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Abstract Exceptional Preferences Mining (EPM) is a crossover between two sub-
fields of data mining: local pattern mining and preference learning. EPM can be
seen as a local pattern mining task that finds subsets of observations where some
preference relations between labels significantly deviate from the norm. It is a
variant of Subgroup Discovery, with rankings of labels as the target concept. We
employ several quality measures that highlight subgroups featuring exceptional
preferences, where the focus of what constitutes ‘exceptional’ varies with the qual-
ity measure: two measures look for exceptional overall ranking behavior, one mea-
sure indicates whether a particular label stands out from the rest, and a fourth
measure highlights subgroups with unusual pairwise label ranking behavior. We
explore a few datasets and compare with existing techniques. The results confirm
that the new task EPM can deliver interesting knowledge.
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1 Introduction

Consider a survey where detailed preferences of sushi types have been collected,
along with information about the respondents. For each example in the dataset,
we have personal details (age, gender, income, etc.) as well as a set of sushi types,
ordered by preference [37]. By mapping the demographic attributes and unusual
preferences, marketeers would be able to target key demographics where specific
sushi types have greater potential.

The study of preference data has been approached from a number of perspec-
tives, grouped under the name Preference Learning (PL) (e.g. as Label Ranking [18,
11,48]) Typically, the aim is to build a global predictive model, supported by pref-

erence mining methods [27], such that the preferences can be predicted for new
cases. However, in several areas, such as marketing, there is also great value in
identifying subpopulations whose preferences deviate from the norm. If the pref-
erence of some sushi type by a certain age group or in a certain region is markedly
different from the average population, then the vendor can develop specific strate-
gies for those groups. Finding coherent groups of customers to focus on is an
invaluable part of promotion strategies.

In this work, the term preference is not strictly interpreted as a literal prefer-
ence, but instead as an order relation object1 � object2. An order relation can rep-
resent several phenomena: a person likes sushi1 more than sushi2 [37]; λ1 is more
likely to occur than λ2 [33]; algorithm1 is better than algorithm algorithm2 [6].
In this context, unusualness is the extent to which some groups show different
preferences from average behavior.

Arguably the most generic setting for discovering local, supervised deviations
is that of Subgroup Discovery (SD) [40]. The aim of SD is to discover subgroups
in the data for which the target shows an unusual distribution, as compared to the
overall population [39]. SD is a generic task in the sense that the actual nature of
the target variable can be quite diverse. For example, SD approaches have been
developed for binary, nominal [1] and numeric target variables [36,34], as well as
multiple targets [22,46].

We extend the work on Exceptional Preferences Mining (EPM) [16], which
focuses on the discovery of meaningful subgroups with exceptional preference pat-
terns. When applying SD to a new context, the main task is to determine what
constitutes an interesting subgroup. In EPM, different quality measures determine
the interestingness based on how the preferences in the subgroup, differ from the
preferences in the whole data. A set of EPM quality measures reflect different facets
of interestingness one might have about the unusualness of a set of preferences.

In this work, we include a more comprehensive experimental setup and propose
a new quality measure. We employ EPM on several real-world datasets, using
four distinct quality measures. These measures define the type of exception that
is identified to either encompass the entire label space or focus on more local
peculiarities. In particular, two of them look for overall exceptional preferences; a
third measure assesses if one particular label behaves exceptionally; the remaining
measure quantifies the exceptional behavior of a single pair of labels.

Finally, to consolidate the previous work on EPM, we compare EPM with a
subgroup discovery approach known as Distribution Rules (DR) [35].

We start by introducing Label Ranking in Section 2 and Subgroup Discovery
in Section 3. Then, in Section 4 we introduce Exceptional Preferences Mining
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and analyze the results obtained in Section 5. Finally, we conclude this paper in
Section 6.

2 Label Ranking

In Label Ranking, given an instance x from the instance space X, the goal is to
predict the ranking of the labels L = {λ1, . . . , λk} associated with x [33]. A ranking
can be represented as a strict total order over L, defined on the permutation space
Ω.

The Label Ranking task is similar to the classification task, where instead of
a class we want to predict a ranking of the labels. As in classification, we do not
assume the existence of a deterministic X → Ω mapping. Instead, every instance
is associated with a probability distribution over Ω [12]. This means that, for each
x ∈ X, there exists a probability distribution P(·|x) such that, for every π ∈ Ω,
P(π|x) is the probability that π is the ranking associated with x. The goal in Label
Ranking is to learn the mapping X→ Ω. The training data is defined as D, which
is a bag of n records of the form x = (a1, . . . , am, π), where {a1, . . . , am} is set of
values from m independent variables A1, . . . ,Am describing instance x and π is the
corresponding target ranking.

Rankings can be represented with total or partial orders and vice-versa.

Total orders A strict total order over L is defined as a binary relation, �, on a set
L [9], which is:

1. Irreflexive: λa � λa
2. Transitive: λa � λb and λb � λc implies λa � λc
3. Asymmetric: if λa � λb then λb � λa

1

4. Connected: For any λa, λb in L, either λa � λb or λb � λa

A strict ranking [48], a complete ranking [20], or simply a ranking can be represented
by a strict total order over L. A strict total order can also be represented as a
permutation π of the set {1, . . . , k}, such that π(a) is the position, or rank, of λa
in π. For example, the strict total order λ3 � λ1 � λ2 � λ4 can be represented as
π = (2, 3, 1, 4).

However, in real-world ranking data, we do not always have clear and unam-
biguous preferences, i.e. strict total orders [5]. Hence, sometimes we have to deal
with indifference [8] and incomparability [13]. For illustration purposes, let us con-
sider a survey where a set of n consumers rate k sushi types. If a consumer feels
that two sushi types have identical taste, then these can be expressed as indifferent
so they are assigned the same rank (i.e. a tie).

To represent ties, we need a more relaxed setting, called non-strict total orders,
or simply total orders, over L, by replacing the binary strict order relation, �, with
the binary partial order relation, � where the following properties hold [9]:

1. Reflexive: λa � λa
2. Transitive: λa � λb and λb � λc implies λa � λc
3. Antisymmetric: λa � λa and λb � λa implies λa = λb
4. Connected: For any λa, λb in L, either λa � λb, λb � λa or λb = λa

1 Asymmetry can be derived from 1. and 2. [14].
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These non-strict total orders can represent partial rankings (rankings with ties)
[48]. For example, the non-strict total order λ1 � λ2 = λ3 � λ4 can be represented
as π = (1, 2, 2, 3).

Additionally, real-world data may lack preference data regarding two or more
labels, which is known as incomparability. Continuing with the sushi survey, if a
consumer never tried one or two sushi types, λa and λb, it leads to incomparability,
λa ⊥ λb. In other words, the consumer cannot decide whether the sushi types are
equivalent or select one as the preferred, because he never tasted at least one of
them. In this cases, we can use partial orders.

Partial orders Similar to total orders, there are strict and non-strict partial orders.
Let us consider the non-strict partial orders (which can also be referred to as partial

orders) where the binary relation, �, over L is [9]:

1. Reflexive: λa � λa
2. Transitive: λa � λb and λb � λc implies λa � λc
3. Antisymmetric: λa � λa and λb � λa implies λa = λb

We can represent partial orders with subrankings [31] or incomplete rankings [10].
For example, the partial order λ1 � λ2 � λ4 can be represented as π = (1, 2, 0, 3),
where 0 represents λ1, λ2, λ4 ⊥ λ3.

Several learning algorithms proposed for modeling Label Ranking data can be
grouped as decomposition-based or direct [17]. Decomposition methods divide the
problem into several simpler problems (e.g., multiple binary problems). An exam-
ple is ranking Ranking by Pairwise Comparisons (RPC) [26], which decomposes
the LR problem into a set of binary classification problems. A learning method is
trained with all examples for which either λi � λj or λj � λi is known [26]. The
resulting predictions are then combined to predict a total or partial ranking [11].
Direct methods, on the other hand, treat the rankings as target objects without any
decomposition. Examples of that include decision trees [45,12], k-Nearest Neigh-
bors [6,12] and the linear utility transformation [29,19].

3 Subgroup Discovery and Exceptional Model Mining

Subgroup Discovery (SD) [39] is a data mining framework that seeks subsets of the
dataset (satisfying certain user-specified constraints) where something exceptional
is going on. In SD, we assume a flat-table dataset D, which is a bag of n records
of the form x = (a1, . . . , am, t1, . . . , t`). We call {a1, . . . , am} the descriptors and
{t1, . . . , t`} the targets, and we denote the collective domain of the descriptors by
A. We are interested in finding interesting subsets, called subgroups, that can be
formulated in a description language D. In order to formally define subgroups, we
first need to define the following auxiliary concepts.

Definition 1 (Pattern and coverage) Given a description language D, a pattern

p ∈ D is a function p : A → {0, 1}. A pattern p covers a record x iff p(a1, . . . , am) =
1.

Patterns induce subgroups, and subgroups are associated with patterns, in the
following manner.
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Definition 2 (Subgroup) A subgroup corresponding to a pattern p is the bag of
records Sp ⊆ D that p covers:

Sp = {x ∈ D | p (a1, . . . , am) = 1}

The exact choice of the description language is left to the domain expert or
analyst. A typical choice is the use of conjunctions of conditions on attributes.
Restricting the findings of SD from all subsets to only subgroups that can be
defined in such a way, yields results of the following form:

Age ≥ 30 ∧ Likes = Salmon Roe is unusual

instead of the form:

S ⊆ D ⇒ interesting.

SD delivers subgroups in a form with which the dataset domain experts are famil-
iar. In other words, the focus of SD lies on delivering interpretable results.

Formally, the interestingness of a subgroup can be measured using any charac-
teristics available from its associated pattern. In practice, it depends on the task
we are trying to solve. Therefore, we should define one or more quality measures to
assess the interestingness we want to explore.

Definition 3 (Quality Measure) A quality measure is a function ϕ : D → R.

In the most common form of pattern mining, frequent itemset mining [2], inter-
estingness is measured by the frequency of the pattern. Subgroup Discovery [39],
on the other hand, measures interestingness in a supervised form. One designated
target variable t1 is identified in the dataset, and subgroup interestingness is mea-
sured by an unusual distribution of that target. Hence, considering that a survey
revealed that the majority of Japanese people like Fatty tuna sushi, an interesting
subgroup could refer to a group of people for which the majority prefers Tuna roll :

Age ≥ 30 ∧ Lives in region = Hokkaido ⇒ Likes = Tuna roll

If instead of a single target, multiple targets t1, . . . , t` are available, and if
we are not interested in finding unusual target distributions, but unusual target
interactions, we can employ Exceptional Model Mining (EMM) [21,23] instead of
SD. EMM is instantiated by selecting two things: a model class and a quality
measure. Typically, a model class is defined to represent the unusual interaction
between multiple targets we are interested in. A specific quality measure that
employs concepts from that model class must be defined to express exactly when
an interaction is unusual and, therefore, interesting. For example, suppose that
there are two target attributes: a person’s height (t1), and the average height
of his/her grandparents (t2). We may be interested in the correlation coefficient
between t1 and t2. In this case, we would use EMM with the correlation model

class [41]. Given a subgroup S ⊆ D, we can estimate the correlation between the
targets within this subset by the sample correlation coefficient.

For very small subgroups, one easily finds an unusual distribution of the target.
Hence, to favor larger subgroups, one defines the quality measure such that it
balances the exceptionality of the target distribution with the size of the subgroup.
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3.1 Search Strategy

In the EMM process, we explore a large search space, guided by a user-defined
quality measure that expresses the type of exceptionality we seek. Typically, sub-

groups are found by a level-wise search through attribute space [21]. However, we
consider the exact search strategy to be a parameter of the algorithm.

EMM strives to find descriptions that satisfy certain user-specified constraints.
Usually these constraints include lower bounds on the quality of the description
and size of the induced subgroup. More constraints may be imposed as the question
at hand requires; domain experts may for instance request an upper bound on the
complexity of the description.

Most SD algorithms traverse the search space of candidate descriptions in a
general-to-specific way: they treat the space as a lattice whose structure is defined
by a refinement operator η : D → 2D. This operator determines how descriptions can
be extended into more complex descriptions by atomic additions. Most applications
(including ours) assume η to be a specialization operator : every description q ∈
D that is an element of the set η(p), is more specialized than the description p

itself. The algorithm results in a ranked list of descriptions (or the corresponding
subgroups) that satisfy the user-defined constraints.

In this EMM setting, the best-first search strategy is chosen. At each level, the
descriptions according to our quality measure ϕ are sorted, and refined to create the
candidate descriptions for the next level. We define constraints on single attributes
and define the corresponding subgroups as those records satisfying each one of
those constraints. The search is constrained by an upper bound on the complexity
of the description (also known as the search depth, d) and a lower bound on the
support of the corresponding subgroup.

3.1.1 Best-first Search Algorithm in EMM

In Algorithm 1, we outline the pseudo-code of the Best-first search algorithm for
EMM. In this code, we assume that there is a subroutine called satisfiesAll

that tests whether a candidate description satisfies all conditions in a given set.
The PriorityQueue() is a queue, with unbounded length, where the elements are
stored and sorted with the corresponding quality; One elementary operation, in-

sert with priority, is for adding an element to the PriorityQueue.
The resultSet is a PriorityQueue maintaining the descriptions ordered by the

quality measure. Nothing is ever explicitly removed from the resultSet. Hence, the
resultSet maintains the final result that we seek. When all candidates have been
explored or the maximum time is exceeded, the execution ends.

3.2 Distribution Rules

Distribution Rules (DR) is a SD method that analyzes a single target variable.
However, rather than a representative value (e.g. the mean), DR identify unusual
distributions of the target [35,43]. The approach finds subgroups, expressed as
association rules with a statistical distribution on the consequent. A DR may be
formally defined as:

S → t = Distt|A
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Algorithm 1 Best-first Search for Exceptional Model Mining
Input: Dataset D, QualityMeasure ϕ, RefinementOperator η,

Integer d, Constraints C
Output: resultSet
1 : candidateQueue ← new PriorityQueue();
2 : candidateQueue.enqueue({}); . Start with empty description
3 : resultSet ← new PriorityQueue();
4 : while (candidateQueue 6= ∅) do
5 : seed ← candidateQueue.dequeue();
6 : set ← η(seed);
7 : for all (desc ∈ set) do
8 : quality ← ϕ(desc);
9 : if (desc.satisfiesAll(C)) then
10 : resultSet.insert with priority(desc,quality);
11 : candidateQueue.insert with priority(desc,quality);
12 : end if
13 : end for
14 : end while
15 : return resultSet;

where S is a set of conditions corresponding to the antecedent part of a DR (a
subgroup), t is a property of interest (or target) and Distt|S is an empirical distribu-
tion of t when S is observed. Distt|S is represented by a set of pairs 〈ti, freq (ti)〉,
where ti is one particular value of t found when S is observed and freq (ti) is the
frequency of ti when the items from S are observed.

4 Exceptional Preferences Mining

Exactly what constitutes an interesting deviation in preferences is governed by the
employed quality measure, and the target concept (binary, numeric, preferences,
. . . ). Thus, different measures are required to evaluate different types of targets.
SD approaches have been developed for binary, nominal [1] and numeric target
variables [34,36], for targets encompassing multiple attributes [46] and also distri-
butions [35] (Section 3.2). However, none of these approaches is able to capture all
the sets of preferences that can be derived from rankings within a SD framework.
For that we use, Exceptional Preferences Mining (EPM) [16], which is the search
for subgroups with deviating preferences.

In EPM, the target concept at hand consists of a single target t, which would
make sense in SD. However, that target object is a ranking of labels, π ∈ Ω, as
defined in Section 2. Hence it represents interactions between multiple individual
labels, which is more consistent with the EMM scenario.

Some other approaches to mine preferences and ranks can be found in the
literature [31,47]. However, these approaches tackle different problems from the
one we address in this paper. In [31], the authors suggest an approach to mine the
rankings with association rules that search for subranking patterns Our approach
goes beyond this as it relates the ranking patterns with descriptors (otherwise
referred to as independent variables). From a different perspective, [47] suggests
a ranked tiling approach to search for rank patterns, whereas we are interested in
the preference relations derived from the ranks.
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In the Label Ranking context (Section 2), when the number of labels is large,
the search for preference patterns can be hard to analyze and visualize. A real-
world example is the Sushi dataset [37], which represents the preferences of 5,000
persons over 10 types of sushi. Even this relatively modest number of sushi types
can be ranked in a large number of combinations. This may have a significant
effect on the data, as it is shown in this dataset, where more than 98% of the
5,000 rankings present in this dataset are unique. This illustrates why it can be
more difficult to directly learn a ranker that associates a reliable complete ranking
for any subset in the instance space, X, when the number of labels is non-trivial.

4.1 Preference Matrix

Before we discuss the approach in detail, it is useful to introduce an alternative
representation of rankings that can be useful to look for different categories of
exceptionality. Let us define a function, ω, assigning a numeric value to the pairwise
comparison of the labels λi and λj :

ω (λi, λj) =


1 if λi � λj (λi preferred to λj)
−1 if λi ≺ λj (λj preferred to λi)

0 if λi ∼ λj (λi indifferent to λj)
n/a if λi ⊥ λj (λi incomparable to λj)

Note that, by definition, ω (λi, λj) = −ω (λj , λi). We can use ω to represent a
ranking π as a Preference Matrix (PM), Mπ:

Mπ (i, j) = ωπ (λi, λj)

Mπ is, by definition, an antisymmetric matrix with trace equal to zero, tr (Mπ) = 0.
PMs can represent partial or incomplete orders but can also be aggregated to
represent sets of rankings from an entire dataset D or subgroup S. To aggregate
the entries, the mean or the mode can be used.

The generation of a PM is basically a pairwise decomposition problem. The
complexity is O

(
sk2
)

per subgroup, where s is the size of the subgroup and k the
number of labels in the ranking. Even though any number of labels is theoretically
permitted in label ranking, in practice the number of labels is usually smaller than
20. Hence, the computational cost of generating PMs should not be a problem.

4.1.1 Preference Matrix of a set of rankings

The PM of a set of rankings from a dataset D with n rankings, MD, aggregated
with the mean is defined by:

MD (i, j) =
1

n

∑
π∈D

Mπ (i, j)

where Mπ is the PM of the ranking π.
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The PM of the example dataset D̂ (cf. Table 1) is the following:

MD̂ =


0 0 0 0.5
0 0 −1 0
0 1 0 1
−0.5 0 −1 0


If entry MD̂ (i, j) = 1 or MD̂ (i, j) = −1, then all rankings in D̂ agree that λi � λj
or λi ≺ λj , respectively. This means that this representation enables easy detection
of strong partial order relations in a set. If row i has all the values very close to
1, then λi is systematically preferred to the remaining labels in the corresponding
dataset.

Table 1 Example dataset D̂. The first column is the only descriptor. The subsequent four
columns represent the preferences among four labels, by providing their ranks. An alternative
representation is presented in the rightmost section of the table.

A1
π

alternative π
λ1 λ2 λ3 λ4

0.1 4 3 1 2 λ3 � λ4 � λ2 � λ1
0.2 3 2 1 4 λ3 � λ2 � λ1 � λ4
0.3 1 4 2 3 λ1 � λ3 � λ4 � λ2
0.4 1 3 2 4 λ1 � λ3 � λ2 � λ4

For instance, the records in the illustrative dataset D̂ contain distinct total
orders (Table 1). But its PM clearly shows that λ3 is always preferred to λ2
(MD̂ (3, 2) = 1). This information, which can be easily obtained from the PM, is
harder to read directly from the two columns in Table 1) representing λ2 and λ3:
even though, if we analyze carefully, λ3 is always preferred to λ2, this pattern is
based on different ranks, namely, 3 > 1, 2 > 1, 4 > 2 and 3 > 2. Thus, unless one is
looking specifically for this pattern, it would be quite hard to find. In real datasets,
with more examples and labels, the task would be even harder. Conversely, λ4 is
never preferred to λ3, which is represented by MD̂ (4, 3) = −1. In some cases, the
overall trend is not as clear (e.g. λ1 is preferred to λ4 but not always) and in other
cases, there is no trend at all (e.g. λ1 and λ2).

Representing a set of rankings as a PM has another advantage over the tradi-
tional permutation representation. On a PM, we can naturally derive a varied set
of metrics to search for preference patterns in a set of rankings by characterizing
parts of the matrix. For example, it enables simple labelwise (by rows/columns of
the PM) and pairwise (by single entries of the PM) analysis of preferences (see
Section 4.3).

From the PM of a subgroup S, one can derive a new ranking πS . How to do so
is a non-trivial question, which has received a lot of attention in several research
fields with similar types of matrix [33]. The straightforward way is to sum the
rows of the PM and then assign a score to each corresponding label. Higher values
correspond to a relatively more preferred label.

On the other hand, PMs can also have limitations in comparison to the tradi-
tional permutations representation. Due to the choice of the aggregation metrics,
specially in the presence of ties, the PMs can hide the real nature of the rankings.
For example, when half of the rankings is λ1 � λ2 � λ3 � λ4 and the other half
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λ4 � λ3 � λ2 � λ1, this results in a PM with all entries equal to zero. Because the
same will happen if all rankings are complete ties, there is no way for the method
to ”see” this obvious difference in the preferences.

In an attempt to mitigate this, subgroups with a PM containing only zeros
are not taken into consideration for this work. That is, only subgroups for which
we can infer at least one pairwise preference can be considered interesting in this
Exceptional Preferences Mining approach.

Finally, to aid in the interpretation of ranking trends within subgroups we use
a visual representation of the PMs that is a set of colored tiles (Figure 1). Each
tile represents an entry of the PM. The entries of a PM can vary from −1 to 1.
The negative entries of the matrix are represented with red tiles, the positive with
green tiles, and 0 is represented in white. The colored tiles fade out as they get
closer to 0.

Fig. 1 PM representation of the set of rankings in D̂ (cf. Table 1). Dark green tiles represent
1 and dark red tiles represent -1.

4.2 Characterizing Ranking Exceptionality

In EPM, we want to search for exceptional preference (or ranking) behavior. Be-
cause preferences are represented with rankings, we can distinguish three categories
of exceptionality concerning rankings: rankingwise, labelwise and pairwise.

Measures that fall into the first category, rankingwise, will benefit subgroups
with exceptional complete rankings. This is, if the average ranking of the population
is λ1 � λ2 � λ3 � λ4, subgroups with an average ranking of λ4 � λ3 � λ2 � λ1 will
be deemed the most interesting. However, finding a reasonable set of rankingwise
exceptional preferences can be challenging in some cases. Considering the example
of the Sushi dataset mentioned before, with more than 98% of unique rankings, it
will be difficult to observe unusual complete rankings that occur very frequently,
due to the low number of ranking repetitions.

Labelwise measures, are less restrictive and focus on subgroups where at least
one label is unusually ranked higher (or lower) in comparison to the whole popula-
tion. The preferences of these subgroups can be represented as incomplete rankings.
Considering a population where we observe that λ1, λ2, λ3 � λ4, therefore, sub-
groups where λ4 � λ1, λ2, λ3 will be interesting. Note that, the following list of com-
plete rankings agree with λ4 � λ1, λ2, λ3 : λ4 � λ3 � λ2 � λ1, λ4 � λ2 � λ3 � λ1,
λ4 � λ3 � λ1 � λ2, λ4 � λ1 � λ2 � λ3 and λ4 � λ1 � λ3 � λ2. As an example,
if a subgroup ranks tekka-maki consistently in the top 3 while the majority in
the dataset ranks it in the last 3, this type of measures will find it to be very
interesting.
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Finally, pairwise measures focus on unusual pairwise preferences. Considering
a population where the majority agrees that λ1 � λ4, any subgroup where most
of the subjects agree that λ4 � λ1 will be considered very interesting. This means
that, if a population displays this preference tamago � kappa-maki, a subgroup
where most people prefer kappa-maki � tamago will be deemed interesting by
these type of measures. Our assumption is that, even though over 98% of the total
rankings in the Sushi dataset are unique, there is plenty of information present in
these rankings: the partial orders and pairwise comparisons can reveal interesting
subgroups.

4.3 Characterizing Exceptional Subgroups

In this section we formally define the quality measures for EPM, which evaluate
how exceptional the preferences are in the subgroups. A subgroup can be consid-
ered interesting both by the amount of deviation (distance) and by its size (number
of records covered by the subgroup, as discussed in Section 3) [25]. Since, reason-
able quality measures should take both these factors into account, we divide the
quality measures into two parts: the distance component and the size component.

QMS = sizeS · distanceS
In order to allow direct comparisons between different quality measures, both
components are normalized to the interval [0, 1]. A common measure for the size
in Subgroup Discovery is

√
s [38], where s is the size of the subgroup. To normalize,

we use the square root of the fraction of the dataset covered by S: sizeS =
√
s/n.

Before introducing the distance components, let us first define a distance (or
difference) matrix LS , as the distance matrix between two PMs, MS and MD:

LS =
1

2
(MD −MS)

where S ⊆ D (the division by 2 limits the distance to the interval [−1, 1]). We
can measure different properties of LS and represent them with a numeric value.
This way we get an indicator of the quality of the distance of preferences for a
subgroup. Consider the subgroup Ŝ1 : A1 ≥ 0.3, which covers the last two cases
from our example dataset D̂. Its PM is:

MŜ1
=


0 1 1 1
−1 0 −1 0
−1 1 0 1
−1 0 −1 0


The first row clearly reveals that λ1 is always preferred to all other labels in this
subgroup. If we compute the distance matrix LŜ1

we get:

LŜ1
=


0 −0.5 −0.5 −0.25

0.5 0 0 0
0.5 0 0 0
0.25 0 0 0


Thus, the distance matrix LŜ1

confirms that the behavior of λ1 is exceptional in

Ŝ1 while for the other labels, the behavior is the same as in the original dataset.
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4.4 Quality Measures

In this section we introduce the quality measures used in this work. We propose
4 quality measures: 2 rankingwise, 1 labelwise and 1 pairwise (Section 4.2). We
describe 3 previously proposed measures [16] and introduce a new one.

As we are interested in subgroups with exceptional preferences, we should be
able to measure a preference distance. For that we can use the distance matrix
LS . The distance measures we employ, typically consider a particular subset of the
entries of the distance matrix LS .

4.4.1 Rankingwise measures

Rankingwise quality measures should prefer subgroups whose average rankings are
very different to the average ranking of the complete dataset, i.e. maximizing the
distance between complete rankings.

Rankingwise Norm If one is searching for subgroups whose average ranking is as
close as possible to the inverse ranking of the population, one should use the
Rankingwise Norm quality measure, RWNorm. Given a set of subgroups with same
size, this measure gives the highest score to subgroups whose rankings are the
inverse of the population.

In other words, this is done by maximizing all the entries of the distance matrix
LS . Maximizing the distance of preferences is also maximizing the magnitude of
LS . The most fundamental mathematical way to measure the magnitude of a
vector or matrix is the norm. Hence we can use the Frobenius norm of LS as a
distance measure.

RWNorm(S) =
√
s/n · ||LS ||F =

√
s/n ·

√√√√ k∑
i=1

k∑
j=1

L (i, j)2

As an alternative representation, in some cases, one can use the most frequent
values contained in the entries of the distance matrix LS . That is, one or several
modes could be used to represent the preference of a population. Therefore, we
define RWNorm−Mode as an alternative quality measure where the entries of the
PM of the dataset, MD, and the subgroup, MS , are aggregated with the mode. In
our case, since we can only represent one mode inside a PM, in cases where there
are two or more, the median is used.

Rankingwise Covariance Covariance is used in statistics to measure the extent to
which two variables change in comparison with each other. In simple terms, a
positive value indicates that when one increases, the other also increases. If they
behave in opposite directions, the covariance is negative.

As in RWNorm, we are interested in subgroups with complete rankings that
contradict the preferences in the general population. Hence, we can use covariance
to measure the deviations of preferences. The entries of a row in the PM MS

represent how a label relates to the remaining labels in the subgroup S. By abuse
of notation, the rows of MS and MD can be seen as independent variables, which
allows us to measure the covariance between labels. That is, we can compare the
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PM values of a label in a subgroup S with the corresponding values of the same
label in D using their covariance.

Since our aim is to find opposite preferences in comparison to the population,
we are interested in a negative covariance:

RWCov (S) = −
√
s/n · cov (MD,MS)

In comparison to RWNorm, we expect this measure to be more conservative
because it requires that most of the entries behave in opposite directions. On the
other hand, this measure is better at distinguishing one subgroup whose overall
deviation is due to one label deviating strongly and the others not so much, from
one where all labels have small deviations.

4.4.2 Labelwise measures

Labelwise measures look for unusual behavior in parts of the rankings. Depending
on the application at hand, subgroups might be considered interesting if, at least,
parts of their rankings, are in the opposite order of the ranking of the popula-
tion. For example, a data analyst might be interested in finding subgroups where
the preference for a particular sushi type behaves substantially different, when
compared to its behavior on the population. That is, the fact that only one label
behaves differently, disregarding the interaction between the other labels, can also
be interesting [11].

Because rankings have inter-label relations that can be explored [31], there are
many ways to tackle this, for example, to use less restrictive measures to look for
unusual behaviors of partial rankings.

Labelwise Norm We can measure the preference distance of each label, in a sub-
group S, by computing the norm of the rows from LS . This measure considers only
the maximum value of the set of rows, hence high values of the measure indicate
that, at least, one label behaves differently:

LWNorm(S) =
√
s/n · max

i=1,...,k

k∑
j=1

L (i, j)

Other examples of labelwise measures could be, for example, a variant of this
one, but based on the second highest score by label. In that case, it would find
subgroups where at least 2 labels are behaving in an unusual way. We could also
consider a labelwise covariance, which would focus in the maximum covariance of
the each row of LS .

4.4.3 Pairwise measures

In PL, Pairwise Preferences [33] are often the focus of the analysis, decomposing
the preferences into pairs label-vs-label. In EPM, if we are interested in subgroups
with at least one pair of labels with distinctive preference behavior we can use
pairwise measures.
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Pairwise Max We can employ the following pairwise quality measure:

PWMax(S) =
√
s/n · max

i,j=1,...,k
L (i, j)

This quality measure is the least restrictive of this set: a subgroup is interesting if
one pair of labels interacts unusually, disregarding all other label interactions.

One alternative pairwise measure could be the pairwise minimum, which would
provide the lower bound of PWMax for each subgroup.

4.5 Tackling False Discoveries

In SD, one aims to find subsets of the dataset that are interesting in some sense.
As such, the space of candidates to be considered for what essentially amounts to
a statistical test is vast. Hence, SD suffers from the multiple comparisons prob-
lem [32]: when testing a large number of a null hypotheses, by definition, some
will incorrectly be rejected. Namely, with a significance level of α, α out of each
100 null hypotheses tested are expected to be incorrectly rejected.

For supervised local pattern mining, to which SD belongs, a swap-randomization-
based statistical test procedure has been developed [24]. First, a number of copies
of the original dataset is generated, and in each of the copies the target attributes
are swap randomized. All other attributes are kept intact. This means that the
search space of the mining algorithm and the distribution of the targets remains
intact, but the connections between the search space and the target space are bro-
ken. The procedure then involves running the algorithm to be tested on each copy
of the dataset, and reporting the best subgroup found, according to the selected
quality measure. Any subgroup that is found on such a copy of the dataset is
interesting only because of random effects. Hence, these are artificially generated
false discoveries. The procedure then builds a global model over the artificial false
discoveries, the so-called Distribution of False Discoveries (DFD). Then, the sub-
groups found on the original dataset can be assigned a p-value, corresponding to
the null hypothesis that a subgroup with this quality is generated by the same
process that generated the DFD. Refuting the null hypothesis essentially refutes
the hypothesis that the subgroup found is a false discovery.

The DFD validation procedure has only one parameter: the number of dataset
copies. This number must be large enough to satisfy certain conditions arising in
the global modeling involved in creating the DFD. As noted in [24], typically, 100
copies are enough.

5 Experiments

In this section we start with a description of the experimental setup (Section 5.1),
then we present some statistics of the datasets used (Section 5.2). Then we present
the results obtained (Section 5.3) and finally we compare our findings with the
results of an alternative approach (Section 5.4).
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5.1 Implementation and Experimental Setup

We incorporate Exceptional Preferences Mining in the Cortana2 software pack-
age [44]. This package delivers a generic framework for SD, implements several SD
instances, and offers many generic features allowing for different SD approaches.
The description language consists of logical conjunctions of conditions on single
attributes.

Our experiments use a greedy best-first search approach (Algorithm 1). The
numeric strategy used for this experiments is an on the fly discretization approach
of 8 equal-width bins. For every extreme of the bin we use a set of numeric operators
such as ≥ and ≤.

All the findings we present in this paper have gone through the DFD validation
procedure (Section 4.5) with 100 copies, and all have been found significant at a
significance level of α = 1%.

All the subgroups presented in this manuscript were found in less than 3 min-
utes of execution time, on an Intel Core i7 5500U CPU @ 2.40GHz with 16GB
of RAM. The DFD validation procedure, for depths bigger than 4 can take more
than 30 minutes, depending on the dataset.

5.2 Datasets

To illustrate domain-specific interpretation of the results, we experiment with
some real-world datasets (Table 2). The Algae dataset,3 is based on the COIL
1999 Competition Data from UCI [42]. This dataset concerns the frequencies of
algae populations in different environments. This dataset consists of 340 examples,
each representing measurements of a sample of water from different European
rivers in different periods. The measurements include concentrations of chemical
substances such as nitrogen (in the form of nitrates, nitrites and ammonia), oxygen
and chlorine. Also the pH, season, river size and flow velocity are registered. For
each sample, we have the preference relations of 7 types of algae which represent
the concentrations ordered from larger to smaller concentrations. Those with 0
frequency are placed in last position and equal frequencies are represented with
ties. Missing values are set to 0.

The Sushi preference dataset [37], is composed of demographic data about
5,000 people and their sushi preferences. Each person sorted a set of 10 different
sushi types by preference. The 10 types of sushi, are a) shrimp, b) sea eel, c) tuna,
d) squid, e) sea urchin, f) salmon roe, g) egg h) fatty tuna, i) tuna roll and j)
cucumber roll.

The Top7movies dataset is a subset of the MovieLens 1M Dataset [30]4. The
original dataset has 1 million ratings from 6000 users on 4000 movies. For each
user, we have its demographic data, such as gender, age, occupation and zipcode.
Using the zipcode R package [7], we obtained the city, state, latitude and longitude
related to the given zipcodes of the users. We selected the subset of users which
have rated all the 7 most rated movies. This means that, in the end we obtained

2 http://datamining.liacs.nl/cortana.html
3 http://dx.doi.org/10.17632/spwmg2z7cv.2
4 https://grouplens.org/datasets/movielens/1m/

http://datamining.liacs.nl/cortana.html
http://dx.doi.org/10.17632/spwmg2z7cv.2
https://grouplens.org/datasets/movielens/1m/
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demographic data and a ranking of 7 movies per user. The labels in this dataset
represent the following movies:

– a) American Beauty (1999)
– b) Star Wars: Episode IV - A New Hope (1977)
– c) Star Wars: Episode V - The Empire Strikes Back (1980)
– d) Star Wars: Episode VI - Return of the Jedi (1983)
– e) Jurassic Park (1993)
– f) Saving Private Ryan (1998)
– g) Terminator 2: Judgment Day (1991)

Examples which contained rankings with complete ties were removed.
We also study data with socio-economic information from regions of Ger-

many and its electoral results, the datasets GermanElections2005 and German-

Elections2009. The 413 records correspond to the administrative districts of Ger-
many, which are described by 39 attributes. Both datasets are parts of data which
was extracted from a publicly available database of the German Federal Office of
Statistic [4]. A similar study has been presented in [28], but restricted to the city
of Cologne.

In terms of independent attributes we have: age and education of the pop-
ulation, economic indicators (e.g. GDP growth, percentage of unemployment),
indicators of the labor workforce in different sectors such as production, public
service, etc. In terms of the target, we transformed the election results of the five
major political parties for the federal elections in 2005 and 2009 into rankings. In
this dataset the labels represent:

– a) CDU (conservative)
– b) SPD (center-left)
– c) FDP (liberal)
– d) GREEN (center-left)
– e) LEFT (left-wing)

We also choose to experiment with a Label Ranking dataset from the Data
Repository of Paderborn University5, since this set of data is well-known in the
preference learning community [12]. In particular, we use the Cpu-small dataset
which was transformed from a regression dataset [12]. The target ranking, with 5
labels, was derived for each example from the order of the values of 5 numerical
variables (which are then no longer used as independent variables). In the process,
the features were normalized, and its names replaced by A1, A2, . . . , A6. Therefore,
in this case, the reported subgroups cannot be interpreted as in the original dataset
domain.

The percentage of unique rankings Uπ (Table 2) measures the proportion of
distinct rankings in the dataset:

Uπ =
#distinct rankings

n

where n is the size of the data. We also show the expected number of different
rankings given n examples, E (Uπ). This is, if we randomly pick n rankings of a

5 https://www-old.cs.uni-paderborn.de/fachgebiete/intelligente-systeme/
software/label-ranking-datasets.html

https://www-old.cs.uni-paderborn.de/fachgebiete/intelligente-systeme/software/label-ranking-datasets.html
https://www-old.cs.uni-paderborn.de/fachgebiete/intelligente-systeme/software/label-ranking-datasets.html
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Table 2 Dataset details. The column Uπ represents the percentage of unique rankings.

Datasets #examples #labels #attributes Uπ E (Uπ)
GermanElections2005 412 5 31 5% 28%
GermanElections2009 412 5 33 7% 28%
Top7movies 602 7 7 52% 94%
Algae 316 7 11 72% 96%
Sushi 5 000 10 10 98% 99%
Cpu-small 8 192 5 6 1% 1%

fixed size k, we should expect E (Uπ) rankings. By comparison with Uπ we can
have an idea if there are any biases in the behaviors of the rankings.

Considering the case of the Sushi dataset (Table 2), with an Uπ = 98%, if we
randomly pick 100 instances (i.e. 100 users and its rankings), we will probably
have 98 distinct rankings. This means that, it will be extremely unlikely to find
more than 3 users with the very same preferences. On the other hand, because
the Uπ = 98% is close to the E (Uπ) = 99%, we should also not expect very strong
biases in the ranking behaviors. For these reasons, we expect that it will be harder
to find complete ranking patterns in this dataset.

Looking into the E (Uπ) of the two german elections datasets, their Uπ is con-
siderably less than its expected value. This seems to indicate that, not all rankings
have equal probability in this election scenario. However, because we know that
in elections it is very unusual that all parties have equal chances of being in all
positions, across different regions, it makes sense.

5.3 Results

In this section we show some of the most interesting results obtained with the
different quality measures.

5.3.1 Study on the behavior and biases of the Quality Measures

With each of the introduced quality measures, one can find subgroups featuring
exceptional ranking behavior. The exceptionality is measured in (sometimes sub-
tly) different ways for the different quality measures; which quality measure one
uses depends on what type of exceptional ranking one is looking for. In this sec-
tion, we briefly explore the differences in focus between the quality measures, to
enable the user to make an informed choice.

In order to explore the relations of the bias between quality measures, we
generated 10,000 random subgroups and their scores were measured by all quality
measures. The generation was performed by randomly combining descriptions until
the maximum depth is reached. The search depth was fixed as 3, to allow some
diversity of combinations. The final result is presented in Figure 2, where the blue
dots represent the significant subgroups according to the DFD test [24]. In Figure 2,
the first row highlights the significant subgroups of RWNorm and the vertical
axis represents its score. The horizontal axis represents the scores of each quality
measure, in the following order: RWNorm, RWNorm-Mode, RWCov, LWNorm and
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Fig. 2 Comparison of the scores of the quality measures on random subgroups obtained on
the Cpu-Small dataset. The blue dots represent significant subgroups according to the DFD
test [24].

PWMax. The second row highlights the significant subgroups of RWNorm-Mode,
and so on.

As expected, some quality measures have a different but congruent bias. We
can observe that 3 measures have a very similar bias, RWNorm, LWNorm and
PWMax. This is somewhat expected, since they basically have the same measure,
but applied in different parts of the distance matrix LS .

The RWNorm-Mode shows a distinct behavior from the latter group. This mea-
sure is based on a different distance matrix LS , obtained from the difference be-
tween the modes of the population MD and the modes of the subgroups MS . Its
behavior can be explained with a simple example. For simplicity, let us consider
only one entry of LS , if one assumes that 51% of the subjects of a population agree
that λa � λb, then, a reasonable sized subgroup where 51% agree that λb � λa
and the remaining 49% agree that λa � λb, will have a very high score with this
measure. In fact, in this subgroup, only 2% less of the subjects prefer λa � λb, if
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compared to the population. For the measures RWNorm, LWNorm and PWMax,
subgroups of this type will not be very interesting, unless that difference is bigger.
This explains the behavior of the line on the top-left, observed on the second row
of Figure 2, where RWNorm-Mode compares to RWNorm, LWNorm and PWMax.
The rest of the behavior seems to be in line with the other measures.

Finally, RWCov, seems to have the most different bias. That is because it is
not based in the distance matrix LS . It measures the negative correlation directly
between the population MD and the subgroups MS . Therefore, with this qual-
ity measure, we will find subgroups that do not necessarily maximize preference

distance, but instead feature unusual preference behavior in a more abstract sense.
Figure 2 presents the significant subgroups per quality measure in blue. Despite

that it seems there are a lot of significant subgroups, most of them have a near zero
score. As a matter of fact, at most 30% of the random subgroups were considered
significant. The total number of significant subgroups found, out of the 10,000
random subgroups, Table 3.

Table 3 Total number of significant subgroups found per dataset, with depth 3, using a
random combinations of descriptions.

Datasets #Subgroups
RWNorm 2,977
RWNorm-Mode 1,128
RWCov 3
LWNorm 2,639
PWMax 2,746

We should note that, despite this random generation of the subgroups, the
subgroups presented in Figure 2 are not totally random. Because the generation
was performed by randomly combining descriptions, these ”random subgroups”
are bounded by the numeric strategy we chose and the nominal descriptors. For
example, when Sex = Male with City = Tokyo are combined, even though the
combination is random the two descriptions Sex = Male and City = Tokyo are
not random subpopulations of the dataset. This is why it is possible to observe
such a high number of interesting subgroups Table 3.

Now, let us focus on the number of subgroups obtained per measure, in terms
of the given datasets in Table 4. Using a best-first search to find subgroups, we
compare the number of subgroups obtained, per quality measure per dataset. For
simplicity, we use a search depth of 1. RWCov is, by far, the measure that identifies
the least number of subgroups throughout measures and datasets. This seems to
indicate that this measure is very restrictive, as expected (Section 4.4).

5.3.2 German Elections

With the GermanElections2005 dataset, using the PWMax with a search depth of
1, we found 62 significant subgroups. The best subgroup, Region = East, indicates
that the party with label e in comparison to the party with label c has a very
different behavior from the majority. In fact, while on 75% of the districts in
Germany the FDP party (label c) was more voted than the LEFT party (label e),
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Table 4 Total number of significant subgroups found per dataset, with depth 1, using the
different quality measures.

Datasets RWNorm RWNorm-Mode RWCov LWNorm PWMax
GermanElections2005 59 19 0 59 62
GermanElections2009 55 18 1 53 59
Top7movies 2 0 0 2 2
Algae 22 5 1 22 21
Sushi 25 5 0 18 20
Cpu-small 12 10 6 12 12

on the 2005 elections, all the 87 districts from East Germany voted more on the
LEFT party than on the FDP party. This shows a great example of an extreme
inversion of preferences.

The second best subgroup obtained, compares the center-left GREEN party
(label d) with the left-wing LEFT party (label e). The GREEN party had more
votes than the LEFT party on 72% of the districts in Germany. On the other hand,
on 88% of the districts where the average income is less or equal than 16,979, the
LEFT party was more voted than the GREEN party.

To compare with the German elections of 2009, we used the GermanElec-

tions2009 dataset with the same settings and found 57 significant subgroups. As
in the 2005 elections, the best subgroup shows that 100% of the districts in east
Germany gave more votes to the LEFT party than on the GREEN party, in com-
parison to only 27% in the whole Germany. The second best subgroup, as in the
2005 case, compares the center-left GREEN party (label d) with the left-wing
LEFT party (label e). However, in this case, 94% of the districts, where the av-
erage income is less or equal than 16,979, the LEFT party was in advantage in
comparison to the GREEN party. Comparing to the 88% of 2005, we realize that,
in 2009, 6 p.p. more districts, where the average income was ≤ 16, 979, increased
the votes in the LEFT party, in comparison to the GREEN party.

Continuing with the GermanElections2009 and using the LWNorm with a search
depth of 2, we found 2965 significant subgroups. The most relevant is expressed
with a simple condition Region = East. This subgroup is interesting because it
shows that, in most regions of East Germany, the LEFT party is often one of the
top voted parties. In Figure 3 we can clearly see the distribution of the ranks. We
observed that, the LEFT party was either first or second in the elections of 2009
in 97% of the districts in East Germany. Moreover, it was 3rd place in 3% of them.
Other subgroups encountered show a very similar behavior in terms of the label
that represents the LEFT party, like:

– Children Population ≤ 14.8% ∧ Income ≤ 16, 634
– Children Population ≤ 14.8% ∧Unemployment ≥ 8.4%

On the other hand, we also found subgroups were the LEFT party is often the
least voted party. Some examples are:

– Income ≥ 18, 442
– Income ≥ 17, 791 ∧Youth unemployment ≤ 8.5%

In Figure 4 we can visualize the distribution of Income ≥ 18442.
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Fig. 3 Histograms representing the rela-
tive position of the LEFT party obtained
in the 2009 elections of districts in Ger-
many. In red, the subgroup Region = East
and in blue the distribution for all dis-
tricts.
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Fig. 4 Histograms representing the rel-
ative position of the LEFT party ob-
tained in the 2009 elections of dis-
tricts in Germany. In red, the subgroup
Income ≥ 18442 and in blue the distribu-
tion for all districts.

Finally, in Figure 5 we can visualize the PM of subgroups which are described
by the name of the state. This visualization clearly shows some nuances in the
voting behavior on the different states of Germany.

Fig. 5 PM representation of some subgroups described by the feature State in comparison to
the base matrix (All districts). The subgroups are sorted by relevance (first row, first column:
most relevant; second row, second column: least relevant)

From a different perspective, if we look at the average rankings of each PM
from Figure 5 we obtain:

– CDU � LEFT � SPD � FDP � GREEN (Thuringia)
– LEFT � SPD � CDU � FDP � GREEN (Brandenburg)
– LEFT � CDU � SPD � FDP � GREEN (Saxony-Anhalt)
– CDU � LEFT � SPD � FDP � GREEN (Saxony)
– CDU � SPD � FDP � GREEN � LEFT (Bavaria)
– CDU � SPD � FDP � LEFT � GREEN (All states)

We highlight (in bold) the parties which got a better relative position in the
corresponding state, in comparison to the overall average ranking. As one can
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conclude from most of the rankings in this list, at least one party (one label),
seems to have its position changed relatively to the others. This clearly shows that
the method is working as expected.

This analysis, also shows the potential of EPM as a tool to study election
data. By looking at different levels of granularity of the preferences, EPM does
not necessarily focus on the winners, but rather on major preference shifts. Also,
considering the elections application, different ranking aggregation metrics can be
used to comply with the Condorcet method [15].

5.3.3 Top7Movies

With the LWNorm quality measure, we found 2 significant subgroups for a search
depth of 2. The members of the first subgroup, people older than 34 years old living
bellow a latitude of 32.9, seem to dislike the most voted movie American Beauty,
more than usual (Figure 6). This subgroup, includes people from different states,
such as Arizona, California, Florida, Georgia, Louisiana, New Mexico, Texas and
even Hawaii. An interesting conclusion we can draw, is that, this group voted in
Star Wars: Episode IV - A New Hope and Saving Private Ryan with high scores. On

Fig. 6 PM representation of the dataset Top7Movies (base matrix), the subgroup Age ≥ 35∧
Latitude ≤ 32.9 (subgroup matrix) and the difference (difference matrix).

the other hand they seem to dislike American Beauty and Jurassic Park. In fact,
the average ranking of this subgroup is b � f � c � d � g � a � e and the average
ranking of the whole population is b � c � a � f � d � g � e.

5.3.4 Algae

With the Algae dataset, we obtain results about the concentrations of algae with
the RWNorm measure. Results seem to indicate that during Spring, the species of
algae a, b and c are much more common in rivers than the others species. This can
be easily concluded by studying the PM representation of the subgroup (Figure 7).
On the other hand, we also see an interesting behavior during the Autumn season.

With the LWNorm measure, we find a bit more than 400 subgroups with maxi-
mum depth 2, the best of which is presented in Figure 8. In the subgroup, the label
a is strongly preferred over all others, while the image is much more nuanced over
the whole dataset. If we ignore the label a, the PMs for both the overall dataset



Discovering a Taste for the Unusual 23

Fig. 7 PM representation of the subgroups Season = Spring (left subgroup matrix) and
Season = Autumn (right subgroup matrix) from the Algae dataset.

and the subgroup are rather bland, and their difference is not very pronounced.
But for this one particular label a, the behavior on the subgroup is extremely
clear-cut, and the LWNorm quality measure picks up on that effect.

Fig. 8 PM representation of the dataset Algae (base matrix) and the subgroup V 10 ≤ 59 ∧
V 6 ≤ 11.87 (subgroup matrix), with difference matrix on the right.

Using a depth of 3 with the same measure, we found around 5,400 subgroups.
We show the best one in Figure 9. One interesting aspect of this subgroup is that
it shows an opposite behavior, in comparison to the one in Figure 8, in terms of
the label a (as it is clear from the difference matrix).

Fig. 9 PM representation of the dataset Algae (base matrix) and the subgroup V 10 ≥ 137.78∧
V 6 ≥ 14.32 ∧ V 9 ≥ 60.83 (subgroup matrix), with difference matrix on the right.

The visual representations of the PM clearly reveal the effect of the LWNorm

quality measure in this dataset. We can also observe from the description of the
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subgroups obtained, that the variables V 10 and V 6 are highly correlated with the
presence of the algae a.

5.3.5 Sushi

Considering the high percentage of unique rankings in the sushi dataset (Table 2)
we do not expect to find strong patterns in the whole PM, therefore, we focus on
labelwise ranking patterns.

With the LWNorm measure, we find 149 subgroups on the Sushi dataset. We
present the best subgroup using this measure in Figure 10. The subgroup (Males
over 30 years) shows a preference for Sea Urchin, since the majority of men rank
this sushi type in the top 4. By contrast, in the whole population, more than half
rate it between 5th to 10th, and every fifth person rate it in the last place.

0.00

0.05

0.10

0.15

0.20

2.5 5.0 7.5 10.0
Ranks of the label

P
er

ce
nt

ag
e

Population

all

subgroup

Sea Urchin

Fig. 10 Percentage of ranks for Sea Urchin (Sushi dataset) for all individuals in comparison
to the subgroup (males older than 30 years).

5.3.6 Cpu-small

On the Cpu-small dataset, we used the RWCov quality measure. Experiments
with a maximum depth of 4, found 275 significant subgroups. In Figure 11 we can
visualize the PM of the most relevant subgroup found. The PM of this subgroup, of
size 62, shows deviations in all the entries of the matrix, which is a good indicator
that this measure is working as expected.

In terms of the rankings, the average ranking of the whole dataset is (2, 4, 3, 1, 5),
and the average ranking in this subgroup is (3, 1, 5, 4, 2). The Kendall τ correlation
of these two rankings is −0.4, which confirms the unusualness of the subgroup.

We could also observe that, despite having obtained 275 significant subgroups,
there were many subgroups whose PM was very similar and showing the same
unusual behavior. This could also be observed in terms of the ranking derived
from their PM.
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Fig. 11 PM representation of the dataset Cpu-small (base matrix), the subgroup A5 ≥
0.710∧A6 ≥ 2.143∧A3 ≤ 0.755 (Subgroup Matrix) and the difference (difference matrix).

5.3.7 Comparison of different aggregation metrics

As mentioned in Section 4.1, different metrics can be used in the aggregation of
PM. To test how this choice can affect the model, we analyzed some results were
PMs are aggregated with the mode (instead of the the mean), however, for the sake
of space, we only present one dataset and one quality measure, RWNorm-Mode.

Using the mode as the aggregation, RWNorm-Mode quality measure, we found
131 significant subgroups of depth 2 on the Cpu-small dataset. As a point of
comparison, we obtained 155 significant subgroups, with the same settings, using
the RWNorm quality measure (aggregation with the mean). Despite the similar
number of subgroups found, the two groups of subgroups are quite distinct. This
is somehow expected from the previous analysis of the quality measures in Sec-
tion 5.3.1.

A striking difference is that the rankings of the subgroups from RWNorm-Mode

are consistently different from the ones obtained with RWNorm. However, despite
being different, the average rankings of the subgroups have a similar correlation
(in terms of the Kendall τ) to the average ranking of the population.6 In other
words, the subgroups are at a similar ”preference distance” from the population.
This seems to indicate that RWNorm-Mode can be a complementary measure with
RWNorm.

The behavior described above, is also observed on the remaining datasets pre-
sented in Table 2. For the sake of space, let us consider the best subgroup, ac-
cording to RWNorm-Mode, depicted in Figure 12. This subgroup is described by:
A4 ≥ −0.22354 In Figure 12 we can observe that the difference matrix of the best
subgroup has very faint colored tiles, which means that the PM is not very differ-
ent from the PM of the whole dataset. On the other hand, these small differences
are quite spread along the difference matrix, which, when summed up, makes it
interesting too.

From a different perspective, in Figure 13 we compare the distributions of the
correlation between the average ranking of the dataset and each one of the rankings
that are part of the best subgroup. We measure this correlation in terms of the
Kendall τ correlation coefficient. As seen in Figure 13, the distributions are similar.
This behavior was also observed in other subgroups and other datasets. Therefore,

6 We note that two distinct rankings can have the same Kendall τ correlation with a third
ranking.



26 Cláudio Rebelo de Sá et al.

Fig. 12 Representation of the PMs, aggregated with the mode, of the dataset Cpu-small
(base matrix), the subgroup A4 ≥ −0.22354 (subgroup matrix) and the difference (difference
matrix).

this confirms what we observed above, that RWNorm-Mode and RWNorm find
different subgroups but with similar ”preference distances”.
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Fig. 13 Distributions of the correlation between the average ranking and each ranking be-
longing to the best subgroup found with RWNorm-Mode (green) and RWNorm (brown).

Aggregating a PM with the mode can yield either 1, 0 or −1 in contrast to
the mean where any value in the interval [−1, 1] is possible. Therefore, the mean
can measure exceptionality on subgroups with the same mode as the dataset (e.g.
label a in Figure 8). On the other hand, the mode can detect subgroups where the
majority of the pairs behave differently. Therefore, depending on the task, the best
choice of the aggregation metric for the quality measures can change. However,
we believe that the best way is to complement the use of RWNorm-Mode with
RWNorm and vice versa.
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5.4 Comparison with Distribution Rules

In this section, we compare subgroups found with our algorithm (using COR-
TANA) with subgroups from a different approach, Distribution Rules (DR) (using
CAREN [3] software7). As mentioned before (Section 3.2), Distribution Rules are
a SD method that looks for unusual target distributions [35,43]. CORTANA and
CAREN can be used for mining other structures of data. For simplicity, in this
work we refer to CORTANA and CAREN as the tools with our preference learning
approaches.

DR use a numeric target to construct the distributions. Since we have rankings
as targets, we propose a simple way to represent individual rankings as numeric
values. For each example we compute the similarity score between its ranking
and the average ranking (consensus ranking [6]) of the dataset. Given that, the
similarity measure that we use is the Kendall τ , the new target can have values in
the range [−1, 1].

We show in Table 5 how the example dataset D̂ would look like under this
transformation. Considering that the average ranking of the rankings in D̂ is:
(2, 3, 1, 4), for the second example in D̂, we do: τ ((2, 3, 1, 4) , (3, 2, 1, 4)) = 0.66.

Table 5 Example dataset D̂ with the proposed alternative representation in the rightmost
column of the table.

A1
π similarity to

λ1 λ2 λ3 λ4 average ranking
0.1 4 3 1 2 0
0.2 3 2 1 4 0.66
0.3 1 4 2 3 0.33
0.4 1 3 2 4 0.66

For a fair comparison between the two methods, we discretized the numeric
attributes beforehand with an equal width discretization of 8 bins. We handle the
discretized numerical attributes as a nominal, not ordinal, scale. In terms of the
property of interest (target), this numerical variable does not have to be previously
discretized, because the method works with raw distributions [43].

In terms of the experimental setup, we will use the same maximum search depth
for both methods. In CORTANA, we take the RWNorm quality measure. For each
subgroup, we perform a Kolmogorov-Smirnov statistical test to compare the target
distribution of the subgroup with the target distribution of the whole population.
Subgroups which are deemed interesting, are the ones whose distributions differ
significantly from the distribution of the whole population.

We will use the term subgroup and distribution rules interchangeably to refer
to distribution rules. However, when there is the need to differentiate from sub-
groups found with CORTANA and CAREN, we will use the terms subgroups and
distribution rules, respectively.

7 http://www4.di.uminho.pt/~pja/class/caren.html

http://www4.di.uminho.pt/~pja/class/caren.html
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5.4.1 German Elections

With the GermanElections2009 dataset, we found 1,597 significant distribution
rules using CAREN and 1,073 subgroups with CORTANA for a search depth of
2. The most interesting distribution rules are not only in line with the subgroups
found, in this experiment, but also with the ones previously discussed in Sec-
tion 5.3.2. For the sake of simplicity, we only show the top five subgroups obtained
by both approaches in Table 6. It is clear from Table 6 that the subgroups found

Table 6 Comparison of subgroups found by CAREN and CORTANA

CAREN CORTANA
Region = East Region = East

Region = East∧Type = Rural Region = East∧Reg.Web.Dom. = a
Region = East∧Reg.Web.Dom. = a Income = a∧Region = East

Income = a∧Region = East Region = East∧Type = Rural
Income = a Income = a

by CAREN are very similar from the subgroups of CORTANA, despite their very
distinct approaches.

The distribution of the most interesting subgroup, Region = East, is repre-
sented in Figure 14. We can observe that, the majority of the rankings in the
whole dataset have a similarity of 0.8 with the average ranking. On the other
hand, the rankings of this subgroup, have at most a similarity of 0.7.
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Fig. 14 Graphical representation of the distributions of the target of the subgroup Region =
East (in bold) in comparison to the whole target distribution in GermanElections2009.

5.4.2 Top7Movies

In this section, we analyze a set of DR found with the Top7Movies dataset and
compare to the subgroups obtained with CORTANA. We found 7 significant DR
with CAREN and a search depth of 2. In Figure 15 we can see the description and
the distributions of the DR found on the Top7Movies dataset.
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Fig. 15 Graphical representation of the distributions rules found in Top7Movies dataset.

With CORTANA, we found 7 significant subgroups with a search depth of 2.
From this set, 3 subgroups are the same (but in a different order), as we can see
from Table 7.

Table 7 Comparison of subgroups found by CAREN and CORTANA

CAREN CORTANA
Age = 35-44∧Latitude = h Age = 35-44∧Gender = Male
Age = 35-44∧longitude = g Age = 35-44

Age = 35-44 Age = 35-44∧Latitude = h
Occupations = Other∧Age = 25-34 Age = 35-44∧Longitude = g

Occupations = Other∧Gender = Male Age = 18-24
Age = 50+∧Gender = Male Age = 18-24∧Latitude = h

Occupations = Other Age = 18-24∧Longitude = g
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We note that, in the Label Ranking context, despite the similarities between
the subgroups found both by CAREN and CORTANA, the interpretation of the
rankings is richer with a PM than with a distribution. PM are better for spotting
slight nuances in the preference patterns, for example, when a particular label
is under- or overappreciated. Moreover, if we want to search for partial ranking
patterns such as labels or simply label-vs-label, it is simpler to visualize and handle
it with a PM. This mean that, EPM, due to its representation of rankings, has a
bigger margin for the creation of new quality measures.

6 Conclusions

In this work, we empirically show how Exceptional Preferences Mining (EPM) can
be used in problems where the target concept can be represented as a ranking of a
fixed set of labels. The results are a set of subgroups, that can be described in terms
of a conjunction of few conditions on some attributes, where the label preferences
are exceptional in some sense. The presented subgroups form clear coherent parts
of the search space, which means that EPM finds deviating preferences that are
actionable for domain experts, since their description in terms of attributes should
be familiar to them.

All subgroups whose PM deviates significantly from the Preference Matrix
(PM) for the whole dataset are considered to be interesting. We used four qual-
ity measures for EPM that instantiate this concept of ‘interesting’ to different
levels, Rankingwise, Labelwise and Pairwise. The RWNorm, RWNorm-Mode and
RWCov quality measures consider a subgroup interesting if the full set of prefer-
ence relations is substantially displaced. The LWNorm quality measure highlights
subgroups where any one label interacts exceptionally with the other labels, ag-
nostic of how those other labels interact with each other. The PWMax quality
measure finds a subgroup interesting if any one pair of labels display exceptional
preference relations. Hence, by choosing the appropriate quality measure, EPM
delivers subgroups featuring preference relations that are exceptional at your pre-
ferred scope.

To show the potential of the approach, we provided experiments on several
datasets. The experiments with the RWNorm quality measure on the Algae dataset
revealed several interesting conditions that can affect the populations of the dif-
ferent species of algae from rivers. The experiments with the LWNorm quality
measure on the Sushi dataset illustrate the relative merit of this quality measure:
it focuses on subgroups where one particular label is exceptionally under- or over-
appreciated. The subgroup presented has a penchant for Sea Urchin (cf. Figure 10).
The PWMax measure shows its potential on the German2005elections dataset by
identifying several subgroup with strong exceptional preferences with respect to
the different parties. The experiments with the RWCov quality measure on the
Cpu-small dataset (e.g. Figure 11) reveal a subgroup with quite unusual prefer-
ence behavior. Finally, the RWNorm-Mode was compared to the RWNorm measure,
in different experiments, and we could observe that it revealed some interesting
subgroups too. Moreover, we concluded that RWNorm-Mode and RWNorm can be
complementary measures to study exceptional preference patterns.

As we argued in Section 3, one of the main benefits of a local pattern mining
method such as EPM is that it delivers interpretable results. That means that the
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resulting subgroups are ideally suited to instigate real-world policies and actions.
For this reason, we studied several real-world datasets.

We also compared the results found with EPM with an alternative approach,
the Distribution Rules (DR). Despite their very different setting, the subgroups
found by this method were very similar to the ones found with CORTANA. In
our opinion, this simple comparison empirically shows that our suggested quality
measures for EPM are finding relevant patterns. In terms of interpretation, PM are
better than distribution rules to detect slight nuances in the preference patterns,
for example, when a particular label is under- or overappreciated. In some cases,
information which is not easy to obtain with the usual representations of rankings,
is clearly revealed through the PM visualization (see Section 5.3.2).

From this study, we also understand some limitations of our approach. We
observed that, in some cases, despite having obtained many significant subgroups,
most of them are specializations of simpler subgroups with very similar average
rankings, if not equal. This means that, many different subgroups are finding the
same ranking behaviors.

EPM also has the disadvantage to be time consuming. A large number of labels
combined with a still reasonably high search depth makes the statistical tests very
time consuming.

As future work we would like to study alternative ways to represent and look
for patterns in rankings, for example for rankings with a large number of labels
as well as for partial orders. Finally, we would also like to study how pruning
techniques such as minimum improvement can be used to filter out subgroups, that
are specializations of simpler subgroups, but have very similar PMs.
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