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a b s t r a c t 

This study presents two alternative methods to determine the cohesive law of bovine cortical bone under mode 

II loading, employing the End Notched Flexure (ENF) test. The direct method results from the combination of 

the progress of the mode II strain energy release rate with the crack tip shear displacement, obtained by digital 

image correlation. The resulting cohesive law is determined by differentiation of this relation relatively to the 

crack shear displacement. The inverse method employs finite element analyses with cohesive zone modelling, in 

association with an optimization procedure. The resulting strategy enables determining the cohesive law without 

establishing a pre-defined shape. The significant conclusion that comes out of this work is that both methods offer 

consistent results regarding the estimation of the cohesive law in bone. Given that the inverse method dispenses 

the use of sophisticated equipment to obtain the cohesive law in bone, it can be used as a more convenient 

procedure to accomplish efficient studies in the context of bone fracture characterization under mode II loading. 

© 2018 Published by Elsevier Ltd. 
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. Introduction 

Fracture characterization of cortical bone is of great interest to those

ho attempt to model bone damage resulting from accidental involun-

ary bad falls, road accidents (powerful impact), blast or ballistic trauma

23] , as well as those interested to develop material substitutes to mimic

one functions [3] , or fabricate prosthetic devices to promote a more

daptive bone remodelling activity (healing) in complex bone fractures

2] . Another area of major interest concerns the development of rigor-

us techniques to evaluate the fracture risk in bone tissue, as a comple-

entary method to assess bone quality [14] . This important indicator is

ostly appropriate in the framework of clinical tests promoted by the

harmaceutical industry, within regular drug delivery protocols. The

esign of bio-inspired engineering materials presenting higher fracture

oughness is also a field of foremost concern, namely for manufacturing

xoskeleton structures for many military and civil applications. 

Following a very long period of natural selection, bone and bone-like

iological tissues (holding an organic matrix and a reinforcement phase,

.g., antler and dentin) have developed a very complex hierarchical mi-

rostructure. In fact, similarly to most biological tissues, bone exhibits

 microstructure formed by collagen, mineral hydroxyapatite (HA) and

ater, disposed into distinct length scales: the nanoscale (mineralized
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ollagen fibrils with nanoscopic platelets of HA), the sub microscale (sin-

le lamella), the microscale (lamellar structure), the mesoscale (lamel-

ae arranged concentrically around blood vessels, forming osteons) and

he macroscale (entire bone) [16] . This material hierarchical arrange-

ent contributes to increase fracture toughness in bone. In fact, when

rack propagates in bone tissue, numerous interactions occur between

tress singularities and the material microstructure. Because of these in-

eractions, different failure mechanisms can be identified: diffuse micro-

racking, crack deflection and fibre-bridging [32,33] . These toughening

echanisms are responsible for development of a remarkable fracture

rocess zone (FPZ) leading non-linear fracture mechanics behaviour.

he consequence of these failure mechanisms is the development of a

ronounced Resistance -curve ( R -curve), in which fracture resistance is

efined as a function of crack length as it propagates in a stable man-

er. Consequently, a valuable option to deal with such nonlinear be-

aviour is the employment of cohesive zone modelling (CZM). These

pproaches replicate the development of the significant FPZ typically oc-

urring during bone fracture, by means of a softening law usually called

ohesive law (CL). Generally, this softening relationship is assumed a

riori [6,18,20,28] and the respective cohesive parameters are identi-

ed by inverse procedures using global [6,17,19] or local [12,15] data.

n the former, the experimental load-displacement ( P –𝛿) curve is fitted

umerically through an optimization method. A drawback inherent to

his approach lies in the fact that the uniqueness of the obtained so-

ution is not assured, since the fitting is performed employing global

ata (i.e., P –𝛿 curve). The later aims to reproduce numerically the ex-
018 
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Fig. 1. Schematic representation of the ENF test specimen. 

(2 L 1 = 65; 2 L = 60; 2 h = 6; t = 1, B ≈ 2.5; b = 2.3; a 0 = 18 mm). 
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Fig. 3. Example of a speckle pattern. 
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(  
erimental P –𝛿 curve using the local displacement field measured at the

rack by optical methods [5,31] . Alternatively, the CL can be directly ob-

ained combining the experimental P –𝛿 curve with displacement values

easured close to the crack tip [1,29] . The last two techniques require

igh-performance optical equipment and more complex experimental

rocedures than the former one. In addition, most of these methods re-

uire sophisticated optimization algorithms leading to important com-

utational costs. 

In this work, the determination of the cohesive law representative of

one fracture under pure mode II loading using the End Notched Flex-

re (ENF) test is addressed. Two different methods are employed. The

irect method is an experimental procedure involving determination of

he development of strain energy release rate and crack tip shear dis-

lacement. The differentiation of such relation gives rise to the cohesive

aw. The inverse method was already successfully applied in the context

f mode I fracture characterization [21] . It consists in the combination

f a finite element analysis including CZM and an optimization method,

argeting the minimization of the difference between the numerical and

xperimental load-displacement curves. A cohesive zone analysis was

ccomplished aiming to validate the inverse method. The cohesive laws

esulting from both methods are compared as well as the advantages

nd drawbacks of both methods. 

. Experiments 

Bovine cortical bone utilized in this work was provided by an ac-

redited local abattoir. Bone femurs were removed from a one day post-

ortem bovine cadaver local slaughterhouse. Current Portuguese eth-

cal protocols have been scrupulously followed during the specimens ’

l  

Fig. 2. Testing setup of the ENF tes

449 
reparation phases. These specimens were shaped from the bulk of fe-

ur mid­diaphysis to fit the final dimensions and material orientations

hown in Fig. 1 (i.e., longitudinal (L)–transverse (T) plane) and stored

t − 20° within a gauze immersed in a solution of NaCl (0.9%). 

The pre-crack ( a 0 in Fig. 1 ) was executed at the specimen half-height

 h ) using a fine (0.3 mm thickness) diamond disk along the longitudinal

irection. Then, a sharp cutting blade was rigidly tighten to a grip of

he testing machine and moved towards the notch root at 100 mm/min,

hus inducing a penetration of 0.15 mm. Subsequent to this procedure a

-notch (30°) groove was machined along the specimen length on both

ides of the specimen (0.5 mm depth). This method aims to impede crack

eflection from the specimen mid-height to assure pure mode II propa-

ation. 

Spurious friction in the notched region was reduced by inserting two

ne Teflon ® bands in the pre-crack, with a thin lubricant layer between

hem. Fracture tests were performed in a servo-electrical testing ma-

hine (Micro Tester INSTRON 

® 5848) following the setup shown in

ig. 2 . The acquisition frequency was set to 5 Hz to register the P –𝛿

urves, employing a 2 kN load-cell. The loading displacement was ap-

lied with a rate of 0.5 mm/min to assure stable crack growth. Indenta-

ion effects in bone were found negligible, taking into consideration the

aximum loads attained during the fracture tests (around 100 N). 

The crack tip shear displacement (CTSD) was measured by digital im-

ge correlation (DIC) using a speckled pattern painted on the surface of

ach specimen (matte black ink), before conducting the mechanical test

 Fig. 3 ). The CTSD (i.e., w II ) is measured at a pair of equidistant points

ocated close to the crack extremity, being subsequently correlated with
t showing the speckle pattern. 
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Table 1 

Components of the optical system and DIC measuring parameters. 

CCD camera 

Model Baumer® Optronic FWX20 

(8 bits, 1624 ×1236 pixels, 4.4 μm/pixel) 

Shutter time 1.0 ms 

Acquisition frequency 1 Hz 

Lens 

Model Opto Engineering Telecentric lens TC 23 09 

Magnification 1.0 ± 3% 

Field Of View (1/1.8 ″ ) 7.1 mm ×5.4 mm 

Working Distance 63.3 ± 2 mm. 

Working F-number 11 

Field Depth 0.9 mm 

Conversion factor 4.0 μm/pixel 

Lighting Raylux ® 25 white-light LED 

DIC measurements 

Subset size 15 ×15 pixel 2 (0.060 ×0.060 mm 

2 ) 

Subset step 13 ×13 pixel 2 (0.052 ×0.052 mm 

2 ) 

Resolution 1–2 ×10 − 2 pixel (0.04–0.08 μm) 

Fig. 4. Image processing. 
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o  
he applied loading. Table 1 shows the optical components (DIC-2D sys-

em from ARAMIS ®) and DIC parameters utilized in the process [13,30] .

 charge coupled device camera with a telecentric lens (comprising a

egion of 7.1 ×5.4 mm 

2 ) was used to capture images. The image quality

focus, contrast and appropriate time exposition) was duly controlled

cting on the working distance, shutter time and lighting system. High

patial resolution was achieved by choosing a subset size of 15 ×15

ixel 2 (i.e., 0.060 ×0.060 mm 

2 ) and a subset step of 13 ×13 pixel 2 (i.e.,

.052 ×0.052 mm 

2 ). The image quality and precision of measurements

ere verified by imposing rigid-body translation tests [24,25] . The res-

lution of the measured displacement is a function of the speckle pat-

ern quality, being in the range of 1–2 ×10 − 2 pixel (i.e., 0.04–0.08 μm)

 Table 1 ). 

The presence of the V-shape grooves (dashed region in Fig. 4 ) leads to

oor image quality for DIC measurements. Therefore, the CSTD was per-

ormed considering points nearby the crack extremity out of the dashed

one. 

. Identification of cohesive laws (CL) 

The CL is a fundamental tool to reproduce materials fracture be-

aviour with accuracy employing cohesive zone analysis. They establish

 constitutive relation between tractions and relative displacements of

djacent integration points of interface finite elements. The determina-

ion of the appropriate relation that simulates the fracture response of

one under mode II loading is the objective of the proposed method-

logy. With this aim, two methods were applied using the ENF exper-

mental test ( Fig. 1 ), specifically the direct approach and the inverse

ne. The former is based only on experimental data, i.e., on the load-
450 
isplacement curve and crack tip shear displacement recorded during

he fracture test. The later correlates load-displacement experimental

ata with a numerical analysis, including CZM governed by a CL with

nrestricted shape. 

.1. Direct method 

The direct method is based on the following equation 

 II = ∫
𝑤 II 

0 
𝜎II ( 𝑤 

∗ 
II ) d 𝑤 

∗ 
II (1)

hich gives the strain energy release rate under pure mode II loading

 G II ) from the shear traction ( 𝜎II ) as a function of the crack tip shear

isplacement ( w II ) [22] . The mode II cohesive law can be obtained by

ifferentiating Eq. (1) in respect to w II , yielding 

II ( 𝑤 II ) = 

d 𝐺 II 
d 𝑤 II 

(2)

In order to apply this equation to determine the mode II cohesive

aw, the function G II = f( w II ) should be determined from the experimen-

al data. Hence, G II is evaluated from the P - 𝛿 curve obtained during the

racture test, and w II is measured by digital image correlation (DIC). The

igorous evaluation of G II during the fracture test is a fundamental issue.

he classical methods are based on specimen compliance calibration or

n beam-based theory. Both approaches involve crack length measure-

ent in the course of the test, which is very difficult to be done with

he necessary accuracy. In fact, in the ENF fracture tests crack grows

ith their faces in close contact. In order to surmount this drawback an

quivalent crack length procedure previously developed [7] , can be fol-

owed. The method employs the Timoshenko beam theory to establish

he compliance ( C = 𝛿/ P ) versus crack length ( a ) relation 

 = 

3 𝑎 3 + 2 𝐿 

3 

8 𝐵 ℎ 3 𝐸 L 
+ 

3 𝐿 

10 𝐵 ℎ 𝐺 LT 
(3)

here E L is the elastic modulus in the longitudinal direction, G LT is the

hear modulus of the LT plane and B is the specimen width. The remain-

ng parameters can be identified consulting Fig. 1 . Bone is a natural ma-

erial presenting pronounced scatter in its elastic properties. Owing to

his feature, the effective elastic modulus of each specimen ( E f ) can be

stimated from Eq. (3) using the initial values of crack length ( a 0 ) and

ompliance ( C 0 ), as follows 

 f = 

3 𝑎 3 0 + 2 𝐿 

3 

8 𝐵 ℎ 3 

( 

𝐶 0 − 

3 𝐿 

10 𝐵 ℎ 𝐺 LT 

) −1 
(4)

During crack growth, the current compliance C ( Eq. (3 )) can be

sed to achieve an equivalent crack length a e . Therefore, combining

qs. (3) and (4) yields 

 𝑒 = 

[ 
𝐶 c 
𝐶 0 c 

𝑎 3 0 + 

2 
3 

( 

𝐶 c 
𝐶 0 c 

− 1 
) 

𝐿 

3 
] 1∕3 

(5)

here 

 c = 𝐶 − 

3 𝐿 

10 𝐵 ℎ 𝐺 LT 
; 𝐶 0c = 𝐶 0 − 

3 𝐿 

10 𝐵 ℎ 𝐺 LT 
(6)

By means of Eqs. (3 )–(6) and Irwin–Kies relation 

 = 

𝑃 2 

2 𝑏 
𝑑𝐶 

𝑑𝑎 
(7)

 II = f ( a e ) can be obtained as follows, 

 II = 

9 𝑃 2 𝑎 2 e 
16 𝑏𝐵 ℎ 3 𝐸 f 

(8)

It should be referred that the width of the ligament section is affected

y the existence of the longitudinal grooves ( Fig. 1 ). Consequently,

he dimension b in Fig. 1 must be considered, instead of the specimen

idth B . 

The presented data reduction scheme provides an easy achievement

f the R -curve (i.e., G II = f( a e )), since it only depends on data resultant
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Fig. 5. Finite element mesh used in the ENF test. 

Table 2 

Nominal mechanical properties of cortical bone [8,9] . 

E L (GPa) E T (GPa) G LT (GPa) 𝜈LT 

∗ 9.55 4.74 0.37 

∗ adjusted to each specimen in a trial and error basis. 

Fig. 6. Piece-wise cohesive law. 
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rom the load-displacement curve. This strategy avoids the problematic

nd inaccurate crack length measurement during the test. Moreover, the

nfluence of the energy dissipated in a non-negligible fracture process

one is indirectly taken into account, since the actual specimen compli-

nce is used to find the value of a e . 

.2. Inverse method 

The identification of CL by the developed inverse method is achieved

ombining an optimization algorithm with finite element analyses

 Fig. 5 ). The used mesh includes 960 isoparametric quadratic plane

tress 8-node elements and compatible 120 interface elements to sim-

late damage onset and propagation. Loading was applied by means

f small displacement increments (0.01 ×2.5 mm) and non-linear geo-

etric analysis was considered. Table 2 presents the elastic properties

ntroduced in the FE model. The longitudinal elastic modulus was ad-

usted to replicate the linear elastic branch of the P –𝛿 curve obtained

xperimentally. 

The method establishes the profile of the CL, which is assumed to

e composed by four linear independent segments ( Fig. 6 ), without any

estrictions imposed to the vertices ( w II, j , 𝜎II, j , j = 1, .. 4). The proce-

ure requires the selection of some points in the experimental load-

isplacement ( P- 𝛿) curve and the assessment of the corresponding en-

rgy release rate values in the R -curve ( Fig. 7 a and b). The selected

justement points follows the following criterion: the first point is fixed

t the nonlinear commencement in the P- 𝛿 curve, which corresponds
451 
o damage onset and the subsequent ones are equally spaced in the P–

curve till the maximum load is attained (near beginning of propaga-

ion, i.e., the last point of the CL). 

The optimization algorithm intends to minimize the difference be-

ween the numerical and experimental loads in the P –𝛿 curves. Hence,

or each selected point defined by its applied displacement 𝛿 follows, 

if 𝑗 = 𝑃 num 

𝑗 
− 𝑃 

exp 
𝑗 

; 

 = 1 , 2 , 3 , 4 , 5 of the 𝑃 − 𝛿 curve (9) 

For each iteration k a stress value ( 𝜎II, k + 1 ) is estimated for a given

oint j , according to the organogram shown in Fig. 8 , which presents

he bisection method [4] . The stress values will be estimated according

o the evaluation performed in each point j . Hence, the shear traction

alue increases (or decreases) if the numerical load underestimates (or

verestimates) the experimental one. 

For the initial point corresponding to the local strength in the CL

 Fig. 6 ), a different procedure was followed. In fact, the series of traction

alues providing a good agreement between the numerical and exper-

mental P- 𝛿 curves is wide. Consequently, the global response, i.e., the

omparison of the entire numerical and experimental P - 𝛿 curves, should

lso be considered in addition to the local difference analysis. This pro-

edure reflects on a further restriction to the model aiming to find a

igorous result. The final step of the procedure consists on the evalua-

ion of the actual relative crack shear displacement. This can be done

inking the estimated stress values with the energy release rate values 

𝑤 II ,𝑗 = 

2( 𝐺 𝑗 − 𝐺 𝑗−1 ) + ( 𝜎II ,𝑗 + 𝜎II ,𝑗−1 ) 𝑤 II ,𝑗−1 

( 𝜎II ,𝑗 + 𝜎II ,𝑗−1 ) 
( 𝑗 = 2 , 3 , 4 , 5 ) (10) 

The described procedure provides the estimation of a cohesive law,

.e. 𝜎II = f( w II ), representative of the material damage development un-

er mode II. It must be emphasized that the method is not limited to

our branches, although it was verified that this number is enough for a

ood description for the present case. 

. Cohesive zone model (CZM) 

One of the crucial features of the suggested inverse method is the

evelopment of a suitable CZM appropriate for bone fracture simula-

ion under mode II loading. Although the ENF is an almost pure mode II

racture test, a mixed-mode cohesive zone model was developed aiming

o cover more general loading conditions. The mixed-mode I + II cohe-

ive zone model is based on equivalent quantities combining the two

oading modes (I and II). These parameters are the mode ratio ( 𝛽) and

he equivalent values of crack opening displacement ( w m 

) and traction

 𝜎m 

), 

= 𝑤 II ∕ 𝑤 I 𝑤 𝑚 = 

√ 

𝑤 

2 
I + 𝑤 

2 
II 𝜎𝑚 = 

√ 

𝜎2 I + 𝜎2 II (11)

The cohesive law (CL) to be determined (i.e., 𝜎m 

= f( w m 

)) should be

ble to outline the softening relationship by several consecutive linear

ections ( Fig. 6 ). The constitutive equation prior to damage initiation is

iven by 

= 𝑘 𝑤 (12) 
m m 
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Fig. 7. Points selected for fitting: (a) Load-displacement curve and (b) respective R -curve. 

Fig. 8. Bisection algorithm ( j = 1, 2, 3, 4, and 5 according to Fig. 7 ). 
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ith k standing for the interfacial stiffness. After damage initiation the

onstitutive softening relation is described by 

m = 

(
1 − 𝑑 m 

)
𝑘 𝑤 m (13)

here d m 

is the damage parameter varying between zero (undamaged)

nd one (rupture). Hence, according to the proposed procedure, fracture

ehaviour of cortical bone was mimicked through a stepwise CL com-

osed by different branches. Therefore, at the inflection points ( j = 1, 2,

3, . . . n ) ( Fig. 6 ) the equivalent stresses are defined through a quadratic

tress criterion 
 

𝜎I 
𝜎I , 𝑗 

) 2 𝛼
+ 

( 

𝜎II 
𝜎II , 𝑗 

) 2 𝛼
= 1 if 𝜎I > 0 

m , 𝑗 = 𝜎II , 𝑗 if 𝜎I ≤ 0 
(14)

here 𝜎m, j and 𝜎i , j (with i = I, II) are, respectively, the mixed-mode I + II

raction components and the respective strength values in pure mode

oading, at each point j . An analogous relation is employed to determine

he crack displacements, 

 

𝑤 I 
𝑤 I , 𝑗 

) 2 𝛼
+ 

( 

𝑤 II 
𝑤 II , 𝑗 

) 2 𝛼
= 1 (15)
452 
After some algebraic manipulations involving Eqs. (11 )–(15) , the

quivalent tractions and crack opening displacements at the inflection

oints become 

m ,𝑗 = 

𝜎I ,𝑗 𝜎II ,𝑗 

√
1 + 𝛽2 (

𝜎2 𝛼
II ,𝑗 

+ 𝛽2 𝛼𝜎2 𝛼I ,𝑗 

)1∕ ( 2 𝛼) 
and 

 m ,𝑗 = 

𝑤 I ,𝑗 𝑤 II ,𝑗 

√
1 + 𝛽2 (

𝑤 

2 𝛼
II ,𝑗 

+ 𝛽2 𝛼𝑤 

2 𝛼
I ,𝑗 

)1∕ ( 2 𝛼) 
(16) 

These equivalent quantities are fundamental to establish the growth

f the damage parameter as material degradation progresses. 

An energetic power law criterion 
 

𝐺 I 
𝐺 Ic 

) 𝛼

+ 

( 

𝐺 II 
𝐺 IIc 

) 𝛼

= 1 (17)

as considered to simulate damage propagation. Considering that the

train energy release rate is a function of the product between tractions

nd crack tip displacements, and accounting for Eq. (12) , the strain en-

rgy release rates mode ratio can be given by 𝐺 ∕ 𝐺 = 𝛽2 . Combining
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Fig. 9. Comparison between determined and reference (a) P –𝛿 curves and (b) R -curves. 
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l  
his relation with Eq. (17) , the total strain energy release rate for a given

ode ratio 𝛽 yields 

 T = 𝐺 I + 𝐺 II = 𝐺 I 
(
1 + 𝛽2 

)
= 

𝐺 Ic 𝐺 IIc 
(
1 + 𝛽2 

)
𝛼

√ 

𝐺 

𝛼
IIc + 𝛽2 𝛼𝐺 

𝛼
Ic 

(18)

The final relative displacement for j = n ( Fig. 6 ) is determined by

quating the total energy ( G T ) to the area confined by the mixed-mode

 + II stepwise cohesive law, through the equation 

 T = 

𝑛 ∑
𝑗=2 

( 𝜎m , 𝑗 + 𝜎m , ( 𝑗−1) )( 𝑤 m , 𝑗 − 𝑤 m , ( 𝑗−1) ) 
2 

(19) 

The damage parameter d m 

for each piece-wise segment ( Fig. 6 ) can

e straightforwardly obtained by making equal the respective softening

elationship to (1 − d m 

) k w m 

. This procedure yields 

 m = 1 − 

1 
𝑘𝑤 m 

[ 

𝜎m ,𝑗 
(
𝑤 m − 𝑤 m , ( 𝑗−1 ) 

)
+ 𝜎m , ( 𝑗−1 ) 

(
𝑤 m ,𝑗 − 𝑤 m 

)
𝑤 m ,𝑗 − 𝑤 m , ( 𝑗−1 ) 

] 

for 𝑤 m , ( 𝑗−1 ) ≤ 𝑤 m ≤ 𝑤 m ,𝑗 

(20) 

This relation establishes that different softening constitutive rela-

ionships ( i.e ., with different slopes) are being accomplished by the sev-

ral integration points in the fracture process zone, depending on their

osition in the CL. In other words, it can be affirmed that damage growth

ate depends on the branch of damage evolution. 

. Numerical validation of the inverse method 

A validation procedure was performed to prove the soundness of the

eveloped method. Hence, in an initial stage a reference solution was

umerically generated. To this end, a combination of cohesive param-

ters characteristic of cortical bone fracture was considered to mimic

ovine cortical bone damage onset and propagation (labelled as Refer-

nce in Fig. 6 ; w II,2 = 0.018 mm, 𝜎II,2 = 59.5 MPa, G IIc = 3.13 N/mm).

hen, the FE modelling ( Fig. 5 ) of the ENF test was performed to obtain

he reference P - 𝛿 curve ( Fig. 9 a). Applying the CBBM ( Eqs. (5 ) and ( (8) ),

he mode II fracture energy release rate ( G II ) in function of the equiv-

lent crack length (i.e., the Reference R -curve in Fig. 9 b) is obtained.

hese numerical P - 𝛿 and R -curves are then used as the reference solu-

ion to be reproduced by the inverse method. Hence, the numerical P - 𝛿

urve identified as the Reference ( Fig. 9 a) was taken as the “experimen-

al ” result, whose CL might be identified. Thus, a set of points (a total

f 5) were chosen according to the criterion referred in the previous

ection ( Fig. 7 a). 

The process starts with random generation of the stress values ( 𝜎II, j 

n Fig. 8 ). Iterative FE simulations of the ENF test performed in the op-

imization procedure provide an excellent agreement relatively to the

xperimental P- 𝛿 curve ( Fig. 9 a) using the CL represented in Fig. 10

identified as Bisection Algorithm). The R -curve resulting from FE anal-

sis using this CL was compared with the one ensuing from the “exper-

mental ” P –𝛿 curve. The observed overall excellent agreement validates
453 
he proposed procedure, as it proved to be very effective to determine

he CL. 

. Analysis and discussion of results 

The accurate determination of bone cohesive laws requires that

elf-similar crack propagation during the fracture test is assured. The

dopted experimental conditions have been effective in this test, since

amage propagation occurred in the specimen half-height due to the

achined lateral grooves (see arrows in Fig. 11 a–c). The clear misalign-

ent observed between specimen arms at the notched root (represented

y w II in Fig. 11 d), is an evidence that shear loading is predominant in

his test. 

Figs. 12 (a–c) show an example of the agreement achieved between

he numerical curve obtained by the inverse method and the direct one

or a given specimen. Hence, Fig. 12 a and b reveal that fine agreement

as obtained for the load-displacement and R -curves, respectively. The

esulting cohesive laws ( Fig. 12 c) identified by the direct method (de-

oted as Experimental) and the inverse method (denoted as Numerical)

eveal some difference although the global trend is in agreement. These

esults highlight the capability of the proposed procedures to reproduce

ith accuracy the mode II fracture phenomenon in cortical bone. 

Fig. 13 (a–b) plot the ensemble of the cohesive laws obtained by the

mployed methods. The CLs resulting from the direct method reveal

ome difficulty for the lower displacement values (close to zero) owing

o resolution limitation of the DIC technique. 

The detailed results can be consulted in Table 3 . The average values

f w II, n provided by both methods are in close agreement. The average

hear strengths reveal that the inverse method value is 13.7% higher

han the one obtained with the direct method. Nevertheless, the results

btained by the two methods were compared using the test- t . In light of

his, the two results were considered statistically equivalent. In addition,

he values of shear strength in bone were compared to values given in

iterature. Although most of them refer to human cortical bone ( Table 4 )
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Fig. 11. Damage development: (a) initial phase, (b) in-between phase, (c) maximum load and (d) noticeable propagation (specimen 17). 

Fig. 12. Comparison between the experimental (direct method) and numerical curve identified by the inverse optimization method: (a) P –𝛿 curves, (b) R -curves, (c) 

Cohesive laws (specimen 14 in Table 3 ). 

Fig. 13. Mode II cohesive laws obtained by the (a) direct method and (b) inverse method. 

454 
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Table 3 

Experimental results: 𝜎II,1 , ultimate cohesive shear strength; w II,c , maximum mode II opening displacement; G law,II , fracture energy eval- 

uated from de cohesive law. 

Specimen Number Experimental Numerical 

𝜎II,1 (MPa) w II, n (mm) G law,II (N/mm) 𝜎II,1 (MPa) w II, n (mm) 

1 50.32 0.16 3.49 40.16 0.32 

2 63.90 0.10 3.05 65.00 0.13 

3 59.24 0.09 2.69 50.00 0.10 

4 55.61 0.10 2.13 80.53 0.07 

5 43.13 0.09 1.30 55.00 0.02 

6 45.65 0.10 2.34 48.00 0.07 

7 67.88 0.21 5.25 58.09 0.31 

8 46.85 0.14 2.39 62.35 0.11 

9 42.81 0.12 2.93 51.62 0.10 

10 51.70 0.06 1.92 80.00 0.06 

11 53.65 0.15 3.54 56.81 0.10 

12 31.41 0.21 4.55 48.00 0.28 

Average 51.01 0.13 2.97 57.96 0.14 

CoV(%) 19.7 37.4 37.6 21.4 74.2 

Table 4 

Values of shear strengths found in other works. 

Work Bone type Experimental test 𝜎II,1 (MPa) 

[27] Human femur Iosipescu 51.6 ± 1.90 

[10] Human tibia Inclined double notch shear 61.4 ± 6.30 

[11] Bovine femur Inverse method 59.5 ± 6.30 

[26] Human femur Iosipescu 49.9 ± 6.20 

Fig. 14. Average mode II cohesive laws obtained by the direct and inverse meth- 

ods. 
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t can be settled that they are similar to the ones obtained in the present

ork. 

A final comparison between average cohesive laws obtained by di-

ect and inverse procedures is shown in Fig. 14 . The initial part of the

ohesive laws reveal a discrepancy which is induced by the specificities

f the utilized methods. Anyway, an excellent agreement has been ob-

ained in the softening region characterizing the fracture process. This

esult reveals the soundness of the inverse procedure. 

. Conclusions 

The aim of the present work was to determine the cohesive law of

ovine cortical bone under mode II loading using the ENF test. Two dif-

erent methods were developed with this aim. The direct method is an

xperimental procedure based on the correlation between the develop-

ent of the strain energy release rate under mode II loading ( G ) and the
II 

455 
rack tip shear displacement (CTSD) monitored by digital image correla-

ion. Owing to difficulties inherent to crack length identification during

he ENF test, an equivalent crack length based data reduction scheme

as employed to get the evolution of G II . The cohesive law results

rom differentiation of the G II = f(CTSD) relation. The inverse method

s, basically, a numerical procedure involving finite element analysis

ith cohesive zone modelling and an optimization algorithm. The ob-

ective is to determine the cohesive law that minimizes the difference be-

ween numerical and experimental load-displacement curves. The soft-

ning relationship is assumed to be described by a polyline with several

ranches without any restrictions in the shape of the law. The inverse

ethod was validated by a numerical analysis including a cohesive zone

odelling. 

Comparing the ensuing cohesive laws provided by the two meth-

ds it can be settled that both procedures give rise to consistent results,

eaning that they can be efficaciously utilized to evaluate cohesive laws

epresentative of mode II fracture of bovine cortical bone. In fact, they

roduce comparable results, meaning that the inverse procedure is valid.

his is a quite interesting achievement, since estimations of the cohesive

aws can be done in an easier post-processing analysis of simple experi-

ental data, without requiring specific equipment, as is the case of DIC

nalysis necessary in the direct method. 
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