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Abstract

The development of accurate, reliable, inexpensive and fully recyclable analytical platforms is of 

utmost relevance to several fields from medical diagnosis to environmental screening. Surface-

enhanced Raman spectroscopy (SERS) is a compelling detection method with high specificity 

and sensitivity. In this work, a microwave-assisted synthesis method was used for fast and 

uniform in situ growth of gold nanoparticles (AuNPs) onto nanocellulose (NC) membranes, 

through a seed-mediated process. The as-prepared membranes were fully optimized and its 

application as SERS platforms was demonstrated. A direct comparison with other cellulose-based 

substrates showed the superior characteristics of NC such as high mechanical strength, high 

surface area and lower porous content. An Enhancement Factor (EF) up to ~106 was obtained 

using rhodamine 6G (R6G) 10-6 M as probe molecule and a remarkable shelf life of at least 7 

months was achieved, with no special storage required. Preliminary results on the detection of 

label-free spike protein present in SARS-CoV-2 virus are shown, through direct measurements 

on the optimized SERS membrane. We believe that this work evidences the effectiveness of in 

situ seed-mediated microwave-assisted synthesis as a fabrication method, the high stability of 

AuNPs and the superior characteristics of NC substrates to be used as SERS platforms.



2

Keywords: Microwave-assisted synthesis; Gold nanoparticles; Nanocellulose; SERS: Point-of-

care biosensors; COVID-19.

1. Introduction

The novel coronavirus disease (COVID-19) outbreak has reinforced the high demand for fast, 

reliable, accurate and specific detection techniques. Surface-Enhanced Raman Spectroscopy 

(SERS) is a powerful analytical method that combines the rich and unique information provided 

by Raman scattering with the signal amplification supplied by some metallic surfaces. The SERS 

effect can be explained and divided into two mechanisms: electromagnetic (EM) and chemical 

(CM) enhancement. EM enhancement contributes for the highest enhancement factors (EF) and 

arises from the electromagnetic field caused by the Localized Surface Plasmon Resonance 

(LSPR) of metal nanostructures, such as silver and gold nanoparticles (AgNPs and AuNPs, 

respectively). CM enhancement has lower EF and is related with charge transfer processes 

between the analyte and the SERS structures.[1–5] 

The advance on nanofabrication tools has expedited the research on the fabrication of SERS 

platforms using both physical to wet chemical processes. The effectiveness on Raman 

enhancement is highly dependent on the preparation methods of SERS-active layers. 

Traditionally, top-down techniques, such as lithography and physical-deposition processes, have 

been used to fabricate SERS platforms. However, these techniques can be cumbersome, 

expensive, difficult to scale up and time-consuming.[2,6] Chemical-based processes are 

affordable, simple, scalable, easily tailored and liable high-throughput. Among the wet chemistry 

methods, microwave-assisted synthesis uses volumetric dielectric heating, allowing for rapid and 

uniform heating of the reaction mixture resulting in well-controlled and homogenous products - as 

compared with its counterpart conventional heating - resulting in a decrease on reaction time by 

more than one order of magnitude.[2,7–9] 

Various SERS platforms have been reported using microwave-assisted synthesis to produce 

enhancement nanostructures and are mostly based on Ag nanostructures.[1,2,6,7,10–13] 

Although AgNPs are able to provide the highest Raman enhancements, due to their strong 

plasmon resonance effect, they are chemically unstable and prone to early oxidation, which can 

compromise the shelf life of SERS platforms.[14] On the contrary, AuNPs have high chemical 
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stability, are biocompatible and offer easy functionalization with biomarkers. So, the development 

of microwave-based fabrication strategies for AuNPs-based SERS platforms is of high relevance. 

In 2014, Su, S. and colleagues used microwave irradiation to decorate MoS2 nanosheets with 

AuNPs.[15] A relative standard deviation (RSD) of around 20% was attained with an EF of 8.2 x 

105 with 10-4 M R6G as probe molecule. Later, a method to prepare Au-graphene-Au dimers and 

its used for SERS was reported by Ghosh, P. et al., with an EF of around 107 with R6G.[16] The 

method combined microwave-assisted synthesis of a first layer of AuNPs grown in an amino-

functionalized Si wafer, transfer of a graphene monolayer from a copper foil to the Au-SiO2 

substrate, followed by microwave growth of the second layer of AuNPs. More recently, Li, H. and 

co-workers described a method for the microwave synthesis of AuNPs prepared with a magnetic 

ionic liquid, used as a synergistic enhancer and stabilizing compound, for the detection of 

clopidol.[17] However, some of the works reported so far require multi-step approaches, relying 

on expensive substrates and materials in addition to lack of practicality in the measurement 

regime. 

The use of supporting matrices for the Raman enhancement nanostructures offers a higher 

convenience and higher throughput for SERS measurements and, in some cases, can enhance 

the Raman signal amplification even further. Many materials have been used as SERS 

substrates, from conventional glass, silicon wafers to cellulose-based substrates.[13,18–25] 

Cellulose is an outstanding polymeric material due to its inherent low-cost, lightweight, 

biocompatibility, recyclability and versatility. It exists in many formats, from the regular office paper 

to nanoscale formats, such as nanocellulose. Besides the aforementioned cellulose properties, 

nanocellulose possesses a high mechanical strength and thermal stability and a high surface-to-

volume ratio, which can help obtaining SERS platforms with densely packed plasmonic 

nanostructures, creating the so-called SERS hot-spots.[8,13,24,26–30] 

Since the first reports on cellulose as SERS platform in 1984,[31,32] several cellulose-based 

SERS substrates have been proposed in the literature, with different cellulose formats, 

nanostructures fabrication strategies and deposition methods.[11,13,14,33–35] Among the 

deposition methods, in situ synthesis methods[36–40] show benefits since the nanostructures' 

production and their deposition on the substrate can be done in a single step. This generally leads 
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to simple and fast SERS platform’s fabrication, avoiding, for instance, long immersion times of 

the substrate onto plasmonic nanoparticles colloidal solutions.[41]  

In this work, nanocellulose substrates obtained from nata de coco were used for the fabrication 

of gold-based nanocellulose SERS platforms. The said platforms were produced by the in situ 

growth of AuNPs onto the nanocellulose substrate with a seed-mediated growth method. 

Microwave irradiation was employed on the AuNPs synthesis, resulting in a uniform and 

inexpensive SERS platform with a production time of less than 1 hour. The herein presented 

SERS platforms were directly compared with other cellulose formats and were fully optimized in 

terms of AuNPs synthesis procedure and fabrication method attaining an EF up to 106 with a high 

shelf life of at least 7 months. As a proof-of-concept, preliminary results of the detection of the 

spike protein of SARS-CoV-2 virus are shown, thus demonstrating the potentialities of the 

developed method for SERS membranes fabrication.     

2. Experimental section

2.1. Materials and solutions

Raw nata de coco cubes were commercially obtained from Zhen Xin Canned Food. 

Tetrachloroauric(III) acid (HAuCl4·3H2O, ≥ 99.9%, Sigma Aldrich), β-D-glucose (≥ 99.9%, Sigma 

Aldrich), trisodium citrate (Na3Ct, ≥ 99.9%, Carl Roth), sodium hydroxide (NaOH, LABKEM), 

rhodamine 6G (R6G, Sigma Aldrich) and phosphate buffered saline pH 7.2 (PBS, BioUltra) were 

used as received without further purification. Recombinant SARS-CoV-2 spike protein, S1 subunit 

(230-01101) was purchased from RayBiotech. Distilled water passed through a Millipore water 

system (ρ = 18.2 MΩ) was used in all experiments. 

2.2. Solution-based gold nanoparticles synthesis

A volume of 0.5 ml of a HAuCl4 solution was transferred to a microwave vessel followed by 0.5 

ml of a reducing agent (RA) solution and 4.0 ml of distilled water. Two different final concentrations 

of HAuCl4 were tested, 0.5 and 1.0 mM, and two different reducing agents (RA) were used, Na3Ct 

and glucose, at the final concentrations of 2.5 and 5.0 mM. When glucose was used as RA, 60 µl 

of 1 M NaOH were added to the solution. The prepared vessels were then transferred to a 
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microwave reactor from CEM Discover, and the parameters were set to 120 ºC, 10 min reaction 

time at 100 W, with a safe maximum pressure of 280 psi. Prior to use, all glassware was soaked 

in aqua regia (HCl/HNO3 3:1, v/v) for 24 h and rinsed with Millipore water.

2.3. Preparation of SERS membranes: in situ gold nanoparticles synthesis

The NC membranes were obtained from nata de coco cubes, according to the method published 

by Ferreira, N. et al.[13] Briefly, nata de coco cubes previously thoroughly washed and maintained 

in an ethanol solution, were subjected to a 15 min manual pressing (HeatPress UK, Swing-a-

way), followed by a drying process at 40 ºC. Afterwards, the dried membranes were subjected to 

a 10 ton pressing (Manual hydraulic press, Specac, 15 ton max.) for 2 min, to achieve their final 

thickness between 40 to 50 µm.

The in situ AuNPs synthesis onto NC membranes (NC@AuNPs) was achieved through a 

seed-mediated growth method, with the previously optimized concentrations and microwave 

parameters (1.0 mM HAuCl4 and 5.0 mM Na3Ct at 120 °C for 10 min at 100 W) resorting to two 

reaction cycles. In the first cycle, a 2.25 cm2 NC membrane was incubated (NCinc) for 30 min in 

the reaction mixture and subjected afterwards to microwave irradiation. Next, the seed-NC 

membrane was transferred to a freshly prepared reaction mixture and subjected to a second 

microwave irradiation cycle. After each cycle, the membranes were thoroughly washed under a 

gentle stream of distilled water to remove unreacted species. The NCinc@AuNPs obtained after 

the second cycle were allowed to dry at room temperature in a desiccated environment. For SERS 

performance comparison purposes other membranes were also produced, based on NC 

membranes without the incubation step (NC@AuNPs), with and without the incubation step with 

a seedless method and a reaction time of 20 min (NCinc-20min@AuNPs and NC20min@AuNPs, 

respectively), and based on other cellulosic substrates with the optimized conditions: Whatman 

paper (WPinc@AuNPs), office paper (OPinc@AuNPs) and cardboard substrate (CBinc@AuNPs).

2.4. Characterization

The optical characteristics of the synthesized AuNPs colloidal solutions were assessed through 

UV-Vis spectroscopy (Spark® multimode microplate reader, TECAN, Switzerland). Imaging of 

AuNPs was carried out by transmission electron microscopy (TEM, ThermoFisher Scientific Inc, 

TITAN C-Twin) operated at 300 kV. The size of the AuNPs was determined by Dynamic Light 



6

Scattering (DLS, AvidNano W130i, USA). The SERS membranes were chemically, structurally 

and morphologically characterized through X-ray photoelectron spectroscopy (XPS, Kratos Axis 

Supra, UK) equipped with a monochromated Al Kα radiation (1486.6 eV), X-ray diffraction (XRD, 

Malvern Panalytical, X’Pert Pro, UK) equipped with a CuKα target and wavelength of 1.5406 Å 

and Scanning Electron Microscopy (SEM, Carl Zeiss AURIGA FIB-SEM Crossbeam, 

Oberkochen, Germany), respectively. 

2.5. SERS measurements and Enhancement factor calculation

The prepared SERS membranes were individualized into 2 mm2 squares, for single 

measurements, to each square a 2 µl drop of analyte was deposited and allowed to dry at RT. 

SERS spectra acquisition was achieved with a Renishaw inVia Qontor confocal Raman 

microscope (Gloucestershire, UK) equipped with a Renishaw Centrus 2957T3 detector. Before 

measurements, the equipment was calibrated with an internal silicon wafer at Raman shift of 520 

cm-1. Measurements were performed with a 633 nm laser at 3.2 mW with 10 sec exposure time 

and 10 accumulations. A 50× Olympus objective lens (N10.6 LMPLAN FL N) was used to focus 

the laser beam. The SERS EF was calculated using R6G 10-6 M probe molecule and determined 

using equation 1:[42,43]

eq. 1𝐸𝐹 =  
𝐼𝑆𝐸𝑅𝑆

𝐼𝑅𝑎𝑚𝑎𝑛
×

𝑁𝑅𝑎𝑚𝑎𝑛

𝑁𝑆𝐸𝑅𝑆

where ISERS and IRaman are the integrated signal intensities of R6G and NSERS and NRaman are the 

number of R6G molecules deposited on SERS and Raman substrate, calculated by equation 2:

             eq. 2 𝑁𝑆𝐸𝑅𝑆/𝑅𝑎𝑚𝑎𝑛 =  𝑁𝐴 × 𝑉 × 𝐶𝑆𝐸𝑅𝑆/𝑅𝑎𝑚𝑎𝑛 ×
𝐴𝑙𝑎𝑠𝑒𝑟

𝐴𝑆𝐸𝑅𝑆/𝑅𝑎𝑚𝑎𝑛 

where NA is the Avogadro number, V represents the sample’ droplet volume, CSERS and CRaman 

are the R6G molar concentration used in SERS and Raman measurements, respectively, Alaser is 

the laser spot area and ASERS and ARaman are the substrate area.

2.6. Proof-of-concept: SARS-CoV-2 spike protein screening

As a proof-of-concept, the optimized SERS membrane was used for SARS-CoV-2 spike protein 

screening by measuring its intrinsic spectra at two different concentrations: 2000 and 5 ng/ml. 2 
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µl of samples were deposited in the SERS membrane and the obtained spectra represented the 

average of three measurements. 

3. Results and discussion

3.1. Solution-based gold nanoparticles synthesis

Initially, a study on the dependence of AuNPs properties from reactant’s concentration and type 

of chemical reducing agent was conducted to select proper parameters for the in situ SERS 

membranes fabrication. HAuCl4 was used as the precursor and tested at concentrations of 0.5 

and 1.0 mM. As for RAs, the nanoparticles were synthesized with Na3Ct, following a modified 

Turkevich method[44] and with glucose, at the concentrations of 2.5 and 5.0 mM. This was 

performed for 10 min at 120 ºC, assisted by microwave irradiation. In addition, when glucose was 

used as RA, the syntheses were also performed at RT, without microwave irradiation, since it is 

reported in the literature, glucose-based AuNPs production promoted by an alkaline medium at 

room temperature.[45–47] However, the synthesis outcome showed a poor reproducibility as 

optical properties is concerned, with variable surface plasmon resonance (SPR) and maximum 

absorbance values (Figure S1). For this reason, this approach was disregarded in further 

optimizations.

The optical properties and morphology of AuNPs produced using both Na3Ct and glucose through 

microwave irradiation were assessed by UV-Vis spectroscopy and TEM, respectively (Figure 1).
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Figure 1 Optical properties of the synthesized gold nanoparticles at different concentrations of precursor 
and reducing agents. a: UV-Vis average spectra (n=3) of citrate-based gold nanoparticles; b: UV-Vis 

average spectra (n=3) of glucose-based gold nanoparticles; c: Representative TEM image of citrate-based 
gold nanoparticles; d: Representative TEM image of glucose-based gold nanoparticles.

As expected, a SPR band was observed for all the syntheses, thus confirming the successful 

growth of the AuNPs. Reproducibility was assessed by repeating each synthesis in triplicate and 

evaluating the resulting optical properties. In general, a good reproducibility was achieved for both 

citrate and glucose-based syntheses with microwave irradiation, evidenced by the calculated low 

standard deviations (Table S1).

The reaction for the synthesis of AuNPs by citrate and glucose reduction is based on the oxidation 

of the reducing agents to dicarboxy acetone and gluconic acid, respectively, with subsequent 

reduction of Au3+ to Au0.[46,48] In both cases, the reducing agents act also as a capping agent, 

contributing to the formation of an outer shell of anionic charges (from the carboxylate groups in 

citrate) or hydroxyl groups (from glucose).[49,50] 

For both syntheses, the absorbance values obtained rose when higher concentrations of gold salt 

precursor were used (Figure 1a,b), which may be indicative of an increased number of AuNPs, 

when HAuCl4 was in a higher concentration. This observation can be correlated with Polte, J. et 

al. [51] growth mechanism, explaining that the number of AuNPs is defined in the second stage 
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and a higher concentration of gold salt precursor leads to a higher amount of nuclei particles. The 

authors showed that the conventional LaMer model is unable to predict the evolution of 

nanoparticle’s size distribution, only describing the process of nucleation followed by a growth of 

the stable nuclei. They demonstrated experimentally that the AuNPs formation mechanisms 

follow four main steps: in a first step, due to the high reduction rate, a rapid formation of clusters 

of particles with 1-2 nm occurs; then, in a second step, the reduction rate decreases which leads 

to the coalescence of the freshly formed clusters, translating in a decrease in the number of 

particles, until stabilization. The number of particles remains then constant throughout the rest of 

the synthesis process, and their growth in size occurs during the following steps. In the third step, 

the AuNPs continue their growth through a diffusional process of the reduced gold atoms present 

in solution and an electrical double layer is created around the AuNPs. Lastly, in the final step, 

the growth rate increases leading to a rapid reduction of the remaining gold salt, the nanoparticles 

achieve their final size, and the appearance of a ruby/red color is indicative of reaction completion.

Figure 2 shows the obtained SPR values and AuNPs’ diameter obtained by DLS for the citrate 

and glucose-based AuNPs.

Figure 2 Analytical features calculated from the UV-Vis spectra of the synthesized AuNPs, by microwave 
irradiation, with citrate and glucose as reducing agents. a: SPR values as dependent of reactant’s 

concentration; b: Bubble graph representation of AuNPs’ diameter calculated by DLS. Absolute values for 
the present graph representation are presented in Table S1.

The obtained SPR values for citrate-based AuNPs, centered around 520 nm, and for glucose-

based AuNPs, centered around 540 nm (Figure 2a), are in agreement with those reported in the 

literature.[49] Moreover, glucose-based AuNPs showed broader absorption bands than the 

citrate-based AuNPs, which can indicate a higher heterogeneity in size and/or shape of the 
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glucose-based AuNPs.[46] This was confirmed by TEM imaging (Figure 1c,d) where spherical 

particles are visible on the citrate-based AuNPs, whereas the AuNPs prepared with glucose 

shows anisotropic shapes.

As expected from the SPR values, citrate-based AuNPs have smaller particle’ sizes than the 

glucose-based AuNPs (Figure 2b and Table S1). One possible explanation for the overall higher 

SPR and higher diameter of glucose-based AuNPs can be due to the possibility of hydrogen 

bonding of the hydroxyl groups present in the capping layer of these particles which leads to their 

agglutination. Moreover, a strong dependence of particles’ diameter on the concentration of RA 

was observed, especially for citrate-based AuNPs: for constant HAuCl4 concentrations, higher 

[RA] renders smaller AuNPs diameter, with higher influence in high HAuCl4 concentrations. These 

results corroborate with literature data relating the quantity of reducing agent with the final particle 

size. A high amount of citrate ions strongly favors nucleation leading to a high quantity of nuclei 

which in turn results in smaller AuNPs, due to the rapid consumption of citrate for HAuCl4 

reduction.[51–54]

In the case of glucose, this correlation between RA concentration and final particle size was only 

observed for high concentrations of HAuCl4. The SPR value and particle size can also be strongly 

influenced by the morphology and/or shape homogeneity of the NPs. In fact, these deviations are 

observed in the glucose-based AuNPs, since this reducing agent renders AuNPs with higher 

heterogeneity in terms of shape and size, as it was corroborated by TEM imaging (Figure 1d).[46] 

The stability of the synthesized AuNPs was evaluated through visual inspection and direct 

comparison of the ASPR value after 3 months of production (Figure 3).
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Figure 3 Stability evaluation of the synthesized AuNPs after 3 months of storage at 4 ºC. a: citrate-based 
AuNPs colloidal solutions photographs and calculated maximum absorbances; b: glucose-based AuNPs 
colloidal solutions photographs and calculated maximum absorbances. The percentage values represent 

the drop in the maximum absorbance value after 3 months of storage. 

Exceptional high stability of the gold nanoparticles produced through citrate-based synthesis is 

observed, which shows the higher stability efficiency of citrate when compared to glucose.[50] 

After 3 months of storage at 4º C, the glucose-based AuNPs precipitated which translates in drops 

of the SPR absorbances from 41% to 78%. In fact, as mentioned above, this can be explained by 

the aglutination of glucose-based AuNPs through hydrogen bonding which leads to their 

precipitation. The highest drops are observed for 2.5 mM glucose which can indicate that this 

concentration is limitant, and it is not enough to efficiently stabilize the produced nanoparticles 

through a capping process. For the AuNPs produced through citrate reduction route, although 

lower than glucose-based nanoparticles, the highest decrease on ASPR is also observed when 2.5 

mM of reducing agent is used. In fact, a noticeable precipitate of AuNPs synthesized with 1.0 mM 

of HAuCl4 and 2.5 mM of Na3Ct is visible, which leads to a 57% reduction of the ASPR. A possible 

explanation could be that when the reducing agent, which is responsible for both reduction and 

stabilization of the particles, is present in a low concentration, thus at a low reducing agent to gold 

ratio, it is not sufficient to efficiently cap the AuNPs, which leads to their aggregation,with 

consequent precipitation.[51]
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For these reasons, Na3Ct at 5.0 mM was chosen as the reducing agent and optimal concentration 

with 1.0 mM HAuCl4 due to its highly stabilized AuNPs combined with a high maximum SPR 

absorbance, centered at 518 ± 2 nm, which is important to obtain a high loading of NPs onto 

cellulose-based SERS membranes, increasing the number of hot spots which leads to a more 

efficient Raman signal amplification.

3.2. SERS membranes fabrication: in situ synthesis of gold nanoparticles

The prepared NC membranes from nata de coco cubes were subjected to an in situ growth of 

AuNPs with the previously optimized conditions. Figure 4 shows the workflow to produce a NC 

membrane loaded with AuNPs.

Figure 4 Schematic representation of AuNPs-based SERS membrane workflow production.

Briefly, a NC membrane was placed inside the microwave vessel, with the reaction mixture, and 

subjected to microwave irradiation for AuNPs synthesis. The as-prepared membrane was then 

transferred to a new microwave vessel with a freshly prepared reaction mixture and subjected 

again to microwave irradiation.

Figure 5 shows the resulting SEM images and optical photographs of the prepared NC@AuNPs 

membranes.
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Figure 5 In situ synthesis of gold nanoparticles onto nanocellulose membranes via seed and 
seedless-mediated growth methods: SEM images and photographs of the resultant membranes. Direct 

comparison of the membranes with and without the 30 min incubation step.

The growth of the AuNPs onto the NC membrane was performed, in a first stage, by immersing 

the substrate in the reaction mixture and subjecting it immediately to microwave irradiation. The 

successful growth of AuNPs onto the NC fibers was confirmed by SEM imaging and by the light 

purple color of the obtained membrane. The as-prepared membrane was then used as a seed 

layer and subjected to a second cycle of synthesis (NC@AuNPs). An increase in the purple color 

intensity was observed, which may indicate the formation of larger clusters of AuNPs, as observed 

in the SEM image. However, these large clusters are heterogeneously dispersed throughout the 

NC fibers and at a very low density. 

As it is known, the dispersion of closely-packed AuNPs throughout the substrate is critical for 

SERS performance, where the main contributor for high EF is the EM effect that can be magnified 

when the plasmonic NPs are close to each other, creating hot-spots.[17] To increase the AuNPs’ 

density onto the NC membranes, an incubation time of 30 min preceded the seed-mediated 

growth process. We believe that this incubation time, prior to microwave irradiation, allowed the 

formation of pre-colloidal nuclei, visible by the change of the reaction mixture to a greyish color 

solution, and for an efficient nanocellulose’ wicking of the reaction mixture. This led to an increase 

in the number of AuNPs loaded onto the NC membrane, compared to the same process without 

incubation (Figure 5). Additionally, the 2nd cycle of microwave synthesis revealed a full coverage 

of the NC fibers, visible in the SEM image and in the inset picture of NCinc@AuNPs membrane 

that presents a dark purple color. 
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The XRD analysis performed on the SERS membranes obtained by the seed-mediated growth 

method, with and without the incubation step (NCinc@AuNPs and NC@AuNPs, respectively), 

revealed the presence of the characteristic AuNPs crystallographic peaks (Figure 6a). 

Figure 6 a. XRD diffractogram for the NC membrane with and without grown AuNPs on its fibers after 
each reaction cycle without and with the incubation step; b. SEM image and optical photograph of glucose-
based NC membrane with grown AuNPs with the optimized conditions for citrate-based synthesis; c and d. 

XPS analysis of the optimized NCinc@AuNPs SERS platform.

In addition, is it observed, especially in the most prominent peak at 38.2°, assigned to the (111) 

crystallographic plane,[55] an increase in its intensity from the 1st to the 2nd cycles, indicative of 

the increase in the AuNPs number. A XPS analysis was also performed to the final and optimized 

NCinc@AuNPs membrane, with the incubation step and the seed-mediated growth method 

(Figure 6c,d). As expected, the presence of the peaks from oxygen (O 1s) and carbon (C 1s), 

from the capping layer, respectively centered at 533 and 287 eV, is visible (Figure 6c). The peak 

at 84 eV, assigned to Au 4f7/2, and the peak at 88 eV, attributed to Au 4f5/2, with a peak separation 

of 3.7 eV and with I4f7/2 > I4f5/2 (Figure 6d), confirms the complete reduction of Au3+ to Au0, 

reinforcing the successful growth of AuNPs.[56–59] 

Having established the need for an incubation step, the necessity of a seed-mediated growth 

method instead of a seedless AuNPs growth onto the NC membrane was also investigated.  For 

that, the reaction time was increased to 20 min, to assure that the homogeneous growth of AuNPs 
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was directly related to the seed and not to the total reaction time. These syntheses were 

performed by maintaining all the other microwave parameters and reactants concentration 

constant, without and with the incubation step. Although both cases lead to AuNPs’ growth, 

confirmed by SEM and by the membranes’ purple color, as expected, the synthesis carried out 

with the incubation step resulted in a NC membrane with a higher density of AuNPs. By directly 

comparing the SERS membranes obtained by the seed and seedless-mediated growth, with the 

incubation step (NCinc@AuNPs and NCinc-20min@AuNPs, respectively), it was possible to observe 

in both cases a good coverage of the NC fibers with the in situ synthesized AuNPs. However, a 

lower coverage of the cellulose fibers by the AuNPs is observed when compared with the 

seed-mediated growth method. This reveals the importance of having a seed for the subsequent 

growth of AuNPs and the importance of renew the reaction mixture offering more citrate and gold 

ions for the synthesis of more AuNPs.

Despite the better outcomes displayed by the solution-based citrate reduction route for the AuNPs 

synthesis, the previously optimized conditions for the preparation of SERS membranes 

(incubation step followed by a seed-mediated growth method) were mimicked using glucose as 

the RA. However, this synthesis method showed a poorer coverage of the cellulose’ nanofibers 

and a very low AuNPs’ density with bigger particles’ sizes than the citrate-based synthesis, which 

is correlated with the results obtained in the solution-based synthesis (Figure 6b). A possible 

explanation for this was given by Xia and co-workers,[7] stating that the carbonyl groups of 

reducing agents can effectively absorb microwaves, facilitating the reduction process. In 

opposition to citrate that is composed of several carbonyl groups, glucose has five hydroxyl 

groups that compete for microwave absorption. 

Additionally, the optimized in situ seed-mediated growth method for NC membranes was also 

performed with other cellulosic substrates: office paper, cardboard and Whatman paper grade 1. 

Due to the hydrophobic nature of both office paper and cardboard substrates, the synthesis 

rendered an inhomogeneous distribution of the AuNPs (Figure S2). On the contrary, the Whatman 

paper's hydrophilic nature allowed to successfully wick the reaction mixture, showing a 

homogeneous distribution and coverage of the AuNPs on the cellulose fibers (WPinc@AuNPs) 

(Figure 7). 
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Figure 7 In situ synthesis of gold nanoparticles onto Whatman paper via a seed-mediated growth method, 
with a 30 min incubation step: SEM images and photographs of the resultant WPinc@AuNPs.

Similarly to the NC membranes, an increase in the AuNPs density was visible from the 1st to 2nd 

cycle. However, comparing the outcome after 1st cycle of both substrates, the WPinc@AuNPs 

seems to have a higher particle density. This feature can be due to a higher capillary action of 

Whatman paper and/or its higher grammage which can lead to the wicking of a superior amount 

of reaction mixture, resulting in a higher amount of in situ grown AuNPs. Nevertheless, an 

increase on the number of AuNPs after the 2nd reaction cycle was visible, with AuNPs fully 

covering the papers fibers, demonstrated by the SEM image and the darker color of the resulting 

WPinc@AuNPs.

The average diameter size of the AuNPs obtained after each cycle was calculated for both NC 

and Whatman paper substrates, using the ImageJ software (Figure S3). Both substrates revealed 

AuNPs with similar sizes (27.6 ± 6 and 27.1 ± 7 nm for NCinc@AuNPs and WPinc@AuNPs, 

respectively), after the 2nd reaction cycle. However, after the 1st cycle, the NCinc@AuNPs 

membrane had bigger particles (32.3 ± 8 nm) than the WPinc@AuNPs membrane (17.8 ± 4 nm). 

This fact was explained by the faster wicking of the reaction mixture by the Whatman paper 

substrate, which can result in a faster AuNPs growth and consequently in nanoparticles with 

smaller sizes. 

3.3. SERS performance evaluation

The ability of the prepared membranes to be used as SERS substrates was evaluated, using R6G 

as the probe molecule (Figure 8).
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Figure 8 SERS performance evaluation of the prepared membranes: a. R6G SERS spectra obtained with 
SERS substrates after each reaction cycle, with and without the incubation step; b. R6G SERS spectra 
obtained with the SERS substrates by the seed and seedless-mediated growth methods; c. R6G SERS 

spectra obtained with the optimized SERS membranes with nanocellulose and Whatman paper substrate 
produced after each reaction cycle.
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Figure 8a shows the R6G spectra obtained using the prepared NC@AuNPs and NCinc@AuNPs 

membranes after the 1st and 2nd cycle of microwave irradiation. No R6G characteristic bands were 

observed with the NC@AuNPs membrane with one reaction cycle and without the incubation 

step. After the seed-mediated growth, it was possible to notice the R6G bands, although with low 

signal intensity. On the contrary, a high increase on R6G spectrum intensity was clearly visible, 

by 6-fold (using the intensity of the most intense band), for the NCinc@AuNPs when compared 

with its counterpart NC@AuNPs, clearly showing the need and importance of the incubation step. 

In these cases, the main R6G characteristic bands were clearly present at 767 and 1184 cm-1 

attributed to C-H out-of-plane bending and C-H in-plane bending vibrations, respectively. 

Additionally, the bands at 1360, 1508, 1570 and 1651 cm-1 were assigned to symmetric modes 

of in-plane C-C and C-O-C stretching vibrations.[17] 

By comparing the membranes obtained with the incubation step followed by a seed-mediated and 

seedless growth (Figure 8b) it was evident that the membrane obtained by the seed-mediated 

growth had a better SERS performance. In fact, despite the NCinc@AuNPs membranes obtained 

with the seedless growth showed well distributed AuNPs, with a good surface coverage, by 

comparing directly these membranes with the ones obtained through an optimized seed-mediated 

growth it was observed that the NPs had a higher surface coverage around the cellulose 

nanofibers in the second approach.

Finally, Figure 8c shows the comparison between the R6G SERS spectra of the optimized 

NCinc@AuNPs membrane with the membranes produced using Whatman paper as substrate, 

after the 1st and 2nd cycle of synthesis. Regarding the WPinc@AuNPs membranes, an increase in 

the SERS signal from the 1st to 2nd cycle of reaction is visible, due to a high amount of AuNPs 

distributed through the cellulose fibers. Additionally, a higher SERS intensity for the 

NCinc@AuNPs membranes is observed. This can be explained by high surface area and 

surface-to-volume ratio of the NC substrate, and since SERS is a surface effect, it can benefit 

from having the analyte well dispersed in the surface of the SERS substrate. Despite the 

hydrophilic nature of both substrates and their three-dimensional morphology, which can lead to 

the absorption of the analyte throughout all the membranes’ thickness, the NC substrate has a 

structure with low porous content and/or nanosized pores, which enables a higher availability of 

the analyte to the incident laser.  
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Additionally, the as-optimized SERS membranes were compared with a widely used immersion 

method to decorate supporting substrates with plasmonic nanostructures.[60–63] For that, an NC 

membrane was immersed in a AuNPs colloidal solution (prepared with optimized parameters, 

HAuCl4 1.0 mM with Na3Ct 5.0 mM) for 24 h, allowed to dry at RT and the R6G spectra was 

recorded (Figure 9a). 
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Figure 9 As-optimized SERS membrane performance: a. Comparison between R6G average SERS 
spectra (n=5) recorded on SERS membranes prepared with the optimized method and with a 24 h 
immersion method; b. Comparison between R6G average SERS spectra (n=5) recorded on SERS 

membranes prepared with the optimized method and on a glass substrate; b. R6G average SERS spectra 
(n = 5) obtained in the optimized NCinc@AuNPs membrane after production, 3 and 7 months.
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A direct comparison of the recorded R6G spectra on the NCinc@AuNPs membranes with the ones 

prepared with the 24 hours immersion method reveals the enhanced performance of our 

approach, attaining overall higher SERS intensities with a much shorter preparation time. 

Moreover, to assess the importance of having a high surface area substrate for Raman signal 

amplification, a 2 µl volume of the AuNPs colloidal solution was deposited on a glass substrate 

and allowed to dry at RT. Figure 9b shows the obtained R6G spectra which reveals a lower SERS 

signal when compared with our substrate, evidencing the advantages of using cellulose-based 

substrates as supporting matrix for Raman enhancement nanostructures.

Within the most relevant figures of merit of SERS substrates are the EF, RSD, the cost, and the 

shelf life. The herein produced and optimized SERS platform achieved an EF up to ~106, with 

10-6 M R6G, for both most intense peaks of 1360 and 1508 cm-1, with an RSD lower than 8%, 

which confirm the best performance of our approach within the state of the art of AuNPs Raman 

enhancement.[64–66] In terms of cost, the use of a low-cost and commercially available substrate 

allied with a solution-based production method, with an energy-efficient synthesis method, 

reduces the final cost of the produced membranes significantly, within the cents range, well below 

the price of the substrates currently available in the market. 

Finally, R6G SERS spectra were recorded over time to assess its shelf life (Figure 8c) showing a 

good performance even after 7 months of production. Accounting for the R6G more intense peak 

of 1360 cm-1 a 33% drop in its intensity was observed with the membrane after 3 months of 

production which remained stable after 7 months. Despite this intensity drop of R6G signal, its 

main characteristic peaks were still clearly identified, showing that the observed decrease did not 

have a significant impact upon SERS performance. This evidenced the long shelf life of the 

produced and optimized SERS membrane, even stored at room temperature without requiring 

special storage conditions.

1. Proof-of-concept: SARS-CoV-2 Spike protein detection

As a proof-of-concept, the as-prepared and optimized SERS membrane was used for screening 

the SARS-CoV-2 spike protein (S protein). The ongoing pandemic of coronavirus disease 

(COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 

caused to date (data accessed on 4th March, 2021)[67] more than 114 million cases and more 
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than 2.55 million deaths. Several diagnostic strategies and perspectives have been reported in 

the literature.[68,69] S protein was identified as one of the potential biomarkers to diagnose this 

disease.[70–72] A few works on SERS-based S protein screening have been reported in the 

literature. Zhang, D. et al has reported a SERS platform, based on sliver nanorods grown on a 

silicon substrate, for the recognition of S protein using the receptor angiotensin-converting 

enzyme 2 (ACE2) as biomarker.[73] Also, a work based on Ta2C MXenes for Raman signal 

amplification was used for S protein recognition,[74] thus validated the SERS approach for 

COVID-19 diagnosis.

Herein, we show preliminary results for label-free S protein screening showing the feasibility of 

the developed SERS platform. (Figure 10). 

Figure 10 SERS spectra of S protein on the optimized SERS membranes. The grey area represents the 
average spectra (n=3).

The recorded average SERS spectra of S protein for 2000 and 5 ng/ml shows the characteristic 

bands of proteins. Amide I region is identified in 1600-1690 cm-1 associated with C=O stretching, 

Amide II in 1480-1575 cm-1 and Amide III in 1229-1301 cm-1 caused by CN stretching and NH 

bending. Additionally, the peak at 1361 cm-1 is attributed to Trp the zone marked with an * can be 

attributed to aminoacid Phenylalanine (Phe) or Tyrosine (Tyr) and Tryptophan (Trp) residues 
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bands.[75,76]  We believe that these results can be seen as an initial evidence of label-free 

COVID-19 diagnosis through the use of a highly stable and low-cost platform.

4. Conclusions

In this work, a systematic study on fabrication of NC-based SERS platforms, prepared with a in 

situ microwave-assisted synthesis method was performed by optimizing relevant parameters. 

Citrate-based AuNPs has proven to provide enhanced optical properties and stability over time, 

when compared with glucose-based synthesis. Our fabrication approach based on an incubation 

step of the cellulosic substrate on the reaction mixture followed by seed-mediated growth method 

of AuNPs, rendered membranes with well-distributed and densely packed NPs. The method was 

employed in close-to-hydrophobic and hydrophilic cellulose substrates, with better outcomes 

obtained with hydrophilic ones due to the high capacity to wick the reaction mixture translating in 

a homogeneous distribution of particles. Moreover, in terms of SERS performance, NC had 

superior results when compared to Whatman paper due to its less porous structure and high 

surface area. A calculated EF of around 106 was attained, with an RSD lower than 8% and an 

outstanding shelf life up to 7 months, with regular storage conditions, for the herein optimized 

NCinc@AuNPs SERS platform. Our developed workflow for SERS membranes fabrication 

translates in higher Raman amplifications than a 24 h immersion method, with obvious benefits 

in terms of reduction of total fabrication time. Additionally, the benefits of using a 

three-dimensional material with high surface-to-volume ratio as SERS supporting matrix was 

demonstrated with the enhanced SERS intensities obtained with our membrane, when compared 

to a common glass substrate decorated with AuNPs.

We believe that the herein developed SERS membrane offers an accurate, reliable and 

inexpensive platform for biosensing that can be used in point-of-care settings when combined 

with a portable Raman reader. 
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 Microwave-assisted seed mediated synthesis of AuNPs onto nanocellulose membranes;
 Citrate-based chemical route presents superior microwaves absorption for nanoparticles’ 

synthesis;
 Rapid fabrication of nanocellulose-based SERS membranes by an in situ approach;
 Outstanding SERS membranes’ shelf life up to 7 months;
 Successful spike protein screening from SARS-CoV-2 virus.
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