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Abstract

We present the �rst assessment of U.S. monetary policy across time and frequencies within

the Taylor Rule framework. We derive a novel wavelet tool � the partial wavelet gain �

to estimate a parametric equation relating the federal funds rate to in�ation and the output

gap. We detect a gradual shift of the focus of policy from short cycles to intermediate cycles

at the beginning of the Great Moderation, followed by a strengthening of policy�s reaction to

long �uctuations once credibility was attained, and, during the Great Recession, a renewed

interest in shorter output cycles. We document that the violation of the Taylor principle

until the early 1980s and the strengthening of the reaction of policy to in�ation thereafter

were more marked at intermediate than at long cycles. Overall, we also detect lead-lag

relationships between the policy rate and in�ation and the output gap that di¤er along time

and cyclical frequencies.
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1 Introduction

This paper uses continuous wavelet tools to estimate the coe¢ cients of the Taylor Rule that are

implicit in U.S. monetary policy between 1965 and 2017. The simultaneous variation of coe¢ cients

along time and frequencies and the thorough statistical analysis provided by our tools allow for

detecting new stylized facts about the last �ve decades of U.S. monetary policy.

Taylor (1993) showed that, between 1986 and 1992, monetary policy in the United States could

be well described by a simple parametric relationship between the policy interest rate, the output

gap, and in�ation

FFRt = 2 + �t +
1

2
yt +

1

2
(�t � 2) ; (1)

in which FFRt is the (e¤ective) federal funds rate in period t, �t is the in�ation rate over the

previous four quarters, yt is the percent deviation of output from its potential and both the real

equilibrium interest rate and the in�ation target are assumed to equal 2 percent. Thereafter, a

great deal of models and analyses of U.S. monetary policy have focused on Taylor-type rules.

The Taylor Rule (TR) is important both from positive and normative perspectives. Some even

argue that it should be used as a policy accountability device.

From a positive point of view, this approach is useful to describe, in a very parsimonious

way, U.S. monetary policy. Indeed, subsequent studies have shown that such broad empirical

success extends to periods before 1986 and after 1992, which is particularly notable given that, as

documented inter alia by Kahn (2012) and Taylor (2012), there were no references to Taylor-type

rules in the Federal Open Market Committee meetings before 1993, and, even after 1993, the

Federal Reserve never acknowledged adhering to a Taylor-type rule.

From a normative point of view, TR may also be considered a useful benchmark for monetary

policy, highly valuable in informing and aiding policymakers�decisions, even if it is not to be

followed mechanically. As an approximation to the optimal control solution of the monetary

policymaker�s problem, TR has been proven to be quasi-optimal and more robust than a wide array

of strictly optimal policy rules derived in speci�c macroeconomic models � see e.g. Taylor and

Williams (2010). Moreover, it has the advantage of simplicity, making it very easy to communicate

and understand.
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The argument that, under the TR, monetary policy is more predictable, systematic, and ef-

fective (Taylor, 2012), has brought attention, in policy circles, to Taylor and Williams� (2010)

suggestion that it could become an accountability device; there was even a bill introduced in the

U.S. Congress, which fueled discussions in academic circles � see e.g. Bernanke (2015) and Walsh

(2015).1

A very large literature thoroughly documents how TR coe¢ cients have changed over time,2

but is virtually silent on the intensity of the changes across di¤erent cyclical oscillations. There

is a smaller literature that documents di¤erent TR coe¢ cients across some cyclical frequencies,

but limits time-domain considerations to a comparison between a very limited set of sub-sample

periods.3 There are ample reasons for the TR coe¢ cients to behave di¤erently across frequencies.

First, policymakers should care about the impact of policy across cyclical frequencies because

oscillations at di¤erent frequencies may have di¤erent impacts on social welfare; also, controlling

oscillations at some frequencies may imply a trade-o¤ with larger variability at other frequencies

(Yu, 2013). Second, while arguably policymakers react more strongly to persistent than to short-

lived �uctuations in the main macroeconomic variables, the relative importance of controlling low

versus medium versus high frequency oscillations may depend on the circumstances. For example,

the discussion about which in�ation rate to consider in the TR � whether headline in�ation or

core in�ation, which features smaller high-frequency variation � is an example of the di¢ culty

in �nding a one-size-�ts-all best indicator for policy (see e.g. Mehra and Sawhney, 2010). Third,

monetary policy�s relative reaction at di¤erent frequencies may depend on temporary factors; for

example, a policymaker trying to conquer credibility may have to react very strongly to transitory

changes in in�ation, but once credibility is established, he or she may instead focus on �uctuations

of a more permanent nature (Ashley, Tsang and Verbrugge, 2015).

1H.R. 5018 (113th) Federal Reserve Accountability and Transparency Act of 2014, discussed in the House Finan-
cial Service Committee, according to which the FED should explain to the House any systematic deviations of the
policy interest rates from a reference policy interest rate that would correspond precisely to that implied by Taylor�s
(1993) Rule presented in (1). For details, see https://beta.congress.gov/113/bills/hr5018/BILLS-113hr5018ih.pdf

2E.g., following Clarida, Galí and Gertler�s (2000) �nding that U.S. interest rate policy has been more sensitive
to in�ation after 1979, the stability of the U.S. TR has been assessed using several time-series methods, such
as threshold models (Bunzel and Wenders, 2010), time-varying parameters models (Trecroci and Vassalli, 2010),
Markov-switching models (Assenmacher-Wesche, 2006), smooth-transition models (Alcidi, Flamini and Fracasso,
2011), instrumental variables quantile regressions (Wolters, 2012), and Hamilton�s (2001) �exible approach to
nonlinear inference (Kim, Osborn and Sensier, 2005).

3E.g. Ahmed, Levin and Wilson (2004), Pancrazi (2015) and Ashley, Tsnag and Verbrugge (2015)
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Hence the motivation for this paper: we use continuous wavelet tools, with an approach con-

sisting of a sequential analysis of partial wavelet coherencies, phase-di¤erence diagrams, and gains,

which will allow us to study changes in the relationship between the policy interest rate and the

macroeconomic variables included in TR across time and frequencies.

A �rst contribution of the paper is methodological, for we provide a multi-variable gener-

alization of the wavelet gain (the partial wavelet gain), which allows us to estimate regression

coe¢ cients in the time-frequency domain.4 Moreover, we use the multiple coherency (see Aguiar-

Conraria and Soares, 2014) and the partial coherency, as well as the partial phase-di¤erence, to

re�ne the interpretation of the estimates given by the partial gain. Our paper is the �rst to employ

such an integrated analysis of this set of continuous wavelet tools to e¤ectively estimate a dynamic

multivariate function in the continuous time-frequency space.

A second contribution is to provide a set of new stylized facts about the history of U.S. monetary

policy, describing how the TR coe¢ cients have changed over the last �ve decades, particularly

at the cyclical frequency level, in a continuous-time framework. By providing estimates of the

monetary policymaker�s reaction to �uctuations in in�ation and output over time and across

frequencies, we o¤er insight on how the policymaker may have dealt with the trade-o¤s inherent

to stabilizing di¤erent cycles, as well as how he/she may have adapted policy in response to changes

in circumstances and policy regimes.

Before we proceed, a word on the speci�cation of the TR used in this paper is warranted. While

the literature features a number of variations of the TR, we focus on Taylor�s original speci�cation

(1993) because (1) we want to bene�t from the robustness of the baseline formulation, and (2) our

approach endogenously deals with many of the uncertainties surrounding the speci�cation of the

TR �namely, whether it has been contemporaneous, forward- (as assumed in most analyses), or

backward-looking.5

There are two caveats to our approach due to technical constraints: �rst, we do not account

for interest rate smoothing, as the inclusion of the lag of the endogenous variable would soak up

4A �lter gain is simply the ratio of the amplitude of the output over the amplitude of the input at a given
frequency. As pointed out by Engle (1976), in spectral analysis, the Fourier gain between two variables can be
interpreted as their regression coe¢ cient at a given frequency. Mandler and Scharnagl (2014) apply this concept
in wavelet analysis.

5Lee, Morley and Shields (2015) have also taken an agnostic approach to the TR speci�cation.
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all the variation in the FFR; and, second, we cannot assess the time-frequency variation of the

constant of the TR. Thus, neither do we assess a potentially varying in�ation target, nor are we

able to account for a potentially varying natural rate of interest �continuous wavelet tools imply

looking at each frequency separately and, naturally, information about the constant is lost as it

does not correspond to any frequency.

The paper proceeds as follows. In section 2, we describe our methodology for the case of three

variables, presenting the key results and an illustrative example. In Section 3, we describe the data

and further motivate our time-frequency approach. In Section 4, we apply wavelet tools to the

data and provide a continuous time-frequency assessment of the U.S. TR. Section 5 concludes. In

the appendix, we provide a self contained summary of our methodology, including a generalization

of the partial wavelet gain for any number of variables.

2 Methodology

The continuous wavelet transform is an increasingly popular tool in econometric analysis. The

most common argument to justify its use is the possibility of tracing transitional changes across

time and frequencies. Economic data is most of the times noisy, strongly nonstationary, with

possible nonlinear relations. The local nature of wavelet analysis makes it very suitable to use

with this kind of data. See Aguiar-Conraria and Soares (2014) and the chapters included in

Gallegati and Semmler (2014) for a review and recent developments. So far, the analysis in the

time-frequency domain with the continuous wavelet transform has been mostly limited to the use

of the wavelet power spectrum, the wavelet coherency and the wavelet phase-di¤erence. Aguiar-

Conraria and Soares (2014) already extended these tools to allow for multivariate analyses, and

such tools are su¢ cient to assess the strength of the relationship between several variables, but are

insu¢ cient to estimate the relationship�s magnitude, much like (partial) correlation coe¢ cients,

which do not provide the same information as regression coe¢ cients.

Mandler and Scharnagl (2014) use the concept of wavelet gain as a regression coe¢ cient in the

regression of y on x. In this paper, and, to our knowledge, for the �rst time, we will estimate an

equation relating more than two variables (similar to a regression of y on several variables) in the
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time-frequency domain.

To do so, we generalize the concept of wavelet gain and de�ne the partial wavelet gain, which

can be interpreted as a regression coe¢ cient in the regression of y on x after controlling for other

variables. In this section, for ease of exposition, we will consider the special case of three variables.

We leave for the appendix, as it demands the use of some cumbersome matrix notation, the general

case applicable to any number of variables.

The reader who is not interested in the technical details may skip to subsection 2.6, where we

intuitively explain how to interpret the more innovative wavelet measures that we develop in this

paper.

2.1 The Continuous Wavelet Transform

For all practical uses, a wavelet  (t) is a function that oscillates around the t-axis and looses

strength as it moves away from the center, behaving like a small wave. The speci�c wavelet we use

in this paper is the complex-valued function (selected from the so-called Morlet wavelet family)

de�ned by  (t) = ��
1
4 e6 i te�

t2

2 . See e.g. Aguiar-Conraria and Soares (2014) for a discussion of

some desirable properties of this wavelet, which make its use attractive.6

Given a time-series x (t), its continuous wavelet transform (CWT), with respect to a given

wavelet  , is the function of two variables, Wx (t; s), given by

Wx (t; s) =
1p
jsj

Z 1

�1
x(t) 

�
t�t
s

�
dt. (2)

Note that s is a scaling parameter and t a translation parameter controlling, respectively, the width

and the location along the t-axis of the function  
�
t�t
s

�
; for jsj > 1, the function becomes larger

(hence, corresponding to a function with lower frequency) and for jsj < 1, it becomes narrower

(hence, becoming a function with higher frequency); in the above formula and throughout the

paper, an over-bar denotes complex conjugation.

Remark 1 As for the CWT, all the wavelet measures that we are going to introduce are functions
6This is the most commonly used wavelet in Economics, when performing a continuous wavelet analysis; for

robustness checks, other analytic wavelets from the Generalized Morse Wavelet family were used and gave similar
results to the ones described in the paper.
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of the two variables, t and s. To simplify the notation, we will describe these quantities for a

speci�c value of the argument, (t; s), which will be omitted in the formulas.

2.2 Uni and bivariate tools

2.2.1 Wavelet power spectrum and the phase angle

Similarly to the terminology used in the Fourier case, the (local) wavelet power (spectrum) is

de�ned as

(WPS)x = WxWx = jWxj2 : (3)

The wavelet power spectrum gives us a measure of the variance distribution of the time-series in

the time-frequency plane.

When the wavelet  is complex-valued, as in our case, the wavelet transformWx is also complex-

valued. In this case, the transform can be expressed in polar form asWx = jWxj ei�x ; �x 2 (��; �].

The angle �x is referred to as the (wavelet) phase

2.2.2 Cross wavelet tools

The cross-wavelet transform of two time-series y(t) and x(t), denoted by Wyx, is de�ned as

Wyx = WyWx; (4)

and its absolute value is referred to as the cross-wavelet power. The cross-wavelet power of two

time-series depicts the covariance between two time-series at each time and frequency.

The complex wavelet coherency of y and x, %yx, is given by

%yx =
S (Wyx)

[S (jWyj2)S (jWyj2)]1=2
; (5)

where S denotes a smoothing operator in both time and scale. For simplicity, we will denote by Syx

the smoothed cross-wavelet transform of two series y and x, i.e. Syx = S(Wyx); we will also use �x

to denote the square root of the smoothed wavelet power of series x, i.e., �x =
p
S(jWxj2) =

p
Sxx,
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and use similar notation for series y. Hence, the formula for the complex coherency can simply be

written as:

%yx =
Syx
�y�x

: (6)

The wavelet coherency, which we will denote by Ryx, is the absolute value of the complex wavelet

coherency, i.e., Ryx = j%yxj =
jSyxj
�y�x

.

With a complex-valued wavelet, we can compute the phase of the wavelet transform of each

series and, by computing their di¤erence, we can obtain information on the possible delays of the

oscillations of the two series, as a function of time and frequency. It follows immediately from

(4) that the (wavelet) phase-di¤erence between y and x, which we will denote by �yx, can also

be computed as the angle of the cross-wavelet transform, Wyx. Another slightly di¤erent way to

de�ne the phase-di¤erence makes use of the angle of the complex wavelet coherency, instead of

the angle of the cross-wavelet transform; this de�nition, although not strictly coinciding with the

di¤erence between the individual phases, due to smoothing, has the advantage of allowing a more

direct generalization for the multivariate case. Finally, we de�ne the complex wavelet gain of y

over x, denoted by Gyx, as

Gyx =
Syx
Sxx

= %yx
�y
�x

and, following Mandler and Scharnagl (2014), we call wavelet gain, and denote byGyx, the modulus

of the complex wavelet gain, i.e.,

Gyx =
jSyxj
Sxx

= Ryx
�y
�x
: (7)

Recalling the interpretation of the Fourier gain as the modulus of the regression coe¢ cient of y on

x at a given frequency (see, e.g. Engle 1976), it is perfectly natural to interpret the wavelet gain

as the modulus of the regression coe¢ cient in the regression of y on x, at each time and frequency.

2.3 Multivariate wavelet tools (case of three series)

Here we present the formulas for the wavelet multivariate tools � multiple wavelet coherency,

partial wavelet coherency, partial wavelet phase-di¤erence, and partial wavelet gain � for the

simplest case in which we only have three series y; x and z; the formulas for the general case, from
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which the particular formulas here presented were obtained, are given in the appendix.

The squared multiple wavelet coherency between the series y and the two series x and z, denoted

by R2y(xz) is given by

R2y(xz) =
R2yx +R2yz � 2<

�
%yx %xz %yz

�
1�R2xz

(8)

and the multiple wavelet coherency between the series y and the series x and z, denoted by Ry(xz),

is the positive square root of the above quantity.

The complex partial wavelet coherency between y and x, after controlling for z, is given by

%yx:z =
%yx � %yz%xzq

(1�R2yz)(1�R2xz)
: (9)

The absolute value and the angle of %yx:z, will, respectively, be called the partial wavelet coherency

and the partial (wavelet) phase-di¤erence between the series y and x, after controlling for z, and

be denoted by Ryx:z and �yx:z.

The complex partial wavelet gain between series y and x, after controlling for z, Gyx:z, is given

by

Gyx:z =
%yx � %yz%xz
(1�R2xz)

�y
�x
,

and its absolute value is called the partial wavelet gain and is denoted by Gyx:z, i.e.,

Gyx:z =
j%yx � %yz%xzj
(1�R2xz)

�y
�x
: (10)

2.4 Representation of wavelet measures and statistical signi�cance

Note that, as observed before, each of the above wavelet measures is a function of the two variables,

t (time) and s (scale or frequency). In practice, all these wavelet measures are computed for a

�nite number of time and scale (frequency) values, producing a matrix, the information of which

must be appropriately displayed for ease of interpretation.

The wavelet power and the wavelet coherencies are plotted as 2-dimensional heat-maps, with

colors ranging from blue (indicating low power/small coherency) to red (high power/high co-

herency).
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When computing the CWT of a �nite length time-series, the values of the transform at the

beginning and the end of the series involve missing values, which are then arti�cially prescribed,

causing inevitable distortions. The region in which the transform su¤ers from these edge e¤ects and

where, naturally, the results should always be interpreted carefully is called the cone-of-in�uence

(COI). The identi�cation of the COI in the plots of the wavelet power and wavelet coherencies is

done by drawing an appropriate line.

To test the signi�cance of the wavelet power spectrum, one can rely on the results of Torrence

and Compo (1998), which show that the local wavelet power spectrum of a white noise or an AR(1)

process, normalized by the variance of the time series, is quite well approximated by a chi-squared

distribution. Testing the wavelet power spectrum against a �at spectrum (white noise) is a good

starting point and is the one we used in this paper.7

There are no good theoretical results to test the signi�cance of coherency and partial coherency,

as the available ones impose restrictions that are too stringent. Therefore, one usually relies on

Monte-Carlo simulations. In our case, we �t an ARMA(1,1) model to each of the series and

construct new samples by drawing errors from a Gaussian distribution with a variance equal to

that of the estimated error terms; for each set of time-series, we performed this exercise 5000 times,

and then extracted the critical values. In the plots of the power and of the wavelet coherencies,

the 5% and 10% signi�cance levels are identi�ed with a black and a gray contour, respectively.

For the phases (or phase-di¤erences) and for the gains, we display mean values (at each point

in time) corresponding to some selected frequency bands. Since the phases are angular measures,

each mean phase is computed as a circular mean, which is the appropriate notion of mean in this

case; see, e.g. Zar (1998). Con�dence intervals for the circular mean at each point in time were

also computed � we used the formulas proposed in Zar (1996), p. 604; see also Berens (2009)

� and the interpretation of the mean phase at each point is done considering values as extreme

as the two-end points of the corresponding interval. The limits of the con�dence intervals for the

mean phases are indicated in the pictures with black dashed-lines. Each mean gain in a given

frequency band is obtained by computing the absolute value of the mean of the corresponding

7If one wants to consider more complicated null hypotheses, rather than a white or red noise, one usually relies
on Monte-Carlo simulations.
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complex gains.8 How to appropriately obtain con�dence intervals for the gain is a question which

still remains open; for this reason, one should complement the analysis of the gain by inspecting

coherency, and only focus on the regions whose corresponding coherency is statistically signi�cant.

2.5 Example: Partial coherency, partial phase-di¤erence and partial

gain

We now give a constructed example illustrating the application of the partial wavelet gain proposed

in this paper. Given full control of the data generating processes, our example makes it clear

that the partial wavelet gain may be interpreted as a regression coe¢ cient in the time-frequency

domain. The example also highlights that, because the (partial) wavelet gain is an absolute value,

its interpretation must be complemented with that of the (partial) wavelet phase-di¤erence, which

will tell us if the relationship is positive or negative and, at the same time, indicate which variable

is leading.

The values for the (partial) phase-di¤erence may be interpreted as follows: a (partial) phase-

di¤erence between y and x (after controlling for other variables) with value zero indicates that the

time-series move together at the speci�ed frequencies; if the (partial) phase-di¤erence is between

0 and �=2, then both series move in the phase, but y leads x; if the (partial) phase-di¤erence

is between ��
2
and 0, then it is x that is leading; a (partial) phase-di¤erence of � indicates an

anti-phase relationship; if the (partial) phase-di¤erence is in (�=2; �), then x is leading; time-series

y is leading, if the (partial) phase-di¤erence lies in (��;��
2
).

Assume that we have monthly data and the data generating processes for X and Z are given

by

Xt = sin
�
2� t

3

�
+ sin

�
2� t

8

�
+ "x;t,

Zt = sin
�
2� t

9

�
+ "z;t,

8An alternative would be to consider a weighted mean, where the weights would be related to the partial
coherency value. Exploring this alternative is left for future research.
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while for Y is given by

Yt =

8><>: 2 sin
�
2� t+3=12

3

�
+ 1 sin

�
2� t�1

8

�
+ Zt + "y;t; for t � 100

2 sin
�
2� t+3=12

3

�
� 3 sin

�
2� t�1

8

�
+ Zt + "y;t; for t > 100

.

Suppose that we are interested in doing the equivalent of regressing Y against X in the time-

frequency domain. What results should we expect?

At frequencies that correspond to a period of 3 years, the estimated coe¢ cient should be 2

throughout the sample, implying that the wavelet gain should also be 2. The phase-di¤erence

should also indicate that Y slightly leads X (by 3 months), meaning that the phase-di¤erence

between Y and X should be between 0 and �=2. At the frequency corresponding to an 8-year

period, the coe¢ cient should be +1 in the �rst half of the sample and �3 in the second half.

However, given that the wavelet gain is an absolute value, it would yield an estimate of +3 for the

coe¢ cient in the second half of the sample. To capture the negative sign of the relationship, one

would have to use the information given by the phase-di¤erence. In the �rst half of the sample, at

this frequency, Y lags X (by 1 year) and the variables are in-phase; therefore, the phase di¤erence

should be between ��=2 and 0. In the second half, Y lags X (by 1 year) and the variables are

out-of-phase; therefore, the phase-di¤erence should be between �=2 and �.

Finally, note the in�uence of Z on variable Y : given that its in�uence occurs at a frequency

corresponding to a 9-year period, excluding this variable should contaminate the relationship

between Y and X at the 8-year period frequency.
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Figure 1: On the left � wavelet coherency between Y and X (top) and partial wavelet coherency
between Y and X, after controlling for Z (bottom). The color code for coherency ranges from blue (low
coherency �close to zero) to red (high coherency �close to one). In the middle �phase-di¤erences

(top) and partial phase-di¤erences (bottom) between Y and X. On the right �wavelet gain (top) and
partial wavelet gain of Y over X, after controlling for Z (bottom).

Figure 1 displays the results obtained with the use of the referred wavelet tools. In the left

panel, we plot the wavelet coherency between Y and X (top) and partial wavelet coherency

between Y and X after controlling for Z (bottom). In the center panel of the �gure, we present

the (circular) means of the phase-di¤erences (two top �gures) and of the partial phase-di¤erences

(two bottom �gures) corresponding to two di¤erent frequency bands (one for periods of 2:5 to 3:5

years and the other for periods of 7:5 to 8:5 years). On the right, we display the means of the

wavelet gain of Y over X (two top �gures) and of the partial wavelet gain of Y over X controlling

for Z (two bottom �gures), corresponding to the same frequency bands.

All the expected results are con�rmed in Figure 1. In particular, note how the relationships

between Y and X around the 8-year period are more accurately estimated when we use the partial
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wavelet tool (which controls for the in�uence of variable Z).

3 The Data

Our data are quarterly time-series of the federal funds rate (FFR), in�ation, and the output gap,

for the U.S. 1965:IV-2017:II, which is similar to the data used by Nikolsko-Rzhevskyy, Papell,

and Prodan (2014); the only di¤erence being that it was updated through mid-2017. These data

on in�ation and the output gap were the real-time data available to policymakers when interest

rate decisions were made; an approach that is consistent with the data selection used in most

empirical research on monetary policy rules since Orphanides (2001). The source for output and

in�ation is the Real-Time Data Set for Macroeconomists created by Croushore and Stark (2011)

and available at the Philadelphia Federal Reserve website, which provides vintages of data available

since 1965:IV, with the data in each vintage starting in 1947:I.9

In�ation is the year-over-year rate of change of the real-time GDP de�ator. The output gap is

the percent di¤erence between real GDP and a real-time quadratic trend, i.e., a trend obtained by

�tting against a quadratic function of time, the real GDP data from 1947:I through the vintage

date (see Nikolsko-Rzhevskyy, Papell, and Prodan 2014 for further details, namely on the choice

of the functional form for the trend and on timing issues).

We obtained the FFR from the FRED (Federal Reserve Economic Data) database available on

the website of the Federal Reserve of St. Louis, until 2008:IV and after 2015:IV.10 Between 2009:I

and 2015:IV, when the policy interest rate was constrained by the zero lower bound, we used the

shadow FFR of Wu and Xia (2016), which is computed from a nonlinear term structure model

and captures the overall monetary policy stance, including the e¤ects of unconventional policies.11

In Figure 2, on the left-hand side charts, we plot the three time-series, while the right-hand side

shows their wavelet power spectra, which measure the variance of the series at each time-frequency

locus and provide a �rst time-frequency description of the data. A �rst overall conclusion is that,
9http://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-�les/. It

should be noted that the real-time data available in this database does not strictly correspond to the Greenbook
forecasts prepared by the FED sta¤ that inform each meeting of the Federal Open Market Committee used by
Orphanides (2001) and many others.
10http://research.stlouisfed.org/fred2/.
11http://faculty.chicagobooth.edu/jing.wu/research/data/WX.html.
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with the exception of the 1970s instability in output and in�ation, the variability of the three

time-series occurs at frequencies corresponding to periods larger than 4 years. A second overall

conclusion is that shorter cycles gradually lose relevance to longer cycles until the Great recession,

in line with the �ndings of Crowley and Hallett (2015 and 2016).

The chart of in�ation shows a well-known gradual rise between the mid-1960s and the 1970s,

disin�ation between 1980 and 1986, and low and stable in�ation in the ensuing period, with par-

ticularly low rates following the recent �nancial and economic crisis. The wavelet power spectrum

identi�es three di¤erent predominant in�ation cycles, whose relative importances is not constant.

During the in�ationary period, cycles at business-cycle frequencies (4 � 8 years) are predominant.

After that, during the disin�ation period, the areas of statistically signi�cant power spectrum

become gradually thinner, which illustrates the subsequent anchoring of in�ation (and its expec-

tations) and the prolonged period of very low in�ation variance during the Great Moderation.

The chart of the output gap shows the strong recession associated with the �rst oil shock in

the mid-1970s, as well as the recession of the early 1980s associated with disin�ation; it then

shows the Great Moderation between 1984 and 2007, and the Great Recession starting at the end

of 2007. The wavelet power spectrum indicates a prevalence of cyclical oscillations with periods

below 12 years until 1985 � namely 6 � 8 years and 10 � 12 years � , after which shorter

cycles gradually lost importance, and gave way to longer cycles along the sample. These three

di¤erent cycles in the output gap were also captured by Crowley (2010), who, actually, was able

to identify an even longer growth cycle (around 35 years). During the �nal part of the sample,

cyclical variability was concentrated in cycles that had a rather long period, con�rming the results

of Crowley and Hughes Hallett (2014 and 2015). Our continuous time-frequency approach is also

consistent with, but allows for a re�nement of, the results of Pancrazi (2015), which indicated that

the Great Moderation shows up as a reduction in the volatility at cycles not larger than 4 years

if one assesses four frequency bands (0:5 � 1:5; 1:5 � 4; 4 � 8; 8 � 20 years).
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Figure 2: On the left: Plot of each time-series. On the right: The corresponding wavelet power
spectrum. The black (gray) contour designates the 5% (10%) signi�cance level. The cone of in�uence,
which indicates the region a¤ected by edge e¤ects, is shown with a parabola-like black line. The color
code for power ranges from blue (low power) to red (high power). The white lines show the local

maxima of the wavelet power spectrum.

The chart of the federal funds rate (FFR) shows that nominal interest rates tended to increase

with in�ation since the mid-1960s, until they peaked in the beginning of the 1980s and then, as

in�ation got under control, gradually decreased during the remainder of the sample. The power

spectrum of the FFR indicates that throughout the whole sample the variability of the policy
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rate has been systematically strong at cyclical frequencies of 8 � 10 years, even though it showed

particular strength during the disin�ation period and, during the 1970s, at shorter cycles (4 � 8

years).

In Figure 3, we plot the Federal Funds Rate (FFR) and the Reference Policy Rule (RPR), i.e.,

the interest rate computed with equation (1) using our real-time output gap and in�ation data.

The �gure conveys two main messages.

Figure 3: The Reference Policy Rule and the Federal Funds Rate since 1965 (e¤ective for
1965:IV-2008:IV, shadow for 2009:I-2014:IV).

First, it is remarkable how the original TR broadly mimics the overall path of the policy interest

rate, given its simplicity, the absence of references to interest rate rules in the Federal Open

Market Committee discussions before 1993 (Kahn, 2012; Taylor, 2012), and that policymakers

have never committed to a speci�c TR, not even a speci�c target (before 2012). Our �nding of

the overall compliance of U.S. monetary policy to the TR is con�rmed by the results of an OLS

regression of the TR with our real-time data for 1965:IV-2017:II (standard errors in parentheses):

FFTt = 0:16
(0:27)

+ 1:54
(0:07)

�t + 0:51
(0:04)

yt.

The estimates for the coe¢ cients on in�ation and the output gap are almost the same as the

original formulation of Taylor�s Rule (the smaller intercept may be due to a higher in�ation target

or to a lower equilibrium real interest rate).

Second, a closer look at the �gure reveals that, in many periods, the FFR looks persistently

close to the RPR, while in others it deviates from RPR systematically. One approach in the

literature has considered the former as episodes of rules-based policy, and the latter as ones of
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discretionary policy, typically associating better macroeconomic outcomes with the former. For

example, Nikolsko-Rzhevskyy, Papell, and Prodan (2014) �nd that FFR followed quite closely the

original Taylor Rule in 1965:IV-1974:III and in 1985:II-2001:I, deviating substantially from the

rule in 1974:IV-1985:I and in 2001:II-2013:IV, with the former period split into two sub-periods:

one of too-low interest rates (until 1979:IV) and another of too-high interest rates (from 1980:I

to 1985:I).12 When they used a modi�ed Taylor Rule with a coe¢ cient of 1 on the output gap,

Nikolsko-Rzhevskyy, Papell, and Prodan (2014) detected a further break and identi�ed a period

of rules-based policy in 2006:IV-2013:IV. Such modi�ed rule is consistent with statements by the

Chair of the FED pointing out that the implied interest rates are closer to those given by the

optimal control solution of the FRB/US model than the interest rates implied by the original TR

� see Bernanke (2011) and Yellen (2012). Indeed, it prescribes negative interest rates since 2009

� in line with the shadow FFR depicted in Figure 3 � , which the original Taylor Rule does not

� also shown in the picture.

In this paper, rather than comparing the U.S. interest rate policy with the one given by the

original TR, or seeking for alternative speci�cations of the TR with improved �t to the data,13 we

give due consideration to the arguments that the policy rule coe¢ cients may change along time

and across frequencies.

4 Results: The Taylor Rule in the Time-Frequency do-

main

We now assess the relationship between the FFR and the macroeconomic variables of the Taylor

Rule in the time-frequency domain, using multivariate continuous wavelet tools. We start with

the multiple coherency,14 which is the time-frequency analog of the R2 in the typical regression.

Then, we present and discuss the partial coherency, the partial phase-di¤erence, and the partial

12Taylor (2012) and Belongia and Ireland (2016) reached similar results
13See e.g. Sims (2013), Sack and Rigobon (2003), Lubik and Schorfheide (2007), and Christensen and Nielsen

(2009)
14In what follows, since we always deal with wavelet-based measures and for simplicity, we will avoid using the

word wavelet and simply write multiple coherency for multiple wavelet coherency, partial gain for partial wavelet
gain, etc.
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gain between the FFR and each of the macroeconomic variables in the Taylor Rule, controlling

for the e¤ects of the other. The latter corresponds to estimating the coe¢ cients associated with

each macro variable in the TR, allowing for their variation along time and across frequencies, i.e.,

estimating the Taylor Rule coe¢ cients in the time-frequency domain. While the interpretation

of our econometric results proceeds along the standard approach for the coherency and phase-

di¤erences (see e.g. Aguiar-Conraria, Martins, and Soares, 2012), it is substantially enhanced by

considering the parametric estimation of the partial gain.

Figure 4 summarizes our results. To facilitate the presentation, we provide the reader with

partial phase-di¤erence and gain diagrams displaying mean values corresponding to three frequency

intervals, namely for cycles of period 1:5 � 4 years (short end of business cycles), cycles of

period 4 � 8 years (bulk of business cycles �uctuations) and cycles of period 8 � 20 years (these

capture long run relationships). We note, however, that some authors, e.g. Crowley and Hughes

Hallett (2015), have argued that there is a lengthening of the business cycle. Still, we stick to the

traditional frequency intervals, for example, our bands are similar to Pancrazi�s (2015); although

we opted for a di¤erent terminology than his, as he refers to cycles of 1:5 � 4 years as high

business cycles, cycles of 4 � 8 years as lower business cycles, and cycles of 8 � 20 years as

medium frequency.15

15We agree with Pancrazi (2015), who stressed that the lower frequencies of 8 � 20 years display relevant
information for monetary and macro analysis.
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Figure 4: On the left �multiple wavelet coherency (top) and partial wavelet coherency between
interest rate and in�ation (middle) and between interest rate and the output gap (bottom). The black
(gray) contour designates the 5% (10%) signi�cance level. The color code for coherency ranges from
blue (low coherency �close to zero) to red (high coherency �close to one). In the center �partial
phase-di¤erences. The limits of the con�dence intervals for the mean phases are indicated in the

pictures with black dashed-lines. On the right �partial wavelet gain.

FFR and the Taylor Rule For each time-frequency location, the multiple coherency measures

the overall �t of the TR in the time-frequency domain: regions with a signi�cant multiple coherency

mean that in�ation and the output gap are jointly signi�cant explanatory variables of the FFR
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at those time-frequency locations. The �rst chart of Figure 4 con�rms that the TR is, overall, a

good model for the FFR, as shown by the prevalence of regions depicted with warm colors. The

multiple coherency gives further time-frequency details that suggest that the overall �t of TR has

gradually shifted towards cycles of longer length. During the 1970s and 1980s, multiple coherency

is signi�cant at higher frequencies (1:5 � 4 year cycles), but hardly after 1991.On the other hand,

between 1985 and 2005, multiple coherency is high at typical business cycles frequencies (4 � 8

years), and after 2009 such multiple coherency is apparently intensi�ed. At very long cycles (close

to 20 years period), multiple coherency starts to increase in the 1990s, and becomes statistically

signi�cant after the beginning of the 2000s.

This pattern is consistent with the high intensity of shocks and subsequent macro and policy

volatility of the 1970s, the change to a more systematic monetary policy regime and the moderation

of macroeconomic volatility since 1985, the gradual conquer of credibility during the 1990s, and

then the marked slowdown and the policy sharp reaction since the crisis of the late 2000s.

The multiple coherency assists in the interpretation of the results given by the partial coheren-

cies, especially when the explanatory variables are highly related, as is the case in the TR. Our

partial coherencies � to be analyzed in the next sub-sections � capture the co-movement be-

tween each explanatory variable (in�ation and output gap) and the FFR, �ltering out the e¤ect of

the other. Yet, there is typically a strong co-movement between in�ation and the output gap, as

illustrated by the Phillips Curve � indeed, the predictive power of the output gap over in�ation

is often invoked to motivate its inclusion in the TR. Under such circumstances, while the overall

signi�cance of the model is high, the signi�cance of individual co-movements for both explanatory

variables may appear mistakenly low. To assess this possibility, we also estimate the coherency

between in�ation and the output gap (not shown), which con�rms that there are important regions

of high coherency. It is, therefore, important that the partial coherencies be interpreted together

with the multiple coherency.

A case in point is the time-frequency region between 1973 and 1980 for frequencies of 4 � 8

years: while both partial coherencies are mostly blue, the multiple coherency is mostly red and

statistically signi�cant. The coherency plot between in�ation and the output gap con�rms that

these two variables are signi�cantly coherent in this region; hence, in spite of the apparent lack
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of statistical signi�cance of the partial coherencies, we are able to interpret the evolution of the

coe¢ cients of in�ation and the output gap in that time-frequency region.

FFR and in�ation The partial coherency between FFR and in�ation exhibits di¤erent patterns

across our three ranges of frequency-bands. At short-run frequencies (period 1:5 � 4 years), the

partial coherency is strong and signi�cant from the second half of the 1970s until the beginning of

the 1990s. At typical business cycles frequencies (4 � 8 years), coherency is strong and signi�cant

between 1985 and the end of the rules-based era, 2003, and again towards the end of the sample.

At lower frequencies (period 8 � 20 years), coherency is consistently strong throughout the whole

period, but only signi�cant at 10%.

When coherencies are signi�cant, the phase-di¤erences for both the 4 � 8 years and the 8 � 20

years frequency bands are stable and consistently located in the interval (��=2; 0), indicating a

positive co-movement � as expected in the TR� , with in�ation leading the FFR.16While at 4 � 8

years frequencies the phase-di¤erences are close to 0 and do not allow rejection of the hypothesis

of a contemporaneous co-movement, at 8 � 20 frequencies, the lag between interest rates and

in�ation is larger (phase-di¤erence closer to ��=2), which suggests that U.S. monetary policy has

reacted more timely to in�ation movements at business cycle frequencies than at longer cycles. At

the 4 � 8 years cycles there is a shift in the phase-di¤erences to the interval (0; �=2) after 2009,

when in�ation starts lagging the FFR. The phase-di¤erences vary more in the frequency band of

1:5 � 4 years, but, when coherency is signi�cant, overall, they indicate a positive co-movement,

with FFR lagging in�ation until 1986 and leading in�ation in 1987-91. Our analysis suggests that

the reaction of interest rates to in�ation has occurred with a lag at long cycles, while it has been

synchronized at the typical business cycle frequencies and, after 2009, has preceded the changes

in in�ation �possibly re�ecting the di¢ culties of monetary policy in stimulating in�ation after

the Great Recession.

We now focus on the time-frequency partial gain from FFR due to in�ation, displayed in the

upper three charts of the right-hand side of Figure 4. We have seen above that the full sample OLS

16It is worth noting that in the 8 � 20 years frequency band the multiple coherency is low for most of the sample,
therefore these results regarding partial coherency should be interpreted with some caution and may require further
investigation.
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estimate of the slope of in�ation in the TR is, essentially, Taylor�s baseline value of 1:5. Looking

at the time-frequency estimates, we now see that they exhibit considerable variation around that

value, with important di¤erences across our frequency bands, which indicates that the TR implicit

in U.S. monetary policy has changed along both dimensions: time and frequency.

A result common to all frequency bands is that the gain is below 1:0 � violating the Taylor

principle17 � from around early 1970s to early 1980s. At higher frequencies, when signi�cant (from

the second half of the 1970s until the beginning of the 1990s), the gain �uctuates between 0:5 and

1:5. It falls below the Taylor principle threshold of 1:0 from 1974 to 1981, and then �uctuates

within the range of 1:0 to 1:5 until the beginning of the 1990s. One should note that, since the

rules-based era of 1985-2003, the in�ation coe¢ cient is systematically above the baseline vale of

1:5 both at the core of the business cycle frequencies (4 � 8 years) and at long run frequencies

(8 � 20 years). To be more precise, at the core business cycle frequencies, the gain increases from

0:5 in 1979 to 2:5 in 1987; after that its value stays between 1:5 and 2:5.

Our results are consistent with the gradual decrease of the in�ation coe¢ cient until 1979 and

increase thereafter estimated by Coibion and Gorodnichenko (2011), but add important informa-

tion to those studies of U.S. monetary policy that, following Clarida et al. (2000), document that

U.S. policy reacted more strongly to in�ation after 1979, showing that the timing and size of the

change in reaction di¤ers across cyclical frequencies.

FFR and the output gap The partial coherency between FFR and output exhibits di¤erent

patterns across frequency-bands, which, to some extent, resemble the patterns of the multiple

coherency and of the partial FFR-in�ation coherency � a gradual shift of co-movement towards

cycles of longer length. Yet, two di¤erences are noteworthy: (1) coherency at short-run frequencies

(period of 1:5 � 4 years) is much more pervasive and, indeed, signi�cant from the early 1970s

until the beginning of the 2000s; and (2) coherency is much more limited at typical business cycles

frequencies (4 � 8 years), at which it is only signi�cant during the 1990s and after 2009, this latter
17In this paper, "Taylor principle" means a coe¢ cient of in�ation above 1. This is a pragmatic reference to the

principle that is often used in the empirical literature on the TR, indicating whether the policy interest rate is
changed more or less than proportionally with in�ation and whether monetary policy is prima facie stabilizing or
un-stabilizing. It should be noted, however, that the "Taylor principle" is a theoretical concept and, as such, model
dependent.
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time frame is characterized by highly expansionary policy to �ght the Great Recession.

When coherencies are signi�cant, the phase-di¤erences consistently indicate a positive co-

movement between the FFR and the output gap, as expected, with FFR slightly leading output.

There are two major exceptions: (1) in the early 1990s�downturn � speci�cally between 1993 and

1998 � for short cycles (1:5 � 4 years) and (2) after 2009, at the typical business cycles (4~8 years);

in both cases the phase-di¤erences are located in the (��=2; 0), meaning that the output gap was

leading the FFR. Overall (with the exception of those two very precise time-frequency episodes),

the partial coherencies and phase-di¤erences indicate that U.S. monetary policy has attempted

to preemptively stabilize the output gap for most of the time span and frequency bands during

which the FFR and the output gap have co-moved signi�cantly; such time di¤erence exhibited in

the positive co-movement in the data is consistent with the lags in the transmission of interest

rate policy to real activity (and in�ation). In turn, the partial-coherencies and phase-di¤erences

for 1993-98 (1:5 � 4 years cycles) and post-2009 (4 � 8 years cycles) are consistent with episodes

of very abrupt and marked cyclical downturns that monetary policy could not duly anticipate and

tame.

To obtain quanti�able results of the coe¢ cient of output for the U.S. TR, we now assess the

time-frequency partial gain from FFR to the output gap, as displayed in the three charts on the

bottom right-hand side of Figure 5.

At short-run frequencies (period of 1:5 � 4 years), during the extended period in which it is

consistently signi�cant (from the early 1970s until the beginning of the 2000s), the gain is close

to 1:0 most of the time, with the only noteworthy exception being in 1989-1993, when it falls to

the baseline value of 0:5.

At business cycles frequencies (4 � 8 years), in the �rst episode in which it is signi�cant

(1990s), the gain starts at a value close to 1:0 in 1990 and gradually falls until 1997 to the baseline

value of 0:5: In the second period of statistical signi�cance (2009 onwards), the gain increases

somewhat, reaching values above 0.5, which subsist until the end of the sample. Previously, since

the early 1970s � when the partial coherency is not signi�cant, but the multiple coherency is �

the gain �uctuates between the full sample estimate of 0:5 and the value of 1:0 featured at the

beginning of the 1990s.

25



At frequencies corresponding to the 8 � 20 years period, when statistically signi�cant � i.e.

after early 1990s18 � , the gain is consistently close to 1:0, a level that it maintains until the

end of the sample period. Previously, when coherency started to increase, although not achieving

statistically signi�cance � second half of the 1980s � , the gain increased from a value slightly

below 0:5, reaching the level of 1:0 by the beginning of the 1990s.

Our estimates for the gains of the output gap across frequencies, hence, suggest that the full

sample OLS estimate of 0:5 is an artifact resulting from di¤erent coe¢ cients across frequencies

and over time. Before the beginning of the 1990s, values of the gain below 0:5 at the 8 � 20 cycles

are o¤set by values mostly above 0:5 at the 4 � 8 years and 1:5 � 4 years cycles; after 1991,

values of the gain close to 1:0 at the 8 � 20 cycles are compensated by values gradually smaller

and close to 0:5 after 1997 at the 4 � 8 cycles, and after 2003 at the 1:5 � 4 years cycles. In the

brief episode of the early-1990s, in which the gain is above 0:5 at both the 4 � 8 and 8 � 20 years

frequency bands, it is particularly low at the 1:5 � 4 years cycles � actually, around 0:5 between

1989 and 1993.

In the latter part of the sample, our estimates for the gains show that �ndings elsewhere in

the literature and statements by policy-makers pointing to a coe¢ cient of 1:0 on the output gap

in the U.S. TR since the Great Recession is not evenly explained across frequencies. After 2009,

the estimate for the gain at the 8 � 20 years cycles band is consistently very close to 1:0, the gain

at the 1:5 � 4 years frequency band sharply increases from 0 to 1:5, while the gain at the 4 � 8

years cycles is close to 0:5. With time-series tools, Nikolsko-Rzhevskyy, Papell, and Prodan (2014)

found that, since 2007, U.S. monetary policy follows a modi�ed Taylor Rule with a coe¢ cient of

1:0 on the output gap; a coe¢ cient twice as large as that in the original TR is consistent with

the preferences for a balanced approach that stabilizes output and prices, as stated by Federal

Reserve Chairs during the Great Recession � see Bernanke (2011) and Yellen (2012); moreover,

it is consistent with negative policy interest rates since 2009, in line with the estimated shadow

FFR for that period � which the original TR, with a 0:5 coe¢ cient on the output gap, is not.

18The fact that we �nd a statistically signi�cant co-movement between FFR and the output gap is not completely
surprising. For example, Verona (2016), while studying the �nancial cycle, found that GDP, house prices, and total
credit had important cycles of long duration, 12 to 20 year periods. However, Verona did not estimate the coherence
between these variables, so it is di¢ cult to speculate further regarding how compatible his results are with ours.
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Our framework shows that the prevalence of a modi�ed TR with a slope of 1:0 on the output

gap since 2009 is associated to policy actions focusing on the long end (8 � 20 years) of cyclical

oscillations, rather than on the most standard business cycle frequencies.

5 Conclusions

The work of Crowley (2007), with an excellent review of economic applications of the Discrete

Wavelet Transform, but also with a subsection on the continuous transform, stimulated a growing

literature on economic applications of wavelet tools. For recent developments the reader is invited

do read Aguiar-Conraria and Soares (2014) and the chapters included in the book edited by

Gallegati and Semmler (2014). From our point of view, as macroeconomists, in the future we

expect these tools to be used to test DSGE models. Watson (1993) � see also Wen (1998)

� proposes the use of spectral measures to test business cycle models. Wavelet measures, in

principle, could be applied in the same vein, with the advantage of also being used to test model

�t for particular historical episodes. This is so because, contrary to spectral analysis, with wavelet

analysis one does not lose the time dimension. Our paper �ts well in this growing literature both

from a methodological and from an empirical point of view.

We have argued that the partial wavelet gain could be used as an estimation of a multivari-

ate regression in the time-frequency space. That means that we are able to estimate not only

time-varying coe¢ cients, but also frequency varying coe¢ cients in a direct fashion. To correctly

interpret the partial wavelet gain, one must also make use of the other typical wavelet tools such

as the wavelet partial coherency and the phase-di¤erence. While coherency is necessary to as-

certain the statistical signi�cance of the estimated relationships, the phase-di¤erence is essential

to inform us on whether the estimated relationships are positive or negative. This is so because,

by de�nition, the (partial) wavelet gain is an absolute value of a complex number and, therefore,

we lose the plus or minus sign characteristic of a typical regression coe¢ cient. With the partial

wavelet gain, we do not have the possibility of simultaneously including contemporaneous and

lagged values of the same variable, or include as a regressor the lagged value of the dependent

variable, which makes the partial phase-di¤erence an important source of information about the
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leads and lags between the di¤erent time series.

We applied these techniques to assess U.S. monetary policy in 1965:IV-2017:II across time

and frequencies in the framework of the Taylor Rule (TR). While changes in the TR coe¢ cients

along time have already been the subject of a vast literature, the variations of the TR coe¢ cients

simultaneously in the time and frequency domains were yet to be studied. We were able to reach

several conclusions.

The �rst thing to note, which is clear from our multiple coherency measures, is that TR is, as

a whole, a good model for the FFR, but the �t evolves both across time and frequencies, gradually

shifting towards cycles of longer length throughout most of the �ve decades, but then featuring

a regain of relevance of the typical business cycles after the Great Recession. The overall result

for the bulk of the �ve decades is consistent with the work of Crowley and Hughes Hallett (2014,

2015, and 2016), while the �ndings for the post-2009 period at the business cycle frequencies

are novel. Crowley and Hughes Hallet (2015 and 2016) relied on the discrete wavelet transform

to decompose GDP and its components into di¤erent time-scales and concluded that the great

moderation was more of a transfer of volatility from high to low frequencies, rather than an actual

moderation. Moreover, Crowley and Hughes Hallet (2014) used a new Keynesian model (which,

naturally, included a version of the Taylor rule) to argue that this can be the result of an increase

in in�ation aversion or a reduction of the commitment to output stabilization. Our results suggest

that the former explanation is more likely to be correct than the latter.

As for the relationship between in�ation and FFR, we were able to observe a consistently

positive relationship at all frequencies. At business cycle frequencies the phase-di¤erence is close

to zero most of the time, informing us that these variables move together and at the same time.

The period after 2009 is an exception, with the phase-di¤erence suggesting that in�ation lags

the FFR, consistently with the di¢ culties of monetary policy to re-in�ate the economy after the

Great Recession. At lower frequencies (cycles of 8 � 20 years), the interest rate lags in�ation,

which suggests that, for longer cycles, monetary policy has reacted more slowly to developments

in in�ation, possibly bene�ting from the credibility acquired with strong policy stances at the

business cycle frequencies. Regarding the estimated coe¢ cients, we note that for frequencies that

represent the bulk of business cycles �uctuations, the coe¢ cient is consistently above the 1.5
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benchmark, except between 1973 and 1979, when it fell to 0.5, increasing after that to values

between 2 and 2.5 after 1985. At lower frequencies (8 � 20 years), the coe¢ cient dropped from

almost 1 in the beginning of the sample to 0.5 in 1979, after which it increased to an estimate

somewhat above 2 in 1991, then decreasing consistently to an estimate of 1.5 at the end of the

sample. These results indicate that, in the 1980s, there was a clear shift in monetary policy toward

a strong preference for keeping in�ation stable, which survives until today.

Concerning the output gap, we document a gradual shift of the co-movement between the

FFR and the output gap towards cycles of longer length, along �ve decades of U.S. monetary

policy. We con�rm that the co-movement between the FFR and output has been positive at all

frequencies, with the policy rate slightly leading output for most of the time and frequencies,

which is consistent with an anti-cyclical stance and with the lags of policy impact. Regarding the

coe¢ cient estimates, we document that the full sample OLS estimate of 0:5 is an artifact resulting

from di¤erent coe¢ cients across frequencies and along time. For example, estimates close to 1, at

the 8 � 20 years cycles since the 1990s, are o¤set by estimates closer to 0.5 at the 4 � 8 year cycles

in that period. Moreover, we show that neither time-series evidence, nor policymakers�statements

pointing to a modi�ed TR with a slope of 1:0 on the output gap in the U.S. TR since the Great

Recession, are evenly explained across frequencies; instead we �nd support for stronger reactions

of policy to the output gap to be more commonly associated to the long-end (8 � 20 years) of

cyclical oscillations, but not to the most standard (4 � 8 years) business cycle frequencies.
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A Methodological Appendix � MultivariateWavelet Analy-

sis, the General Case

For the bene�t of the reader, we �rst introduce our notation. Given p time-series, x1; x2; : : : ; xp,

with p > 2, we will denote by Wi the wavelet spectrum corresponding to the i-th time-series and

by Wij the cross-wavelet spectrum of two series, xi and xj, such that 1 6 i 6 p, 1 6 j 6 p.

Similarly to ordinary wavelet coherency, one must perform a smoothing operation of the cross-

spectra to compute partial wavelet coherencies. We denote by Sij the smoothed version of Wij,

i.e. Sij = S (Wij), where S is a certain smoothing operator and will use S to denote the p � p

matrix of all the smoothed cross-wavelet spectra Sij, i.e., S = (Sij)
p
i;j=1.

19 For a given matrix

A, Aji denotes the sub-matrix obtained by deleting its i-th row and j-th column and A
d
ij denotes

the co-factor of the element in position (i; j) of A, i.e. Adij = (�1)(i+j) detA
j
i . For completeness,

we use the notation Ad = detA. Finally, for a given integer j such that 2 � j � p, we denote by

qj the set of all the indexes from 2 to p with the exception of j, i.e. qj = f2; : : : ; pg n fjg.

A.1 Multiple and partial wavelet coherency and partial phase-di¤erence

The squared multiple wavelet coherency between the series x1 and all the other series x2; : : : ; xp is

denoted by R21(23:::p) and given by the formula

R21(23:::p) = 1�
S d

S11S d
11

: (A.1)

The complex partial wavelet coherency of x1 and xj (2 � j � p) allowing for all the other series is

denoted by %1 j:qj and given by

%1 j:qj = �
S d
j1p

S d
11

q
S d
jj

: (A.2)

The partial wavelet coherency of x1 and xj allowing for all the other series, denoted by R1 j:qj ,

is de�ned as the absolute value of the above quantity, i.e. R1 j:qj =
jS d

j1jp
S d
11

p
S d
jj

; and the squared

partial wavelet coherency of x1 and xj allowing for all the other series, is simply the square of

19To be more accurate, S depends on the speci�c value (t; s) at which the spectra are being computed, i.e., there
is one such matrix for each(t; s).
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R1 j:qj . Having de�ned the complex partial wavelet coherency %1 j:qj of series x1 and xj controlling

for all the other series, we simply de�ne the partial phase-di¤erence of x1 and xj given for all the

other series, denoted by �1 j:qj , as the angle of %1 j:qj .

A.2 Partial wavelet gain

We de�ne the complex partial wavelet gain of series x1 over series xj allowing for all the other

series, denoted by G1 j:qj , by the formula

G1 j:qj = �
S d
j1

S d
11

(A.3)

and the partial wavelet gain, denoted by G1 j:qj , as the modulus of the above quantity, i.e.,

G1 j:qj =
jS d

j1j
S d
11

: (A.4)

Naturally, the complex partial wavelet gain can also be computed using the complex partial wavelet

coherency, as

G1 j:qj = %1 j:qj

q
S d
jjp

S d
11

(A.5)

and the partial wavelet gain as

G1 j:qj = R1 j:qj

q
S d
jjp

S d
11

: (A.6)

For j = 2; : : : ; p, the values G1 j:qj can be interpreted as the (modulus) of the coe¢ cients in

the multiple linear regression of x1against the explanatory variables x2; : : : ; xp, at each time and

frequency.

A.3 Formulas in terms of coherencies

The above formulas for the multiple coherency, partial wavelet coherencies and partial wavelet

gains were given in terms of the smoothed spectra, Sij. We can also de�ne these quantities in

terms of simple complex coherencies (i.e., wavelet complex coherencies between pairs of series).
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Corresponding to the matrix S , we now consider matrix C = (%ij)
p
i;j=1 of all the complex

wavelet coherencies %ij. Then, we can de�ne the multiple wavelet coherency by the following

alternative formula

R21(23:::p) = 1�
C d

C d
11

; (A.7)

the complex partial wavelet coherency %1 j:qj and the wavelet coherency R1 j:qj by

%1 j:qj = �
C d
j1p

C d
11

q
C d
jj

and R1 j:qj =
jC d
j1jp

C d
11

q
C d
jj

, (A.8)

respectively, and the complex partial wavelet gain G1 j:qj and the partial wavelet gain G1 j:qj by

G1 j:qj = �
C d
j1

C d
11

�1
�j

and G1 j:qj =
jC d
j1j

C d
11

�1
�j
, (A.9)

respectively.

The proof of the above results is very simple: recalling that Sij = �i�j%ij (cf. (6)) and using

the well-known fact that, if a row or a column of a square matrix is multiplied by a constant, the

corresponding determinant is multiplied by that constant, we immediately obtain the following

relations:

S d = �21�
2
2 : : : �

2
pC

d

S d
1j = �1�

2
2 : : : �

2
j�1�j�

2
j+1 : : : �

2
p C d

1j (1 < j � p)

and

S d
jj = �21�

2
2 : : : �

2
j�1 �

2
j+1 : : : �

2
p C d

jj (1 � j � p):

Appropriate replacement of the above relationships in formulas (A.1)� (A.4) give us formulas

(A.7) � (A.9), respectively.
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