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Abstract: Nowadays, there is an increasing need to understand the behavior of COVID-19. After
the Directorate-General of Health of Portugal made available the infected patient’s data, it became
possible to analyze it and gather some conclusions, obtaining a better understanding of the matter.
In this context, the project developed—ioCOVID19—Intelligent Decision Support Platform aims to
identify patterns and develop intelligent models to predict and support clinical decisions. This article
explores which typologies are associated with different outcomes to help clinicians fight the virus
with a decision support system. So, to achieve this purpose, classification algorithms were used,
and one target was studied—Patients outcome, that is, to predict if the patient will die or recover.
Regarding the obtained results, the model that stood out is composed of scenario s4 (composed of
all comorbidities, symptoms, and age), the decision tree algorithm, and the oversampling sampling
method. The obtained results by the studied metrics were (in order of importance): Sensitivity of
95.20%, Accuracy of 90.67%, and Specificity of 86.08%. The models were deployed as a service, and
they are part of a clinical decision support system that is available for authorized users anywhere
and anytime.

Keywords: COVID-19; classification; information systems; public health; data mining; ioCOVID19

1. Introduction

Every day, the world population is faced with an increasing number of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) cases. Portugal is one of the European
Countries where Coronavirus has a significant impact, and the number of cases and deaths
is increasing every day. As a way to provide some inputs to the decision process, a research
project was released: ioCOVID19 aims to develop an intelligent decision support platform
that allows the prediction of the evolution of the disease in a specific patient to support
clinicians in the fight against Coronavirus disease 2019 (COVID-19).

Since the provided data only refers to the Portuguese population, it was attempted
to seek information regarding the most likely outcome of a specific patient based on his
characteristics—such as the comorbidities he presents, symptoms, age, and gender. This
article was developed as an integral part of a research project. It is a continuation of the
work already demonstrated in the article “The clinical reality of COVID19 in Portugal—A
clustering analysis” [1]. It intends to expose the obtained results concerning the analysis of
the data carried out to the moment of writing the document. Therefore, the development
of this phase of the project went through the following steps: Data preparation, since there
was a need to replicate some of the data under study; Modeling, where the classification
process was carried out and Evaluation of the results obtained in the last moment. The
study aims to help health professionals in the moment of crucial decision-making. Previous
records of infected patients by COVID-19 were used to predict their outcome. Thus, based
on the classification processes, it is attainable to indicate whether the patient will need to be
hospitalized or need specific medical support. It is also possible to understand the patient’s
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outcome, that is, to predict whether the patient will recover or die. The data found in this
article goes back to February of 2021 regarding newly infected patients.

The article presents the following structure to expose all the results, techniques, and
conclusions in the most organized and detailed way: first, to situate the reader in the
theme and problem addressed, a short introduction to the subject is presented. The article’s
main themes are then detailed in the Background section, where it is described what
type of data mining technique is used in the study. It is then portrayed in more detail
which materials and methods were used in the project’s development, such as which data
was used and which methodologies were adopted. Regarding the Case Study point, the
Cross-industry Standard process for data mining (CRISP-DM) and Design Science Research
(DSR) methodologies are exposed in more detail, always establishing a connection with
the project to understand the development achieved in each phase. In the section referring
to the Results and Discussion, all relevant results and information obtained during the
classification are exposed, discussed, and evaluated in detail.

2. Background

This section presents the article’s relevant topics, showing Portugal’s current situation
and mentioning related works.

2.1. COVID-19

COVID-19 is the World Health Organization (WHO) official name for the disease
caused by the new coronavirus SARS-COV-2 (Severe acute respiratory syndrome coron-
avirus 2), which can cause severe respiratory infections such as Pneumonia. This virus was
first identified in humans in the Chinese city of Wuhan, Hubei province, at the end of 2019.
The main symptoms associated with the COVID-19 infection are fever (body temperature
above 38 degrees Celsius), cough, and difficulty breathing, such as shortness of breath.
Some fewer common symptoms associated with the disease are sore throat, runny nose,
headaches, muscle aches, and tiredness. In more extreme cases, it can also result in severe
Pneumonia with acute respiratory failure, kidney and other organs failure, and, eventually,
death. The contagion period is currently considered 14 days; however, transmission by
asymptomatic people is still under investigation [2].

2.2. Portuguese Reality of COVID-19

When writing this article (6 April 2020), the scenario in which Portugal found itself
concerning cases of COVID-19 was 824,368 infected and 16,887 deaths. This information
was provided by the Directorate-General of Health of Portugal (DGS) [3].

To understand the pandemic’s effect in Portugal, it is essential to know its mortality
rate concerning the deadliest diseases. According to the available records for the year 2019,
the relative circulatory system’s diseases represent 29.90% of deaths in the country, being
the leading cause of death. This is followed by malignant tumors, representing 25.50% of
deaths and respiratory system diseases with 10.90% [4]. Therefore, through comparison, it
is possible to understand the Coronavirus’s impact—however, considering that the virus is
a recent phenomenon, the used data may not provide a correct representation of its actual
effects. So, taking this into account, in March 2021, the mortality rate in Portugal stands
at 2.0%. [5].

2.3. Project ioCOVID-19

This article is linked to the project developed—ioCOVID19—Intelligent Decision
Support Platform NORTE-01-02B7-FEDER-048344. The article represents the second phase
of the developed project. It aims to create an essential platform for clinicians to combat
COVID-19. Its primary goals are to analyze the available data referring to those infected by
Coronavirus in Portugal and predict the evolution of a given patient’s disease from a set
of predictive models. Using open data accessible online and made available by the SNS
(Portuguese National Health Service) and DGS, it is possible to categorize patients and
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assess the impact that each variable has on the disease’s course and predict the kind of
patient discharge. A Web/Mobile platform—ioCOVID19—was also developed, aiming to
allow physicians and/or nurses to access a set of essential data for decision-making. The
models here depicted are part of the inference engine of the application conceived.

2.4. Data Mining

For the depicted project, Data Mining (DM) techniques were applied, in order to
extract only valuable and relevant information from the data. The main objective is to find
non-evident relationships and patterns between data or, in other words, it is the process
of discovering knowledge from the data [6,7]. To this end, the used techniques allowed
the identification of different categories, patterns detection, and the forecast of different
scenarios—in this case, the outcome of the disease on a given patient. Nevertheless, the
methodologies used to achieve the proposed objective were Classification Analysis and
Neural Networks.

To assess and compare the models obtained, confusion matrix and Receiver Operating
Characteristic (ROC) curve were considered [8].

2.5. Classification

Classification is a supervised machine learning technique used in DM. Briefly, the
classification algorithms learn from the data input provided and then use the knowledge
obtained to classify new observations [7]. From the available classification algorithms, only
five were considered for this project (a brief explanation of the algorithms is presented in
Section 4 of this paper): Logistic Regression, Naive Bayes Classifier, Decision Tree, and
Deep Learning. For this project, a classifier was used to predict the categorical labels. From
this method, it was possible to understand, for example, the outcome (dead or recovered)
of a given patient taking into account their characteristics. To assess and compare the
models obtained, a set of metrics were used: Confusion Matrix and Receiver Operating
Characteristic (ROC) curve (more specifically, the measures calculated were Accuracy,
Sensitivity, and Specificity) [8].

The Confusion Matrix presented in Table 1 is used to measure the performance of a
classification algorithm in terms of True Positive (the classifier predicts positive and it is
correct); True Negative (the classifier predicts negative, and it is correct); False Positive (the
classifier predicts positive, and it is incorrect), and False Negative (the classifier predicts
negative, and it is incorrect) [9].

Table 1. Confusion Matrix.

Actual Values

True False

Predicted Values
Positive True Positive False Positive

Negative False Negative True Negative

The metric Accuracy exposes how often the classifier was correct. Sensitivity repre-
sents the positive data correctly predicted the total number of positive samples. Specificity
represents the ratio of samples correctly classified as negative to the total number of
negative samples [10]. The metrics mentioned are calculated as follows [10]:

ACCURACY = (TP + TN)/(TP + TN + FP)
SENSITIVITY = TP/(TP + FN)
SPECIFICITY = TN/(TN + FP)

2.6. Similar Works

Due to the impact of COVID-19 on today’s society, an extensive set of studies was
carried out. However, since the data under analysis exclusively refers to Portugal, no
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works using data mining referring to the Portuguese situation in the face of the pandemic
were found. Therefore, after conducting research and analyzing the obtained results, it
was possible to realize that no study was being carried out along the lines of the project
exposed in this article. Nonetheless, a set of works was carried out in the area in question
using data from Portuguese institutions, which allows assessing this project’s feasibility.
Regarding the studies carried out at national level in this area of support systems in the
medical sector, the following examples will be considered:

• An intelligent decision support system is applied to Intensive Care Unit (ICU) based
on several models, such as patient’s vital signs, critical events, medical scores in ICU,
and the data mining models. The main goal of this project concerns de hourly forecast
of organ failures and the result [11];

• The application of domain knowledge in order to improve an intelligent decision
support system related to the study of bacteriological ingestions. The goal is to
make the decision-making process more efficient about which antibiotic is the most
appropriate for a given situation, based on specialists’ knowledge in the field [12].

However, for projects related to COVID-19, the majority of studies are carried out
outside Portugal. As an example, two studies in this field are as follows:

• The prediction of early mortality risk based on patients infected with covid-19—For
this purpose, several machine learning models were used, which revealed factors such
as age, c-reactive protein sensitivity, lymphocyte count, and D-dimer influence the
result of the infected patient [13];

• Understanding the role of preconditions associated with COVID-19—The main ob-
jective is to identify which characteristics are associated with the patient’s death. As
of July 2020, the main conclusion was that this outcome (death by COVID-19) is
associated with male individuals and over the age of 60 years [14].

From these examples, it is possible to observe that there are studies on the implemen-
tation of decision support tools in the medical context being developed but also studies
regarding the coronavirus and its evolution. However, there are no studies combining
both themes.

3. Materials & Methods

The Directorate-General provided the portrayed data for Portuguese Health, and
it refers to patients infected with COVID-19. It was collected by medical professionals
between 2 March 2020 and 28 February 2021.

3.1. Design Science Research

Since this is a research project and, to understand if it is possible to characterize the
clinical typology of patients infected with Coronavirus (as well as the outcome of the
disease), two methodologies were followed: Design Science Research (DSR) as a research
methodology, and Cross-Industry Standard Process for Data Mining (CRISP-DM). DSR
consists of 6 phases: 1. Identifying the problem and motivation; 2. Defining objectives of the
solution; 3. Design and development; 4. Demonstration; 5. Evaluation; 6. Communication.
These phases provide guidelines for evaluation and interaction in research projects. To put
DSR in action, it is necessary to use a practical methodology to help drive the project, so,
Cross-Industry Standard Process for Data Mining was chosen [15].

3.2. Cross-Industry Standard Process for Data Mining (CRISP-DM)

CRISP-DM was the second methodology used, and it is focused on the development
of predictive models. The CRISP-DM method provides a global perspective on the life
cycle of a data mining project. This cycle, shown in Figure 1—Project Workflow—is
divided into six sequential phases. There are dependencies between them; however, it
does not have a rigid structure. The current CRISP-DM model stages for data mining
projects are Business Understanding, Data Understanding, Data Preparation, Modelling,



Future Internet 2021, 13, 102 5 of 15

Evaluation, and Deployment. The information depicted in this document was achieved
after completing the fifth phase—Evaluation [16].
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To drive this project, it is essential to assure a relation between the research methodol-
ogy and practical method.

3.3. DSR and CRISP-DM

Since both methodologies are used concurrently, it is possible to point out the re-
lationships between the phases of CRISP-DM and DSR (Design Science Research). The
CRISP-DM method comprises the following activities: Business Understanding, Data
Understanding, Data Preparation, Modeling, Evaluation, and Deployment [15].

This article portrays the phases of both CRISP-DM and DSR. For example, phases 1
and 2 of the DSR are directly linked to the first activity of CRISP-DM, as it is possible to
check in the table. The remaining relationships are also shown in Table 2 [15].

Table 2. Crossover of CRISP-DM and DSR methodologies.

Methodology Activities
DSR Phases

1 2 3 4 5 6

CRISP-DM

Business Understanding X X

Data Understanding X X

Data Preparation X

Modeling X

Evaluation X X

Deployment X X

In other words, in the first phase of the project, there was a necessity to identify
the business objective to understand the motivation for the project’s emergence. Then,
regarding the provided data, the goal was to understand its use and, from there, to define
the objectives of the solution to be developed. In a third phase, data is prepared to facilitate
its use in future steps. Afterward, the modeling process begins, which in the current project
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involves the data mining classification technique. This phase is linked to the previous two.
From this point, there may be a need to make changes to obtain the best results. Then, in
the Evaluation phase, the results obtained previously were analyzed to understand their
usefulness and viability. And finally, after completing the previous stages, it is necessary
to apply the obtained resources to make them useful in the environment in which they
are required.

3.4. Tools

Python programming language was used for the preparation of the data and conse-
quent analysis of it. Moreover, to be able to apply this same language to the project in
question, a set of libraries were used to enable the preparation, analysis, and consequent
prediction of the data:

• Panda’s library allows the use of the DataFrame object to provide storage and manip-
ulation of the data organized by columns [17];

• Scikit-learn (sklearn) is a machine learning software that provides various algorithms
such as classification, regression, and clustering [18];

• TensorFlow is a library used for solving problems with Machine Learning and Deep
learning [19].

3.5. Classification Algorithms

A set of classification algorithms was used to achieve this project’s aim, namely
Logistic Regression, Naive Bayes, Decision Trees, and Deep Learning.

3.5.1. Logistic Regression

Logistic regression is a supervised classification algorithm modeling the data using
the sigmoid function. This algorithm is used to predict the probability of a categorical
dependent variable [20]. Both the set of resources (input) and the destination variable
(output) can only assume discrete values when involved in classification problems. This
algorithm builds a model to predict the probability that a given entry belongs to the
category numbered as 1. In other words, this model predicts the Probability of P(Y = 1).
Therefore, when using the algorithm Logistic Regression, it is necessary to take into account
the following assumptions [20]:

• The dependent variable has to be binary;
• Factor 1 of the variable should represent the desired outcome;
• Only the relevant variables should be included in the classification process;
• The independent variables should be independent of each other;
• It requires large sample sizes.

For this model, no hyperparameter was modified to control the learning process; all
parameters had their default value.

3.5.2. Naïve Bayes

The Naive Bayes algorithm is a simple probability classifier. Bayesian algorithms
predict the class depending on the probability of belonging to that class [21]. It calculates a
set of probabilities from the frequency count and the combinations of values in a given data
set. This algorithm is based on Bayes’ theorem, assuming that all variables are independent.
Bayes’ theorem follows the following formula [22]:

P(A|B) = P((B\A)P(A))/P(B)

From this theorem, it is possible to find the probability of event A to happen (what
is intended to be predicted—the outcome), given that a particular event B occurred (the
comorbidities, symptoms, age, and gender of a given patient). However, this lack of
independence is not valid in real contexts because it disregards the correlation between the
variables. Hence it is characterized by “Naive” [23].
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For this model, no hyperparameter was modified to control the control de learning
process; all parameters had their default value.

3.5.3. Decision Trees

Decision Tree is one of the most important and well-known classification algorithms.
This algorithm is a nonparametric supervised learning method. The goal is to create a
model capable of predicting the value of a target variable by learning simple decision
rules inferred from the given data [24]—in other words, it works as a set of “yes” or “no”
questions based on specific characteristics to reach the target variable. The base components
are nodes and branches, and the next most important steps are splitting, stopping, and
pruning, so it is possible to create a decision tree [25].

For this model, one hyperparameter setting was modified, as shown in Table 3, yet
the remaining parameters kept their default value. The parameter max_depth assumes the
value of 20, which establishes the tree’s maximum depth to control the size of the generated
tree. This value was achieved after implementing the GridSearchCV library, which allows
identifying the best values to be applied in the parameters [26,27].

Table 3. Decision Tree hyperparameters settings.

Parameter Assumed Value

max_depth 20

3.5.4. Deep Learning

Deep Learning (DL) is Machine Learning based on algorithms inspired by the human
brain structure and function denominated artificial neural networks (ANNs) [28], also
known as feedforward neural networks. With the constant increase of data and processing
power, the need to apply both concepts arose. DL consists of a technique associated with
neural networks that enable computers to learn through experience from a hierarchy of
concepts. This hierarchy allows the computer to learn complex concepts by building them
out of simpler ones. Therefore, since the computer can learn from its own experience, there
is no longer a need for Human intervention [29]. This method achieves excellent power
and flexibility by learning to represent information as a nested hierarchy of concepts. An
ANN is composed of 3 components: Input Layer, Hidden Layers, and Output Layers [30].
There are several neurons for input values and others for output values; however, many
neurons are interconnected in the hidden layer. So, formally neurons define Deep Learning.

For this model, the changes made to the hyperparameter were the following, as
depicted in Table 4:

Table 4. Deep learning hyperparameters settings.

Parameter Assumed Value

batch_size 64
callback EarlyStopping
epochs 20

The remaining parameters kept their default value.

4. Case Study

The case description goes through the methodology presented in the CRISP-DM
section, as possible to understand in the following points. As previously mentioned,
the used data is inserted in the time interval between March 2nd of 2020 and February
28th of 2021. The provided data has 805 141 records, with each record referring to a
patient. To provide a better understanding of the used data, attached to the article is a
document denominated “COVID-19 Data Analysis”, where it is possible to find relevant
general information.
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4.1. Business Understanding

The first phase—Business Understanding—focuses on understanding the project’s
objectives and requirements from a business perspective. It is then possible to design
a preliminary data mining project that can achieve the outlined goals. In the project in
question, this phase consisted of realizing what type of data would be provided and its
use in a data mining project. Therefore, the project intends to develop a platform for
clinicians to combat COVID-19, with the primary objective of predicting the evolution of a
specific patient’s disease—evaluating the impact that each variable has on the disease and
predicting the type of discharge. In the study, the particular aspect addressed is trying to
predict the outcome or the need for further medical support for clinical patients in Portugal.

4.2. Data Understanding

Data Understanding starts after the initial collection of data to be worked. At this stage,
data analysis is carried out to search for possible quality problems and, consequently, obtain
a better understanding of them. Due to this type of study, it is also easier to understand
if there is any subset that can be obtained considering the available information, thus
enriching the subject under investigation. So, it was at this stage that a meticulous analysis
of the data at hand was carried out.

The data provided has 805,141 records, collected between the 2nd of March and the
28th of February. Since the patient’s age is an important variable in the classification process,
all records with no associated age were ignored. Therefore, the number of associated
records changed to 739,297 (representing 91.8% of the initial data). Subsequently, a table
was created to expose all the relevant information in order to obtain a better perception of
the data. However, since that table has large dimensions, it is attached to the article. The
table is denominated “COVID-19 Data Analysis”.

For the reader to obtain a global perception of the data, Figure 2—Records General
Information presents some relevant information to retain. According to the presented
figure, it is possible to perceive the gap between records of recovered and infected patients,
a crucial detail that can influence the result in the modeling phase; for example, the number
of dead patients only represents 1.98% of the cases. The percentage of patients who present
comorbidities prior to infection caused by the SARS-CoV-2 virus can also be understood.
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The comorbidities noted by health professionals are the following: Diabetes, Asthma,
Neoplasm, Chronic Lung Disease, Chronic Kidney Disease, Chronic Neurological and
Neuromuscular Disease, Chronic Hematological Diseases, Chronic Neurological Deficiency,
Liver Pathology, HIV or other Immunodeficiencies, Acute Renal Failure, Cardiac Insuf-
ficiency, and Consumption Coagulopathy. The comorbidities distributions are shown in
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Figure 3—Comorbidities Distribution and how it is possible to perceive the comorbidities
with the largest number of associated records are: Diabetes, Asthma and Neoplasia.
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For a better comprehension of the dataset, an analysis of the data is provided in the
supplement material section. Table S1 presents a description, the data type, quality issues,
percentage of non-nulls, and an example of possible values for each variable.

4.3. Data Preparation

As it is possible to understand by Figure 2—Records General Information, presented
in the previous point, the data in use is unbalanced: the discrepancy between patients
who died and infected/recovered patients is significantly accentuated, showing a 1:49.4
proportion of the minority class [deaths] to the majority class [infected/recovered], which
can result in an Imbalanced Classification. This type of detail needs an important evaluation,
given that the minority class instances are easier to be ignored by the learning algorithm
due to the high number of instances from the majority class [31]. To counter this problem,
Random Oversampling and Undersampling were used.

Oversampling involves the duplication of records from the minority class to correct
the imbalanced data. On the other hand, Undersampling consists of a random selection of
data from the majority class that involves removing instances of this class until the majority
class and the minority class present an equal number of examples for each class [32].

To obtain the best possible result for the classification algorithms, using the Over-
sampling method, small changes were made to the data. The number of patients in-
fected/recovered is 724,630 (which represents 98% of the selected data) and, on the other
hand, the number of patients who died is 14,667 (which represents around 2% of the
selected data). Probability sampling techniques were used in order to make sure that
all elements of the population have an equal chance of being selected, having been used
more specifically Simple Random Sampling [33]. For such, a data sample was created by
selecting only the records of patients who died, therefore, it contains the 14,667 records
previously mentioned. This data sample was replicated 50 times, so the number of records
regarding patients who are infected/recovered or died is balanced, as can be observed in
Table 5—Distribution of cases using Oversampling, thus allowing better results. However,
this is not the correct method when the need for replication is very high. Furthermore,
the Undersampling method was also used in order to compare the results obtained by
the two techniques considered. This method requires a random selection of data referring



Future Internet 2021, 13, 102 10 of 15

to Infected/Recovered patients so that both classes involved obtain the same number of
records, as seen in Table 6—Distribution of cases using Undersampling.

Table 5. Distribution of cases using Oversampling.

Targets Replicated
Before After

Number of Cases Percentage of Cases Number of Cases Percentage of Cases

Patients who died 50 14,667 1.98% 733,350 50.3%

Patients
infected/recovered 0 724,630 98.02% 724,630 49.7%

Table 6. Distribution of cases using Undersampling.

Targets
Before After

Number of Cases Percentage of Cases Number of Cases Percentage of Cases

Patients who died 14,667 1.98% 14,667 50.0%

Patients
infected/recovered 724,630 98.02% 14,667 50.0%

4.4. Modelling

In this phase, several modeling techniques were selected and later applied to the
previously treated data, optimized to obtain better results. For this, the modeling includes
the following tasks: Selecting modeling techniques, generating a test environment, building
the model, and evaluating it [34,35].

To proceed with the application of the algorithms to make predictions on the data, the
data had to be divided into two parts: a training set and a testing set. The training set is
used by the various classification algorithms so that they can train and adjust the model’s
constituent parameters. The test set allows evaluating the Accuracy of the final model
taken from the training. For the data referring to patients infected by the Coronavirus, the
data was divided using Stratified Cross-Validation since it offers more robust and reliable
results. This method estimates the Machine Learning model’s learning capacity to make
predictions on unused data during the training phase, evaluating the classifier performance.
Therefore, when a supervised Machine Learning process is carried out, data is separated so
that one of these sets can be tested. This procedure has a single parameter denominated
“k”, and this value refers to the number of sets into which the data set in use was divided.
For the project in question, this variable assumed the value of ten, meaning that the data
sample in question was divided into ten different groups. The purpose of cross-validation
is to test the model’s ability to correctly predict new data that was not used in the training
phase [36]. The Stratification process reorganizes the data to ensure that each fold has the
same proportions of observations and provides a correct representation of the data as a
whole [37].

In this case, the data referring to COVID-19’s patients will be subject to several
classification algorithms to be able to predict the class of data in question. The SVM
classification algorithm was also considered; however, it was not possible to obtain results
on time due to the amount of data.

The targets under consideration, presented in JSON (JavaScript Object Notation), were
the following:

{
“Scenarios”:{
“S1”:”All comorbidities, symptoms, age and gender”,
“S2”:”All comorbidities, age and gender”,
“S3”:”Risk comorbidities, age and gender”,
“S4”:”All comorbidities, symptoms and age”,
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“S5”:”All comorbidities and symptoms”,
“S6”:”All comorbidities”,
“S7”:”All comorbidities and age”,
“S8”:”All comorbidities and gender”
},
“Techniques”:{
“T1”:”Logistic Regression”,
“T2”:”Naive Bayes”,
“T3”:”Decision Trees”,
“T4”:”Deep Learning”
},
“Sampling Methods”:{
“SM1”:”Oversampling”,
“SM2”:”Undersampling”
}
}

Therefore, 64 models were induced to obtain the published results (8 Scenarios × 1
Targets × 4 Techniques × 2 Sampling Methods).

4.5. Evaluation

In the Evaluation phase, the developed model was evaluated to ensure it allows the
achievement of business objectives. In other words, this phase of the project presupposes
the implementation of the following stages: Evaluate results, Review the process and
Determine the next steps.

So, the previous phase models go through an evaluation process regarding perfor-
mance and utility. For this, metrics are used to understand which algorithm has the best
results for the problem presented.

Therefore, it was necessary to define a threshold to obtain the best possible model.
Consequently, from the knowledge of the specialist in the field, the following values were
stipulated for the metrics Sensitivity, Accuracy, and Specificity:

• Sensitivity ≥ 90%;
• Accuracy ≥ 80%;
• Specificity ≥ 80%.

The obtained results varied from 0 to 1, and the main objective is to predict the 1. So,
to evaluate the performance of the models, the mentioned metrics are used. Metrics related
to Sensitivity have priority compared to the others given because it allows for balancing
the number of false positives and negatives. However, it is important that there are no
unbalanced models, such as predictions with high false positives. So, both Accuracy and
Specificity must have relevant values. This metric will also be important for the future
implementation of ensembles.

4.6. Deployment

In the Implementation phase, the obtained knowledge has to be presented so that the
client—in this case, health professionals—can use it. In other words, it involves making the
acquired knowledge useful for decision-making.

The project in question is part of the clinical Intelligence Decision Support System
(CIDSS). The CIDSS is an information system focused on the health area, conceptualized to
provide support in health professionals’ decision-making, in this case, the ones that are
on the front line to combat COVID-19. Clinical observations are linked to the domain’s
knowledge in a specific area of health, and they can influence physician’s choices to
improve health care services.

Regarding the coronavirus project, a web and mobile application were developed to
support the results obtained. Furthermore, to allow its use, the models will be consumed
by clinicians as a service. To this end, a third article associated with the project is under
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development, where the main outputs from both the clustering and the classification phase
will be exposed, explaining more closely why it is a CIDSS project. The deployment process
turns the models pervasive and makes it available as a service anywhere and anytime to
any user with access privileges. The deployment process and the entire solution will be
described in-depth in a further article [38].

5. Results and Discussion

At this stage of the project, the obtained results in the modeling phase are exposed.
The classification algorithm’s best-obtained result and its respective scenario are shown for
the target under study. In this way, it is possible to uncover which is the best model for the
considered target.

The prediction models were constructed considering the target under study (Patient
Outcome), eight different scenarios (S1 to S8), and applied five different DM techniques
(T1 to T5). For such, the models can be identified as an ensemble of a three-dimensional
matrix M composed by s = 8 scenarios× t = 5 techniques× sm = 2 sampling methods. Each
element of M corresponds to a particular model and can be defined as:

Ms,t,sm =


s = 1 . . . 8
t = 1 . . . 4
sm = 1, 2


where,

s:
1 = {All comorbidities, symptoms, age and gender}
2 = {All comorbidities, age and gender}
3 = {Risk comorbidities, age and gender}
4 = {All comorbidities, symptoms and age}
5 = {All comorbidities and symptoms}
6 = {All comorbidities}
7 = {All comorbidities and age}
8 = {All comorbidities and gender}

t:
1 = Logistic Regression
2 = Naive Bayes
3 = Decision Tree
4 = Deep Learning

sm:
1 = Oversampling
2 = Undersampling

The table below presents the best results obtained by each scenario (s = 1 to 8). For
each model, the values of Accuracy, Specificity, and Sensitivity are presented. For example,
for model M1, 3, 1—consisting of scenario 1, Decision Tree technique, and sampling method
Oversampling—the Accuracy obtained was 90.99%, which represents the percentage of
correctly labeled subjects. Specificity was 86.79%, indicating the percentage of recovered
outcome correctly predicted, and Sensitivity was 95.14%, which represents the percentage
of death outcome correctly identified.

For example, taking into account the M1, 3, 1 model (composed by scenario 1—Decision
Tree technique and sampling method Oversampling), the metrics Accuracy, Specificity, and
Sensitivity were noted. The Accuracy obtained was 90.99%, representing the percentage of
correctly labeled subjects; Specificity was 86.79%, which indicates the percentage of recov-
ered outcome correctly predicted, and Sensitivity was 95.14%, representing the percentage
of death outcome correctly identified.

In this way, it is possible to understand the importance of the Sensitivity metric. It
is preferable to obtain a forecast that indicates if the patient is going to die, but that, in
reality, ends up recovering, than to predict the opposite, since it can affect the decisions
of health professionals. All the results obtained can be consulted in the Supplementary
Materials—“Table S2—Classification Results”.

Therefore, the best results obtained for Patient outcome, where bold is the metrics that
achieved the threshold, shown in Table 7—Metrics for Patient Outcome, were as follows:
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Table 7. Metrics for Patient Outcome.

Model Accuracy Specificity Sensitivity

M1, 3, 1 90.99% 86.79% 95.14%
M2, 3, 1 88.94% 84.43% 93.39%
M3, 3, 1 88.91% 84.60% 93.16%
M4, 3, 1 90.67% 86.08% 95.20%
M5, 3, 2 87.66% 82.19% 93.12%
M6, 3, 1 58.72% 96.80% 21.08%
M7, 3, 1 88.13% 84.80% 91.41%
M8, 3, 2 60.86% 97.00% 24.74%

As previously mentioned, the purpose of the project is to understand each patient’s
outcome, positive or negative, based on their characteristics. Therefore, after a brief analysis
of the results presented, the main outputs gathered are discussed in this section. Firstly, it
is important to remember the threshold previously defined to find the best model for the
project, which is defined by the following metrics (in order of importance):

• Sensitivity ≥ 90%;
• Accuracy ≥ 80%;
• Specificity ≥ 80%.

All values that managed to reach or exceed the defined threshold were marked in
bold. That said, with the exception of models M6, 3, 1 and M8, 3, 2, all the other models
can be considered for the prediction of the outcome of a given patient. In general, the
models present interesting results for Sensitivity, and the lowest values are obtained by
scenario 6 (all comorbidities) and scenario 7 (all comorbidities and age). The models that
obtained the best results, both in Sensitivity and in the other metrics, were M1, 3, 1 and
M4, 3, 1—which are associated with scenario 1 (All comorbidities, symptoms, age, and
gender) and scenario 4 (All comorbidities, symptoms, and age). All models (except the
two with the lowest results) were able to reach the stipulated threshold (since, for example,
the Sensitivity value ranges from 91.41% to 95.20%). It is possible to notice that the more
detailed the patient’s profile was, the higher the probability of the model obtaining better
results. Another interesting point to draw from the results gathered is that for all models,
the classification algorithm that showed the best metrics was T3—Decision Tree. Regarding
the sampling methods, the method that presented the best results was Oversamplaing,
being present in six of the eight models presented.

Therefore, the M4, 3, 1 model is the best since it is the one that presents the best result
in the Sensitivity metric (95.20%), and in the other metrics, it presents values higher than
those of the defined threshold. This model uses the Decision Tree as a classification and
oversampling technique for sampling technique.

6. Conclusions

This paper presents evidence that it is possible to predict the outcome of a specific
patient infected with the SARS-CoV-2 virus using the characteristics indicated by the data
provided, thus making it possible to assist clinicians at crucial decision-making moments.
The article exposes the authors’ work from the moment of data collection and analysis to
the implementation of the data in the modeling phase to extract knowledge from them.

The results were evaluated in terms of a collection of three metrics and in accordance
with the thresholds established; however, priority was given to the Sensitivity metric. Six
of the exposed models meet the threshold. This means that for the target under study—
Patient’s outcome—health professionals will be able to predict the outcome, death, or
recovery of a given patient. The model with the best results is M4, 3, 1 since it presents
the best result for the metric Sensitivity (95.20%) and the following metrics—Accuracy
(90.67%) and Specificity (86.08%), while also showing positive values above the threshold.
This model consists of scenario 4 (all comorbidities, symptoms, and age), decision tree
technique, and sampling method oversampling.
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These results indicate that clinicians use the predictions to understand the most likely
outcome of the patients, which allows health professionals to make better decisions on
how to act towards an infected patient. In terms of future work, the continuous reception
and exploration of new records regarding patients infected by COVID-19 will allow the
exploration of new patterns, techniques and broadcast the solution next to the medical
community. Simultaneously, it will make possible the continuous improvement of the
results obtained by the predictive models. Induced Models are part of the inference layer
of the Clinical Decision Support System (CIDSS) developed and can be easily used by
clinicians approved by the Institutions that use the platform.

The interested reader should consult the official page of the project (https://iocovid19.
research.iotech.pt) for more information about future work to be developed, such as model
optimization with the most recent data and the conclusion of the CIDSS deployment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/fi13040102/s1, Table S1: Dataset analysis, Table S2: Patient’s Outcome results.
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