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Abstract
The growth experienced by the internet in the past few years as lead to an increased amount of
available data and knowledge obtained from said data. However most of this knowledge is lost due
to the lack of associated semantics making the task of interpreting data very hard to computers.

To counter this, ontologies provide a extremely solid way to represent data and automatically
derive knowledge from it.

In this article we’ll present the work being developed with the aim to store and explore ontologies
in Neo4J. In order to achieve this a web frontend was developed, integrating a SPARQL to CYPHER
translator to allow users to query stored ontologies using SPARQL. This translator and its code
generation is the main subject of this paper.
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1 Introduction

With the rise of the internet of things and the growing interconnectivity of our world the
necessity to store data in an organised and related faction as well as associating semantic
metadata to gather useful knowledge from it becomes paramount.

As such ontologies, formal specification of knowledge understandable by both machines
and humans, become more relevant and worthy of study. In particular web ontologies based
in RDF, RDFS and OWL.

Neo4J is a well known graph database with an attached query language to explore them:
CYPHER. While a graph is not an ontology, an ontology can be represented in a graph:
RDF graphs are an example of this. The challenge in this work is to use CYPHER to query
not just a graph but a knowledge graph. We will describe the work made in order to enable
Neo4J to use SPARQL, a query language for ontologies, explaining the steps necessary to
translate queries from SPARQL to CYPHER.

In the following sections we give an introduction to graph databases and graph/ontology
query languages. We present the work being carried out and we finish with some conclusions
and ideas for future work.

2 Graph Databases

Graph databases are purpose-built to store and navigate relationships. Relationships are
first-class citizens in graph databases, and most of the value of graph databases is derived
from these relationships.
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Graph databases use nodes to store data entities, and edges to store relationships between
entities. An edge always has a start node, end node, type, and direction, and an edge can
describe parent-child relationships, actions, ownership, and the like. There is no limit to the
number and kind of relationships a node can have.

A graph in a graph database can be traversed along specific edge types or across the
entire graph. In graph databases, traversing the joins or relationships is very fast because
the relationships between nodes are not calculated at query times but are persisted in
the database. Graph databases have advantages for use cases such as social networking,
recommendation engines, and fraud detection, when you need to create relationships between
data and quickly query these relationships.

In this work we are using a graph database, Neo4J, to store OWL ontologies.
An OWL ontology can be serialized as a list of triples. Each triple having the form

(subject, predicate, object) in which subject is an element of the ontology, predicate represents
either a property of the element or a relationship with another element(dependant on whether
the object is a value or an element of the ontology), and object stands for a scalar value or
another element’s identifier.

We can map subjects and objects to nodes and predicates to edges, thus allowing us to
use a graph database to store an ontology.

2.1 Neo4J
Neo4j[6] is an open-source NoSQL native graph database that utilises a generic graph
structure to store it’s data.

Some of its core features are constant time on depth and breadth traversal and a flexible
schema that can be changed at any time. Furthermore it’s easy to learn and use thanks to
its simple and intuitive UI and language used.

Neo4J stores its data using a generic graph structure: each element is a node that can have
properties associated and be related to other elements. These relations can have properties
associated with them besides their type and, as such, be considered a special kind of node in
the database

To explore stored data, Neo4J uses CYPHER, a declarative query language similar to
SQL but optimised for graphs. Unlike SPARQL, CYPHER deals with a generic graph
structure(as opposed to an ontology), and as such is a lower level query language if we try to
query an ontology.

Furthermore, Neo4J does not support inference (since a graph does not have axioms),
and while there are attempts at creating one(like GraphScale[3]) there is currently no fully
realised project to resolve this lack.

Up to the version 3 (the latest release was version 4) Neo4J only permitted the creation
of one database per installation,a handicap that was solved in the latest version.

2.1.1 Neosemantics
A very important note to make before we move on is that due to not supporting SPARQL
and using a generic graph schema, Neo4j does not contain, by default, any way of importing
RDF ontologies into it’s databases.

To solve this we are using an extension called Neosemantics[7], under the Neo4J Labs[4]
project that aims to extend Neo4J capabilities. This extension provides a way to manipulate
ontologies using Neo4J through a simple mapping between the ontology and the graph
schema.
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2.2 GraphDB
GraphDb [2] is an open-source NoSQL graph database that stores its data using RDF graphs.

Some of its core features are native ontology manipulation tools, multiple ontology
management, direct query creation and results using a basic Web text editor and a powerful
inference engine capable of fully taking advantage of the knowledge gathering capabilities of
ontology stored data.

Unlike Neo4J, GraphDB is built specifically for ontologies , and as such provides far
more tools for its manipulation (that could not exist in Neo4J due to the more general data
schema it employs) and is far more e�cient at processing them.

Furthermore it fully implements SPARQL, a query language designed by W3C and
becoming the standard in quering ontologies, giving it a far more robust language to deal
with the type of data it stores than the more general CYPHER language.

3 Ontology Query Languages

Both Neo4J and GraphDB allow users to interact directly with their databases using queries,
written in a given query language(CYPHER and SPARQL, respectively).

Despite having very distinct syntaxes, the actions that they perform over the database
are so similar that a partial mapping has already been created as part of this work.

3.1 CYPHER
CYPHER [1] is a declarative query language inspired by SQL and designed for querying,
updating and administering graph databases. It is used almost exclusively in Neo4J.

Many of its keywords are inspired by SQL, with pattern matching functionnalities similar
to SPARQL, as well as other minor inspirations(such as Python list semantics and query
structure that mimics English prose).

The structure of the language is borrowed from SQL, with queries being built up from
various clauses that are chained together and feed intermediate results between themselves.

Two simple CYPHER query examples are provided below.

Query C1 – returns every node in the database that contains a property code with value
200:

match(n) where n.code = 200 return n

Query C2 – returns all nodes in the database that contain a relation hasFather with another
node in the database:

match(n)-[r:hasFather]->(m) return n

3.2 SPARQL
SPARQL [14] is a W3C standard language for the manipulation and querying of RDF graphs.

It fully utilises set theory in it’s evaluation strategy[12] and provides an extremely solid
standard language, as noted by its generalised use anywhere where RDF is involved.

There are four type of SPARQL queries:
SELECT – Select queries are the most used type of SPARQL queries, they are used to

retrieve information from RDF graphs;
ASK – Ask queries are boolean, their only purpose is to check if some triple is in the graph;
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CONSTRUCT – Construct queries are a powerful tool and can serve multiple purposes.
They are composed by two parts, a SELECT clause and a CONSTRUCT clause. SELECT
clause enables us to identify specific situations in the graph and the CONSTRUCT clause
enables us to program the generation of new triples;

INSERT and DELETE – INSERT and DELETE queries enable us to implement transactions
on the ontology. They were added to SPARQL in the last revision.

In the following examples, the same two queries previously coded in CYPHER are now
presented in SPARQL syntax.

Query S1 – returns every node in the database that contains a property code with value
200:

select ?s where { ?s :code "200" }

Query S2 – returns all nodes (URIs) in the database that contain a relation hasFather
with another node in the database:

select ?son where { ?son :hasFather ?o }

4 From SPARQL to CYPHER, featuring PEG.js

In order to achieve our goals we must create a way to automatically translate from SPARQL
to CYPHER. To do this, we need a SPARQL grammar that we will decorate with semantic
actions to translate between the 2 languages.

To specify those semantic actions we must look at how ontology data is stored in Neo4J
and see how it can be translated into CYPHER from a SPARQL query.

We can observe that Neosemantics stores data from an ontology using a very simple
method[8]: for each triple it creates a node for the subject if it does not exist already(using
its uri as an identifier), and then checks if the object is an URI or not. If it is, it creates a
node with that URI (if it does not exist already) and then creates a relation between the
subject node and the object node, where the relation type equals the URI of the predicate.
If it isn’t, it creates a node with that URI (if it does not exist already) and then adds a
property to that node whose name is the predicate and whose value is the object. This
process is repeated for every triple in the ontology.

With this knowledge we can already observe that a query to obtain data from a given
element of the ontology will require a match with a node that contains the specific uri in its
properties. In the same vein, we can see that due to the way that properties and relations
work in Neo4J we will need to find a way to di�erentiate a property from a relation and
gather the data accordingly.

To do all this, we first need a way to create a parsing grammar that is compatible
with Javascript (in order to be easily integrated in our application). We have decided to
use PEG.js[9], a parser generator for Javascript that provides fast parsing and good error
handling, mainly due to its easiness of integration with other tools or apps.

With this tool, an initial version of a grammar that translates SPARQL into CYPHER
has been developed. This translation grammar is based upon the W3C documentation that
describes the syntax rules for the SPARQL language[13](modified to work with PEG.js’s way
of parsing) with added semantic actions that allow it to transform valid SPARQL queries
into valid CYPHER queries.
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4.1 Query translation example in depth
To give an idea of how translation works, we present the following example.

Let’s take the following query in SPARQL and translate it using our grammar:

Query S3 – returns all pairs (elem, father) where father is the URI of every element with
a : hasFather relation with the subject with id http : //www.myontology.com#elem.
We can see the declaration of a namespace as default:

prefix : <http://www.my_ontology.com#>
select * where{ :elem :hasFather ?father }

Before going into the translation note that: the translation showed here had small changes
made to them that do not alter the query in any other way then to make it prettier for this
paper, namely the fact that all variables that are generated by the grammar that are not
directly related to the results we want to get use a pseudo RNG algorithm([11]) in their
names to guarantee that will never collide with user set variables.

This does, however, make them quite hard to understand in a paper. As such, they have
been altered to gV X, where X is an integer that denotes a unique internal variable.

Query C3 – query S3 translated to CYPHER by the grammar:

match(gV1) where gV1.uri ="http://www.my_ontology.com#elem"

unwind [key in keys(gV1) where key = "http://www.my_ontology.com#hasFather" | [
gV1[key],null,key]] + [(gV1)-[gV2]->(customVar_father) where type(gV2) = "
http://www.my_ontology.com#hasFather" | [customVar_father.uri,
customVar_father,type(gV2)]] as gV3

with *,gV3[0] as father,gV3[1] as customVar_father

with father where (father is not null)
RETURN *

The first line of the translation contains a match with a node that contains a specific
uri in the ontology(in this example,< http : //www.my_ontology.com#elem >). This is
necessary since in order to obtain the triples associated to a given element of the ontology we
must first match with it in the database. As such, this first line corresponds to us matching
with : elem in the SPARQL query.

After matching with our subject, we have to obtain the desired object that is associated
to our subject and the predicate : hasFather(http : //www.my_ontology.com#hasFather).
To do that, we must search for the predicates and objects associated to our subject node
and find the ones that have a predicate : hasFather, and to do that we must use arrays and
unwinds inside the query.

This unwind expression and the corresponding with expression is complex, so we’ll break
it down in small parts:
(1) [key in keys(gV1) where key=

“http://www.my_ontology.com#hasFather” | [gV1[key],null,key]] – with this
expression we gather all the information about triples from the ontology that are
properties of our subject that follow the conditions we want (in this case, the predicate
must have a value: : hasFather).
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The gathering of the properties is done by
key in keys(gV1) where key=
“http://www.my_ontology.com#hasFather”
and the return of the data is done by
[gV1[key],null,key]
The reason we return a null value has to do with the fact we may need to join the results
of this search in the properties with the search in the relations, and that search returns
3 results, only one is relevant to the other search.

(2) [(gV1)-[gV2]->(customVar_father) where
type(gV2)=“http://www.my_ontology.com#hasFather”
| [customVar_father.uri,customVar_father,type(gV2)]] – with this expression
we gather all the information about triples from the ontology that are relations of our
subject that follow the conditions we want.
The gathering of the relations is done by
(gV1)-[gV2]->(customVar_father) where
type(gV2)=“http://www.my_ontology.com#hasFather”
and the return of the data is done by
[customVar_father.uri,customVar_father,type(gV2)]
Unlike in the properties, we have to search the relations and the nodes that are associated
to those relations. Because of these nodes, our return has another value to return: the
node reference itself. The reason we must return this is because we might use this
variable again down the line in the query, and if we do that then we can access the node
directly without searching the database again, saving us a lot of time in processing the
query.

(3) (1) + (2) – this expression allows us to gather results from all the triples that our
subject has and join them in a single array of results.
The reason we must use this in this case as to do with the fact that since the grammar
does not know if : hasFather denotes a relationship or a property name we cannot limit
our search to either set of elements, and must search both of them.
This is not always the case. If the object is a literal value, this expression will be (1),
and if the object is an uri this expression will be (2).

(4) unwind (3) as gV3 – with (3) processed we now have an array of data that has the
data we want to gather. However, it has an array form, and as such is not easy to
manipulate or reference if we later need the data that we have gathered.
To make this data available, we must process element by element of the array, and we
use the unwind command to do that.

(5) with *,gV3[0] as father,gV3[1] as customVar_father – finally, we return the data
we have gathered using appropriate names to easily reference them later.
Since we don’t care about the predicate value(since it’s a fixed value and thus not
returned by the query) we only need to concern ourselves with 2 values: the value that
corresponds to the ?father variable and the node that corresponds to the element of
that variable(if it exists).
As such, we return the first value as father and the node value as customV ar_father.

Finally, since we don’t have to process any other triples we reach the query data return,
last 3 lines of the query. In this data return we catch only the data we have captured (in
this case, the father value), then we check if it is not null (since we don’t have the optional
keyword working yet in the translation) and finally we return what we have been asked to
return(in this case its a RETURN * since the SPARQL query is a select *).
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4.2 Translated types of queries

At this moment, the grammar can translate a SPARQL portion into CYPHER:

prefixes – in SPARQL a PREFIX statement defines an alias for the ontology namespace, it
has the form: <prefix : namespace>. This prevents the need to write down the ontology
full URI whenever we want to reference a subject or a property from that ontology. When
the name that precedes the “:” is empty then we are in a special case, we are declaring
the default namespace that will be associated with the empty prefix;

same subject or di�erent subject triples – SPARQL uses triples in order to make matches
with the graph data. It can make multiple of these matches in a single query, through
the use of “;” to fix the subject between triples and the use of “.” to denote completely
di�erent triples that should be matched. This allows us to chain them together to obtain
more refined data, as well as extract more specific knowledge from the database;

filter expressions – SPARQL FILTER statement restricts the query results, only triples that
satisfy the predicate inside FILTER clause are returned as result.
Unlike the previous, only part of the filter expression has been dealt with by the grammar
due to its complexity. As of now, only basic mathematical and logical expressions are
working, as well as the EXISTS keyword;

limit and order by – SPARQL LIMIT expression limits the amount of returned results.
SPARQL ORDER BY expression orders the results of the query by one of the columns
present in the result;

ask query – a SPARQL ASK query is used to determine if a given triple is present in the
ontology;

describe query – a SPARQL DESCRIBE query is used to gather every triple associated
with the elements that it matches with.
A note about the translation grammar is that due to the complexity of the operation
it does not directly do the describe operation. Instead it captures the elements that
the query should capture and then the result from the query must be used with the
neosemantics export operation using CYPHER query to obtain the desired result.

5 Grammar validation

In order to validate our grammar we have choosen 2 base ontologies for our tests: one that
contains information about the periodic table and another that contains information about
the pokedex (an encyclopedia for the Pokemon game franchise).

Both ontologies were imported to GraphDB and Neo4J after being processed through the
use of a reasoner in protégé([10]). This was done so that any triples that arise from the rules
laid out by the ontology are explicitly stated inside the ontology we are importing.

Next, we created numerous queries in SPARQL testing di�erent types of queries.
After that we had to query the databases. The method used to do this was: directly

make the query to the database in GraphDB, use the grammar to translate it into CYPHER
and then query Neo4J with the translated query.

While numerous queries were made, we show the results of one of them made to the
periodic table dataset, specifically a query that is used to obtain all triples associated to a
given subject of the ontology “give me anything you know about Carbon” :
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Query S4 – returns all predicates and object that have the subject
<http://www.daml.org/2003/01/periodictable/PeriodicTable#C>:

PREFIX : <http://www.daml.org/2003/01/periodictable/PeriodicTable#>
select * where { :C ?p ?o . }
order by ?p

Query C4 – S4 translation to CYPHER

match(gV1) where gV1.uri ="http://www.daml.org/2003/01/periodictable/
PeriodicTable#C"

unwind [key in keys(gV1) | [gV1[key],null,key]] + [(gV1)-[gV2]->(customVar_o) |
[customVar_o.uri,customVar_o,type(gV2)]] as gV3

with *,gV3[0] as o,gV3[1] as customVar_o,gV3[2] as p
with p,o
where (p is not null) and (o is not null)
RETURN *
ORDER BY p

After making these queries to the respective platforms, we obtained the result tables
shown in Figure 1.

Result tables show that results are similar between both result sets. However, there are a
couple di�erences, namely:

Cypher’s results have an additional row. This row contains the predicate “uri” and
the object “:C”. The reason this row exists is due to how neosemantics handles uri’s.
In order to guarantee that every uri is unique inside the ontology being imported,
neosemantics requires the addition of a uniqueness constraint([5]). In order for this to
work, neosemantics adds an uri field to every element of the ontology it imports, serving
as an identifier to what that element is supposed to represent.
Values in SPARQL that have a type attached to them have that type disappear and
are imported as literal values. The reason for this is because of how neosemantics deals
with custom data types versus the default data types. If the datatype is default and
during the setup of the database we choose to allow custom data types, then they will
be appended to the end of the value, working the same way as you’d expect them to
in GraphDB. The reason it does not work like that is that neosemantics import only
does this for custom data types, i.e., data types that are not already implemented in
Neo4J. For those, it simply imports the value into the dataset without the tag at the
end. Unfortunately, despite Neo4J fully implements floating point numbers, the import
process seems to simplify them into integers, and thus the di�erences between the results.

6 Conclusion

Translating SPARQL into CYPHER is a complex process due to di�erences both in the
languages syntax and how the data is stored in the associated platforms, making a full
correlation between the 2 extremely di�cult.

Throughout this article we have exposed part of that process, from explaining the engines
that operate with those languages to the specifics of each one, as well as showing the
translation capabilities of the parser implemented so far, as well as showing part of the
validation process for the developed grammar.
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p o
:atomicNumber “6”··xsd:integer
:atomicWeight “12.0107”··xsd:float
:block :p-block
:casRegistryID 7440-44-0
:classification :Non-metallic
:color graphite is black, diamond is colourless
:group :group_14
:name carbon
:period :period_2
:standardState :solid
:symbol C
rdf:type :Element
rdf:type owl:NamedIndividual

(a) Result table for query in GraphDB.

p o
:atomicNumber 6
:atomicWeight 12
:block :p-block
:casRegistryID 7440-44-0
:classification :Non-metallic
:color graphite is black, diamond is colourless
:group :group_14
:name carbon
:period :period_2
:standardState :solid
:symbol C
rdf:type :Element
rdf:type owl:NamedIndividual
uri :C

(b) Result table for query in Neo4J.

Figure 1 Result tables.
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