the ’relu’ activation function.

Activation function - Rectified Linear (’relu’)
Lowest Highest

Figure H.1: Learning curve, regression water pH
prediction, for lowest values, MAE value-relu.

Figure H.2: Learning curve, regression water pH
prediction, for highest values, MAE value-relu.

Figure H.3: Learning curve, regression water pH
prediction, for lowest values, RMSE value-relu.

Figure H.4: Learning curve, regression water pH
prediction, for highest values, RMSE value-relu.
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Analyzing the curve, it is possible to conclude that for the lowest parameter values, the model behaves

similarly for both metrics occurring the same to the highest parameters. For the lowest parameters, the

number of epochs from which the value of the metrics stops to vary significantly is around 200 epochs. For

the highest parameter values, the metrics stop decreasing very soon, that is, for reduced epochs values.

The figure H.5, H.6, H.7 and H.8, shows the learning curves using MEAN and RMSE, for the lowest

and highest combinations of parameters, respectively, using the ’Tanh’ activation function.

Activation function - Tanh

Lowest Highest

Figure H.5: Learning curve, regression water pH
prediction, for lowest values, MAE value-tanh.

Figure H.6: Learning curve, regression water pH
prediction, for highest values, MAE value-tanh.

Figure H.7: Learning curve, regression water pH
prediction, for lowest values, RMSE value-tanh.

Figure H.8: Learning curve, regression water pH
prediction, for highest values, RMSE value-tanh.

Analyzing the curves, for the lowest values of parameters, the number of epochs considering ideal is

around 150 epochs. However, in for the highest values, the graphs are inconclusive, once the MAE and

the RMSE show a high variation over epochs mainly for the validation data, here, the test dataset.
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The graphs H.9, H.10, H.11, and H.12 show the same process explained before, using the sigmoid

activation function.

Activation function - Sigmoid

Lowest Highest

Figure H.9: Learning curve, regression water
pH prediction, for lowest values, MAE value-
sigmoid.

Figure H.10: Learning curve, regression water
pH prediction, for highest values, MAE value-
sigmoid.

Figure H.11: Learning curve, regression water
pH prediction, for lowest values, RMSE value-
sigmoid.

Figure H.12: Learning curve, regression water
pH prediction, for highest values, RMSE value-
sigmoid.

Here, for the lowest values of parameters, the MAE and RMSE values reach stabilized values fast. The

same happens with the highest values, the number of epochs from which the value stop vary is around

10.

Finally, it is possible to conclude that the number ideal to train the model is 200 epochs.
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