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Abstract-The purpose of this work is to design an exact
fuzzy observer for a bioprocess switching between two different
metabolic states. A fed-batch baker's yeast culture is modeled
by two sub-models: a respiro-fermentative state with ethanol
production and a respirative state with ethanol consumption.
An exact fuzzy observer model using sector nonlinearity was
built for both nonlinear models; the observer gains were
designed using Linear Matrix Inequalities (LMI's). The
observer dynamics shows a very good tracking behavior with
respect of the states of the switching partial models. The
observer premise variables depend on the state variables
estimated by the fuzzy observer.

I. INTRODUCTION

The measurement of biological parameters as the cell, by-
product concentrations and the specific growth rate is
essential to the successful monitoring and control of
bioprocesses [1]. However, on-line measurements of all the
state variables of a bioprocess are not always available, due
to the fact that: sensors are expensive, are not completely
reliable and are not always sterilizable, among other facts. A
state observer may be used to reconstruct, at least partially
the states variables of the process. This situation has
encouraged the searching of new software sensors in
bioprocesses. Fed-batch cultures are used to produce high
concentrations of a desired product avoiding undesirable
effects such as substrate inhibition and catabolite repression.
Different application of observers and parameter estimators
are reported in the literature [2], [3] and [4], among others.

In processes with uncertainties and poor known kinetics,
fuzzy logic may help to compensate the lack of information
by adding the human expertise about the process. Different
fuzzy logic applications to bioprocesses can be found in the
scientific literature. For instance, Azevedo et al. [5]
proposed a state observer based on a hybrid model, where
the specific kinetic reactions are approximated using fuzzy
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inference systems, other applications are reported in [6], [7]
and [8].

In the case where the nonlinear model of the process is
known, a fuzzy system can be used. A first approach can be
done using the Takagi-Sugeno (TS) fuzzy model [9] the
consequent part of the fuzzy rules are replaced by linear
systems. This can be attained, for example, linearizing the
model around operational points, getting local linear
representation of the nonlinear system. Another way for
obtaining TS models can be achieved using the method of
sector nonlinearities, which allows constructing an exact
fuzzy model from the original nonlinear system by means of
linear subsystems [10]. From this exact model, a state
observer may be designed based on the linear subsystems.

Along this line of reasoning, in this work a fuzzy state
observer based on sector nonlinearities is proposed and
applied to a fed-batch baker's yeast process. An interesting
feature of this model is the splitting in two different partial
models: a respiro-fermentative (RF) model with ethanol
production and the respirative (R) model with ethanol
consumption. The switching condition depends on whether
the process is consuming or producing ethanol. The observer
premise variables depend on the estimated variables by the
fuzzy observer. The use of fuzzy observers obtained from an
exact fuzzy model, applied to fed-batch culture described by
partial models has not been, to the best authors' knowledge,
reported in the literature.

II. PRELIMINARIES ON FuzzY MODELS

A. Takagi-Sugeno Fuzzy Models
The Takagi-Sugeno fuzzy models are used to represent
nonlinear dynamics by means of a set of IF-THEN rules.
The consequent parts of the rules are local linear systems
obtained from specific information about the original
nonlinear plant. The ith rule of a continuous fuzzy model has
the following form:

Rule i.

IFz I(t) is M'. and...and zp(t) is M'.

THEN V(t) = Aix(t) + Biu(t)
1y(t) = Cix(t)

(1)
i=l.r.
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where MJ is a fuzzy set and r is the number of rules in the

fuzzy model; x(t) E R' is the state vector, u(t) E Rm is the
input vector, y(t) E Rq is the output vector, Ai,E R"x, Bi,E
Rnxm y C, Rqx are suitable matrices, and z(t)=
[z1(t),. ..,z,(t)] is a known vector of premise variables which
may depend partially on the state x(t). Given a pair of (x(t),
u(t)) and using a singleton fuzzifier, a product inference and
a center average engine, the aggregate TS fuzzy model can
be inferred as:

r

Z6i (z(t)){A,x(t) + B,u(t)}
x(t) r=1

Z6i (z(t))

r

= E hi (z(t)){A,x(t) + Bju(t)},

r

YO(z(t))Cix(t)
y(t)

r
1

Zg(z(t))

r

= hi (z(t))Cix(t),

where

ai (z(t))= fIJM (zj (t)), hi (z(t)) = r
j=1 ai(z(t))

i=1

for all t. The term M (zj (t)) is the membership value of

zi(t) in M . Since

r

(i (z(t)) . 0 and i (z(t)) > 0, i = 1.
i=l

we have that

r

hi (z(t)) . 0 and , hi (z(t)) = 1,
i=l

=1 r,...r,

for all t.

B. Fuzzy Observers
The state of a system is not always fully available, so it is
necessary to use an observer to reconstruct, at least partially
the states variables of the process. This requires to satisfy
that

lim (x(t) - x(t)) = O
t--O

observer. There are two cases for fuzzy observers design
depending on whether or not z(t) depends on the state
variables estimated by a fuzzy observer [10]. Given the TS
fuzzy model (1), the ith rule of a continuous fuzzy observer
can be constructed as:

Observer Rule i

IFz,(t) is Mli and... and z,(t) is mi
THEN

r

= E hi (z(t)){Aix(t) + Biu(t) + Ki (y(t) - y(t))}^
i=l

y~(t) = hi (z(t))CiW(t).

where Ki is the observer gain for the ith subsystem. If z(t)
depends on the estimated state variables, the observer takes
the following form:

r

x = E hi (z(t)){Ai x(t) + B, u(t) + K, (y(t) - 9(t))}¢
i=l

= hi (?QW))C,x(t).

III. THE BAKER'S YEAST MODEL

A fed-batch baker's yeast culture is represented by the
following model

' /is + /isr + /U° )XI ' -XI

x(t) = S( 2 in D
(ks k)x -X)

(-k5J< k6fl<)XI + OTR) X

(2)

with the additional equation

X5 =F

The variables and parameter values used in (2) are shown in
table I.

TABLE I
PARAMETERS AND VARIABLES USED IN THE BAKER'S YEAST MODEL.

Variable / parameter units
xl= Biomass g/l
x2= Substrate g/l
X3= Ethanol g/l
x4 = Dissolved oxygen mg/l
x5= Volume L
F Flow rate L/h
D FIX, = Dilution rate 1/h
Si, = Inlet substrate concentration g/l

o0 yr and He = Specific growth rates 1/h

where x(t) denotes the state vector estimated by the fuzzy



The yield coefficients values for k1, k2, k3, k4, k5, k6 are
described in [11]. The oxygen transfer rate is given by OTR
=KLa(Csat - x4), where KLa is the mass transfer coefficient
and Cat is the oxygen saturation concentration. OTR may
be split in two terms, one that is constant and the other one
depends on the dissolved oxygen.

KLaCsat (3) -KLax4, (4)

Pormeleau [12] suggested a reformulation of model (2)
using two partial models: a respiro-fermentative partial
model (RF) with ethanol production and a respirative partial
model (R) with ethanol consumption. With this
reformulation a split process model is obtained switching
from the RF partial model to the R partial model and vice
versa, depending on whether the system is consuming or
producing ethanol. To precise the ideas, consider a nonlinear
system described by the model (2), which can be written as

X(t) = f (x(t)) + g(x)u(t) + d

y(t) = h(x(t))

where f1 (x(t)) describe both the RF and R partial models,
namely

(4sLRF + s_RF)Xl
(kj<t- k2sRf11)XI (5)

-k3s RFX1

and for the R model

(/Us_R +9,-e R )X1

=2 k41L RXl JR' (6)--k-41ue RXl
(_k R-k656e R)xl -KLax4

and u(t) D = FIX5.

The input matrix g(x) for both models is given by:

g(x) = [-x1, -x2 +Si, -X3, X4

r'rT max x2 max X4 0O2
_RF Yrs

Ks +x2 Ko+ xY4 )

For the R partial model the specific rates are given by

jU° y (qmax St^
/1O R=YO!q K2,x

and U R which can take the following values

R qe IF qe < qe

q IF qe . qe

where

q = y~q max X3 Ki

el e Ke+x3 Ki+x2

q~ = Y2e(qmax ox4 YK max Kx211

(9)

(10)

(1 1)

(12)

From equation (11) and (12) it can be inferred that the R
partial model given by (6) should be split in two new
models: (Rqel) when u0R = q and (Rqe2)

whenuo R =q . The switching condition between the RF

and R partial model, as well as, the parameters definition
and values (Ks, Ki, Ke, Ko, Yo, Yr, Yo, Y02, YO2e, qr ax Xqoax
and q7max) shown on equations 8 to 12 are described in [11]
and [13]. To change between the RF to the R models, F was
varied according to figure 1, while Si, was set to 10.

0.45

04

0.3-

0.3

0.25

02

0.1 6

0.1

0.05
(7)

As previously stated, OTR was split in two terms the first
one (3) was included in the models (5) and (6) and the
second one (4) is considered as a constant perturbation, and
thus

d = [OOO KlaCat]T

The specific rates for the RF partial model are given by:

As_RF4Q2 q°Kq+ax4 (8)

4 6 8 10 12 14
Time (h)

Fig. 1. The feeding flow signal

IV. THE EXACT FuzzY MODEL

When the nonlinear dynamic model for the baker's yeast is
known, as well as all their parameters, a fuzzy exact model
can be derived from the given nonlinear model. This
requires a sector nonlinearity approach [10]. To construct the
RF and R exact fuzzy models,JRF can be expressed as:



RF model

f.

Ko +xqo° (X° 2-)~YOl
X4 q"'a klYo, + k,)2Yr 02-kYqma iY2 Y
Ko+x4 o

YO
Ko+o X

oKo + x

xi
Ks +x2

k Ks +X 2

Ks +x2

0

0

0

0 -Kla

xi]

X2
x 3

-X4 j

and according to (1 1) and (I 2)fR should be split to

(13)

The membership functions M2j(z2(t)), M3k(zxJ(t)), M4z(x2(t)),
M5m(Zx3(t)) and M6n(zx4(t)) are obtained following the same
procedure. The maximum and minimum values for the
premise variables are shown in the table II. A general fuzzy
rule to infer all the fuzzy rules for the RF partial model can
be stated as:

IF zI(t) is"Mj i(zI(t))" and z2(t) is "M2j(z2(t))" and z,I(t) is
"M3k(zxlJ(t))" and zx2(t) is "M41(zx2(t))" and zx3(t) is
M5m(Zx3(t)) and zx4(t) is "M6n(zx4(t))"

Rqel model

qmaKi X3

(Ke+x3)(Ki+x,)

0

k4Y)q- Ki 3~

(Ke + X3 )(Ki + x,)

-kjYq'-Ki x3
e (Ke+x3)(Ki+x2)

y max XTi 0 0
- Ks + x2

kY xi Xi
I~q Ks +x22

IKs + x2

THEN

xRF (t) = AijkiFmnx(t) + B.kFj, u(t) + d

ij,k,l,m,n = 1,2.

(14)

Rqe2 model

Y 2eqma X4

oKo

0

fRqe2 =X4
-k Y2eq-

o Ko +x4

k6Y02eq-
oKo+x4

x1

Ks +

k4}

x1

Ks+x2

-q (Y Y2ey
Y

0 0O

-kxYY lxi

x1 x

12eqs x1 YO 0o o X
(-KS+ LxY02 o4

q klY +k6Y2e
YO

0 -Kla

TABLE II

MAXIMUM AND MINIMUM VALUES FOR TUE PREMISE VARIABLES.

Premise
variable

zRF,Rqe2(t) a=0.9859 a2= 0.1

zRF,Rqel,Rqe2 bi= 50 b2=0.1

zRqel ai=9.8039 a2= 0.1
z3

z,(t) cl= 10 c2= 0

z(t) di= 1 d2= 0

zX(t) ei= 5 e2 = 0

ZX (t) f1= 0.007 f2= 0

(15)

From (13-15) the fuzzy exact model using sector
nonlinearities can be constructed. The premise variables are

chosen as:
The linear subsystems n'BRE are derived fromAkln I -ijklmn

X4 (16) zxi)
zi (t)= K 2 (16) 2 =tS

Ko+( x= Ks+x 2

z3 (t)
(Ke+x2)(Ki+x3)

(17)

(18)

and from (7) the premise variables for the input matrix g(x)
are given by:

ZXI ()=XI Z, ()=x, (I 9)

ZX3 ()= X31 Zx4 ()= X4 (20)

With these premise variables, assuming the ranges xj(t) E

[0,10], x2(t) E [0, 1], x3t) E [0, 5] and x4(t) E [0, 0.007] and
using the procedure described in [10], the membership
function for Mji(zl(t)) for the RF partial model is obtained as

Ml (z1(t)) z1(t) a2, M (z(t)) = -Z1(t) + a,

a, a2 a, a2

atqmajYo, YO

aiqmax (YO-02
-kIY02 +k2YO

0O

0qm

Yrqmaxbj 0

-k2Yqs

k3Yqm"b 0

0 0

0

0

0

-Kla

ij,k,l, m, n=1,2.

Bijmn=[-Ckd, + Si, emf,

i,j,k, l, m, n = 1, 2.

(21)

(22)

Taking into account that there are 6 premise variables in the
RF partial model, there will be 26= 64 linear subsystems that
are constructed from the combination of (19) and (20). The
final aggregated RF model turns to be:

64
F(t) = E hyj(Z(t)){4jjlmnx(t)+ P]<§mnu(t)+ d}

64
yR (t) = h, (z(t))Cx(t))

11q,l I

L



where

= n + 2(m -1) + 4(1-1) + 8(k -1)
+ 16(j - 1) + 32(i -1),

(23)

h,, (z(t)) = Al. (z1 (t))M2 j (z2 (t))M3k (z, (t))

X A/4/ (Zx2 (t))Al5m (zx3 (t))A'6, (ZX'4 (t)) (24)

This fuzzy model exactly represents the RF partial
nonlinear model in the region xl(t) E [0, 10], x2(t) E [0, 1],
x3(t) E [0, 5] and x4(t) E [0, 0.007]. The fuzzy exact model
for the models Rqel and Rqe2 were constructed following
the same procedure. It is worth to remark that also 64
subsystems are obtained for each partial model Rqel and
Rqe2.

]RF (t) = A§ik.Xmn (t) + Bij4kmnU(t) +Ki RF(y(t)-y(t)) + d
ij,k,l,m,n = 1,2.

The aggregated fuzzy observer for the RF model turns to be
64

hx() ,,(z(t)) [,kj>mn*()+BXyklmnu(t)
+ K, RF (y(t) - y(t)) + d]

64

wRF (t) hhe ((t))Cx(t))

where

V. THE EXACT Fuzzy OBSERVER

After an exact fuzzy model for the nonlinear baker's yeast
partial model has been obtained, a fuzzy observer can now
be designed. The following assumptions are made:

HI. The yield coefficients k1, k2, k3, k4, k5 and k6 are
constant and known.

H2. The ethanol and the dissolved oxygen concentration
are known.

When the ethanol and the dissolved oxygen are measured on
line all the states variables are observable, so a full state
observer can be built, the procedure described by [10] is
followed. For the RF model the premise variable zj(t), z34t)
and zx4(t) are taken as in (16) and (20). However for z2(t),
Zxl (t) and, zx2(t) we have to consider the estimates, namely

I

Xz( t)= AKs +XX2

The fuzzy observers for the Rqel and Rqe2 partial models
were derived using the same procedure. The observer gains
were calculated using the MATLABTm Linear Matrix
Inequalities (LMI's) toolbox. The observer gains for the RF,
Rqel and Rqe2 are shown in table III.

TABLE III
FUZZY OBSERVER GAINS FOR TUE RF, RQE1 AND RQE2 PARTIAL MODELS.

Observer
gains XI X2 X3 X4

K1, -58224 8241.3 5215 -5167.8
K2_RF -27997 2342.1 3312 -3319.5
K3 RF -56608 8065 5079.1 -5035.7
K4_RF -26381 2165.8 3176.1 -3187.4
K, Rqel -95553 -5059.3 1637.7 -1657.5
K2 Rqel -74005 -4888 1301.9 -1338.7
K3 Rqel -75377 -699.86 1257.3 -1292.1
K4 Rqel -53829 -528.58 921.54 -973.25
K1_Rqe2 -44374 5459.5 3614 -3611.4
K2 Rqe2 -25288 1698.6 2603.5 -2630.4
K3 Rqe2 -42980 5330.1 3509.1 -3509.4
K4 Rqe2 -23895 1569.2 2498.6 -2528.4

thus the membership functions, for M21(z2(t)), M3k(zXI(t))
,M41(z,2(t)), are then modified as

M21 (Z2 (t)) = 2t-b2 M22 (Z2 (t) = 21bh
(t) c2

M31(zx (t))= zxl() 2 M32( (t))-:
C1 C2

(t) d

2

C -C2

z2(t)+d,
d, - d2

The linear subsystems 4>mn'B'imn for the observer are also

derived from (21) and (22). The fuzzy rules for the RF
partial model observer are stated as

IF zI(t) is "Mii(zI(t))" and z2(t) is "M2 "(z2(0)) and 2X(t)

is "M3k(2, (t)) " and 2, (t) is "M4w(2 (t))" and ZA3(t) is

M5m(Zx3(t)) and z,4(t) is "M6,(z,4('t)) "

THEN

Also, common positive definite matrices that guarantees
global asymptotic stability [10] were found for each partial
model, namely

1.0954x10-3
-8.3895x10-5
-6.263x105
6.0871x10-5

2.3943x10-3
1.0067xI0-5

Rqel -2.798lx 10

2.6675x10-5

2.4873x10-3
-1.6155x10-4

Rqe2 =-1.2776x104
1.2396x10-4

-8.3895x10-5

1.1794x10-5

3.8171x10-6

-3.7069x10-6

1.0067x10-5

1.55x10-6

-1.3877x10-7
1.3352x10-7

-1.6155x10-4

2.1872x10-5

6.41 19x10-6

-6.2134x10-6

-6.263x10-5
3.8171x10-6

5.3843x10-6

-5.2354x10-6

-2.7981x10-5
-1.3877x10-7

3.595x10-7

-3.4274x 10-7

-1.2776x10-4

6.4119x10-6

9.2698x10-6

-8.9975x10-6

6.0871e-005
-3.7069x10-6
-5.2354x 10-6
5.2541x10-6 _

2.6675x10-5
1.3352x10-7
-3.4274x 10-7
3.5254x10-7

1.2396x10-4
-6.2134x10-6
-8.9975x10-6
9.0991x10-6

hV (40) = Hli (.l (t))H2j (Z2 (OW31, (.xj (0)
x H41 (.x2 (t))H5m (Zx, (t))A'6, (ZX4 (t))

I

z x z
, (t) = ^II ^X2 (t) = X^2 I



However an overall common P matrix for the RF, Rqel and
Rqe2 partial model could not be found.

VI. SIMULATION RESULTS

The application of the proposed observer scheme was

simulated using MATLAB.M. The fuzzy observers were

tested using the fed-batch RF and the R baker's yeast partial
models given in [11]. The feeding flow rate was varied in
order to force the switching between both models. The initial
conditions were chosen as xl(0)=0.1 g/, x2(0)=0.02 g/l,
x3(0)=0.15 g/l, x4(0)=0.0066 mg/l and x5(0)=3.5 L. The
behavior of the fuzzy observer for biomass estimation is
shown in figure 2. It can be noticed that the dynamics of the
baker's yeast switch through the RF, Rqel and Rqe2 partial
models and the observer converges to the real biomass
values. The estimated substrate is shown in figure 3. The
observer performance is acceptable for the range of chosen
values; although its performance may be degraded on initial
conditions far away, from the real initial parameter value,
not shown. An acceptable criteria estimation was set to + 5
00o.

3 10
Time (h)

Fig. 2. Biomass estimation for the initial conditions xl (0) = 1 g/l, xl (°)
0.75 g/l., x1 (0) = 0.5 g/l and x1 (0) = 0.2 g/l.

Time (h)

Fig.3. Substrate estimation for the initial conditions X2 (0) = 0.15 g/l, X2 (0)

= 0.1 g/l, X2 (°) = 0.05 and X2 (°) = 0.01 g/l.

VII. CONCLUSIONS

Based on the idea of splitting the baker's yeast model, a
novel TS fuzzy model was proposed using the sector
nonlinearities method, giving an exact representation of the
original nonlinear plant. Moreover, an observer for each
partial model was constructed. It is worth noting that the
observer dynamics shows a very good tracking behavior
with respect of the states of the switching partial models,
without performance degradation. Therefore, the approach
presented here may be considered as a valid methodology to
design an observer for this class of systems. Future work
will include the experimental validation of the fuzzy
observer.
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