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Abstract. The development of fall detection systems with the capabil-
ity of real-time monitoring is necessary considering that a large amount
of people die and suffer severe consequences from falls. Due to their ad-
vantages, daily life accessories can be a solution to embed fall-related
systems, and canes are no exception. In this paper, it is presented a
cane with fall detection abilities. The ASCane is instrumented with an
inertial sensor which data will be tested with three different fixed multi-
threshold fall detection algorithms, one dynamic multi-threshold and ma-
chine learning methods from the literature. They were tested and mod-
ified to account the use of a cane. The best performance resulted in a
sensitivity and specificity of 96.90% and 98.98%, respectively.

Keywords: Fall Detection, Machine Learning, IMU, Activities of Daily
Living

1 Introduction

Falls are the second main reason of death by accident worldwide [1]. The esti-
mated medical costs in the United States of America (U.S.A.) concerning fatal
and nonfatal falls, in 2015, were approximately $32 billion, and the annual av-
erage cost of treating individuals due to injuries from a fall is approximately
$20.000 [2, 3]. By 2020, expenses linked to injuries from falls to senior citizens
are expected to cost $43.8 billion [4].

Researchers have proposed several different solutions regarding fall-related
systems. Most of the developed projects focus on fall detection and employ
methods supported by vision, wearable and environmental approaches. Com-
monly, different sensors are attached to the subject’s body. However, the wear-
able system weights on the individual and hinder its flexibility. On the contrary,
both optical and environmental device approaches free the subject of sensors,
but require a pre-built infrastructure restricting the subject movements [5].

Populations with motor impairment normally use assistive devices that aux-
iliary their gait. Nowadays, more than 4 million people in the U.S.A. use a cane
and its usage will increase with the elderly population growth. The size is another
advantage to choose canes as fall-related systems [6–8].
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Bourke et al. [9], developed a threshold based algorithm using exclusively
accelerometry data from the trunk or thighs for the computation of the acceler-
ation Sum Vector Magnitude. If the upper or the lower individual threshold is
surpassed, a fall is detected with an accuracy of 100%.

Bourke et al. [10], also identified three gyroscopic features from the trunk,
namely the Sum Vector Magnitude (ωres), the resultant angular acceleration
(θres) and the resultant change in trunk-angle (αres). When their thresholds are
exceeded, a fall is also detected with an accuracy of 100%.

The algorithm introduced by Kangas et al. [11] is based on the analysis of
5 acceleration parameters from the wrist, head or waist. With the combination
of the Sum Vector Magnitude, the Dynamic Sum Vector, SVTOT , the Vertical
acceleration, Z2, the SVmaxmin and the final posture, which is detected 2 seconds
after the impact, a sensitivity of 97.5% and a specificity of 100% was obtained
for the waist.

Fixed threshold-based algorithms can be insufficient to achieve the main goal
of fall-related systems due to inter and intra-variability of subjects, and limited
sample size [9–12]. Thus, these methods should be adaptive and account for
variability. Otanasap et al. [13] developed a dynamic threshold algorithm by the
means of accelerometry data. A Fixed Threshold (FT) is computed based in
the data acquired from the subject while performing Activities of Daily Living
(ADL), ADLacc. Secondly, the Dynamic Threshold (DT) is formulated by the
FT added by a standard deviation calculated with the data gathered in the last
second. The algorithm outputs a percentage which discriminates the possibility
of a fall, reaching results of 97.4%, 99.5% and 95.3% for accuracy, sensitivity
and specificity, respectively.

Xu et al. [5] reviewed and compared fall detection algorithms on the most
cited works. It was found an increase of machine learning algorithms in recent
years, namely the Support Vector Machine(SVM) and the Decision Tree. The
accuracy of the algorithms are relatively high since most accuracies are above
90%, ranging between 79.6% and 100%.

The main objective of this work is to develop a cane able to detect falls.
This manuscript focus on applying the described algorithms over the data col-
lected on a cane being used as an assistive device for eleven healthy users. The
algorithms are modified to account for the use of a cane. The remainder of this
paper is organized as follows. Section II provides a complete system overview
which includes the hardware installed into the cane, its purpose, the different
fall detection algorithms considered and the experimental protocol for data ac-
quisition. In section III, the results attained with the different fall detection
algorithms are presented. Finally, in section IV, a discussion of the achieved
results is accomplished and the paper is concluded in section V.
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2 Methods and Materials

2.1 System Overview

The ASCane, Fig. 1., uses an inertial sensor located on the upper part, an 9-
axis Motion Processing Unit (MPU-9250), which is widely embedded in systems
related to human motion [3, 5, 12, 14, 15]. Chen et al. [16] studied acceleration
readings in different places of a cane under the same falling process and concluded
that the amplitudes of the acquired data in the upper part of the device were
higher than the other locations. The higher the variation, the easier is to observe
discriminative characteristics of the signal.

As full scale range, it was used ±8g for the accelerometer and ±300o/s for
the gyroscope [15,17]. When the cane is being used, all its sensors are operating
at 200Hz, which is higher then the sampling rate in other cane related works
[3,5,16]. The acquired data was saved in a memory card and the microcontroller
STM32F303K8 was used.

SD Card Shield + SD Card

IM
U

 9
2

5
0

Fig. 1. Set-up of the ASCane and its location in a healthy user.

2.2 Fall Detection Algorithms

The complete fixed threshold algorithms are exposed in Fig. 2 and the original
threshold values for each feature, body location and study are summarized in
Table 1. The algorithm introduced by Otanasap et al. [13], which will also be
tested and adapted to the ASCane, is presented in Fig.3.

A search was conducted in order to uncover which machine learning algo-
rithms authors use to classify falls. As result, 4 articles were selected [18–21],
and their corresponding features are presented in Table 2. Data were then di-
vided in two different classes: Fall and ADL samples. Afterwards, 70% of each
data were used to train the classifier and 30% to test it as indicated in Fig.4.
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Fig. 2. Three different fixed threshold algorithms implemented into the ASCane.
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Table 1. Threshold values for the different fixed threshold fall detection algorithms
[9–11].
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Study Parameter Location Value 
Type of 

Threshold* 

Bourke et al. 

[9] 
SVM (g) 

Trunk 
3.52 UFT 

0.41 LFT 

Thigh 
2.74 UFT 

0.60 LFT 

Bourke et al. 

[10] 

ωres (rads/s) 

Trunk 

3.1 

UFT 

αres (rads/s2) 0.05 

θres (rad) 0.59 

Kangas et al. 

[11] 

SVM (g) 

Waist 2.0 

Head 2.0 

Wrist 5.2 

SVD (g) 

Waist 1.7 

Head 1.2 

Wrist 5.1 

Z2 (g) 

Waist 1.5 

Head 1.8 

Wrist 3.9 

SVMaxMin (g) 

Waist 2.0 

Head 1.7 

Wrist 6.5 
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Fig. 3. Self Adaptive Threshold Algorithm presented by Otanasap et al. [13]
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Different tests were accomplished by varying the kernel type and proportion
of samples between classes in the SVM Classifier. However, the best set of pa-
rameters was determined by enabling the ”OptimizeHyperparameters” option in
MATLAB.

Table 2. Summary of the features which may correlate with falls-risk in the selected
fall detection algorithms [18–21]

Study Feature Name 

Shibuya et 

al. [18] 

Range of angular velocity for each individual axis (Rω.x . Rω.y and Rω.z) 

Range of acceleration for each individual axis (RA.x . RA.y and RA.z) 

Liu et al. 

[19] 

Sum Vector Magnitude (SVM) 

Fast Changed Vector (CVFast) 

Vertical Acceleration (Z2) 

Chen et al. 

[20] 

Sum Vector Magnitude (SVM) 

Rotation angle (RA) 

Slope (SL) 

The acceleration in the xy – plane (Axz) 

Putra et al. 

[21] 

Sum Vector Magnitude (SVM) 

Maximum Sum Vector Magnitude (MaxSVM) 

Minimum Sum Vector Magnitude (MinSVM) 

Average Sum Vector Magnitude (AvgSVM) 

Root mean square of the acceleration vector magnitude (RMSSVM) 

Acceleration exponential moving average (EMA) 

Signal magnitude area (SMA) 

 

 

Kernel 

Function 
Kernel Scale Standardize Polynomial Order Box Constraint 

Linear 0.0083 False None 0.018303 

 

 

 

 

 

 

 

Features regarding ADL and falls were labeled using the parameter CVFast to
mark the falling range [19]. The maximum CVFast of each fall trial was calculated
and multiplied by 0.87. The samples higher than 0.87CVFast were considered a
fall and labeled as 1.

Fig. 4. Data structures achieved for each class (Fall + ADL) after differentiating the
percentage for train and test of the classifier.
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2.3 Experimental Protocol

A set of activities (Table 3 and Fig. 5) was executed by eleven volunteers which
ranged from 22 to 29 years (24.2 ±2.6 years), with a body mass between 52
and 80 kg (70.8 ±8.23 Kg) and a height of 1.51 to 1.83 m (1.73 ±0.086m).
All participants provided their written consent. Each activity was performed
three times. A total of 132 simulated falls were recorder with 66 combining the
subject and cane (Activities 6 and 7) and 66 only with the cane (Activities 4
and 5). Also, 99 ADL were registered (Activities 1, 2 and 3). The algorithms
were implemented offline using the Matlab 2017b version.

Table 3. Activities simulated with the ASCane Prototype
-----Activity Description------ 

 

Activity No. Description 

1 
Walking at Normal Speed and 180º rotation 

(Subject + Cane) 

2 Walk forward and turn right (Subject + Cane) 

3 Walk forward and turn left (Subject + Cane) 

4 Free Falling (Cane) 

5 Thrown out (Cane) 

6 Falling Forward (Subject + Cane) 

7 Falling Sideways (Subject + Cane) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b)

c) d) e) f)

Fig. 5. Activities performed for data acquisition: a) Activity 1; b) Activities 2 and 3;
c) Activity 4; d)Activity 5; e)Activity 6; f)Activity 7.
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2.4 Evaluation of Classification Performance

Several performance indicators were calculated such as accuracy [18–20], preci-
sion [21], sensitivity [18–21], specificity [18–20], cohen kappa [22], and Matthews
Correlation Coefficient (MCC) [22] to compare the different fall detection algo-
rithms. The True Negatives (TN) correspond to the number of ADL correctly
classified. True Positives (TP) are the falls proper classified. False Positives (FP)
are the ADLs not right classified. Finally, False Negatives (FN) are the falls in-
correctly classified.

3 Results

3.1 Original Algorithms

The algorithms were tested with the acquired data using the original thresholds.
The results of the different performance indicators are summarized in Table 4.

Table 4. Performance Indicators of fall detection algorithms

Type Study Details Accuracy Precision Sensitivity Specificity MCC Kappa 

F
ix

ed
 T

h
re

sh
o

ld
 

Bourke et al. [9] 

1Trunk 0.5746 0.5708 1 0.0202 0.1074 0.023 

1Thigh 0.5658 0.5658 1 0 NaN6 0 

Bourke et al. [10] 1Trunk 0.8114 0.9388 0.7132 0.9394 0.6534 0.6296 

Kangas et al. [11] 

1Waist 0.5789 0.5740 0.9922 0.0404 0.1105 0.0367 

1Head 0.5658 0.5658 1 0 NaN6 0 

1Wrist 0.5789 0.9714 0.2636 0.9899 0.3485 0.2282 

D
y

n
am

ic
 

T
h

re
sh

o
ld

 

Otanasap N. [13] 20.0740 0.5658 0.5658 1 0 NaN6 0 

M
ac

h
in

e 
L

ea
rn

in
g

 

Support Vector 

Machine 

31:60 4RBF 0.9913 0.9744 0.4863 0.9998 0.6852 0.6449 

31:1.6 4RBF 0.9154 0.9390 0.8347 0.9660 0.8211 0.8178 

31:1.6 4Linear 0.9105 0.9329 0.8273 0.9627 0.8106 0.8070 

31:1.6 

5Optimized 
0.9121 0.9358 0.8289 0.9643 0.8141 0.8105 

                              1Location; 2Fixed threshold; 3ADL:Fall Proportion; 4Kernel Function; 5Optimized with MATLAB;  6Not a Number 

The algorithm introduced by Bourke et al. [9] presented similar results for
the two sets of thresholds described (Table 4). It detected a fall in 100% of
the cases. However, all or almost all the ADLs performed were also considered
a fall with a Specificity of 0 and 2.02% for the thighs and trunk, respectively.
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With the method presented by Kangas et al. [11], the results are similar to the
ones reached by Bourke et al. [9] in the three different sets of thresholds (Table
4). Nevertheless, while with the waist and head thresholds a fall is detected in
99.22% and 100% of the cases, respectively, the thresholds for the wrist detected
only 26.36% of falls. Using the algorithm from Bourke et al. [10], it resulted
in an overall higher performance compared to the remaining fixed threshold
algorithms (Table 4), achieving an accuracy of 81.14%. Similar to Bourke et
al. [9] and Kangas et al. [11], with the dynamic algorithm proposed by Otanasap
et al. [13], a fall was spotted 100% of the cases, yet, the entirely ADL dataset
was also assessed as a fall (Table 4). With the machine learning approach, the
best set of parameters achieved an accuracy of 91.54% , sensitivity of 83.47%
and specificity of 96.60%. The results for all accomplished tests are revealed in
Table 4.

3.2 Modified algorithms

Both falls and ADLs present a similar acceleration maximum as identified in
Table 5 and Fig. 6, which explains why the algorithm by Bourke et al. [9] was
not able to detect ADLs. Thus, the algorithm was tested with a single lower
threshold. The corresponding results are presented in Table 6. On the contrary,
the (ωres) does not exhibit the same behavior as the acceleration.

Table 5. Maximum, minimum, mean and standard Deviation of the acceleration Sum
Vector Magnitude and the angular velocity for the intentional falls and ADL trials

TABELA 2 

 

Study 
Original 

Location 
Accuracy Precision Sensitivity Specificity 

Bourke et al. [19] 
Trunk 0.5746 05708 1 0.0202 

Thigh 0.5658 05658 1 0 

Bourke et al. [20] Trunk 0.8114 0.9388 0.7132 0.9394 

Kangas et al. [21] 

Waist 0.5789 0.5740 0.9922 0.0404 

Head 0.5658 0.5658 1 0 

Wrist 0.5789 0.9714 0.2636 0.9899 

 

TABELA 3 

 

Feature 
Type of 

Activity 
Maximum Minimum Mean 

Standard 

Deviation 

SVM (g) 
ADL 13.8357 0.1351 1.0557 0.3427 

Fall 13.8980 0.0681 3.8644 3.8296 

ωres (rad/s) 

ADL 3.5636 0 0.6711 0.5440 

Fall 12.6706 0 2.7512 1.89002 

 

 

 

 

The algorithm present by Otanasap et al. [13] was also not able to detect
ADLs. An analysis of the features behaviour throughout the trials was accom-
plished, Fig. 7, and the algorithm was tested with several different FT which
results are indicated in Table 7.
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Fig. 6. Sum Vector Magnitude for: a) One ADL trial; b) One intentional fall trial with
the corresponding fall detection as a result of the lower threshold of 0.41g.

Table 6. Performance indicators of the fall detection algorithm proposed by Bourke
et al. [9] tested only with a single lower threshold

FT Accuracy Precision Sensitivity Specificity MCC Kappa 

0 0.5658 0.5658 1 0 NaN 0 

1 0.5658 0.5658 1 0 NaN 0 

2 0.5683 0.5683 1 0 NaN 0 

3 0.6009 0.5991 1 0.0116 0.0835 0.0138 

4 0.6821 0.6720 0.9921 0.1159 0.2461 0.1344 

5 0.7418 0.7239 0.9833 0.2742 0.3991 0.3093 

6 0.8516 0.8306 0.9810 0.5800 0.6555 0.6229 

7 0.8478 0.8444 0.9157 0.7455 0.6796 0.6756 

8 0.8810 0.9206 0.8529 0.9138 0.7643 0.7619 

9 0.8268 0.9302 0.6780 0.9559 0.6688 0.6454 

10 0.7778 1 0.4043 1 0.5463 0.4597 

 

 

Lower 

Threshold 
Accuracy Precision Sensitivity Specificity MCC Kappa 

0.41 0.9190 0.8815 0.9917 0.8222 0.8406 0.8312 

0.2 0.9781 0.9920 0.9690 0.9898 0.9559 0.9555 
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Table 7. Performance Indicators of the fall detection algorithm proposed by Otanasap
et al. [13] tested with different FT

FT Accuracy Precision Sensitivity Specificity MCC Kappa 

7 0.8478 0.8444 0.9157 0.7455 0.6796 0.6756 

7.2 0.8229 0.8488 0.9125 0.7679 0.6945 0.6914 

7.4 0.8636 0.8750 0.8974 0.8148 0.7167 0.7163 

7.6 0.8837 0.9155 0.8784 0.8909 0.7648 0.7639 

7.8 0.8819 0.9104 0.8714 0.8947 0.7633 0.7624 

8 0.8810 0.9206 0.8529 0.9138 0.7643 0.7619 

 

Lower 

Threshold 
Accuracy Precision Sensitivity Specificity MCC Kappa 

0.41 0.9190 0.8815 0.9917 0.8222 0.8406 0.8312 

0.2 0.9781 0.9920 0.9690 0.9898 0.9559 0.9555 
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Fig. 7. a) Fall possibility computed by the algorithm proposed by [13] during an ADL
trial b)ADLacc of the same trial.
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4 Discussion

The algorithm introduced by Bourke et al. [9] considered a fall in almost all ADL
trials. This indicates that the original thresholds are not appropriate or adapted
to canes considering that when the cane hits the ground, there is a substantial
increase in the Sum Vector Magnitude, Fig. 6 a), similarly to the trials of falls,
Fig. 6 b). Since the upper threshold is frequently surpassed when the cane hits
the ground, contrarily to the lower threshold, Fig. 6 a), the algorithm was tested
with different lower thresholds. Consequently, the performance was significantly
higher, Table 6. Thus, the upper thresholds with Sum Vector Magnitude on
canes are not recommended due to the aforementioned problem. This feature
is also directly related to the force applied to the cane for each strike with the
floor, and it is different for every gait cycle (Fig. 6 a)).

Regarding the study from Kangas et al. [11], none of the set of thresholds
are suitable to canes. Both waist and head thresholds detect falls in almost ADL
trials and the wrist thresholds only detects a fall in 26% of the cases (Table 3).
Considering that the five features used to evaluate the trial are accelerometry
based, all of them will be affected when the cane hits the ground. Therefore,
using this algorithm with the original thresholds is inefficient. Proposing a new
set of threshold requires a more complex analysis of the data.

Due to the fact that peak values of ωres for the recorded ADLs and falls
are different (5), the first threshold of 3.1 rad/s (ωres) is hardly ever surpassed
as can be seen in Fig. 8 for one trial. Thus, the algorithm described by Bourke
et al. [10] presented the best results among the fixed threshold fall detection
algorithms. However, when using a single lower acceleration threshold of 0.2g,
the accuracy increased to 97.81%, which is better than the results attained by
the aforementioned algorithms.
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Fig. 8. Angular Velocity of an ADL trial versus a simulated fall trial.
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Since the algorithm introduced by [13] is mainly based upon the ADLacc, it
is expected a lower performance compared to the results stated in this study
because this feature is accelerometry based.

As seen in Fig. 7. b), during an ADL trial, the ADLacc surpasses the fixed
threshold numerous times as proven by the fall possibility computed and plotted
in Fig. 7. a). Thus, this method is not optimized for cane systems with the orig-
inal FT. Consequently, the dynamic algorithm was tested with several different
FT (Table 7). The best performance was achieved by a new FT of 7.6g.

Class imbalance is a commonly problem faced in data mining due to im-
balanced datasets [21]. In this situation, the amount of samples from ADL is
immensely larger than the number of fall samples with a proportion of 60:1.
From Table 4, when the classifier was trained with an imbalanced dataset, it
achieved an accuracy of 99.13%. However, the classifier is overfitting the data.
Afterwards, when the classifier was trained with a proportion of 1:1.6 (Table
4), the sensitivity improved by almost 40% in the three other cases. However,
when using the RBF kernel, the best result in this domain was achieved with a
specificity and sensitivity of 96.60% and 83.47%, respectively.

Comparing the MCC and Kappa values from the implemented algorithms,
the embedment of a single lower threshold of 0.2g is more desirable (MCC =
95.59%; Kappa = 95.55%). This method surpasses the values of the machine
learning implementation which has a range of MCC between 0.68 and 0.82 and
a Kappa between 0.69 and 0.82.

5 Conclusions

This paper describes and analyses the results of five fall detection algorithms
implemented in the ASCane. When using the original fixed thresholds, falls
were not detected effectively because accelerometry based features were affected
by the impact of the cane on the ground on each gait cycle. This event has
similar acceleration values to a fall and justifies the low accuracy results. The
dynamic threshold method was also inefficient in detecting ADLs since it always
considered them as a fall. The application of Support Vector Machine achieved
great results when compared to the dynamic and fixed threshold algorithms.
After class balancing, a sensitivity, specificity and MCC of 83.47%, 96.60% and
82.11% were obtained, respectively. However, the best performance was achieved
by the algorithm proposed by Bourke et al. [9] that was modified by the authors.
With a single lower threshold of 0.2g, values of sensitivity, specificity and MCC
were 96.90%, 98.98% and 95.59%, respectively. Results obtained from the ma-
chine learning classifier were lower when compared to the proposed method by
the authors likely because of the sample labeling method used, the CVFast. This
method could be inappropriate for data acquired with a cane, and may need to
be improved.
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