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Abstract
Using a new fossil-calibrated mitogenome-based approach, we identified macroevolutionary shifts in mitochondrial gene
order among the freshwater mussels (Unionoidea). We show that the early Mesozoic divergence of the two Unionoidea
clades, Margaritiferidae and Unionidae, was accompanied by a synchronous split in the gene arrangement in the female
mitogenome (i.e., gene orders MF1 and UF1). Our results suggest that this macroevolutionary jump was completed within a
relatively short time interval (95% HPD 201–226Ma) that coincided with the Triassic–Jurassic mass extinction. Both gene
orders have persisted within these clades for ~200Ma. The monophyly of the so-called “problematic” Gonideinae taxa was
supported by all the inferred phylogenies in this study using, for the first time, the M- and F-type mitogenomes either singly
or combined. Within Gonideinae, two additional splits in the gene order (UF1 to UF2, UF2 to UF3) occurred in the
Mesozoic and have persisted for ~150 and ~100Ma, respectively. Finally, the mitogenomic results suggest ancient
connections between freshwater basins of East Asia and Europe near the Cretaceous–Paleogene boundary, probably via a
continuous paleo-river system or along the Tethys coastal line, which are well supported by at least three independent but
almost synchronous divergence events.

Introduction

The tempo, timing and mode of evolution have attracted
considerable debate among evolutionary biologists. Here
we use a new approach using mitogenome rearrangements
to investigate changes at the geological time scale in the
speciose and imperilled freshwater mussels.

In many taxonomic groups, the gene arrangement within
mitogenomes is highly conserved, e.g., many vertebrate
groups share the same gene order (Pereira 2000). Other
faunal groups, such as the Bivalvia, exhibit a number of
different mitochondrial gene arrangements (e.g., Yuan et al.
2012), which are the result of different mechanisms such as

tandem duplication followed by gene loss (Boore 2000).
Although local homoplastic arrangements have been iden-
tified in some invertebrate groups (e.g., Flook and Rowel
1995; Dowton and Austin 1999), complete gene orders
generally remain unique and represent signatures with
diagnostic value (Basso et al. 2017), providing a powerful
signal for inferring ancient evolutionary relationships
(Boore 2000).

Among freshwater mussels of the order Unionida, which
spans about 900 species and represents the major bivalve
radiation in the freshwater environment (Lopes-Lima et al.
2017a, 2018a), five mitogenome rearrangements have been
described so far (Lopes-Lima et al. 2017b). Within the
superfamily Unionoidea (Margaritiferidae+Unionidae), the
mitochondria are furthermore unusual in that two highly
divergent mtDNA molecules exist in males (Female or F-
and Male or M-type) as a result of Doubly Uniparental
Inheritance (DUI) (Zouros et al. 1994; Breton et al. 2009).
This is in contrast to the vast majority of animal taxa, which
inherit their mtDNA exclusively through the maternal
lineage and thus exhibit only F-type mtDNA. In Unionoidea
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males, M-type mtDNA is restricted to the gonadal tissue
inherited from the paternal lineage, and F-type mtDNA is
present in all somatic tissues transmitted from the maternal
lineage and also in female gonadal tissue (Breton et al.
2009; Froufe et al. 2016; Fonseca et al. 2016; Lopes-Lima
et al. 2017b).

In recent decades, complete mitochondrial genome
sequences have been published for a wide range of taxa,
enabling reconstruction of shallow and deep phylogenies in
both vertebrates and invertebrates (e.g., Jacobsen et al.
2014; Liu et al. 2016). However, the number of available
mitogenomes for Unionida is low, particularly for M-type
genomes (Froufe et al. 2016; Fonseca et al. 2016; Lopes-
Lima et al. 2017b; Huang et al. 2019). A further short-
coming is that published mitogenomes are restricted to only
a few higher Unionida taxa, with no mitogenomes being
available for several families and subfamilies. In fact, of the
six recognized Unionida families (Lopes-Lima et al. 2014),
published mitogenomes are essentially restricted to the
Unionoidea (Unionidae+Margaritiferidae) with a distribu-
tion predominantly within the Northern Hemisphere. While
some studies have questioned the monophyly of the
Unionoidea (e.g., Combosch et al. 2017; Whelan et al.
2011) the most comprehensive recent studies, using either
full mitogenomes (Huang et al. 2019; Wu et al. 2019) or
hundreds of nuclear loci (Pfeiffer et al. 2019) support its
monophyletic status. Moreover, mitogenome-based Union-
ida phylogenies reconstructed to date have been based on
either F- or M-type mitogenomes (Froufe et al. 2016;
Fonseca et al. 2016; Lopes-Lima et al. 2017b). Although in
these studies the highly divergent F- and M-type mitogen-
omes recovered identical phylogenies, concatenated phy-
logenetic analyses of M- and F-type datasets would be
expected to recover a more robust phylogeny.

The Unionidae is the most species-rich Unionida family,
comprising 620 species in several subfamilies and dis-
tributed widely (Lopes-Lima et al. 2017a). However, phy-
logenetic relationships within and between Unionidae
subfamilies are still contentious and different phylogenies
have been resolved with different analysed markers (e.g.,
Lopes-Lima et al. 2017a; Bolotov et al. 2017a).

One of the least studied Unionidae subfamilies, the
Gonideinae, has a scattered distribution in the Northern
Hemisphere (Lopes-Lima et al. 2017a). Species in this
subfamily have suffered major declines, and half of the
assessed Gonideinae species are currently listed as Near
Threatened or Threatened (IUCN 2019). Moreover, 70% of
recognized Gonideinae species have either never been
assessed or are listed as Data Deficient by the IUCN Red
List (IUCN 2019), indicating an urgent need for research
into this family’s diversity, distribution and ecology.

Another outcome of the general lack of data on Goni-
deinae is their unresolved phylogeny. In fact, monophyly of

this sub-family is disputed. The first molecular study to
include the so-called “problematic” Gonideinae taxa (Graf
2002) only examined the type species, i.e., Gonidea angu-
lata (Lea 1838). Subsequent studies included several addi-
tional Gonideinae taxa but the clade Gonideinae was never
recovered as monophyletic (Graf and Cummings 2006;
Whelan et al. 2011; Pfeiffer and Graf 2013). More recently,
multi-marker and mitogenomic approaches have con-
sistently recovered Gonideinae as monophyletic (Huang
et al. 2013; Pfeiffer and Graf 2015; Fonseca et al. 2016;
Froufe et al. 2016; Lopes-Lima et al. 2017a, 2017b).
Bolotov et al. (2017a, 2017b) subsequently elevated one of
the four Gonideinae tribes established by Lopes-Lima et al.
(2017a), i.e., Pseudodontini, to the subfamily level (i.e.,
Pseudodontinae).

A good understanding of the evolutionary biogeography
of the Gonideinae can be fundamental for reconstructing
patterns of connections of freshwater systems through space
and time on a global scale. Our knowledge in this respect is
still far from complete. The first biogeographic scenarios
developed using Unionida data (e.g., Starobogatov 1970;
Banarescu 1991) proved highly inaccurate, as they were
mostly descriptive and based solely on the (dis-)similarity
between unionid faunas. Furthermore, these scenarios were
generated at a time when unionid taxonomy was poorly
resolved and included numerous paraphyletic higher-order
taxa as well as nominal taxa, determined by shell shape
rather than reliable indicators of true biological species
(e.g., Bolotov et al. 2017a; Konopleva et al. 2017). Modern
paleontology-based models seem to be much more reliable.
Based on the fossil record from Vietnam, Schneider et al.
(2013) developed the hypothesis of an independent devel-
opment of Unionida faunas in the Yangtze and Mekong
basins, at least during the entire Cenozoic. In addition, Van
Damme et al. (2015) showed that the African Early Cre-
taceous Unionida are representatives of Asian/Eurasian taxa
with the lack of Gondwanan elements, while the African
Jurassic assemblages are distinctly related to those in
Eurasia.

Recently, a first statistical biogeographic model for the
Unionidae at the global level indicated that the Unionidae
most likely originated in Southeast and East Asia in the
Jurassic, with the earliest expansions into North America
and Africa (since the Albian), following the colonization of
Europe and India (Bolotov et al. 2017a). However, the
Jurassic fossil record of western North America (for a
review see Watters 2001) and Africa (Van Damme et al.
2015) indicate that these continents were colonized before
the Cretaceous. Additionally, two species-rich mono-
phyletic mussel radiations with an early Cenozoic or even
pre-Cenozoic origin were discovered within the paleo-
Mekong catchment (Bolotov et al. 2017a, 2017b). These
findings revealed that the largest river systems (e.g.,
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Mekong, Yangtze and Mississippi) may represent ancient
evolutionary hotspots of freshwater mussels (Scholz and
Glaubrecht 2004; Wesselingh 2007).

On the basis of the most comprehensive data set of
mitogenomes sampled to date, including eight newly
sequenced mitogenomes, this paper aims to improve our
understanding of the higher-order phylogeny and classifi-
cation of Unionidae by the following: (1) testing the
monophyly of the poorly known Gonideinae subfamily
using both full F- and M- mitogenomes and, for the first
time, mitogenomes concatenated; (2) estimating macro-
evolutionary patterns in freshwater mussels of the Union-
idae using, for the first time, a fossil-calibrated mitogenomic
approach; (3) estimating the timing of major divergence
events and comparing them to those of mitogenome rear-
rangements; and (4) developing an updated integrative
approach to the systematics of Unionidae, on the basis of
the mitogenomic results. This will allow the reconstruction
of the potential origin and ancient radiations of the
Unionidae and detect the most probable ancestral areas.

Methods

Sampling, DNA extractions, sequencing, assembly
and annotation

One male specimen of Chamberlainia hainesiana, Micro-
condylaea bonellii, Pilsbryoconcha exilis and Monodontina
vondembuschiana were dissected for sampling of gonadal
(to recover M-type mtDNA) and mantle (to recover F-type
mtDNA) tissues. DNA extractions followed Froufe et al.
(2016). The complete M- and F-type mitogenome sequen-
cing and assemblage followed Gan et al. (2014), while
annotations were performed using MITOS (Bernt et al.
2013). The final limits of tRNA genes were rechecked with
ARWEN (Laslett and Canbäck 2008). All F- and M-
mitogenomes have been deposited in GenBank database
under the accession numbers MK994770–MK994777 and
were visualized using GenomeVx (Conant and Wolfe
2008).

DNA (NUC) and amino acid (AA) sequences of all
mtDNA protein-coding genes (PCG), except ATP8 and the
gender-specific open reading frames (M-ORF, H-ORF and
F-ORF; Breton et al. 2011), were used in the phylogenetic
analyses. The sequences of each gene were aligned using
MAFFT software (version 7.304, Katoh and Standley 2013)
and trimmed with GUIDANCE2 (Sela et al. 2015; see
Froufe et al. (2016) for the parameters used).

The gene alignments were then concatenated, resulting in
two alignments with the following length: 13449 aligned
nucleotide positions and 3870 aligned amino acids posi-
tions+ 1889 aligned nucleotide positions from the rRNA

genes. The optimal partitioning scheme for each alignment
was selected using PartitionFinder v. 2.1.1 software
(Lanfear et al. 2016) under the greedy algorithm with pro-
portional branch lengths across partitions. The best sub-
stitution models of DNA and protein evolution for each
partition were selected under the BIC ranking method
(Schwarz 1978). The codon positions of the protein-coding
genes and each rRNA were defined as the initial data blocks
for the partitioning schemes search.

An additional data set was also created, concatenating
both F- and M-type gene alignments, with the following
length: 26780 aligned nucleotide positions and 7661
aligned amino acid positions+ 3797 aligned nucleotide
positions from the rRNA genes. This alignment included 45
Unionida species plus Mytilus galloprovincialis as an out-
group (Table 1) using the same partitioning method and
model selection as described above.

Phylogenetic analyses

All phylogenetic analyses were performed using both
Maximum Likelihood (ML) and Bayesian Inference (BI)
methods. ML analyses were performed using RAxML (v.
8.0.0, Stamatakis 2014) with 100 rapid bootstrap replicates
and 20ML searches. The BI was applied using MrBayes v.
3.2.7a (Ronquist et al. 2012) with two independent runs
(107 generations with a sampling frequency of 1 tree for
every 100 generations), each with four chains (3 hot and 1
cold). All runs reached convergence (average standard
deviation of split frequencies below 0.01). The posterior
distribution of trees was summarized in a 50% majority rule
consensus tree (burn-in of 25%).

Divergence time estimates

The time-calibrated mitogenomic phylogeny was recon-
structed in BEAST v. 1.8.4 based on two reliable fossil
calibrations (Supplementary Table 1) using a lognormal
relaxed clock algorithm with the Yule speciation process as
the tree prior (Drummond et al. 2006, 2012; Drummond and
Rambaut 2007). Calculations were performed at the San
Diego Supercomputer Center through the CIPRES Science
Gateway (Miller et al. 2010). The sample of M-type mito-
genomes was used as outgroup. Similar settings to each
gene partition as in the MrBayes analyses were specified but
using a simplified evolutionary model (HKY; see Bolotov
et al. 2017a for details). Five replicate BEAST searches
were conducted, each with 5 × 107 generations and a tree
sampling every 5000th generation. The log files were
checked visually with Tracer v. 1.7 for an assessment of the
convergence of the MCMC chains and the effective sample
size of parameters (Rambaut et al. 2018). The chains in one
run did not reach the convergence and were excluded, the
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Table 1 List of specimens analysed (based on Lopes-Lima et al. 2017a, 2017b), GenBank references, and country

TAXON CODE F-type GenBank M-type GenBank Country

UNIONIDA

UNIONIDAE

AMBLEMINAE

Lampsilis ornata LamOrn NC_005335 — USA

Leptodea leptodon LepLeo NC_028522 — China (Introduced)

Potamilus alatus PotAla KU559011 KU559010 China (Introduced)

Quadrula quadrula QuaQua NC_013658 FJ809751 USA

Toxolasma parvum TaxPar NC_015483 – USA

Venustaconcha ellipsiformis VenEll FJ809753 NC_013659 USA

GONIDEINAE

CHAMBERLAINIINI

Chamberlainia hainesiana ChaHai MK994770 MK994771 Thailand

Sinohyriopsis cumingii SinCum NC_011763 KC150028 China

Sinohyriopsis schlegelii SinSch NC_015110 — China (Introduced)

GONIDEINI

Microcondylaea bonellii MicBon MK994772 MK994773 Italy

Ptychorhynchus pfisteri PtyPfi KY067440 — China

Solenaia carinata SolCar NC_023250 KC848655 China

Solenaia oleivora SolOle NC_022701 – China

LAMPROTULINI

Lamprotula leai LamLea NC_023346 — China

Lamprotula scripta LamScr NC_030258 — China

Potomida littoralis PotLit NC_030073 KT247375 Portugal

Pronodularia japanensis ProJap AB055625 AB055624 Japan

PILSBRYOCONCHINI

Pilsbryoconcha exilis PilExi MK994776 MK994777 Malaysia

Monodontina vondembuschiana PseVon MK994774 MK994775 Malaysia

UNIONINAE

Aculamprotula tientsinensis AcuTie NC_029210 — China

Aculamprotula coreana AcuCor NC_026035 — South Korea

Aculamprotula tortuosa AcuTor NC_021404 — China

Anemina arcaeformis AneArc NC_026674 — China

Anemina euscaphys AneEus NC_026792 — China

Anodonta anatina AnoAna NC_022803 KF030962 Poland

Cristaria plicata CriPli NC_012716 — China

Cuneopsis pisciculus CunPis NC_026306 — China

‘Lamprotula gottschei’a LamGot NC_023806 — China

Lanceolaria grayana LanGra NC_026686 — China

Lanceolaria lanceolata ArcLan NC_023955 — China

Lasmigona compressa LasCom NC_015481 — USA

Lepidodesma languilati LepLan NC_029491 — China

Nodularia douglasiae NodDou NC_026111 — China

Pyganodon grandis PygGra NC_013661 FJ809755 USA

Sinanodonta lucida SinLuc NC_026673 — China

Sinanodonta woodiana SinWoo HQ283348 KM434235 China

Unio crassus UniCra KY290447 KY290450 Poland

Unio delphinus UniDel KT326917 KT326918 Portugal

Unio pictorum UniPic NC_015310 — Poland

Unio tumidus UniTum KY021076 KY021073 Poland

Utterbackia imbecillis UttImb NC_015479 — USA

Utterbackia peninsularis UttPen HM856636 NC_015477 USA

MARGARITIFERIDAE

Margaritifera dahurica MarDah NC_023942 — China

Margaritifera falcata MarFal NC_015476 — USA

Pseudunio marocanus PseMrc KY131953 KY131954 Morocco

MYTILIDA

Mytilus galloprovincialis MytGal AY497292 AY363687 Greece

aOriginal identification
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other runs were compiled with LogCombiner v. 1.8.4
(Drummond et al. 2012) using an appropriate burn-in
depending on the start of convergence of MCMC chains in
each run. Most of ESS values were recorded as > 300, with
a few ESS values > 100. The maximum clade credibility
tree was obtained from the post-burn-in trees using
TreeAnnotator v. 1.8.4 (Drummond et al. 2012).

Ancestral gene order and ancestral area
reconstructions

TreeREx (Bernt et al. 2008) was used for inferring the most
parsimonious putative ancestral gene orders and gene
rearrangements along the obtained Unionidae F-haplotype
phylogenetic sub-tree with the default settings (http://pa
cosy.informatik.uni-leipzig.de/185-0-TreeREx.html).
Ancestral area reconstruction models were calculated for the
Unionidae using three different approaches, i.e., Statistical
Dispersal-Vicariance Analysis (S-DIVA), Dispersal-
Extinction Cladogenesis (Lagrange configurator, DEC),
and Statistical Dispersal-Extinction Cladogenesis (S-DEC)
implemented in RASP v. 3.2 (Yu et al. 2015) following
Bolotov et al. (2017a). Margaritiferidae were not used in
this analysis due to the limited number of available mito-
genomes. Four possible distribution areas of the in-group
taxa were coded as follows: (A) Southeast Asia, (B) East
Asia, (C) North America, and (D) Europe. From the input
matrix, two geographically unreliable constrains (AC and
AD) were excluded.

Results

Mitogenome characteristics and gene arrangements

All eight sequenced haplotypes include the 13 protein-
coding genes (PCGs) typically found in metazoan mito-
chondrial genomes, the sex-specific ORF described for all
Unionida mitogenomes with DUI system (Breton et al.
2009, 2011) and 22 transfer RNA (tRNA) and two ribo-
somal RNA (rRNA) genes (Fig. 1). As expected, the length
of the four newly sequenced M-type mitogenomes is larger
than the corresponding F-type (Breton et al. 2009), ranging
from 16,267 bp in P. exilis to 17,465 bp in C. hainesiana,
while the F-type ranged from 16,020 bp in M. bonellii to
16,746 bp in C. hainesiana (Table 2). The A+T content,
and GC and AT skews are similar in all sequenced species
in both F and M mtDNA types, averaging around 60%, 37
(+) and −0.23 (+), respectively (Table 2).

The gene arrangements of Microcondylaea bonellii, P.
exilis and Monodontina vondembuschiana are identical to
all Gonideinae mitogenomes available on GenBank (2018),
named UF2 (Lopes-Lima et al. 2017b). However, C.

hainesiana has a new and distinct gene arrangement, here
named UF3 (Fig. 2).

Phylogenetic analyses

All the phylogenies inferred in this study that are based on
M and F mitogenomes alone (i.e., not combined) support
the monophyly of Gonideinae (Fig. 3). Moreover, the four
tribes Chamberlainiini, Gonideini, Lamprotulini and Pils-
bryoconchini, are also monophyletic in both M- and F-type
trees (Fig. 3). The same results were obtained when using
for the first time the M and F mitogenomes combined,
despite the lower number of species (Fig. 4). The only
unsupported result on the topology is seen in the relation-
ship among the tribes Gonideini, Pilsbryoconchini and
Lamprotulini in the ML AA data set (Fig. 4).

Ancestral gene order and ancestral area
reconstructions

The TreeREx analysis indicated that the evolution of gene
orders in the Unionidae F-type mtDNA is characterized by
two independent events of tandem duplication and random
loss (TDRL), with every ancestral gene order showing the
highest consistency scores. The analysis suggests that the
ancestral gene order for Unionidae F mitogenome is UF1,
which is also found in the contemporary species of the
subfamilies Ambleminae and Unioninae (Fig. 5). The fossil-
calibrated mitogenomic analysis placed the split between
the UF1 and MF1 gene orders in the Late Triassic (mean
age= 208Ma, 95% high posterior density (HPD)
201–226Ma) (Fig. 6).

The ancestral gene order of the Gonideinae species repre-
sented in our study is UF2, which results from a TDRL event
of an mtDNA segment involving nad3, trnH, trnA, trnS2,
trnS1, trnE, nad2, and trnM (Fig. 2 Box A). In UF2, the genes
trnH, trnS1, nad2 and trnM pertain to the original segment,
while the remaining genes–nad3, trnA, trnS2, and trnE–are
present in the duplicated segment (Fig. 2 Box A). The fossil-
calibrated model developed suggests that the UF1 and UF2
gene orders split near the Jurassic–Cretaceous boundary (mean
age= 149Ma, 95% HPD 138–162Ma) (Fig. 6).

Finally, the UF3 gene order also arises after a TDRL
event within Gonideinae (Fig. 2 Box B). It involved an
mtDNA segment containing twelve genes: trnQ, trnC, trnI,
trnV, trnL2, nad1, trnG, nad6, nad4, nad4l, atp8 and trnD.
In UF3, the genes trnC, trnI, trnV, trnG, nad6, atp8 and trnD
are retained in the original segment, whilst genes trnQ,
trnL2, nad1, nad4 and nad4l were not lost in the duplicated
one (Fig. 2 Box B). The fossil-calibrated model placed the
split between the UF2 and UF3 gene orders in the Cretac-
eous near the Albian–Cenomanian boundary (mean age=
102Ma, 95% HPD 77–124Ma) (Fig. 6).

Mesozoic mitogenome rearrangements and freshwater mussel (Bivalvia: Unionoidea) macroevolution

http://pacosy.informatik.uni-leipzig.de/185-0-TreeREx.html
http://pacosy.informatik.uni-leipzig.de/185-0-TreeREx.html


The combined ancestral area reconstruction model sug-
gests that the Most Recent Common Ancestor (MRCA) of
the crown group of the Ambleminae+(Gonideinae

+Unioninae) clade used to be widely distributed across the
supercontinent of Laurasia (probability 100%) (Fig. 7). The
earliest split was between the Laurentian (Ambleminae) and

Fig. 1 Gene maps of the F- and
M-type mitochondrial genomes
of Chamberlainia hainesiana,
Microcondylaea bonellii,
Pilsbryoconcha exilis and
Monodontina vondembuschiana.
Genes positioned inside the
circle are encoded on the heavy
strand, and genes outside the
circle are encoded on the light
strand. Color codes: Small and
large ribosomal RNAs (red),
transfer RNAs (purple), FORF
F-specific open reading frame
(yellow), MORF M-specific
open reading frame (yellow),
PCGs genes (green)

E. Froufe et al.



Eurasian (Gonideinae+Unioninae) taxa. This vicariance
event is placed in the Late Jurassic (mean age= 159Ma,
95% HPD 155–170Ma). Early diversification of the
Gonideinae+Unioninae clade is placed within East Asia
(probability 100%; Fig. 7). The origin of the MRCA of this
large clade (mean age= 149Ma, 95% HPD 138–162Ma)
and subsequent splitting into two subclades (mean ages of
crown groups= 137 and 106Ma and 95% HPD 123–152
and 90–124Ma for Gonideinae and Unioninae, respec-
tively) most likely resulted from an intra-area radiation
(probability 100% in each case) during the early Cretac-
eous. The Yangtze and Mekong unionid faunas have likely
been separated since the Albian (mean ages= 95–102Ma,
95% HPD 77–124Ma) (Fig. 7).

Discussion

Phylogenetic patterns

The new mitogenomic results presented here place the
Pilsbryoconchina subtribe (previously under the Pseudo-
dontinae as described by Bolotov et al. 2017a) as a sub-
clade within the monophyletic Gonideinae in both the M-
and F-type phylogenies. Our results are thus in agreement
with the phylogeny recovered by Lopes-Lima et al.
(2017a), which is also supported by morphological data.
However, the recovered results contradict that of Bolotov
et al. (2017a, 2017b), which suggested elevation of the
Pseudodontini to the subfamily level.

Our results further indicate that the number of recog-
nized subfamilies within the Unionidae is most likely lower
than has been suggested by recent phylogenetic studies
(Lopes-Lima et al. 2017a, 2017b; Bolotov et al.
2017a, 2017b). The mitogenomic results fully support three
large subfamily-level clades: Ambleminae, Gonideinae and
Unioninae. It is important to note that our analyses did not
include members of the Parreysiinae and Rectidentinae.
Nor did it include sequences of Modellnaia siamensis, the
only species of the monotypic Modellnaiinae, which is
characterized by a number of morphological and anatomi-
cal autapomorphies suggesting its separation within the
Unionidae as a “phylogenetic relic” (Brandt 1974; Heard
and Hanning 1978). Future studies including full mito-
genomes of several taxa from Parreysiinae, Rectidentinae
and Modellnaiinae are needed to fully resolve the higher-
level phylogeny of the global Unionidae.

Our results highlight that resolving the systematics of a
large, species-rich clade such as the Unionidae is a complex
task. Previous taxonomic schemes for the Unionidae
included only two levels of family-group names, i.e., sub-
families and tribes (reviews: Lopes-Lima et al. 2017a;
Bolotov et al. 2017a, 2017b). However, our wholeTa
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mitogenome analyses reveal that despite the limited number
of taxa included, the Unionidae classification scheme could
be better explained by including three levels of family-
group names (i.e., subfamilies, tribes and subtribes) to
accurately reflect the presence of several levels of highly
divergent clades within this family (Fig. 6). Subfamilies
represent the largest clades that are fully supported by the
mitogenomic approach (Fig. 7); some of which may be
characterized by unique morphological synapomorphies,
although several subfamilies have been supported by
molecular data only (e.g., Lopes-Lima et al. 2017a).

The most recent nuclear-based Unionoida phylogeny
(using hundreds of nuclear protein-coding loci; Pfeiffer

et al. 2019) shows strong similarity to our own findings in
regard to the relationships of both families and subfamilies.
Moreover, mitogenome data currently available suggest that
the Unionidae comprise seven (Lopes-Lima et al. 2017a) or
eight (Bolotov et al. 2017a) subfamily clades. Of these, the
Gonideinae (encompassing Pseudodontinae), Unioninae
(encompassing the Anodontinae) and Ambleminae were
well supported in the mitogenomic results obtained herein,
whilst the validity and placement of the Parreysiinae, Rec-
tidentinae and Modellnaiinae clades are yet to be confirmed
by mitogenomic analyses.

The largest monophyletic clades, within each subfamily,
exhibiting significant morphological synapomorphies and

Fig. 2 Diagrams of the four distinct gene orders known in Unionidae
to date. In the F-type, three gene orders are depicted: UF1, UF2 and
UF3. In the male M-type lineage, the only Unionidae gene arrange-
ment is shown: M-type 1 (UM1). Blue boxes highlight gene

rearrangement region from UF1 to UF2 (Box A) and from UF2 to UF3
(Box B). Small and large ribosomal RNAs and transfer RNAs are
depicted by one letter of the amino acid code; Arrow colour codes,
follow Fig. 1

Fig. 3 Phylogenetic (BI-NUC) tree of Unionida estimated from 14
concatenated individual mtDNA gene sequences (12 protein-coding
and 2 rRNA genes). Values for branch support are represented in the
following order: (1) Bayesian posterior probabilities (PP) for BI-NUC
tree, (2) Bayesian PP for BI-AA tree, (3) ML bootstrap support (BS)

values for ML-NUC and (4) ML BS values for ML-AA tree. Max-
imum support values (PP= 1, BS= 100) are represented by asterisks.
Gonideinae subfamily and tribes are highlighted. For details see text.
GenBank codes in Table 1
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fully supported by the present mitogenomic results, are
herein considered as tribes. Therefore, using these criteria,
the Gonideinae comprise two tribes, i.e., Gonideini (trape-
zoidal to rectangular shells with none or only vestigial hinge
teeth and tetragenous brooding type) and Chamberlainiini
(round to oval shells, with a well-developed hinge structure
and ectobranchous brooding type).

The subtribes represent smaller but distant clades within
the tribes, comprising several genera or even a single highly
divergent genus that usually does not reveal any unique
synapomorphies but can be distinguished on the basis of
molecular characters. Based on data available to date,
including the present results, the Gonideini comprise at least
five subtribes, i.e., Chamberlainiina, Gonideina, Lampro-
tulina, Pilsbryoconchina and Pseudodontina (Lopes-Lima
et al. 2017a; Bolotov et al. 2017a, 2017b).

Macroevolutionary patterns of the Unionidae

The new mitogenomic analysis presented herein supports
the hypothesis of an ancient Mesozoic origin and diversi-
fication of the Unionoidea (Taylor 1988; Ma 1996; Van
Damme et al. 2015; Bolotov et al. 2016; Araujo et al. 2017;
Bolotov et al. 2017a, 2017b). The new results indicate that
the Late Triassic split between the Margaritiferidae and
Unionidae coincided approximately with the
Triassic–Jurassic extinction that was one of the largest mass
extinction events in the Phanerozoic (Watters 2001; Hes-
selbo et al. 2002; Bogan and Weaver 2012; Percival et al.
2017; Smithwick and Stubbs 2018). The divergence event
between the two families was associated with TDRL event
leading to formation of the two stable mitochondrial gene
orders, i.e., MF1 and UF1, which have persisted without
changes for ~200Ma. However, there were at least two

additional Mesozoic splits in the mitochondrial gene order
(i.e., UF1 vs. UF2 and UF2 vs. UF3) within the Unionidae,
with UF2 and UF3 being restricted to a single subfamily,
the Gonideinae. The first split coincided with the origin of
this subfamily but the UF3 is a third, new and distinct gene
arrangement derived from UF2 present in a single species,
Chamberlainia hainesiana. These two mitochondrial gene
orders have also persisted for long-term periods of ~150 and
~100Ma for UF2 and UF3, respectively.

At least two splits in the mitochondrial gene order were
associated with the origin of the MRCAs of large and
diverse clades of family (Unionidae vs. Margaritiferidae) or
subfamily (Unioninae vs. Gonideinae) levels. With respect
to this evidence, these TDRL events could be considered
progressive evolutionary innovations because they lead to
formation of stable gene orders that have persisted within
widely distributed and diverse clades for ~150–200Ma. As
for the mitogenome gene order, our ancestral state analyses
suggest UF1 (in the Unionidae) as the ancestral gene order,
which is maintained in the subfamilies Ambleminae and
Unioninae sensu lato (Fig. 6). Additionally, it indicates that
the evolution of F-type mtDNA gene orders is characterized
by two independent events of TDRL (Moritz et al. 1987;
Boore 2000). One resulted in the evolution of UF2, present
in the Gonideinae, and the other in UF3, within Gonideinae
but restricted to Chamberlainia hainesiana. In contrast, all
sequenced M-type Unionidae mitogenomes to date present
the same gene order, i.e., UM1 (Lopes-Lima et al. 2017b)
(Fig. 2). Possibly this could be explained by the higher
natural selection pressure and/or due to the tight control of
the DUI system on the paternal mitochondrial inheritance.
In summary, our results reveal that each TDRL event was
followed by the stable long-term persistence of a mito-
chondrial gene order through evolving lineages (or even a
single lineage, although the Chamberlainia clade may
actually be under-sampled) and corresponds to the first
reliable mitogenomic evidence supporting the evolutionary

Fig. 4 Phylogenetic (BI-NUC) tree of Unionida estimated from 28
concatenated individual mtDNA gene sequences (24 protein-coding
and 4 rRNA genes) of the first combined Female+Male concatenated
data set. Maximum branch support values (BI-NUC/BI-AA PP= 1;
ML-NUC/ML-AA BS= 100) are represented by asterisks, while #
represents the only non-supported branch by ML-AA tree. Gonideinae
subfamily and tribes are highlighted. GenBank codes in Table 1

Fig. 5 Unionidae F-haplotype phylogenetic sub-tree (BI-NUC) used to
infer the most parsimonious putative ancestral gene orders and gene
rearrangements, mapped as MF1, UF1, UF2 and UF3 (see text for
details). Margaritiferidae and all subfamily nodes were collapsed for
visual purposes
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stasis in molecular traits of freshwater bivalves. However,
this should be further explored using an expanded data set
of mitochondrial genomes that may facilitate the under-
standing of how evolutionary rates have shifted across
multiple genetic loci and how that corresponds to ecologi-
cally relevant traits.

Diversification and Biogeography

Combining our new fossil-calibrated mitogenomic analyses
with robust ancestral area reconstruction provides new
insights into early diversification patterns and biogeography
of the Unionidae. According to our results, the Ambleminae
+(Gonideinae+Unioninae) clade originated in the late
Jurassic, with their MRCA distributed across Laurentia and
Eurasia of the supercontinent of Laurasia. The split between
the Ambleminae and Gonideinae+Unioninae clades was
likely associated with a vicariance event driven by plate
tectonics, i.e., the formation of the early Jurassic Trans-
continental Laurasian Seaway (Bjerrum et al. 2001). The
Ambleminae is an entirely Laurentian subfamily, which
diversified primarily through radiation within the

Mississippi drainage basin from the Early Cretaceous
(Bolotov et al. 2017a). In this context, a peculiar Unionidae
fauna from the Late Jurassic of western North America
(Watters 2001) appears to be ancestral lineages and stem
groups of the Ambleminae+(Gonideinae+Unioninae)
clade. The Gonideinae and the Unioninae (Unionini, Ano-
dontini, Lanceolariini, and Lepidodesmini) (Fig. 6) origi-
nated in East Asia, most likely via intra-area radiation
within the paleo-Yangtze River system during the Cretac-
eous (Fang et al. 2009; Wang et al. 2018). The Southeast
Asian Gonideinae taxa (Mekong basin) were separated via
several vicariance events in the Albian - Cenomanian,
which may indicate the drainage rearrangement of paleo-
river systems of the Indochina Peninsula and surrounding
terrains during this period (Wang et al. 2018). The mito-
genomic results suggest ancient connections between
freshwater basins of East Asia and Europe near the
Cretaceous–Paleogene boundary, probably via a continuous
paleo-river system or along the Tethys coastal line (Hou and
Li 2018), and this is also depicted in the Margaritiferinae
subfamily within Margaritiferidae (Lopes-Lima et al.
2018b). This pattern is well supported by at least three

Fig. 6 Time-calibrated mitogenomic phylogeny, an example of three-
level classification scheme (subfamilies, tribes and subtribes) and
evolution of the mitochondrial gene order in the Unionoidea. Fossil-
calibrated ultrametric chronogram of the Unionoidea calculated under
a lognormal relaxed clock model and a Yule process speciation
implemented in BEAST and obtained for the complete mitogenome
data set. The outgroup sample is not shown. Bars indicate 95%

confidence intervals of the estimated divergence times between
lineages (Ma). Black numbers near nodes are mean ages (Ma). Color
labels indicate the mitochondrial gene order (MF1, UF1, UF2, and
UF3). Red asterisks indicate fossil calibrations (Supplementary Table
1). Stratigraphic chart according to the International Commission on
Stratigraphy, 2015
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independent but almost synchronous divergence events:
Potomida vs. Lamprotula and Pronodularia, Micro-
condylaea vs. Solenaia, and Unio vs. Nodularia and its
relatives. During the same period, faunal exchange via the
Beringian Land Bridge with subsequent vicariance events
may also have started. The question of the origin of the
family-clade, i.e., Unionidae, remains unanswered due to
the lack of available mitogenomes of Parreysiinae and
Rectidentinae, although combined COI, 28 S and 16 S data
indicated that this family most likely originated within East
or Southeast Asia (Bolotov et al. 2017a).

The new results presented herein support the hypothesis
that several of the largest river basins on Earth may repre-
sent so-called ancient (long-lived) rivers, the Unionida
faunas of which have existed throughout long-term periods
comparable with geological epochs (Bolotov et al. 2017a;
Lopes-Lima et al. 2018b). The mitogenomic results suggest
that the MRCA of the entire Gonideinae+Unioninae clade
may have originated within the paleo-Yangtze drainage
basin. This indicates that the modern Yangtze may be a
system of at least Late Jurassic origin and a stable refugium
for very ancient, relic lineages that have existed for
approximately 150Ma. The unionid fauna of the paleo-
Mississippi system seems to be of Early Cretaceous origin
(mean age of the crown group in our model) that has
diversified for at least 120Ma. The paleo-Mekong fauna

appears to be younger as it likely separated from the paleo-
Yangtze fauna in the Albian - Cenomanian, and its two
largest monophyletic unionid radiations may have had a
Late Cretaceous or Paleocene origin (Bolotov et al.
2017a, 2017b). These results agree with the dating of
divergence between two primary clades of the Southeast
Asian cave spitting spiders that were separated at ∼55Ma
by the paleo-Mekong River, which served as a biogeo-
graphic barrier (Luo and Li 2017).

Systematics

Based on the morphological evidence, we propose the
putative MRCA of the Unionidae and Margaritiferidae as a
new fossil family-level taxon in the Unionoidea.

Superfamily Unionoidea Rafinesque, 1820
Family †Shifangellidae Bolotov, Bogan, Lopes-Lima &

Froufe fam. nov.
Type genus: †Shifangella Liu & Luo in Liu (1981)
Diagnosis: The Margaritiferidae and Unionidae are the

most conchologically similar families to the †Shifangelli-
dae. However, †Shifangellidae can be distinguished from
the Margaritiferidae by having a weakly developed, narrow
hinge plate (vs. typically well-developed and rather thick)
and a shallow, smooth anterior adductor scar (vs. deep with
arborescent-like striations), and from the Unionidae by an

Fig. 7 Historical biogeography
of the Unionidae. This combined
scenario has been inferred from
three different statistical
modeling approaches (S-DIVA,
DEC and S-DEC) based on the
time-calibrated mitogenomic
phylogeny (Fig. 6). Pie charts
near nodes indicate probabilities
of certain ancestral areas. Color
circles on the tip nodes indicate
the range of each species. Color
labels indicate the mitochondrial
gene order (UF1, UF2, and UF3)
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elongated Margaritifera-like shell with strongly concave
ventral margin (vs. typically straight, rounded or slightly
concave).

Distribution: Late Triassic, southwestern China
(Sichuan).

Biology: This ancestral family likely had parasitic glo-
chidial larvae similar to its descendants (ancestral state
reconstruction, probability 100%).

Comments: Synonymy of the genus †Palaeomargar-
itifera Ma 1996 (Middle Jurassic, China) with †Shifangella
suggested by Fang et al. (2009) most likely erroneous
because †Palaeomargaritifera has a well-developed, thick
hinge plate, strong pseudocardinal teeth and deep anterior
adductor scar with arborescent-like striations supporting its
original placement within the Margaritiferidae. The genus
†Dianoconcha Guo, 1988 (Middle Jurassic, China), another
synonym of †Shifangella proposed by Fang et al. (2009),
differs by a subtrapezoid, elongate-elliptical or rhomboid
shell. This feature together with a narrow hinge plate and an
observable but shallow anterior adductor scar suggest that it
most likely belongs to the Unionidae. With respect to their
age and diagnostic features mentioned above, †Palaeo-
margaritifera and †Dianoconcha appear to be the MRCAs
of the crown groups of the Margaritiferidae and Unionidae,
respectively. The family-level placement of several union-
oid genera described from the Early Jurassic of China (e.g.,
†Pseudomargaritifera Ma 1996 and †Solenoides Ma 1996)
is unclear and is in need of further revision; some of them
might actually be members of the †Shifangellidae.

Conclusions

All the phylogenies inferred in this study using, for the first
time, both the M and F mitogenomes individually and
combined support the monophyly of the so-called “pro-
blematic” Gonideinae taxa. Moreover, the new mitoge-
nomic results place the Pseudodontinae, as previously
described by Bolotov et al. (2017a), as a subclade within the
monophyletic Gonideinae in both M- and F-type phylo-
genies. Additionally, the present work supports the
hypothesis of an ancient Mesozoic origin and diversification
of the Unionoidea and reveals that each TDRL event was
followed by the stable, long-term persistence of a mito-
chondrial gene order through evolving lineages and corre-
sponds to the first reliable mitogenomic evidence
supporting the evolutionary stasis in molecular traits of
freshwater mussels. Finally, we propose a new systematics
framework with three infrafamilial levels (i.e., subfamilies,
tribes, and subtribes) that better explains the evolutionary
patterns within the Unionidae. Future application of the
phylogenetic mitogenome-based approach outlined here to
Parreysiinae, Rectidentinae and Modellnaiinae will be an

important step to further resolve current taxonomic classi-
fication uncertainties within the Unionidae. Moreover, this
study demonstrates the considerable potential for using
comparative genomic techniques for unravelling patterns in
the tempo, timing and mode of evolutionary processes.

Data archiving

Sequence data have been submitted to GenBank accession
numbers: MK994770–MK994777.
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