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Real-time locomotion mode recognition can potentially be applied in the gait analysis as a 

diagnostic tool or a strategy to control the robotic motion. This research aimed the 

development of an automatic, accurate and time-effective tool to recognize, in real-time, 

the locomotion mode that is being performed by a humanoid robot. The proposed strategy 

should also be general to different walkers and walking conditions. For these purposes, we 

designed a strategy to identify, in an offline phase, the suitable features and classification 

models for the real-time recognition. We explored several classification models based on 

two machine learning approaches using the features previously selected by principal 

component analysis and genetic algorithm (GA). The validation was carried out for distinct 

walking directions and speeds of DARwIn-OP. The offline analysis suggests that the most 

skilled models are the ones created by weighted k-nearest neighbors (KNN), fine KNN, 

and cubic support vector machine using 2 features selected by GA. Results from the real-

time implementation highlight that weighted KNN exhibits a higher recognition 

performance (accuracy > 99.15%) and a lower elapsed time in the recognition process (89 

ms) comparatively to the state-of-the-art. The proposed recognition tool showed to be cost-

effective, and highly accurate for the real-time gait analysis at different walking conditions. 

1.   Introduction 

Recent studies have argued that the automatic recognition of locomotion mode 

has potential to be applied as an assessment tool of locomotion performance, as 
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well as a strategy to contribute to real-time information for the guided-motion 

control demanded on smart robotic systems [1].  

Few studies have developed tools to recognize, in real-time, the locomotion 

mode. Pattern-recognition techniques based on the electromyography (EMG) 

signal have been implemented [2], [3]. However, EMG has some drawbacks 

comparatively to other biomechanical sensors, such as the user’s fatigue, 

sweating, electrodes shift that can degrade the classification performance over 

time [2], [4]. To avoid these limitations, other studies [4], [5] considered that gait 

dynamics from inertial sensors or the association of diverse data [6] would 

conduct a more comprehensive and robust automatic recognition scheme. 

The strategies proposed for the locomotion mode recognition are essentially 

based on optimal thresholds implemented through finite state machines (FSMs) 

[1], [4], [7], or machine learning approaches, such as support vector machines 

(SVMs) [3], [8], [9], dynamic Bayesian network [2], linear discriminant analysis 

[2], [9], and artificial neuronal network (ANN) [8]. The major advantage of FSMs 

comparatively to the machine learning approaches is their simplicity [1]. Machine 

learning approaches for the human movement recognition, namely SVMs, stand 

out by their generalization ability even using a limited training data set [10], [11], 

and the advantage of easily incorporating newly available data [8]. Nevertheless, 

the works proposed in the literature present high timing delays (ranging from 300 

to 650 ms [3], [5]) for the recognition of a new locomotion mode, compromising 

the application of the proposed tools in the real-time scenario.  

This study aims to develop an intelligent and a time-effective strategy to 

recognize, in real-time, the locomotion mode that is being performed by a 

humanoid robot. We also consider that the proposed strategy should be general to 

different users and walking conditions. For this purpose, we applied two machine 

learning approaches (SVM and k-nearest neighbors (KNN)) due to their 

generalization ability and robustness in the recognition of newly data. In fact, few 

studies in the literature focused on this last issue [11]. The SVM and KNN were 

explored regarding the complexity to make a decision in order to investigate the 

trade-off between the lower complexity of KNN and the high efficiency of SVM. 

Based on this trade-off, we disclosed which classifier is more skilled to evaluate 

the gait function and to support the control of robotic devices.  
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2.   Methods 

2.1.   Proposed Strategy and Implementation 

The strategy designed and implemented to recognize the actual locomotion modes 

is depicted in Figure 1.a). This strategy is structured into two phases, which are 

processed first offline and then in real-time. The offline phase aims to select the 

most significant features that characterize each locomotion mode and to create the 

classification model for the recognition process. On the other hand, the real-time 

phase focuses on the real-time locomotion mode recognition using the 

classification model created in the offline phase and the gait data recorded in real-

time. The proposed strategy was implemented during the walking of the DARwIn-

OP humanoid robot.  

As pointed out in Figure 1.a), the first stage involves the sensing of gait 

dynamics, in particular, joint angles and the ground reaction forces from the 

inertial and force sensors embedded on DARwIn-OP, respectively. Using the data 

acquired, we determined 6 temporal parameters (stride duration, step duration, 

strides per minute, cadence, stance duration, and swing duration) and 15 

kinematic parameters (range of motion (ROM) and angle at the heel strike and 

toe-off events for the hip, knee, metatarsal and ankle joints, and thigh) per 

observation. These features constitute the biomechanical parameters that 

characterize each locomotion mode. Posteriorly, we normalized the 21 features 

through the z-score method to make the classification model more accurate due to 

the usage of standardized features [8]. In the real-time phase, the features were 

computed after the DARwIn-OP had walked one stride since part of the interval 

features can only be determined when at least one stride is performed.   

We designed that the fourth stage of the offline phase aims the selection of 

the most significant features by applying linear principal component analysis 

(PCA) and genetic algorithm (GA) through Matlab®. The input parameters of GA 

were specified based on a trade-off between the performance and the 

computational cost of this stage. These parameters were defined as: population 

size (100 individuals); maximal number of iterations to perform (100); and, the 

number of hold individuals among interactions (2). Additionally, we defined that 

the fitness function of GA aimed the minimization of classification error exhibited 

by the classification models (SVM or KNN), which was iteratively being created 

with the features previously selected by the GA. To assess the generation ability 

of each classifier to classify new instances, we performed a 10-folds CV method 

that is commonly applied in the literature [12].  
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The machine learning approaches used in this work were also implemented 

by means of Matlab®. For the SVM, we implemented 6 different kernels, which 

led to the following 6 classification models: Coarse Gaussian SVM; Fine 

Gaussian SVM; Medium Gaussian SVM; Quadratic SVM; Cubic SVM; and, 

Linear SVM.  In this work, we extended the SVM for multiclass classification by 

means “one-against-one” (OAO) since the “one-against-all” approach has shown 

to be more complex in making a decision and present an exhaustive training 

process. Regarding the KNN, we also implemented 6 different classification 

models (Coarse KNN, Medium KNN, Weighted KNN, Fine KNN, Cosine KNN, 

Cubic KNN) by specifying different distance metrics (Euclidean, Cosine, and 

Minkowski) and number of neighbors (10 neighbors in 5 models and 1 neighbor 

for Fine KNN). Overall, we implemented 12 classification models per each 

feature selection method, and per each recognition process. 

To facilitate the use of the proposed classification models, we also developed 

in Matlab® a user interface, which is illustrated in Figure 1.b). For this purpose, 

we established a robust real-time internet communication (TCP communication) 

between the recognition tools implemented in Matlab® and the walker studied in 

WebotsTM. The user interface also indicates the locomotion mode that is being 

performed by DARwIn-OP, the elapsed time in the recognition, as well as the 

performance of the selected model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. a) Proposed strategy for locomotion mode recognition. b) TCP communication between 

DARwIn-OP in the simulated environment (WebotsTM) and the user interface (Matlab®).  
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2.2.   Validation Conditions 

The proposed strategy was validated in real-time during the level-ground walking 

of DARwIn-OP in a simulated environment (WebotsTM showed in Figure 1.b). 

The gait patterns of DARwIn-OP were perturbed with noise to create a walking 

environment that more closely resembles the one observed in the real-world.  

The performance of the implemented strategy was investigated in four 

distinct walking directions: forward walking; backward walking; turning left; and, 

turning right. For each walking direction, we also recognized three different 

walking speeds of the DARwIn-OP: low speed (<0.6 m/s); moderate speed (from 

0.6 to 0.8 m/s); and, high speed (>0.8 m/s). For the offline phase, we conducted 3 

trials for each locomotion mode.  

3.   Results and Discussion 

3.1.   Results of Offline Phase 

From the gait sensing stage performed in offline phase, we acquired 1020 

observations for the different walking directions and 135, 142, 333, and 411 

observations when the DARwIn-OP walked at different speeds on forward, 

backward, turning right, and turning left conditions, respectively. We included 

different sizes of observations among the different locomotion modes to 

investigate the performance of the implemented classification models during the 

recognition of the unbalanced gait data. 

Overall, we developed 5 different real-time recognition tools for the 

locomotion mode of DARwIn-OP; 1 to recognize the walking direction (4 

walking directions that correspond to 4 classes), and the other 4 to recognize the 

walking speed (3 walking speeds that correspond to 3 classes) for each walking 

direction previously detected. Thus, 5 types of multiclass classifiers (each one 

created from 2 features selection methods combined with 12 classification 

models) were investigated in real-time, and previously created in offline.   

To investigate the performance of each recognition tool, we performed an 

objective analysis according to five metrics: accuracy, sensitivity, specificity, area 

under the curve (AUC), and Matthews correlation coefficient (MCC). Note that 

we introduced MCC due to its ability to deal with unbalanced observations, such 

the ones used in this work.  For space constraints, we just disclose in Table 1 the 

performance achieved in the recognition of walking direction when the best 

feature selection method was applied. Analyzing Table 1, we can indicate that all 

recognition tools implemented are highly accurate (accuracy > 93.1%), specific 

(specificity > 98.2%) and robust. In fact, the best recognition tool developed in 
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this work showed a higher performance than the other similar tools proposed in 

the literature [8], [9], [13]. Moreover, the high values of MCC (>97%) suggest 

that the machine learning methods proposed are robust in recognition even when 

nonlinear, multidimensional and unbalanced data are used.  

Table 1. Performance obtained in offline recognition of walking direction. 

In addition, we observed similar findings in the recognition of walking speed for 

the different walking directions performed by DARwIn-OP. In particular, the 

performance of the classifiers created for the recognition of gait speed during 

turning motions is very close. Overall, weighted KNN led to the most proper 

recognition under the different walking conditions (accuracy > 99.2%, AUC > 

98.94% MCC > 98.95% in all cases), and similar behavior was also shown by fine 

KNN (accuracy > 98.81%, AUC > 97.92% MCC > 98.05% in all cases) and cubic 

SVM (accuracy > 99.05%, AUC > 98.36% MCC > 98.75% in all cases).  

The positive results were mainly achieved when the GA selected 2 or 3 

features from the 21 determined. This finding highlights the positive contribution 

of the features selection methods to improve the performance and computational 

cost of the recognition process [9], [14]. Previous studies also pointed out that the 

GA, as a wrapper method, is more skilled than PCA to robustly select the relevant 

features of each locomotion mode without requiring trial-error tests [14].   

Machine 

learning  

Features selection Accuracy 

(%) 

Specificity 

(%) 

Sensibility 

(%) 

AUC 

(%) 

MCC 

(%) # Method 

Cosine 

KNN 
3 GA 98.75 98.71 98.61 98.98 97.94 

Cubic KNN 2 GA 98.04 99.43 98.692 98.91 97.02 

Weighted 

KNN 
2 GA 99.87 99.92 99.31 99.15 99.22 

Coarse 
KNN 

2 GA 93.12 98.01 95.23 98.24 90.69 

Medium 

KNN 
2 GA 98.17 99.46 98.77 98.92 97.20 

Fine KNN 2 GA 99.06 99.42 98.92 98.95 98.93 

Linear SVM 21 No 99.06 99.18 98.92 98.98 98.40 

Quadratic 

SVM 
3 GA 99.08 99.22 98.973 98.894 98.01 

Cubic SVM 2 GA 99.86 99.89 99.25 99.13 99.17 

Coarse 
Gaussian 

SVM 

4 GA 93.86 98.21 94.87 98.74 91.01 

Medium 

Gaussian 
SVM 

21 No 96.69 98.93 96.44 98.74 94.64 

Fine 

Gaussian 
SVM 

2 GA 97.77 99.35 97.61 98.95 96.18 
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3.2.   Results of Real-Time Phase 

From the findings pointed out in the offline analysis, we specially selected for the 

real-time recognition the classification models created by weighted KNN, fine 

KNN, and cubic SVM using the 2 most relevant features picked in offline. These 

three classification models were also accurate in the real-time recognition of 

walking directions and speeds (Table 2). The lowest performance was observed 

in the recognition of gait speed when the DARwIn-OP was walking backwards.  

Table 2. Performance obtained in real-time recognition of walking direction and speed.  

The results stated in Table 2 outlined that the weighted KNN is more skilled than 

fine KNN and cubic SVM, presenting higher values for the five metrics (e.g. 

accuracy = 99.15%, AUC = 99.59%, MCC = 98.77%) studied and a lower elapsed 

time in the recognition process (89 ms). By comparing these findings with other 

ones demonstrated by the real-time recognition tools well established in the 

literature, we can point out that our strategy exhibits a higher performance 

(accuracy of 99.15% versus 90% [1], 88.8% [2], 95% [3]) and a lower time delay 

(89 ms against the delay described in literature that ranges from 300 to 650 ms 

[3], [5]) in the recognition of a new locomotion mode. Theses outcomes indicate 

that the proposed recognition tool is time-effective and suitable for the real-time 

gait analysis, and can potentially be used to support control strategies in robotics.  

4.   Conclusion 

This work contributed to knowledge with the development of a highly accurate, 

robust and cost-effective tool for the automatic and real-time locomotion mode 

recognition. From an exhaustive and objective investigation, we verified that 

KNN is the most suitable machine learning approach for creating a generalized 

classification model, which only need to use 2 features to discriminate the 

different locomotion modes of a DARwIn-OP. The proposed recognition tool 

showed to be more skilled than the others proposed in the literature. These 

advances suggest that this tool can potentially be applied in offline or real-time 

gait analysis, namely in human gait for diagnose or treatment purposes. Future 

challenges involve the application of the purpose tool in real robotic walkers and 

Classification 

model 

Accuracy 

(%) 

Specificity 

(%) 

Sensibility 

(%) 

AUC 

(%) 

MCC 

(%) 

Time 

(ms) 

Weighted KNN 99. 15 99.54 99.18 99.59 98.77 89 

Fine KNN 98.92 98.96 98.93 99.04 99.01 105 

Cubic SVM 98.59 98.23 98.61 99.89 97.01 129 
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healthy and pathologic subjects, and the development of strategies to recognize 

the human’s movement intention, which are demanded on neurorehabilitation.  
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