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Abstract-This paper presents a TDC architecture based on a 

gray code oscillator with improved linearity, for FPGA 
implementations. The proposed architecture introduces manual 
routing as a method to improve the TDC linearity and precision, 
by controlling the gray code oscillator Datapath, which also 
reduces the need for calibration mechanisms. Furthermore, the 
proposed manual routing procedure improves the performance 
homogeneity across multiple TDC channels, enabling the use of 
the same calibration module across multiple channels, if further 
improved precision is required. The proposed TDC channel uses 
only 16 FPGA logic resources (considering the Xilinx 7 series 
platform), making it suitable for applications where a large 
number of measurement channels are required. To validate the 
proposed architecture and routing procedure, two channels were 
integrated with a coarse counter, a FIFO memory and an AXI 
interface, to assemble the pulse measurement unit. A comparison 
between the default routing implementation and the proposed 
manual routing has been performed, shown an improvement of 
27% on the overall TDC single-shot precision. The implemented 
TDC achieved a 380 ps RMS resolution, a maximum DNL of 0.38 
LSB and a peak-to-peak INL of 0.69 LSB, corresponding to a 
21.7% and 70.4% improvement, respectively, when compared to 
the default design approach. 

Keywords: Time-to-Digital Converters (TDC), Field-
Programmable Gate Array (FPGA), Time Interval Measurement, 
Gray Code Oscillator. 

I.INTRODUCTION 
The research on Time-to-Digital Converters (TDC) 

implemented in Field-Programmable Gate Arrays (FPGA) 
has gained increased relevance over the last few years [1], [2]. 
FPGA-based TDCs have been highly utilized in physics 
experiments [3]–[5] and metrology equipment [6]. The recent 
FPGA technology developments allowed these systems to 
achieve high resolutions and precision, capable of competing 
with the ones reported in Application Specific Integrated 
Circuits (ASIC) implementations [7]–[9]. 

Modern applications concerning time-of-flight (ToF) 
measurement require not only high performance but also low 
resource and power consumption. Applications targeting 
mobile or wearable devices are examples where area and 
power concerns are prioritized over resolution. System’s 
requiring multiple ToF measurement channels are another 
example benefiting from low resource and power 
consumption TDC implementations. 

Light Detection And Ranging (LiDAR) sensors, to name 
one of such applications, have seen an increasingly research 
popularity, due to the industry efforts on achieving the 
autonomous vehicle, in which LiDAR is considered as a Key 
enabler [10]–[12]. Moreover, LiDAR sensors are still under 
exploratory research [11]. Therefore, prototyping platforms 
like FPGA are attractive for implementing the LiDAR’s 

digital building modules, in which the ToF measurement unit 
is included. Although the requirements for LiDAR sensors are 
still not completely defined and under development, 
according to [13], the trend points to a minimum distance 
depth resolution of 20 cm, which corresponds to a time 
interval equal to 1.33 ns, and a maximum range of 200 meters 
(1.34 μs). Following the classification presented in [13] and 
[11] regarding the currently explored LiDAR technologies, 
one can have scanning or staring LiDAR sensors. Staring 
LiDAR (FLASH and fixed multi-beam) have no moving part 
and demand for multiple receivers. Scanning LiDAR based 
on MEMS micro-mirrors can also require multiple receivers, 
when a 1-D scanning approach is adopted [13]. For such 
scenarios, multiple ToF measurement channels must be 
implemented. Moreover, due to the LiDAR’s time constraints 
for frame processing and presentation to allow extra timing 
slack to be used in the post-processing and point-cloud frame 
handling, multiple ToF measurement units per receiver can be 
implemented. This allows an arithmetic average to be 
performed based on multiple parallel measurements of the 
same receiver, to increase the precision and the entire 
system’s reliability. Therefore, low resource consumption 
TDCs to measure the ToF on multi-beam LiDAR based 
sensors are a must. 

Regarding FPGA-based ToF measurement systems, three 
main TDC architectures can be identified: Tapped-Delay 
Lines (TDL); Phased Clocks; and Differential TDCs. 

TDLs are by far the most studied architecture, with 
numerous works reporting resolutions better than 20 ps [8], 
[14]–[16]. The main drawback of TDLs is its linearity, which 
forces the system to be implemented with a calibration circuit 
[15], increasing the system resource usage and power 
consumption. Phased clocks offer a simpler design but lower 
resolutions in the range of a few hundreds of picoseconds 
[17]–[20]. Differential TDCs, although achieving greater 
linearity, have the most complex design and higher 
conversion times, resulting in high system deadtime [21], 
[22]. 

Recently a novel TDC architecture based on a gray code 
oscillator was introduced by Wu and Xu [23]. The 
architecture design focused on low power consumption and 
low resource usage, while offering high scalability and 
portability. The main drawback of this architecture is the 
mean bin size ranging from 256 ps to 271 ps, which is worse 
than the typical resolution reported using TDLs (considering 
the same FPGA family). Nevertheless, this solution is a great 
candidate for the aforementioned LiDAR sensor applications. 

In this paper, an improved version of the gray-code 
oscillator TDC is proposed, based on the control of the gray-
code counter’s Datapath routing, with some small changes on 
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the TDC channel. The proposed approach largely improves 
the TDC linearity, as well as the architecture’s scalability, 
since the routing can be replicated to different channels 
without modifications, achieving this way a homogenized 
performance across all implemented channels. These 
improvements minimize the need for calibration further 
reducing the area and power consumption of the TDC 
architecture. 

The remaining of this paper is structured as follows: 
Section II presents the proposed gray-code oscillator TDC 
architecture and its operation principle. In Section III the 
proposed approach and implementation process, for linearity 
and performance homogenization improvement, are 
explained. Section IV presents the obtained experimental 
results. The obtained results are also compared to the ones 
presented in [23] to prove the relevance and impact of the 
presented approach. Finally, Section V presents the paper 
main conclusions and future work perspectives. 

II.GRAY CODE ARCHITECTURE 
The reference gray code oscillator architecture was first 

proposed in [23], reporting a mean bin size of 256 ps and 271 
ps, for the two TDC channels implemented, using 8-LUTs and 
8 flip-flops per channel on a Xilinx Kintex-7. Typically, a 
counter is composed by a combinatorial stage, which 
calculates the next value in the counting schema, and by a 
sampling stage, responsible for latching the value of the 
counter at each clock cycle, assuring a stable value for the 
combinatorial stage, so that the next value can be correctly 
calculated and latched in the next clock cycle. This is of 
extreme importance for binary counters in which multiple bits 
can change from one counting value to the next, activating 
multiple combinatorial paths at the same time. However, this 
is not the case for the gray code sequence. In the original 
Gray-code, only one-bit changes from one state to the next 
one. Thus, the Gray-code can be configured in a loop, without 
the latching stage, since the risk of missing codes or random 
counting sequence is not an issue. This enables the 
implementation of a counter with a resolution that is no longer 
limited by the system clock used to sample the state of the 
counter. 

According to Xilinx documentation [24], on the 7-series 
FPGAs there are available 6-input LUTs. These LUTs are the 
logic elements used to implement combinatorial functions on 
FPGAs. Therefore, in order to be capable of implementing a 
function in a single LUT, no more than 6 variables can be 
used, limiting the maximum number of bits that the gray code 
counter can have to 6. However, since an enable signal is 
required, the gray code counter gets limited to 5 bits, resulting 
in a maximum of 32 interpolation steps. The gray code 
counter presented in [23] used a 5-bit reflected binary code 
(RBC) schema. The same schema will be used in the work 
presented here. 

The block diagram of the proposed system is depicted in 
Fig. 1. In order to increase the proposed TDC architecture 
dynamic range, a coarse counter was implemented using a 16-
bit binary counter incremented at each system clock tick. The 
gray code counter is used to implement the TDC Channel 
(start and stop) and gives the system fine measurement (time 
interval between system clock ticks). In order to reduce power 
consumption, an input stage was implemented to guarantee 
that the gray counters are not enabled for more than one 
system clock cycle. Both start and stop TDC Channels are 

 
Fig. 1. TDC IP block diagram 

identical. The Merge block concatenates the values from the 
coarse measurement and both TDC channels into a single 
32-bit value and generates the control signals to store that data 
on a FIFO memory. Finally, the interface block implements 
an AXI-4 interconnection, for easy integration with Arm 
processors. The proposed schema allows for precise time 
interval measurement of a pulse (from its rise edge to its 
falling edge). 

The main difference of the architecture proposed here 
when compared to the standard gray code oscillator is the 
method used to extend the fine measurement stage range. In 
[23] the TDC channel was extended using a 3-bit cycle 
counter, which counts the number of times the gray code 
counter reaches overflow. In order to reduce the fine 
measurement stage complexity, an implementation with only 
the 5-bit gray code is proposed in this work, being the 
dynamic range extended by an external binary counter. 
Although this decision forces the use of a faster clock, which 
can lead to higher power consumption, it also enables to save 
3 LUTs, 3 flipflops and 1 carry block per TDC channel. The 
architecture of the proposed fine measurement stage is 
presented in Fig. 2. 

The input time interval to be measured (denoted as hit) is 
filtered by the input stage and used to enable the gray counter 
of the fine measurement stage. The fine measurement stage is 
composed by the LUTs that generate the gray code 
sequencing, by a first set of registers, located in the same slice 
as the LUTs, and by a second set of registers, enabled only 
during one clock cycle after the arrival of a valid hit signal, 
that stores the fine measurement value for further processing. 
The store signal is used to enable the second set of registers, 
to reset the input stage and to sample the value of the coarse 
measurement stage. This allows to synchronize both counting 
stages, avoiding the risk of metastability. 

The proposed system typical operation, during a 
measurement, is depicted in the waveform diagram of Fig. 3. 
The system’s state machines are presented in Fig. 4. When a 
rise edge on the hit signal is detected, the start input stage 
generates the enable signal to the start channel, which begins 
to sequence through the gray code until the arrival of the next 
system clock positive edge. When the start_sampled signal 
changes to a value different from zero, an enable signal is 
generated internally to the start_store registers and to the 
registers responsible for sampling the coarse counter. 
Analogously, when the fall edge of the hit signal is detected 
the stop input stage generates the enable signal for the stop 
channel and after being sampled for the system clock, an 
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Fig. 2. Gray code oscillator TDC channel schematic 

enable signal for the stop_store registers and for the coarse 
counter is generated. The final measurement value is 
composed by a coarse value (obtained by subtracting the two 
sampled coarse values at stop and start events) and by the two 
fine measurement values sampled from the gray code TDCs. 
A count reset signal is generated at the end of each conversion 
(after writing to the FIFO memory) to signal that the TDC is 
ready for a new measurement. 

III.DESIGN IMPROVEMENT 
From the analysis of the results reported in [23] two major 

conclusions can be drawn: first, the linearity of the TDC 
channel is highly dependent on the routing of the gray codes 
counter Datapath. According to Xilinx documentation [24], 
the propagation delay of a LUT is independent of the truth 
table that it is implementing. Thus, since differences as large 
as of 400 ps on the TDC channel steps’ delay have been 
reported in [23], the routing resources must be the cause for 
such non-linearities. Moreover, contrarily to Carry chains, 
LUTs do not have a dedicated routing path, largely increasing 
the influence of the TDC routing scheme; Secondly, the 
positioning of the TDC has direct influence on the channel 
performance and characteristics, as reported in [23], where 
two similar TDC channels present delay differences larger 
than 200 ps on the same step. 

The work by Chaberski et al. [25] proposed a method to 
improve the linearity of a TDL implemented using Carry 
chains, by regulating the wire load at each step. A different 
approach has been reported by Zhang et al. [26], 
demonstrating that the routing resources on a FPGA can be 
used as delay elements. Thus, one can state that the 
performance of the architecture presented in [23] can be 
improved if the routing is carefully planned. This Section will 

analyze and discuss the implementation process of the 
proposed gray code architecture in order to achieve better 
linearity performance and superior homogeneity between 
different TDC channels. 

A. Gray code Oscillator 
The 5-bit gray counter TDC channel has a maximum of 32 

interpolation steps. Considering an average step delay of 250 
ps for a 7-Series Xilinx FPGA (based on the results reported 
in [23]), a maximum time interval of 8 ns can be covered by 
the TDC channel. Therefore, a system clock of at least 125 
MHz must be used. To validate the step propagation delay, a 
preliminary implementation of one channel was made using a 
200 MHz system clock and a code density test was performed. 
For the FPGA used in this work, a Xilinx ZYBO Z7010, an 
average step delay of 308 ps was obtained. Thus, in order to 
reduce power consumption, for the final system 
implementation, the system clock was adjusted to 125 MHz, 
since for the average step delay obtained, the 32 TDC channel 
steps can cover more than one clock period. 

B. Gary’s Counter oscillator Datapath Analysis 
Even though the truth table being implemented by a LUT 

does not affect its propagation delay [24], it does not hold true 
when considering the LUT’s fanout. Unfortunately, the 
propagation delays obtained from the simulation tool are 
based on the best- or worst-case scenarios, making it harder 
to predict the timings at the typical operation point. Although 
not totally accurate, in this work the authors assumed that by 
securing a uniform routing delay on the worst-case scenario, 
at typical operation conditions, the delays’ deviations would 
stay similar. Moreover, as the TDC channel can be confined 
to a single Configurable Logic Blocks (CLB), the voltage and 
temperature conditions should be similar in all the 5 LUTs 
used to build the gray code oscillator. Therefore, exploring the 
routing possibilities during the layout of the gray code TDC 
may lead to an implementation with higher linearity with no 
extra hardware cost. 

Further analysis to the pattern on the 5-bit gray code lead 
to the conclusion that only 8 out of the 24 Datapath 
connections affect the size of the steps, namely the path from 
the output of LUT0 to the input of all the other LUTs (4 
connections) and the output of all the other LUTs to the inputs 
of LUT0 (another 4 connections) (see Table I and Fig. 2). 
Only the first 17 steps are depicted in Table I, since the same 
propagation delay pattern was registered after the 16th step. 
This greatly reduces the implementation effort of the linearity 
correction through routing. 

C. Manual Routing to Control Datapath’s delay 
The manual routing process can be performed in Vivado 

design tool, using the implemented design graphical interface, 
that will create a set of physical constraints annotated in a 
XDC (Xilinx Design Constraints) file. This allows for 
different routing options to be explored in order to achieve the 
desired net delay. To be able to fix the manual routing done 
on a pure combinatorial path, first the LUTs need to be fixed 
with placement constraints and its inputs need to be locked. 
Otherwise the tool may change the order of the input ports 
from one run to the other, leading to scenarios where it is 
impossible to respect the defined routing constraints [27]. The 
lowest_net_delay option was used as the starting point for the 
manual routing implementation. The nets’ delay timings were 
annotated and are presented in TABLE II under the Automatic 
Routing column. This will ultimately result in a higher 
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average step size, but the linearity is increased (as it is 
demonstrated in Section IV-A). Therefore, manual routing 
will always be a trade-off between resolution and linearity. 
TABLE II presents the timing differences before and after the 
application of manual routing to the gray’s code oscillator 
Datapath on the stop channel (based on the worst-case timing 
models). Only the 8 previously identified paths were changed 
(marked in bold). 

D. Gray Code Counter Timing Simulation 
To test the proper behavior of the implemented 

architecture, a set of simulations were developed. The 
simulation consists of a set of hit signals generated in 
sequence at random instants. Since one of the core modules 
behavior is based on the propagation time of the FPGA logic, 
timing simulations must be performed. 

Analyzing the timing simulation results of the gray code 
oscillator start channel in detail, it is possible to verify that the 
gray sequence is being correctly generated (see Fig. 5). As 

expected, the delay of each step varies and repeats itself in the 
previously identified pattern (in Table I). Thus, if the routing 
timings (extracted from the timing reports generated by 
Vivado after completing the implementation phase) is 
subtracted to the times obtained from the simulation, the 
worst-case scenario of the LUT’s propagation delay can be 
calculated according to (1). 

 tLUTi=tPD-tROUTEi (1) 

where tLUTi is the LUT propagation delay, tROUTEi is the 
propagation delay of the LUT’s output wire to the LUT which 
will change state for the next count, and tPD is the total 
propagation delay, extracted from the simulation. 

From the simulated results, it is possible to verify that the 
routing resources appear as the main contribution for the 
delay of the counter steps, thus validating that controlling the 
routing will contribute to improve the overall linearity of the 
architecture. 

 
Fig. 3. Gray code oscillator TDC operation principle waveform 

 
Fig. 4. TDC IP state machine (Top) and start and stop gray code oscillator channels state machines (bottom) 
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TABLE I. GRAY CODE DATAPATH DELAY ANALYSIS 

Current Gray Value Next Gray Value Propagation delay 
0 0 0 0 0 0 0 0 0 1 Tphit + tpLUT0 
0 0 0 0 1 0 0 0 1 1 Tpbit0 + tpLUT1 
0 0 0 1 1 0 0 0 1 0 Tpbit1 + tpLUT0 
0 0 0 1 0 0 0 1 1 0 Tpbit0 + tpLUT2 
0 0 1 1 0 0 0 1 1 1 Tpbit2 + tpLUT0 
0 0 1 1 1 0 0 1 0 1 Tpbit0 + tpLUT1 
0 0 1 0 1 0 0 1 0 0 Tpbit1 + tpLUT0 
0 0 1 0 0 0 1 1 0 0 Tpbit0 + tpLUT3 
0 1 1 0 0 0 1 1 0 1 Tpbit3 + tpLUT0 
0 1 1 0 1 0 1 1 1 1 Tpbit0 + tpLUT1 
0 1 1 1 1 0 1 1 1 0 Tpbit1 + tpLUT0 
0 1 1 1 0 0 1 0 1 0 Tpbit0 + tpLUT2 
0 1 0 1 0 0 1 0 1 1 Tpbit2 + tpLUT0 
0 1 0 1 1 0 1 0 0 1 Tpbit0 + tpLUT1 
0 1 0 0 1 0 1 0 0 0 Tpbit1 + tpLUT0 
0 1 0 0 0 1 1 0 0 0 Tpbit0 + tpLUT4 
1 1 0 0 0 1 1 0 0 1 Tpbit1 + tpLUT0 
1 1 0 0 1 1 1 0 1 1 Tpbit0 + tpLUT1 

tpLUTx = propagation time inside LUTx from the moment its input change until its output gets updated at the input of the sampling registers; Tpbitx = 
propagation time from the output pin of the LUTx to the input pin of the next LUT to change. (x = [0-4]) 

TABLE II. ROUTING DELAYS FOR THE GRAY CODE OSCILLATOR TDC DATAPATH 

Stop 
Channel 

Automatic Routing (default) Manual Routing 
LUT4 LUT3 LUT2 LUT1 LUT0 LUT4 LUT3 LUT2 LUT1 LUT0 

bit0 664 701 696 295 - 665 691 686 876 - 
bit1 700 198 193 475 477 700 198 193 475 477 
bit2 909 730 735 1080 165 911 732 737 162 580 
bit3 394 306 307 711 709 394 306 307 711 709 
bit4 297 612 609 330 514 296 916 914 518 513 

 

 
Fig. 5. Detailed view of the gray code sequence generation and step size 

IV.EXPERIMENTAL RESULTS 
To proper test the proposed solution, it is not enough to 

compare the results obtained by the architecture proposed in 
this work with the ones presented in [23], since in different 
platforms, the logic elements propagation delay may differ, 
not allowing for a fair comparison. The proposed architecture 
was deployed in Xilinx ZYBO Z7010 development board 
using two different design flows to study the effect of routing 
on the architecture performance and the key performance 
parameters were measured for each scenario. The first design 
flow adopted was similar to the one used in [23], where only 
manual placement has been used. In the second approach, 
manual routing was applied to the proposed architecture 
implementation, and the design re-implemented with the new 
routing constraints. To validate the scalability of the method, 
the routing constraints defined for the start channel were 
copied to the stop channel directly, without going through the 
manual routing process. The Tektronix AFG1022 arbitrary 
waveform generator was used to generate the time intervals 
to assess the developed TDC. According to the manufacturer 
datasheet [28], the used waveform generator has a typical 
jitter of less than 1 ns. This rather high jitter, although not 
having high influence in the results from the code density and 
linearity tests, has a negative impact on the system’s 
measured single-shot precision. 

The TDC IP was connected to the integrated Arm 
processor (used to read the values from the TDC and perform 
the interface to the host computer) using an AXI-4 Lite 
interface. A code density test was performed to extract the 
delay of each step of the fine interpolation stage. The results 
from this test were also used to calculate the non-linearities 
of the fine measurement module, namely, the Differential 
Non-Linearity (DNL) and Integral Non-Linearity (INL). A 
total of 100 thousand measurements were performed to 
reduce probabilistic errors. A single-shot precision test was 
also completed with 100 thousand samples. To understand the 
impact of a calibration mechanism in the TDCs’ performance, 
a post-measurement software bin-by-bin calibration was 
applied to the 100 thousand samples collected during the 
single-shot precision test. The calibration tables were created 
based on the results from the code density test. Then, the 
single-shot precision was recalculated after applying the 
calibration. All the tests were performed with the 
development board at ambient temperature of 25°C. 

A. Code Density Test 
To perform the code density test, the waveform generator 

was configured to output a square wave signal at a frequency 
unrelated with the 125 MHz reference clock used, thus 
creating a sliding window effect on the sampling steps of the 
TDC. The selected frequency was 999133 Hz, which results 
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in a time interval of approximately 480.7 ns (verified using 
an oscilloscope). 

The code density test results for both implementations are 
presented in Fig. 6. Since a 125 MHz reference clock was 
used, the average step delay, for the manual routing 
implementation, is 380.9 ps (according to (2), where τi is the 
gray code oscillator step delay, Ni is the number of times the 
ith step was sampled, T is the sampling clock period and Ntotal 
is the total number of samples performed). This represents a 
33.1 ps increase regarding the solution where only the 
placement is constrained (when comparing the results 
obtained from the deafult and manual routing implementation 
of the start channel TDC. When comparing to the stop 
channel TDC a 72.9 ps average step delay increase is 
verified). Another important factor to notice is the delay 
uniformity across channels. When manual routing is 
performed, the start and stop channels steps’ delays are 
closely matched with a maximum difference of 95 ps in the 
same step (for the worst-case scenario). When analyzing the 
automatic routing implementation, a maximum difference of 
295 ps is observable. 

 τi=Ni*
T

Ntotal
 (2) 

B. Linearity Tests 
Based on the information of each step propagation delay 

the DNL can be calculated according to (3): 

 DNLi=τi-τ (3) 

where DNLi is the DNL of the ith step and τ is the average step 
size. The INL is the accumulated non-linearity across the 
TDC measurement range [1]. Therefore, it can be calculated 
by adding all the DNL contributions according to (4) 

 INLn=∑ DNLi
n
i=0  (4) 

The DNL and INL calculated from the code density test 
results are presented in Fig. 7. The results are presented 
normalized to one LSB, which for the case of the manual 
routing implementation is 380.9 ps and for the default routing 
implementation 348 ps. 

As expected, the manual routing scenario shows superior 
linearity with a maximum DNL of 0.38 LSB (106.7 ps), while 
in the automatic routing approach, a maximum DNL of 0.6 
LSB (208.8 ps) is observable, representing a 21.7% 
improvement. The INL is also improved with the manual 
routing approach reporting an INL in the range of 0.01 and 
0.7 LSB for the start channel (worst case), representing a 
71.4% improvement since the INL in the default routing 
implementation reached almost 3 LSB. 

C. Single-Shot Precision 
The single-shot precision tests were performed using the 

same time interval defined for the code density test. The 
results from the 100 thousand measurement made are 
presented in Fig. 8, for both calibrated and non-calibrated 
tests. When comparing both approaches, a 110 ps precision 
improvement can be observed when manual routing is used. 
However, the authors believe that the precision results are 
being influenced by the jitter of the waveform generator used. 
One indicative supporting this theory is the results obtained 
after calibration is applied. In the case of manual routing, 
applying calibration to the preformed measurements has no 
effect on the TDC’s precision. Although manual routing 

enabled higher linearity to be achieved, it was expected that 
a bin-by-bin calibration would be able to improve the TDC’s 
precision to at least 0.5 LSB. Thus, further tests must be done 
with a different waveform generator, in order to have a better 
characterization of the advantages of using manual routing on 
precision. Nevertheless, the achieved results are promising 
and able to demonstrate the advantages of the implementation 
of the gray code oscillator TDC using manual routing. The 
trade-off is purely in the design stage which require an 
additional manual step, increasing the TDC channel 
implementation complexity, and on the TDC average 
resolution step. 

D. Discussion 
When comparing the obtained result with the results 

presented in [23] (summarized in TABLE III) it is possible to 
conclude that the presented approach offers better linearity 
and superior homogeneity across multiple channels, while 
maintaining a low resource usage. As already explained, the 
worse single-shot precision reported was due to the influence 
of the waveform generator’s jitter. When implementing 
multiple TDC channel in a complex system, the allocated 
routing resources on each TDC channel can change 
significantly due to the channels positioning and proximity to 
other system’s blocks inside the FPGA. Since the constraints 
created to a single TDC channel can be applied on different 
channels directly, system scalability with channel 
homogeneity can be assured. Only two CLBs are required to 
implement a single TDC channel, thus the proposed 
architecture is suitable for multichannel applications, even on 
small, low-cost FPGAs. Furthermore, the same calibration 
mechanism, for instance a single bin-by-bin calibration table, 
can be deployed to calibrate multiple TDC channels due to its 
similar delays’ distribution, enabling a considerable resource 
and power savings. 

The presented architecture has been migrated to a Xilinx 
UltraScale+ FPGA platform. The preliminary test performed, 
without applying manual routing, showed an average step 
delay of 105-118 ps with a DNL in the range of [-0.4:0.87] 
LSB. The more complex routing resources schema on the 
UltraScale+ FPGAs makes the manual routing linearization 
process harder. 

Even though the proposed TDC does not achieve state-of-
art resolution, the proposed architecture’s small number of 
resources utilization, high linearity and single-shot precision 
offers a very interesting trade-of, suitable for applications like 
mobile and wearables, where low area and power 
requirements are prioritized. 

V.CONCLUSION 
This work presents a novel TDC architecture focused on 

low resources and power consumption, suitable for 
applications where multiple channels are required. The 
architecture based on the gray code oscillator and inspired by 
the wire load model principle achieved a resolution of 380.9 
ps with very low resources consumption (16 logic elements 
per channel), when implemented in a Xilinx ZYBO Z7010 
FPGA. It also enables the implementation of multiple TDC 
channels with closely match characteristics, which opens the 
possibility for a single calibration circuit, shared among 
multiple channels, further increasing the hardware resources 
optimization and decreasing power consumption. The control 
of the routing resources used to define the Datapath of the 
gray counter steps enable an improvement of 21.7% on the 
TDC channel differential non-linearity and a 70.4% 
improvement on the TDC channel integral non-linearity 
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(considering the peak-to-peak values in picoseconds), 
reducing the need for calibration. A 27.5% single-shot 
precision improvement was also achieved without any 
calibration mechanism. These results point out to the 
conclusion that, regarding linearity, the routing is the main 
impact source and not the cell propagation delay differences 
due to process mismatch. Future work will focus on the study 
of the effect of temperature on the multiple channels 
implemented to check how it will affect the proposed 

architecture performance. The effect of manual routing on 
reducing the TDC Channel thermal dependency will also be 
targeted in future research. Finally, since the preliminary tests 
from the porting of the proposed architecture to Xilinx 
UltraScale+ FPGAs showed promising results, the routing 
resources are currently under study and the results of applying 
manual routing to the proposed architecture on UlttraScale+ 
FPGAs will be reported in future works. 

 
Fig. 6. Gray code TDC start (top) and stop (bottom) channels code density test 

 
Fig. 7. Gray code TDC linearity results 

 
Fig. 8. Gray code TDC single-shot precision for default (left) and manual (right) routing 
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TABLE III. COMPARISON BETWEEN THE DIFFERENT GRAY CODE 
OSCILLATOR TDC IMPLEMENTATIONS 

Architecture Gray code 
Oscillator 

[23] 

This Work (Xilinx ZYBO Z7010) 
Default Routing Manual Routing 

LSB (ps) 256-271 308-348 380.9 
DNL (LSB) [-0.61:0.95] [-0.65:0.55] [-0.38: 0.38] 
INL (LSB) - [0.01:2.9] [0.01:0.7] 
Single-Shot 
Precision (ps) 

160 
64** 

400 
290* 

290 
290* 

Missing Codes No No No 
*After bin-by-bin Calibration; **After 4 measurement average Calibration. 
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