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Resumo

Tecnologia Lockstep em processadores Arm e RISC-V recorrendo a uma abordagem loose-
ly-coupled

Nos últimos anos, o grande crescimento tecnológico tem originado o surgimento de novas necessi-

dades, onde dispositivos eletrónicos e seres humanos passam a ter ummaior contacto. Este crescimento,

contudo, levanta problemas de fiabilidade e segurança. E apesar de na ciência computacional surgirem

melhorias de desempenho e de eficiência energética, devido à redução dos transístores, altas frequências

de relógio, e baixas tensões de execução do núcleo de processamento, estas trazem consigo lacunas na fi-

abilidade dos sistemas, tornando-os mas suscetíveis a faltas. Por exemplo, esta nova geração tecnológica

é cada vez mais sensível a radiações que podem despoletar Single Event Upset (SEU).

Esta dissertação visa fornecer uma nova solução para sistemas tolerantes a falhas, denominada de

Lock-V, que combina duas técnicas, de forma a responder à lacuna atual. A solução foi implementada

sobre a Microsemi SmartFusion2 que inclui um microcontrolador e um Field-Programmable Gate Array

(FPGA) na mesma plataforma, esta solução consiste numa arquitetura Dual-Core Lockstep (DCLS) com-

binada com diversidade de desenho ao nível do conjunto de instruções que é obtida pelo uso de dois

núcleos diferentes, um hard-core Arm Cortex-M3 e um soft-core com base em RICS-V. O DCLS é apoiado

por um acelerador desenvolvido na FPGA e proporciona ao sistema a capacidade de deteção de error,

através da comparação loosely-coupled das saídas dos núcleos de processamento. Para além disso, esta

dissertação fornece uma framework, que adiciona ao sistema a capacidade de auto-recuperação.

De forma a validar o sistema, foi desenvolvido um mecanismo de injeção de faltas, que testa a

arquitetura Lock-V. Como proteger a memoria está fora do âmbito desta dissertação, e como tal, a injeção

de faltas foi aplicada apenas nos registros do processador, que normalmente são os mais vulneráveis a

faltas se excluirmos as memórias. Estes testes, provam a eficiência do sistema Lock-V como um sistema

tolerante a falhas. Para além disso, esta arquitetura, devido ao seu mecanismo lockstep é um sistema

tolerante a falhas contra SEU, e também, devido à diversidade de desenho, apresenta proteção contra

falhas de modo comum. Resumidamente, o sistema Lock-V tem grande cobertura de faltas tendo em

conta as soluções existentes.

Palavras-chave: Diversidade de Desenho, DCLS, Redundância, Tolerância a Falhas.

iii



Abstract

A Loosely-Coupled Arm and RISC-V Locksteping Technology

Due to the technological growth during the last few years, a new market is rising, bringing a huge

number of devices that interact with the human being and the environment. However, the dependability

of those devices becomes more and more a concern. Furthermore, from what has been seen, in terms

of performance and power consumption, these computational systems are constantly being improved

due to reduced transistor’s size, higher clock frequencies, and lower operating core voltages. However,

this leads to a lack in the systems reliability, which turns them more susceptive to faults. For example,

systems are becoming more sensitives to radiations that can trigger Single Event Upsets (SEUs) in this

new technological generation.

This dissertation aims to provide a new solution for fault tolerance systems, named Lock-V, that com-

bines two fault tolerance techniques, in order to answer the current gap. The solution is deployed under

the Microsemi SmartFusion2 that includes a Microcontroller Unit (MCU) and an Field-Programmable Gate

Array (FPGA) in the same platform, and the solution consists in a Dual-Core Lockstep (DCLS) combined

with design diversity at Instruction Set Architecture (ISA) level. The design diversity is achieved by using

two different cores, a hard-core Arm Cortex-M3 and a soft-core RISC-V-based processors. The DCLS is

supported by an FPGA-based accelerator and it provides error detection capabilities to the system by com-

paring, in a loosely-coupled fashion, the outputs from the two cores. Moreover, this dissertation provides

a friendly framework, that adds to the system recovery capabilities.

In order to validate the system, a fault injection mechanism was developed, to test the Lock-V archi-

tecture. Since protecting the memory is out of the scope of this dissertation, the fault injections are over

the register files, which are usually more vulnerable to faults, excluding the memory. These tests, prove

the effectiveness of the Lock-V system as a fault tolerance system. Moreover, Lock-V architecture offers

fault tolerance against SEU and protection against Common-Mode Failure (CMF) by applying lockstep tech-

nique and design diversity, respectively. Summing up, the Lock-V achieved a high fault coverage taking

into account the existing solutions.

Keywords: Design Diversity, DCLS, Redundancy, Fault Tolerance.
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1. Introduction

Nowadays, we are more and more surrounded by a vast number of technological devices, such as per-

sonal computers, smartphones, gadgets, smart devices, and much more. Despite this kind of technology

not being developed for critical or safety proposes, it is required the support for some reliability features.

Yet for critical and safety applications, such as a car brake system, as well a medical devices, or even

a nuclear reactor system control, the use of reliable technology is a must. It is not desired such critical

and safety systems to fail at any time.

Due to human and environment interactions with the technology mentioned above, the research and

development of reliable systems with fault tolerance capabilities is a concern, that has been getting par-

ticular attention, both from academia and industry. This dissertation explores the integration of a new

Instruction Set Architecture (ISA), RISC-V with a fault tolerance technique, the Dual-Core Lockstep (DCLS)

over a heterogeneous architecture, adding to the state of the art a new fault tolerance solution in order to

achieve reliable technology.

1.1 Motivation

Since the beginning of computing science, the electronic systems face reliability problems. First,

because the use of components that presents unreliable characteristics, such as vacuum tubes and relays

[1, 2], but later, due to the increased systems’ complexity, new types of unreliable systems appear even

with the introduction of reliable semiconductors.

Recently, the new generation of components use reduced transistor’s size, higher clock frequencies,

and lower operating core voltages. If, in one hand, the systems are more efficient in power consumption

and in performance, on the other hand, they present new dependability problems. For example, at ground

level, these systems are more susceptive to Single Event Upset (SEU) induced by radiations that can cause

bit-flips [3]. These issues are widely present in the aerospace environment, but now it is also a concern

in daily basis systems, such as [4, 5, 6, 7, 8, 9].

Normally, reliability capability applied to daily basis systems do not include fault tolerance techniques,

mainly, due to the rising of complexity and development cost. Moreover, with the complexity of the sys-

tems in the current days its harder to achieve dependability with simple methods, demanding for new

methodologies that can help to meet the mentioned requirements.

1
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In particular, the combination of design diversity at hardware level with lockstep techniques is a open

question in the current state of the art. This alliance between the two concepts can provide to systems a

fault tolerance against both SEU and Common-Mode Failure (CMF).

1.2 Main Goal

In order to follow the technologic evolution, and answer the issue that the new systems generation has

a lack in dependability, the main goal of this dissertation goes towards developing a fault tolerance system

that uses DCLS in a heterogeneous architecture at core level combining different techniques to provide

tolerance to a new range of fault, SEU and CMF.

At the same time, it is important to develop the system with focus on low-end devices and to use the

new and emerging RISC-V ISA in one of the cores during the implementation.

1.2.1 Objectives

These objectives are divided in three parts and they derived predominantly from the main goal. They

are the key to realize the main goal with success.

The first objective is the development of the Lock-V architecture which includes the two cores, a hard-

core Arm Cortex-M and a soft-core RISC-V-based, and also an accelerator that supports the heterogeneous

architecture. The objective is to provide system synchronization and error detection between cores.

This objective is carried out through several tasks:

• Deploying a soft-core RISC-V-based in a platform that combines a hard-core Microcontroller Unit

(MCU) and an Field-Programmable Gate Array (FPGA), in order to provide a dual-core system with

heterogeneous architecture at core level;

• Developing xLockstep accelerator in the FPGA to provide the system with DCLS capabilities on

different core architectures;

• Connecting both cores with the xLockstep accelerator in the platform, in order to deploy the Lock-V

hardware architecture;

• Developing an Application Programming Interface (API) that explains and details the use of the

accelerator while developing a library based on the API, to allow the use of the accelerator in an

agnostic way;

• Testing and verifying the synchronization and error capabilities of the Lock-V architecture.

This second objective consists in the development of the Lock-V framework that provides a simple

interface to promote in a friendly way the addition of fault tolerance capabilities in a system.
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Due to the lack of recovery capabilities on the Lock-V architecture, the framework has the task to

implement the system recovery in software.

This objective is performed through the next tasks:

• Writing functions into the framework to apply cores initialization and the synchronization capabilities

between them;

• Writing functions to offer the system recovery capabilities, including saving the processor context

and restoring the system to the saved processor context, also known as rollback.

The third objective consists in developing a fault injection system to test the system against faults,

while verifying and validating the Lock-V as a fault tolerance system.

This is carried out through the following tasks:

• Adapting the main system with a debugging interface, in order to monitoring the system during the

verification phase;

• Developing a injection fault mechanism to emulate SEU on the register files in random register

through a random time interrupt.

Despite being important, this dissertation does not focus on memory protection mechanisms, thus,

the fault injection test system only concerns the register file.

1.3 Dissertation Structure

After this chapter, that includes a brief context, the motivation, and the goals of this dissertation, the

chapter 2 overviews the concepts of dependability in section 2.1. Also, it includes different techniques

and methodologies to achieve fault tolerance systems, in section 2.2. The chapter 2 ends with the current

state of the art for fault tolerance techniques based in lockstep technique in section 2.3. The chapter 3

explains the platform and the soft-core RISC-V-based choice for this dissertation.

Chapter 4 explains the development of the Lock-V architecture by detailing the xLockstep accelerator

in section 4.1, and how the Lock-V was integrated with the hardware platform in section 4.2. Moreover, in

section 4.3 includes the API definition and the library developed to support the xLockstep accelerator. The

chapter 5, in order to accomplish the second set of tasks mentioned in the objectives, includes in detail

the functions provided by the framework for initialization and synchronization purposes in sections 5.2 and

5.3, respectively. It also includes how the system achieves the system recovery using rollback in sections

5.4 and 5.5. The last set of tasks is described in the chapter 6, that also includes resources utilization as

well the cost (memory and execution footprint) of the system Lock-V.

Last but not least, the chapter 7 provides a summary and highlights important consideration about

this dissertation while mentioning future improvements.



2. Background and State of the Art

This chapter addresses the main concepts of dependability in the section 2.1, which covers attributes,

threats, and the means to achieve it. Then, in the section 2.2, it presents fault tolerance techniques as

one of the primary ways to achieve dependability. Finally, section 2.3, shows a literature review about fault

tolerance techniques.

2.1 Dependability

Nowadays the search for reliance systems is in expansion due to the emergence and increase of safety-

critical applications, ranging from daily basis systems such as a braking system in a car, or a financial

transaction through an automated teller machine, to medical devices, airplanes, nuclear power plants or

even aerospace applications [8, 10, 11, 12].

One of the main properties of the computing systems is dependability [10], and Laprie adapted the

dependability definition from the primary definition to computer systems as “the quality of the delivered

service such that reliance can justifiably be placed on this service” [13]. To understand the previous

definition, it is necessary to look for the delivered service meaning, which is the system behavior that

the user can observe. A delivered service can be one of the two options: (1) a correct service if the

system behavior satisfies the functional specifications previously defined for a concrete system to provide

the specified service; or (2) an incorrect service when the system behavior does not match with the

expected, i.e., when the delivered service is different from the specified service. The transition from a

correct service to an incorrect service is due to failure occurrence, and the reverse transition is named

by service restoration [10, 13, 14]. After the dependability definition from Laprie, Avizienis formulated

an alternative concept for dependability, taking into account the definition of system failure in order to

complement the first definition [10]: “the ability of a system to avoid failures that are more frequent or

more severe, and outage durations that are longer, than is acceptable to the user(s).”. These definitions

lead to the emergence of topics to support the main one since Avizienis et al. wrote the “Fundamental

Concepts of Dependability” [10] where, in addition to the dependability definition, they structured the

concepts around the main term dependability, and divided into three classes, as shown in Figure 2.1

(adapted from [10, 15]): (1) the threats to dependability, (2) the attributes of dependability, and (3) the

means to achieve dependability.

4
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Figure 2.1: Dependability tree.

Faults, errors, and failures are threats to dependability that share a relationship between them. There

are six dependability attributes: (1) availability, (2) reliability, (3) safety, (4) confidentiality, (5) integrity, and

(6) maintainability. The last class is the means to achieve dependability and they are divided into four

main topics: (1) fault prevention, (2) fault tolerance, (3) fault removal, and (4) fault forecasting.

2.1.1 Dependability threats hierarchy

The main terms that characterize the threats to dependability are fault, error, and failure. In this sub-

section, it is described the terms as well as the connection between them and some important definitions

derived from the main terms. In fault tolerance systems, it is necessary to recognize the differences be-

tween fault, error, and failure. Moreover, to know the cause and effect of faults, errors, and failures are

essential to understand this work.

2.1.1.1 Chain of dependability threats

The dependability threats have a hierarchy that starts in a fault, the fault can be located in a component

or a system, for example, due to a defect in a component. The system can wrongly enter into an undesired

state when the fault origins an error. Furthermore, this error may lead to a component or system failure. If

the failure occurs in a component inside a system, the service failure of the component may be responsible

for creating an error in the system, and the error may trigger a failure in the system. Figure 2.2 shows the

fault, error, and failure hierarchy. The fault in a component may origin an error, which can lead to failure.

Moreover, the failed component may trigger the same cycle in the system [13].

Occasionally these terms are misused, and Parhami bridges this gap. The author presents three

different examples to understand the differences. As a reader, the first example transmits the information



Chapter 2. Background and State of the Art 6

Figure 2.2: Fault, error, and failure hierarchy.

necessary to understand the difference between the terms [16]. In the example, the author explores a car

braking system with a defective brake pipe. He reports that a fault occurs when the pipe breaks due to

the defective pipe and if this fault results in fluid loss to a dangerously low fluid level in the brake system,

the fault leads to an error. However, the error only turns to a failure when the brake system is required,

and it does not work correctly.

2.1.1.2 Fault

A Fault is a defect in a hardware or software component [17]. A fault may be caused by different

problems during the project phases (analysis, design, implementation, or even at the production stage).

Beyond these project phases, a fault may emerge due to external factors (human or environment agents).

In computation systems, e.g., software processors, Application-Specific Integrated Circuits (ASIC), among

others, the transistor size reduction in the last decades leads to smaller working voltage and smaller noise

margins, leading to a more significant fault susceptibility in hardware components [4, 18].

A fault can be divided into two different types, taking into consideration its propagation: an active or

dormant fault. The active fault generates an error, the dormant fault may generate an error when some

interface changes its state.

Faults can be classified, taking into account eight different perspectives, leading to the elementary

fault classes [19, 20]: (1) the phase of creation or occurrence of the fault; (2) the system boundaries; (3)

The phenomenological cause of the fault; (4) the dimension where the fault occurs; (5) the objective of

introducing the fault; (6) the intent of the fault; (7) the capacity of the human that originates the fault; and

(8) the persistence of the fault. Figure 2.3 (from [19, 20]) shows the elementary faults based on the eight

different classifiers mentioned above.

The phase of creation or occurrence has two different types of faults. The development originated

during the system development, or during the system maintenance, or even when procedures are created

and the operational fault that occurs during the runtime of the system.
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Figure 2.3: Elementary fault classes and its eight different classifiers.

The system boundaries classify the fault taking into account the fault location. A fault can be an

internal fault to the system, and this means that the fault occurs within the system. Otherwise, if the fault

occurs outside, it is an external fault.

The phenomenological cause classifier defines the fault in natural fault or human-made fault by focus-

ing on the fault’s origin with or without human participation. If the fault occurs due to human participation

is a human-made, otherwise is a natural fault.

Furthermore, the fault classification depends on its dimension which can be a hardware fault disturbing

the hardware, or software fault when the fault disturbs the software (data, programs, etc.). A hardware

fault is also known as a physical faults, and a software fault is known as an information fault.

A fault can be a malicious or non-malicious when it considers the objective of causing a fault. Malicious

faults occur due to human interaction in order to damage the component or the system. Otherwise, the
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non-malicious fault has no intention to damage the component or the system.

The intent of the human is another classifier to faults. If the human deliberately decides to introduce

the fault is a deliberate fault, otherwise, when the fault is introduced without perception is a non-deliberate

fault. This classifier differs from the mentioned above because the intent classifier defines if the human

intended to create a fault or not. A malicious fault is every time a deliberated fault, but a non-malicious

one may be deliberated or non-deliberated fault.

The capacity of the human defines two elementary fault classes, the accidental fault, which as its

name indicates it is introduced accidentally, and the incompetence fault which occurs due to a lack of

professional capacity.

The persistence of the fault classifies the fault in permanent or transient. The permanent fault is

expected to remain active during the time unless the fault has been resolved. The transient fault only

remains active during a short period of time.

All eight classifiers combined generate all types of faults, but some combinations are not possible.

In the Figure 2.4 from [20], Avizienis shows all the possible combinations while classifying them in three

main groups: (1) the development faults group, that occurs due to mistakes or other actions during the

development phase; (2) the physical faults group, where all the faults interfere in the hardware; and (3)

the interaction faults, which contains all the external faults.

Figure 2.4: The classes of combined faults.
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Another important issue, mainly for this dissertation, is the Common-Mode-Faults. It defines faults

that occur in more than one redundant module at the same time. This type of fault occurs due to a

dependency between the redundant modules, and if the faults origin failures in the redundant modules,

then a CMF will be generated.

2.1.1.3 Cause of the faults

Faults can be caused by different situations, and Dubrova divides the origin of faults in four groups:

(1) incorrect specification, (2) incorrect implementation, (3) component defect, and (4) external factors

[17]. Incorrect specification causes faults due to the use of a wrong algorithm, flowchart, architecture,

improper requirement, or specification, between other causes during the specification phase. Incorrect

implementation brings to the system faults caused by design and implementation faults, for example, in

hardware can be caused by mistakes in component choice, or higher clock frequencies, while in software it

can be caused by mistakes that the compiler did not detect or incorrect variable type choice. Imperfections

during manufacture and wear in hardware components are the component defects. Although there has

been a significant improvement over time in hardware components, the search for lower power systems,

smaller devices, and higher performance leads to the use of low voltage levels, thinner encapsulation,

and high processing frequencies. These characteristics make systems more sensitive to external factors.

These factors are the last cause of faults mentioned by Dubrova and these type of faults, as the name

suggests, are caused from external agents outside of the system, such as environmental phenomena, or

user perturbance.

In respect to external factors, aircraft systems are subjected to a large amount of radiation [21], and

space stations and spaceships systems, even more, probably affecting the system drastically or even

cause a catastrophic situation. Also, at ground level, the system is subject to radiation [3]. When single

event radiation hits a system with high energy, it may result in failure, such as bit-flips in memory, register,

combinational logic, or even damage the component or system [22]. When the single radiation event

causes a system failure, it is defined as a Single Event Effect (SEE), and it is divided into various sub-

events, as shown in Figure 2.5.

The first level of SEE sub-events is the “soft” SEE (or “soft” error) and the “hard” SEE (or “hard”

error). If the SEE does not cause permanent damage in a component or system, then it is a “soft” SEE.

Usually, these kinds of events happen at ground level, and the ground commercial applications are the

typical systems affected by this type of SEE. In contrast, the “hard” SEE causes permanent damage in a

component or system. Usually, these SEE happens at space level and in a critical environment. Space,

military, and critical applications must consider protection to “hard” SEE during development [4].

“Soft” SEE includes in its branch the SEU, Single Event Functional Interrupt (SEFI), Single Event

Transient (SET):

• A SEU is characterized by changing a component state due to ionization, such as a change in a

memory cell or a register data. If the SEU affects only one bit, then it is a Single Bit Upset (SBU).
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Figure 2.5: Single event effect tree.

However, if the SEU has very high energy to affects more than one bit, it is a Multiple Bit Upset

(MBU). Typically, the SBU is more likely to happen, and normally, at ground level, the fault tolerance

systems are developed to be protected against SBU.

• A SET is characterized by its location, and this type of SEU occurs in combinational logic and

generate a transient pulse interference. This event effect in combinational logic is temporary, but

if the combinational logic can transfer the sequential logic, it is possible an occurrence of a SEU.

• A SEFI is characterized by affecting systems areas that have a global or critical control and leads

the system to a functional interrupt. Internal power-on-reset system or a critical system control

register are examples of systems that may cause a SEFI, if the radiation event hits them.

There are more “soft” SEE, but the most important for this dissertation context are mentioned above.

Also, the “hard” SEE is out of the scope in this dissertation context, however, they are detailed in Yangs’

book in chapter 6.2 [22].

2.1.1.4 Error

An Error is originated by a fault, and an error may cause a failure when the error affects the service

delivered, and the error changes the service delivered in a system to an incorrect service. Errors can be

detected or latent. The detected error is the one when its presence is alerted, for example, with error

messages or signals. The latent error is an error that its presence is not detected [17].

An error may cause a failure, but this propagation depends in two factors: (1) The system structure and

if redundancy is applied in the system (intentional redundancy for example as fault tolerance techniques or

unintentional redundancy); and (2) the system behavior, because an error may never influence the system,

for example, if an error is overwriting before its use or never use the faulty component or sub-system [20].
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A latent error may never affect the system, and its lifetime in the system is different from system to system

due to the system utilization or the origin of the fault. Also, an error may be caused by different types of

faults [13].

It is possible to classify an error based on four different classifiers: its domain (content vs. timing

errors), its detectability (detected vs. latent), its consistency, and its consequences (minor to catastrophic

errors) [20]. This kind of classification is also used for failures in a more frequent way, and the meaning

is similar to the classifiers explained above, in subsection 2.1.1.5. When the same fault causes more than

an error, for example, electromagnetic radiation that affects different components, they are denominated

multiple related errors. If the fault only causes one error, it is denominated as a single error [20].

2.1.1.5 Failure

A Failure or service failure occurs when the service delivered by a system does not perform the

required services described in its system specification [23]. The cause of failure is always an error that

leads the system to deliver an incorrect service. A failure has different modes when it occurs. They are

classified by four different classifiers as the errors in subsection 2.1.1.4. Figure 2.6 from [19] shows all

the service failure modes and all the four classifiers: (1) the failure domain, (2) the detectability of failures,

(3) the consistency of failures, and (4) the consequence of failures on the environment.

Figure 2.6: Service failure modes.

The failure domain divides into two different ones, the content failures when the system interface

delivers incorrect information, and the timing failures when the delivered information from the system

interface deviates (early or late timing failures) from the expected. Also, a failure can occur with the two

problems in the same failure, information and timing incorrectness. This one can be a halt failure when

the service is halted, or an erratic failure when the service is delivered but in an erratic way [19].
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The failure detectability considers the alert of a failure to the user to characterize the failure. This

classifier divides the failure detectability in signaled or unsignaled failures. The signaled failure uses

detected mechanisms to verify if the system delivering the correct service, and in case of incorrect service,

the system signals the user with a warning signal. Otherwise, if, in case of failure, the system does not

signal the user, it occurs an unsignaled failure [20].

When the system has more than one user, it is possible to consider the consistency of failure to classify

the failure. When the failures occur, and it is perceived in the same way by all the users, it is a consistent

failure. If the failure reaches the users differently or does not even reach, it is an inconsistent failure [20].

The last classifier is the consequence of the failures in the environment, and this viewpoint to classify

failures is defined by levels of failure severities. These levels vary from application to application, and to

define the levels of failure severities. It considers the dependability attributes such as availability, safety,

confidentiality, among others. Nevertheless, it is possible to define the classifier limits, the minor failures

and catastrophic failures [20].

2.1.2 Attributes of dependability

In the first contributions to dependability definitions, Laprie enumerated availability, reliability, safety,

and security as the attributes of dependability. However, the author said that the attributes might have

different levels of priority according to the application. Laprie also mentioned that availability is always

required, but its level of dependency may vary depending on the system and its requirements, while the

other attributes may not be necessary at all [15].

After almost a decade, Avizienis et al. updated the attributes and defined them as the six basic

attributes of dependability, adding confidentiality, integrity, and maintainability, and removing security from

the main attributes [20]. For dependability, security is important but can be mostly fused between the

basic attributes: available only for authorized users, confidentiality, and integrity with the assurance that

unauthorized information is not changed [19].

Then, the six basic attributes that a dependable system must have are:

• Reliability is the ability of a system to continue providing the correct service. Furthermore, reli-

ability can be expressed in function of time, R(t), as the probability that the system will continue

providing the correct service in accordance with the specifications for a period of time, t, [17, 24].

When a system needs to run without interruptions or when it is not possible to apply maintenance,

high-reliability is necessary [17, 25]. For the fault tolerance system, Lee suggests that reliability is

an important attribute [24], and the search for high-reliability in fault tolerance systems is increasing

[25, 26]. The main concern during a fault tolerance system design is how to achieve reliability in

the presence of faults. To achieve this, the system needs to know the system state. In other words,

the system needs to distinguish between expected and unexpected behavior.
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• Availability is the readiness of the system to provide the correct service. Similarly to reliability,

availability also can be expressed in function of time, A(t), as the probability that a system at the

instant of time t provides the correct service in accordance with the specifications [17]. In order to

make the comprehension of availability easier, it can be expressed in Downtime per year [27] i.e.,

the amount of time that a system stays interrupt per year. Table 2.1 (adapted from [17, 27]) shows

the availability of system classes and the corresponding downtime per year. For fault-tolerant system

is expected an availability of 99.99 percent that corresponds to 52 minutes of service interruption

during a year. A system with high-availability can change to a failure state [25], but the time to

recovery and the number of failures need to be small enough to meet the conditions presented in

Table 2.1.

Table 2.1: Availability of system classes and the corresponding downtime per year.

System Type Availability Class Availability (%) Downtime

Unmanaged 1 90 36.5 days/year
Managed 2 99 3.65 days/year
Well-managed 3 99.9 8.76 h/year
Fault-tolerant 4 99.99 52 min/year
High-availability 5 99.999 5 min/year
Very-high-availability 6 99.9999 31 s/year
Ultra-availability 7 99.99999 3 s/year

• Safety relates to the absence of critical situations that can create hazardous effects on the user

or/and the environment. In contrast to the two attributes defined before, reliability and availabil-

ity, that can be quantitative, safety is a qualitative attribute and the amount of safety in a system

depends on its purpose. This attribute is required mostly in safety-critical systems where the hu-

man life or the environment in case of failure can be affected as a human injury, loss of life, or

environment disaster [17]. To develop a safety system it is necessary taking in consideration the

safety feature from the beginning. Also software and hardware solutions need to be developed with

inextricably intertwined to achieve the attribute safety. Furthermore, it requires special attention in

interfaces because they are the first contact to the environment and the users [28].

• Confidentiality limits the distribution of unauthorized data or information. To achieve confidential-

ity, the system applies restrictions in information access and in its disclosures to protect personal

privacy and proprietary information [29]. Confidentiality is required in case of systems that allocate

sensitive information.

• Integrity is the ability to limit access and changes to specific data or information. When integrity

is required, the system needs to be protected against unauthorized modification or destruction of

information. It also includes the trustiness of information authenticity [29].
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• Maintainability refers to the possibility of repairs or modifications to the system. The IEEE stan-

dard computer glossaries define maintainability as the easiness that a system or a single component

can be modified to correct faults, performance improvements, or other attributes. It also can be

adapted to a different environment. The purpose of these modifications is to make the system

capable of performing its expected functions [23].

The search for a reliable system that includes dependable attributes has been increasing. Reliability

and availability are the most required to achieve fault tolerance in industry systems [25]. And in cases

where security is a requirement, dependability and security share attributes such as availability, confiden-

tiality, and integrity [19, 20]. In the Internet of Things (IoT) environment, the need for dependable and

secure devices is a current demand, mostly due to the number of devices connected to the Internet. For

example, IIoTEED is an architecture to achieve attributes like availability, confidentiality, integrity, safety

between other industrial IoT edge devices [30]. The authors propose a Trust-Zone-based (by Arm) archi-

tecture with two different sides, the security world side and the non-secure side. With this system, the

critical processes can be isolated from the non-critical processes, and enhance the industrial IoT devices

with a trusted execution environment.

2.1.3 Means to achieve dependability

There are different methods, techniques, and tools to develop dependability systems. The main de-

pendability means are divided into two classes: (1) the dependability procurement, that includes fault

prevention, fault tolerance, and (2) the dependability validation, that includes the last two dependability

means, fault removal and fault forecasting [13, 14]. The dependability procurement is the means to endow

the systems with capabilities to deliver the correct service, whereas the dependability validation aims to

reach confidence in the capabilities mention before.

• Fault-prevention aims at preventing the injection or occurrence of faults in a system. To achieve

that, there is a set of methodologies that will mitigate the fault occurrence, if they are applied during

the development phase, more precisely in the specification, design, implementation, production,

and test stages. These methodologies are mostly quality control techniques for software and hard-

ware development. In hardware development, it is important to follow design rules, to review the

design, to screen component, and to test the components and the system in order to remove specifi-

cation faults and defective parts from the system, or shielding the weakness parts in the system. In

software, the use of methodologies or techniques such as structural programming, modularization,

the use of strongly-typed programming languages, and formal verification. Also, the development

of procedures to apply maintenance and to use the system are a good way to reduce the fault

occurrence [17, 19].

• Fault tolerance aims the system to continue delivering the correct service in case of an active

fault [31], to achieve this, a fault tolerance needs to include error detection and system recovery
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mechanisms. There are different mechanisms for both, detection and recovery, as shown in Figure

2.7. This means that achieving dependability is one of the main characteristics of the project

addressed in this dissertation, and it will be more detailed and well-defined in section 2.2.

• Fault-removal can be applied during the system development, as well as during system lifetime.

As its name suggests, fault removal is the means to remove or to reduce faults in a system. Also,

it includes the severities reduction from faults [19]. During systems development, fault removing

is achieved by verifications, diagnosis, and correction. And in the system lifetime is achieved with

corrective or preventive maintenance.

• Fault-forecasting aims to predict the system behavior by estimating faults that can be present

in the system, the possibility of fault occurrence in the future, and its consequences [15, 17, 19].

There are two ways to evaluate the system in order to predict the system behavior and the fault

occurrence or activation: (1) the qualitative evaluation that try to recognize and classify all the

failures modes or events that might happen and leads to a failure situation, and (2) the quantitative

evaluation which, in probability way, estimates if the dependability attributes are satisfied according

to with the expected.

The system development and its lifetime have an important role in answer the question: What kind

of means to achieve dependability is necessary? Fault prevention is only applied during the development

phase. In contrast, fault tolerance only works during the system lifetime, although it is introduced in the

system in the development phase. Fault removal can be applied during the development phase with tests

and system debug, but also during the system lifetime with maintenance. Finally, fault forecasting can be

used in the two phases: the development phase and the system lifetime phase.

To achieve a dependable system, sometimes the use of only one dependability means, such as fault

tolerance is not enough, and depending on the environment and its expected lifetime, it is necessary to

adapt and to use more than one dependability mean. However, during this project, only fault tolerance

was considered to achieve a dependable system, which will be described below, in section 2.2.

2.2 Fault tolerance

As explained above, in subsection 2.1.3, the purpose of a fault tolerance system is to continue deliv-

ering the correct service in case of an active fault, and so preventing that an error caused by an active

fault changes the system behavior to an incorrect service. Figure 2.7 (from [19]) depicts the methodolo-

gies used in fault tolerance, and normally, the two key bases functionalities that support fault tolerance

techniques are error detection and system recovery[19, 29].

Error detection aims to detect the error and to identify it before the system delivers an incorrect service.

There are two main strategies of error detection, the concurrent detection, and preemptive detection:
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Figure 2.7: Fault tolerance mechanisms.

• Concurrent detection - the error detection mechanisms execute in parallel with the normal sys-

tem delivering;

• Preemptive detection - in this case, to executes the error detection mechanisms, the system

suspends its system delivering and verifies if there are latent errors and dormant faults.

The second functionality, system recovery (or simply recovery), uses different methodologies to remove

detected errors, to remove activated faults that may be activated again, and to restore the system to a

state without detected errors. To achieve these results, recovery mechanisms has error handling and fault

handling:

• Error handling - the objective of this technique is to remove detected errors and to restore the

system integrity with one of the three techniques:

• Rollback - this technique restores the system to a previous state without detected errors

which is saved at the beginning of the execution or during the execution every time that the

system reaches a checkpoint;

• Rollforward - in contrast to rollback, the rollforward restores the system to a new and known

state without detected errors;

• Compensation - this technique uses enough redundancy, in order to make the system

capable of transmitting correct values to the output or interface, also known as error masking.
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• Fault handling - it aims to remove faults that can be activated again and may propagate to failure.

There are four basic techniques that can be mixed to achieve the fault handling goal:

• Diagnosis - localization, and categorization of faults that can cause errors;

• Isolation - turn activated faults in dormant faults with a physical or logical exclusion, avoiding

the participation of component with faults in system behavior;

• Reconfiguration - change the system in order to use spare components or allocate the

tasks from the faulty component by others;

• Reinitialization - this can be achieved by a system reset, leading the system to integrity and

known state or by a system update in the configuration.

There are different ways to develop a fault tolerance system. During the development phase, it is

necessary to specify the dependability attributes that are important to achieve. These choices lead to

different error detections and recovery methodologies.

Typically, fault tolerance systems use redundancy, which allows applying different techniques to er-

ror detection, and in almost techniques, redundancy is necessary to recover the system as detailed in

subsection 2.2.1.

There are different strategies to develop fault tolerance systems [17, 19, 29]. Essentially, fault toler-

ance is achieved by using error detection mechanisms with a system recovery technique. Some examples

of strategies to develop fault tolerance are:

• Checkpoint and restart - this strategy uses checkpoint over the execution to call or to apply error

detection mechanisms and in case of error, the system restarts.

• Checkpoint and recovery - the checkpoint follows the same methodology mentioned above, but

instead of a system restart, it restores the state to integrity and knowing state. The recovery can

be a rollback or rollforward. Figure 2.8 shows this type of strategy with rollback to develop a fault

tolerance system.

• Masking and recovery - in contrast to the other mentioned strategies, this one uses compen-

sation to mask errors instead of checkpoints to detect errors. Error masking always has the same

time overhead, and it is shorter than the error detection. But to apply compensation, it is necessary

triple or multiple redundancies and a voting system.

In general, all the strategies for fault tolerance systems are described above except for adaptations

from them. The strategy to develop the fault tolerance system depends on the system requirements. The

use of checkpoints creates a time window between them, and in case of error, the duration from the error

until system recovery varies with the distance between checkpoints. Also, if the checkpoint is placed in a

bad location, in case of error, it can propagate to a system failure. Besides that, the use of system restart

in case of error may not be desired, depending on system requirements.
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This dissertation work uses the fault tolerance strategy depicted in Figure 2.8. This strategy uses

checkpoints to apply the error detection methodology and rollback to system recovery.

Figure 2.8: Fault tolerance strategy, error detection with system rollback recovery.

After the system start-up, saving of the system context is needed in order to have an integrity state

in case of a rollback is executed. The system continues its normal execution until reaching a checkpoint.

After the checkpoint, the system uses its error detection mechanisms to verify its own state. In case of

error, a rollback is executed. Otherwise, the context of the system is saved and the system continues its

normal execution.
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2.2.1 Redundancy

The main way to achieve fault tolerance is the use of redundancy [25]. There are different ways of

redundancy, and it is possible to use more than one type of redundancy to achieve better results in fault

tolerance. Moreover, redundancy techniques are used since the very beginning of the computer science

to leverage fault tolerance capabilities, based on the repetition of digital logic or component [2], to the

repetition of program execution [1, 18, 32, 33], or even the repetition of an entire system [34, 35, 36].

One function of redundancy in fault tolerance systems is error detection. The redundancy allows the

system to compare results from multiple copies of components, modules, or software [8]. An error leads

to a failure state if the results from the copies do not match.

There are four different key types of redundancy to achieve fault tolerance, and they can be intercon-

nected in the same system in order to get a better error detection ratios. The four types of redundancy

are:

• Hardware redundancy - the main purpose of using hardware redundancy is to have two or

more identical or similar copies of the same hardware component, where the copies can acquired

the same values in the input interface in order to compare the output values between copies and

enabling error detection in case of different values from the components [12].

Also, according to Pierce’s studies [2], the use of redundancy for fault tolerance systems is highly

efficient in case of single fault presence.

Unfortunately, the use of hardware redundancy may overload the system in different ways, such as

weight, size, power consumption, cost, between others [17]. During the development phase, there

are choices as the quantity of redundancy as well as its location in the system that can reduce or

increase the weight, the cost, among others. Redundancy techniques may be easily adopted in

several systems, however, they are not preferred in aero-space applications due to size and weight

costs.

Hardware redundancy splits into three types: passive, active, and hybrid hardware redundancy.

• Passive redundancy - it uses redundancy in order to masking faults instead of detecting it

without a system or a user interaction. Passive redundancy achieves fault tolerance without

interrupting the system. It is a desired feature for the system where suspending of system

delivering or reparation during runtime is undesirable, as a brake system in a car, or an

aircraft system control, or even a heart pacemaker [17].

Some examples of passive hardware redundancy are the modular redundancy with three

or more copies of the hardware, knowing as TMR and n-modular redundancy, respectively.

These ones includes a voter system to compare the output and to decide the correct value

with majority consideration for the output values [25].
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• Active redundancy - primarily, this fault tolerance technique uses hardware redundancy to

detect the faults or errors in the system and to restore the system to a normal state without

detected errors. To perform this kind of fault tolerance, the system stays out of the normal

state for a period of time to verify the existence of errors, and, in case of an error, the system

restores itself to an integrity state. It is necessary to take this into consideration during system

development. The three main active redundancy techniques are Duplication With Comparison

(DWC), standby, and pair-and-a-spare.

DWC, as depicted by Figure 2.9 from [17], is the most basic form of an active redundancy that

consists in comparing outputs from two identical modules using a comparator, for example

in this dissertation the modules are the processors, but they could be memories, hardware

modules, among others. If the output values from the modules do not match, the comparator

signalized that an error is detected. The DWC issue is its detection capability since it only

Figure 2.9: Duplication with comparison.

detects one module error, but does not know what is the faulty module. If the two modules

fail in the same way and they generate equal outputs, the comparator will see the occurrence

as a correct one.

The second basic active redundancy hardware is standby redundancy which uses n identical

modules, each module includes an error detection unit, and all modules are connected to

a switch monitor that controls and selects the module to be active. In case of an error in

the active module, the switch changes the active module to another in order to generate the

correct output. There are various applications with this type of active hardware redundancy

[37]. An advantage of this method is the easiness of maintenance since it allows the system

to be updated or repaired in a module during the execution of another.

The last basic active redundancy hardware is the pair-and-a-spare which uses and combines

the two techniques mentioned above, DWC and standby redundancy. The scheme is similar

to standby redundancy, but, it uses two active modules instead of one active module. This

way, it detects the faulty module and changes it to the other one.
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• Hybrid redundancy - this type of redundancy incorporates the other two types, the passive

and active redundancy. It is used predominantly in safety-critical application because it lever-

ages the advantage of both passive and active redundancies. Self-purging redundancy and

N-modular redundancy with spares are the main techniques used in hybrid redundancy [17].

• Information redundancy - it is the group of techniques to achieve fault tolerance using code

techniques [17]. There are many information redundancy techniques, but one of the most famous

and older way of information redundancy in computer science that is still in use today [38], is the

parity-code [39]. It allows to detect single-bit error and an odd number of multiple-bit errors by

using an extra bit. Although parity-code can only detect and cannot correct errors in bits, there

are adaptations from the first implementation that can detect and localize errors. This allows the

system to correct the single- or multiple-bit errors [39, 40]. There are more ways of information

redundancy such as linear codes, cyclic codes, unordered codes, and arithmetic codes [17].

• Software redundancy - this type of redundancy is used at different levels, such as functions,

processes, or even system level. It consists of two classes, the single- version and multi-version

[17]. The single-version uses techniques for error detection and recovery in a software component

or system. The multi-version uses design diversity, explained below in subsection 2.2.2, and it

applies different versions of software to do the same task, in order to reduce the probability of

having common faults. Typically, the two classes adapt the hardware redundancy techniques to

software redundancy. There are various solutions in state of the art: (1) the use of multithreading

to get fault tolerance in systems against transient hardware faults [18] by running similar program

copies concurrently in independent threads to obtain a better coverage in error detection; (2) another

solution uses aspect-oriented programming to performs fault tolerance systems [31], which allows

to apply fault tolerance at thread level to real-time embedded systems using a framework in order

to reduce the effort during the system development; and (3) there are other solutions that use

redundancy at the process or program level such as [32, 33].

• Time redundancy - it uses time as a resource to allows systems to be fault tolerance when other

resources such as size, weight, and others are limited. This type of redundancy repeats the same

task and saves the task results to compare and detect errors. Time redundancy is accurate and

efficient when the system is affected by transient faults. When integrated with encoding technique,

fault tolerance capabilities for permanent faults are achieved. Due to permanent and transient

fault detection, the system becomes able to distinguish what kind of fault occurs in terms of fault

persistence [17]. Some fault tolerance systems run the same program code multiple times and

compare the results [32]. Alternatively, Kottke uses a lockstep technique with two cores which uses

a delay of 1.5 clock cycles between the cores [35]. This way, the author achieves time redundancy

in another way.
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There are multiple solutions that use a combination of the redundancy types, for example, the com-

bination of time and information redundancy [38], to achieve a fault tolerance system against transient

faults with less power consumption and a better recovery time vs. an exclusive information redundancy

system. Another solution uses the combination of software and information redundancy [32] to run sim-

ilar program copies under the same processor. This kind of system is a good option for fault tolerance

against transient faults, also against some types of permanent faults. Another example, a fault tolerant

RISC-V softcore [41], it uses Multiple-Modular Redundancy (MMR) with Hamming codes [39] as an Error

Correcting Code (ECC) mechanism to integrate hardware redundancy with information redundancy. And

the last example, the combination of hardware and time redundancy [35], uses hardware redundancy with

DCLS to run two copies of the program, achieving time redundancy with a delay of 1.5 clock cycles.

2.2.2 Design diversity

A fault tolerance system that uses redundancy-only to achieve dependability attributes has a lack of

fault tolerance against faults affecting redundant modules at the same time. These type of faults cause

failures knowing as CMF [42, 43] which lead systems to failure because all the modules that are affected

may fail, making harder the error detection or the system recovery. One of the best ways to protect fault

tolerance systems of CMF is the usage of design diversity [43, 44].

Design diversity is achieved by using different designs in the redundant modules applied to multiple

levels of hardware, software, or information [45]. For example, in hardware, a system can acquire design

diversity by using different components to do the same function. On the other side, the use of different

programs, algorithms, programming languages, or even data structures to save the same data are exam-

ples of design diversity in software and in information techniques. When a fault tolerance system uses

redundant software modules following the multi-version technique approach, typically, design diversity is

applied between redundant software modules [17].

However, a trade-off between the quantity of design diversity is required during the development phase,

and as the higher diversity a system acquires, the less stable it will be, but maybe the system is more

resilient [46].

2.2.3 Lockstep technique

The main idea of a lockstep system consists of executing the same program on different proces-

sors, comparing constantly their generated outputs. If the outputs match, the execution follows normally,

otherwise, at least one error occurred in the system. The principle is similar to DWC, TMR, or n-modular

redundancy, depending on the number of replicated components, however, it adds a recovery mechanism,

and sometimes a checkpoint system.

Ozer characterizes lockstep in three types, shown in Figure 2.10 from [8]: (1) system level, (2) sub-

system level, and (3) Central Processing Unit (CPU) level.
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Figure 2.10: Three types of lockstep in computer systems.

Lockstep at system level replicates core, cache and memory. Also, the input is replicated in the

Input/Output (I/O) interface, and the outputs are compared through a checker entity. The lockstep at

sub-system level replicates the core and cache, and the input and output have the same management as

the system level, while at the sub-system level the main memory is shared between cores. Finally, the

CPU level only replicates the core, and the output from the cores is compared in the checker.

Lockstep mechanisms can be implemented in a tightly- or loosely-coupled approach. In a tightly-

coupled approach, the comparison is performed in each system clock. In a loosely-coupled approach the

comparison is periodically or it is through a checkpoint feature [47]. When comparing both approaches,

in terms of the error detecting time, a loosely-coupled approach performs worse, which makes the error

to be propagated during more time. However, it offers less overhead in execution time.

When the system uses Dual-Modular Redundancy (DMR), the system is a DCLS. If the number of

replications in the system is more than two, it is a MMR, with the specific case of three copies known as

Triple-Core Lockstep (TCLS).

2.2.3.1 Error detection

In lockstep systems, the error detection is performed by comparing the values output from each

processor at a certain time. However, the way these values are compared depends not only on the number

or processing cores but also on the approach that is adopted, i.e., loosely- our tightly-coupled. DCLS can

detect that an error occurs, but it cannot know the core with the error [48]. Then, in case of error detection,

both cores stopped and signalized that an error exists. In MMR implementation, it can detect and disable

the core that is at an error state and signalized it. This allows the system to continue the execution and

apply the system recovery in parallel.
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2.2.3.2 System recovery

When the system receives the error signal, its subsystem recovery also depends in its number of

redundancy. In the DCLS case, the system recovery applies a rollback or a rollforward to a state of

integrity in both sides. In contrast to the MMR implementation, the system recovery is only applied in the

core in error state.

2.2.4 Fault tolerance techniques

This subsection provides, in the end, an overview of the typical fault tolerance techniques and com-

pares them in a qualitative approach in different characteristics, such as redundancy, execution time

overhead, fault coverage, and fault correction.

Before the overview analyses, it is important to clarify the technique classification. Azambuja divides

the fault tolerance techniques into three groups [49]:

• Software-based techniques - this group of techniques is characterized by the use of software,

time and information redundancy to develop error detection or system recovery for system program

execution, and typically they are applied over the program code.

The advantages of software-based techniques are their flexibility for implementation or modification.

And some techniques have error correction, and do not need hardware adaptations.

The use of software-based techniques means more processor execution time and overhead in mem-

ory that leads to the main issue of the performance degradation. Another problem in software-based

techniques to achieve fault tolerance is the inability of the error detection system to detect faults

when a fault in hardware reaches the program execution, but the system sees the fault as a false

positive error.

• Hardware-based techniques - these techniques add hardware redundancy or time redundancy

to fault tolerance systems. The time redundancy used in these techniques is the one applied directly

in the hardware (see the clock delay example inside the time redundancy topic in subsection 2.2.1).

An advantage face to the other techniques are their high fault coverage, their fast detection, and

implementations do not use software adaptation. Hardware redundancy is a large part of hardware-

based techniques. DWC and TMR are the mains techniques in this group.

• Hybrid techniques - the last group of techniques integrate both techniques described above in

the same system, i.e., the hardware-based technique with the software-based technique. This

combination allows systems to be more fault tolerant (higher fault coverage from the hardware-

based techniques) with low cost and smaller solutions (from software-based techniques).

The biggest advantage of hybrid techniques is the possibility to get the best from both hardware-

and software-based techniques. This advantage also brings bad features (normally, the same bad
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features from hardware- and software-based techniques) to the hybrid techniques. However, these

negative features are smaller than when the system is only hardware- or software-based.

Some examples of hybrid techniques are derived from hardware-based techniques and originates

hybrid techniques such the DCLS and the TCLS.

2.2.4.1 Fault tolerance techniques overview

Table 2.2 includes a panoply of the main fault tolerance techniques. It details in a qualitative way the

set of techniques accordingly to different characteristics, such as type and area overhead from redundancy,

execution time overhead, and fault coverage.

The first three techniques DWC, TMR, and n-modular redundancy, use only hardware redundancy

and normally it provides a high fault coverage. The increase of redundancy also increases cost, size,

and weight. In contrast, the time overhead during execution is low compared with other techniques. The

advantage of TMR and n-modular redundancy techniques compared with DWC is the error masking feature,

but to achieve it, these techniques need more than two modules in the system. There are some variations

of TMR, for example, the Local TMR (LTMR), where only flip-flops in FPGA are triplicated, or the Global TMR

(GTMR) that triplicates all the system modules, even the clocks [50]. Other implementations use TMR in

the most sensitives components, for example, triplication of only the memory [51], or in the configuration

engine, responsible to reconfigure the soft-core in an FPGA [52].

Single- and multi-version techniques have a high execution time overhead, and their fault coverage is

not as high as the hardware techniques. These types only use extra memory for fault tolerance algorithms

code or extra diversity code. Time redundancy techniques do not have area overhead, but they have a high

level of execution time overhead, and this overhead is proportional to the number of time redundancy in

the system. Parity code and its adaptations are a good option to use in memories. The extra area used is

minimum compared to hardware techniques. However, those techniques that use information redundancy

have low fault coverage. If the systems need fault tolerance, and there is no possibility of adding hardware

redundancy, the use of software techniques is a good option. For example, Duplex Multiplexed in Time

(DMT) [53] achieves fault tolerance by combining software and time redundancy. This solution does not

use extra hardware and in contrast, it incurs a high execution time overhead.

The derived technique DCLS from DWC has a similar size to DWC, a bit higher than two, because, in

addiction to the dual-core architecture, it also needs a comparator system. This system at hardware level

uses the same mechanisms of a DWC, and thus takes the same advantage, higher fault coverage. On the

other hand, the software system recovery add some overhead in execution time in case of error. There are

various solution that uses DCLS [26, 35, 36, 47, 52, 54, 55, 56], mainly because of its high fault coverage

and reduced size, weight, and cost compared to TMR or N-Modular redundancy techniques. Moreover, it

is always preferable to use DCLS instead of DWC due to its software system recovery.

When the system includes a TMR at core level, e.g., a TCLS [57], the execution time overhead is low

compared to the DCLS, and if an error occurs, the system can recover one of the cores while the other
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two cores mask the error. If the size, weight, and cost is not a restriction to achieve fault tolerance, TMR

is a good solution. It also has a high fault coverage and low overhead during time execution.

Finally, to cover CMF, the last technique combines design diversity with DCLS with the advantage of

very high fault coverage with a similar area overhead DCLS. When the design diversity is applied at core

level, all types of redundancy will be used. This leads to a bigger effort during the development phase

because it is necessary to synchronize both cores. The information and time redundancy is achieved

by using two different cores with different ISA, that uses different data structures, registers, instructions,

among others. Despite its development effort, this solution is the best solution to fault coverage. In case

of low execution time overhead demand, this solution can be incremented to a TCLS with design diversity,

at the cost of the development effort.

Table 2.2: Fault tolerance techniques overview.

Technique
Technique Redundancy Execution Fault
Group Type (*) Area Overhead Time Overhead Coverage

TMR HW-based H ∼3x Low High
N-Modular Redundancy HW-based H >3x Low High
DWC HW-based H ∼2x Medium High
Single-version SW-based S - High Low
Multiple-version SW-based S - High Medium
Time Redundancy SW-based T - High Medium
Parity Code SW-based I - - Low
Parity Code Adaptations SW-based I - - Low
DMT SW-based S,T - High Medium
DCLS Hybrid H,S ∼2x Medium High
TCLS Hybrid H,S ∼3x Low High
DCLS + Design Diversity Hybrid H,I,S,T ∼2x Medium Very High
(*)Type of redundancy: H - Hardware redundancy; S - Software redundancy; T - Time redundancy; I - Information redundancy

Finally, some consideration and notes about fault tolerance techniques are:

• Baumann refers that lockstep mechanisms are a good solution for fault tolerance systems against

SEE [4];

• If the cost and performance are the most important criteria, then TMR is the best choice for fault

tolerance hardware technique [2];

• If the availability is not the main concern, then DWC or DCLS with design diversity is a good option

for fault tolerance system. It is smaller than TMRs solutions and it has a very high capability for

fault detection.



Chapter 2. Background and State of the Art 27

2.3 Related work

This work is part of a project that includes two different systems. However, they share the same

fault tolerance methodologies and techniques [58, 59]. The project aims the development of a fault

tolerance system using redundancy and design diversity at the core level. The redundancy is defined by a

DCLS system with two different core architecture in order to achieve benefits from redundancy and design

diversity. The most significant difference between systems is the platform and the core architecture. The

system developed in this dissertation has a hard-core Arm Cortex-M3 and a soft-core Mi-V by Microsemi

(RISC-V-based), both a 32-bits Reduced Instruction Set Computer (RISC) processor. In contrast, the other

system includes a 32-bits hard-core Arm-A9 and a 64-bits soft-core lowRISC (also RISC-V-based).

So far, to the best of the author’s knowledge, there are no similar implementation beyond those

mentioned above [58, 59]. However, there are important works in different fields that supports this project

for fault tolerance in a heterogeneous architecture (subsection 2.3.2) or lockstep systems (subsection

2.3.3). Also, there is a project that can complement this work in order to make it more consistent, such

as the fault tolerance memories, mentioned in subsection 2.3.1, where they can be attached in parallel to

this project to turn the memory system a fault tolerance one because it is a weak point in this work.

2.3.1 Fault tolerance on memory

Verhage proposed a scheme with two different levels of fault tolerance for cache structure for a RISC-

V soft-core [60], one of them provides a light protection that uses distinct error detection and correction

techniques depending on the number of bits. This solution, in order to achieve the low protection level,

uses the Hsiao code technique [61] for Single Error Correction (SEC) and Double Error Detecting (DED)

when the number of bits is larger than a byte, or it uses a parity bit and a write-through policy for exactly

a byte. Only this level of protection was implemented and verified. The light-weight protection reduces

performance when a fault occurs. However, the system is fault-tolerant, and the results are coherent with

the simulation and the FPGA behaviour. The other protection level, the high level one, just has the design

description, and by the lack of data results, it is not possible to implement directly without a development

effort and because it was not examined for this project.

Although this subject is out of the dissertation scope, it is important to mention that a system to be a

complete fault tolerance system, all the modules need to be verified in order to block the error propagation

in case of an error appears. The example above shows an example to protect the memory at different

levels. Solutions like that one can be integrated into this dissertation project, making the system more

robust and dependable, either at the core level or either at the memory level.
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2.3.2 Heterogeneous architecture

There are solutions that uses heterogeneous architecture in order to achieve multiple proposes, such

as energy efficiency [62], performance [59, 63], between others, and also error detection [64].

The architecture proposed by Ainsworth is composed of a main high-performance out-of-order core

that executes in parallel with small multiple checker cores [64]. The mechanisms to detect errors consist

in verify application fragments independently in each small checker core while the main core executes the

entire application. The heterogeneity is applied with partial replication of the main core with the multiple

checker cores, and neither in the DCLS, nor at ISA level. However, the architecture achieves low overhead

in area, performance, and reduced energy consumption. Despite the extra effort during the development

phase, this type of solution supports this dissertation in the sense that heterogeneity can bring better

performance to systems.

2.3.3 Lockstep systems

Many fault tolerance solutions exist in the literature, either at academic researchs or at industrial

applications. There are Commercial Off-The-Shelf (COTS) solutions that use built-in lockstep to aims fault

tolerance systems [65, 66], also there are hard-cores that makes it possible to operate in lockstep mode

[67, 68, 69, 70, 71, 72]. Some of this cores are used in the lockstep solutions that uses hard-cores to

develop fault tolerance systems [6, 26, 34, 36, 47, 54, 57, 73, 74]. In contrast, other solutions uses FPGA

to build lockstep systems [35, 52, 75], offering freedom to choose and adapt if necessary the cores, and

to develop the extra hardware necessary to apply the lockstep between cores.

The solutions provided by [26, 34, 75] use a DCLS following a tightly-coupled approach. The biggest

difference between the three solutions is the delay clock cycles between cores. In [26] there is a delay of

2 clock cycles between the cores Arm Cortex-M7. Also, in [35], a DCLS tightly-coupled implemented in

an FPGA with two SPEAR soft-cores [76], includes a delay of 1,5 clock cycles between cores. This time

redundancy brings more performance in error detection, mainly against to common-mode faults compared

to solutions without time redundancy.

In lockstep implementations [6, 47, 54, 73], the authors use DCLS with hard-core, but all the imple-

mentations include an FPGA, mainly because they use a loosely-coupled DCLS approach. These imple-

mentations use the FPGA to implement custom modules to support the synchronization and comparisons

between cores.

The architecture in [52], shown in Figure 2.11 (form [52]), includes a DCLS with two soft-core in

the FPGA side (both processors are MicroBlaze). The architecture also includes a comparator in order

to detect errors and a multiplexer to connect the output from one of the soft-core in the system output.

Lastly, this system uses TCLS with three PicoBlaze soft-core in the configuration engine The reason to use

TCLS is claimed by the importance of the configuration engine to run without interrupt and errors. Both
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lockstep systems are tightly-coupled and the system is implemented in an FPGA mainly because of the

core’s nature.

Figure 2.11: Fault tolerance architecture for FPGA with soft-core DCLS and TMR in configuration
engine.

In [57], a TCLS tightly-coupled between three Arm Cortex-R5 is used due to the dual-core safety-critical

nature of the Arm Cortex-R5, each one includes hardware mechanisms to deal with errors, and it includes

inside of each unit a DCLS. In contrast to DCLS solutions, this solution has a recovery system that executes

without software interaction.

Figure 2.12 (from [77]) shows a fault tolerance architecture that triplicates all logic, adds multiplexers

and corruption detectors before each register, and adds voters after each register, to achieve the fault

tolerance system [77]. This work, due to TMR and the voting system allows detection and masking of

the error until the system eliminates it. Also if a SEU affects the combinational parts and the corruption

detectors do not match between them, an error is alerted and the system starts an FPGA reconfiguration

to repairs the system.

Figure 2.12: Fault tolerance soft-core architecture for FPGA with triplication of all units.
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In [64], it is the only in the panoply of solution analysed here, that uses design diversity in lockstep,

but this is only a proposed solution without an implementation. The proposed solution aims a high perfor-

mance technique for fault tolerance by using a new way of parallelism in the state of the art.

Table 2.3 summarizes the main lockstep implementations in the literature, showing architectural char-

acteristics such as hard- or soft-core and if it resorts FPGA fabric. It also shows the type and the redundancy

dimension of the lockstep. Lastly it informs the use of design diversity or not in the system.

Table 2.3: Lockstep related work overview.

Architecture Lockstep Design
Core FPGA Type (*) Redundancy Diversity

Klecka et al. [34] hard-core No T DCLS No
Abate et al. [6] hard-core Yes L DCLS No
Yiu [26] hard-core No T DCLS No (**)
Kral et al. [47] hard-core Yes L DCLS No
Oliveira et al. [54] hard-core Yes L DCLS No
Sun et al. [73] hard-core Yes L DCLS No
Kottke and Steininger [35] soft-core Yes T DCLS No (**)
Cornejo et al. [75] soft-core Yes T DCLS No
Pham et al. [52] soft-core Yes T DCLS and TCLS No
Iturbe et al. [57] hard-core No T TCLS No
Chaudhry and Tremblay [74] hard-core No T MMR No
Ainsworth and Jones [64] - - L MMR Yes (***)
(*) T - tightly-coupled; L - loosely-coupled.

(**) Lockstep implementation includes time redundancy with clock delay.

(***) Design diversity at size level.

2.4 Summary

This chapter introduces the necessary background to understand dependability systems, focusing

mainly on fault tolerance technique, one of the main means to achieve dependability and ends with the

related work, listing some important fault tolerance solutions that use lockstep (Table 2.3).

The information along this chapter allows to retain some important notes: (1) The use of redundancy

in a fault tolerance system is not enough for safety-critical applications [50], and combining different

methodology is a solution to get more performance in fault tolerance systems; (2) The lack in the state of

the art of fault tolerance system using hardware redundancy and design diversity opens an opportunity to

explore it. Although the development effort to build these systems, it allows to achieve a fault tolerance

with a very high fault coverage, mainly against common mode faults; (3) Taking into account the solutions

above and the techniques in Table 2.2, the development of a DCLS with design diversity at core level is a

good option to explore in fault tolerance environment. (4) With the lockstep related work analysed here,

see Table 2.3, there is no implementation with design diversity, and the only solutions that are developed
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against CMF are the ones with time redundancy. However, the delays in the two implementation [26, 35]

may not be enough against CMF due to its short delay.



3. Platform and tools

This chapter identifies the platform and the hardcore MCU (section 3.1), and tools used throughout

the development of this work (section 3.2) which shows a list of soft-cores RISC-V-based, and it explains

the selected soft-core for this project.

3.1 Reconfigurable technology

The main goal of this dissertation is to implement a DCLS under a heterogeneous architecture at core

level, which implies the usage of two different cores in the same platform. Moreover, FPGA technology

allows design diversity and it makes possible the deployment of customized hardware in order to achieve

the heterogeneous DCLS at core level. And when compared with ASIC implementations, FPGA, due to its

features such as reprogrammability enables fast prototyping at reduced costs [43].

FPGA technology enables the development of hardware that can be customized for a specific propose

[78]. In the context of this dissertation, FPGA can be used to deploy soft-cores, as well as modules to

support the DCLS system. There are several platforms that combines FPGA with MCU, and typically,

the platform allows the connection between the MCU and the remaining part of the Fabric FPGA. This

characteristic provides added value in term of development effort as it is possible to use the hard-core

MCU in the DCLS system. This way, the FPGA is responsible to include only one soft-core and the extra

modules to support the DCLS.

During the specifications of the project, the chosen core architectures are Arm and RISC-V. The other

work carried out in parallel with this one uses the ZedBoard with two Arm Cortex-A9 [59], to evaluate the

system in an alternative platform. The chosen platform for this dissertation is the Microsemi SmartFusion2

with one low-power hard-core Arm Cortex-M3, that fits with the desirable low-end characteristics.

3.1.1 Microsemi SmartFusion2

There are various project that uses Field-Programmable System-On-Chip (FPSoC) which combines

MCU and FPGA in the same platform. The Microsemi SmartFusion2 is an example of a FPSoC platform

used to implement hardware-assisted solutions [51, 63, 79, 80, 81] due to the fusion between the MCU

Arm Cortex-M3 and the FPGA fabric.

32



Chapter 3. Platform and tools 33

Figure 3.1 (from [82]) shows the Microsemi SmartFusion2 SoC FPGA, a platform which includes a

flash-based FPGA fabric and a hard-core Arm Cortex-M3 that can connect soft-peripherals (deployed in

the FPGA), through the Advanced Microcontroller Bus Architecture (AMBA) interfaces, Advanced High-

performance Bus Lite (AHB-Lite) or Advanced Peripheral Bus (APB). This platform includes some reliable

features, that can be used to make the fault tolerance system stronger in terms of dependability attributes:

(1) SEU-immune (Zero FIT FPGA configuration cells); (2) SEC/DED in the Cortex-M3 eSRAMs, the Double

Data Rate (DDR) memory controllers, and others peripherals; (3) buffers with SEU resistant latches in

the DDR bridges, in the instructions cache, between others; and (4) Non-Volatile Memory (NVM) integrity

check. Also, it includes various securities features that matches with the dependability attributes [82].

Figure 3.1: Microsemi SmartFusion2 SoC FPGA Block Diagram.

More than just leveraging a hard-core with low-end characteristics in the Microsemi Smartfusion2

platform, the Microsemi environment provides the Mi-V RISC-V ecosystem [83]. This ecosystem offers

RISC-V-based (soft-cores) Intellectual Propertys (IPs), and design resources to integrate them in their FP-

GAs. This environment meets all the requirements to develop the proposed fault tolerance system, and in

addiction, it is a valuable tool for this dissertation because it helps to reduce the engineering effort during

the implementation process.

The development of this project performed under the SmartFusion2 Security Evaluation Kit, that in-

cludes 90k Logic Elements (LE) and it includes all security and reliable features from SmartFusion2. The

board includes a 64 Mb SPI Flash memory, a 512 Mb low-power DDR, a Peripheral Component Inter-

connect (PCI) Express interface, a Joint Test Action Group (JTAG)/Serial Peripheral Interface (SPI) pro-

gramming interface, and a set of headers for SPI, General-Purpose Input/Output (GPIO), between other
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features [84].

Microsemi provides Libero SoC Design Suite for design and deployment under Smartfusion2 platform.

It includes a toolset to design, synthesize and simulate for SmartFusion2, it also integrate a firmware flows

for SoftConsole, an Integrated Development Environment (IDE) that provides development and debug sup-

port for Arm Cortex-M3, and RISC-V soft-cores from Mi-V ecosystem. The Microsemi Libero SoC Design

Suite allows the use of Hardware Description Language (HDL) to design and test FPGA peripherals/accel-

erators. It also provides a set of tools to simulate using Bus Functional Model (BFM), to emulate any type

of AMBA interface, leading to an effort reduction during the verification step.

3.2 RISC-V-based soft-core solutions

For implementing the DCLS system proposed by this dissertation, it was used a soft-core RISC-V

processor, mainly due to its free and open-source nature, as well as its impact in computer systems

environment.

RISC-V is a free and open-source ISA based in a RISC architecture, designed with a modular concept

with different extensions to be adapted to all type of applications and focusing mainly in modern devices

as cloud, mobile, embedded, IoT systems, among other devices. The ISA has been designed mainly for

32-bit and 64-bit architectures, although the RISC-V manual specifies a flat 128-bit address space [85].

More details about its extensions and characteristics can be consulted in [86].

RISC-V processors are in constant expansion since 2010 in both academic and industrial context

[87, 88, 89, 90]. One of the reasons why the RISC-V ISA has been impacting is its open-source feature

that allows to modify the core for a specific purpose, which originated the development of several soft-core

implementations such as: Rocket, BOOM, lowRisc, PULPino, PicoRV32, and Mi-V RV32.

• Rocket core uses the Rocket Chip Generator [90] that generates a synthesizable Register-Transfer

Level (RTL) general-purpose 5-stage in-order cores. It is a tethered processor as it demands for a

host environment for boot processing, i.e., a companion core that is usually present in the platform,

used to help in the execution of the Rocket core;

• BOOM core, also generated by Rocket Chip Generator, leverages an out-of-order architecture. Sim-

ilar to the Rocket core, BOOM core is a tethered processor [91];

• lowRisc core is an untethered soft-core based on Rocket core;

• PULPino is an untethered soft-core and an in-order one that allows configurations between 2- or

4-stages, but requires modifications to integrate an AMBA interface;

• PicoRV32 is an untethered soft-core which provides three variations and one of them includes an

AMBA Advanced Extensible Interface (AXI)4-Lite interface;
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• Mi-V RV32 soft-core includes three different variations that includes different AMBA interfaces. This

soft-core is also untethered and it is supported by Microsemi SmartFusion2 without any modifica-

tion.

Table 3.1 lists the soft-cores mentioned above, showing their differences at the processor level, avail-

able bus interfaces, ISA, and platform support. The soft-core selection depends especially in its teth-

ered/untethered nature and the support of an AMBA interface. Untethered soft-core is a preferable so-

lutions, because it does not demand for a extra host environment to boot the soft-core. And due to the

chosen platform, that includes a hard-core with a AMBA interface, if the soft-core also includes a AMBA

interface it reduces the development effort.

Table 3.1: List of RISC-V soft-core.

Core Untethered ISA Board Support (*) AMBA Interface
Rocket [90] No RV32G / RV64G No Yes
BOOM [91] No RV64G No Yes
lowRisc [92] Yes RV64GC No(**) Yes
PULPino [93] Yes RV32IMF No No
PicoRV32 [94] Yes RV32IMC No Yes
Mi-V RV32 [83] Yes RV32IMA(F) Yes Yes
(*) Implementation in Microsemi SmartFusion2 without any modification.

(**) Only supported for Microsemi polarfire.

Mi-V RV32 is the chosen soft-core due to its reduced development effort by supporting an AMBA

interface and the Microsemi SmartFusion2 support platform, it is also an untethered core, which means

that it does not need any host environment for the boot processing in contrast with Rocket and BOOM

core. The next subsection 3.2.1 explores the 3 different variations of Microsemi Mi-V soft-core.

3.2.1 Microsemi Mi-V

All the three soft-core variations that Microsemi Mi-V environment provides are untethered and all the

soft-cores include an AMBA interface, AXI or Advanced High-performance Bus (AHB). The three variations

are:

• Mi-V RV32IMAF L1 AHB - This version, is a soft-core based in the SiFive Coreplex E31 soft-core

(RISC-V standard RV32IMAF) and it includes two AHB interfaces, one for memory and other for I/O.

In the SmartFusion2, this soft-core can achieve a maximum frequency of 58.38 MHz [95].

• MIV RV32IMA L1 AHB - This soft-core is a Rocket core based with RISC-V standard RV32IMA.

As the version above, it includes two AHB interfaces and one for memory and other for I/O. In the

SmartFusion2, this soft-core can achieve a maximum frequency of 85.0 MHz [96].
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• MIV RV32IMA L1 AXI - This soft-core is also a Rocket core based with RISC-V standard RV32IMA,

but this version includes two AXI interface. In the SmartFusion2, this soft-core can achieve a

maximum frequency of 90.0 MHz [97].

All the cores requires the use of a memory controllers, provided by Microsemi IP cores, to reload the

instruction and data caches. The I/O interface by AXI or AHB requires another core to convert the AXI

or AHB signals to APB in order to use the peripherals provided by Microsemi IP cores and the hardware

accelerator developed. And in the soft-core that uses AXI it is necessary a converter with two stage (if the

implementation uses only Microsemi IP cores), an AXI to AHB conversion and an AHB to APB conversions.

The MIV RV32IMA L1 AHB is the chosen soft-core version, because it uses only one conversion, AHB

to APB, which is the AMBA interface to implement the hardware accelerator in Lock-V. In a future work in

can be used the Mi-V RV32IMAF L1 AHB without adaptations, but this soft-core has slower clock frequency

and uses more LE than the Rocket-based. Moreover, the extensions of this RISC-V core are used for low-

end implementation: (1) the “I” - base integer instruction set; (2) the “M” - standard extension for integer

multiplication and division; and (3) the “A” - standard extension for atomic instructions [86].

Figure 3.2 (from [96]) shows the soft-core MIV RV32IMA L1 AHB block diagram, a soft-core which

includes a JTAG interface for debug, an external interrupt interface, two AHB interface for memory and

I/O. It also includes a ECC feature through an SEC-DED interface for instruction and data caches.

Figure 3.2: MIV RV32IMA L1 AHB soft-core block diagram.
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3.3 Summary

The chosen platform for this project is the Microsemi SmartFusion2 that includes an hard-core Arm

Cortex-M3 with a directly interface AMBA to the FPGA fabric. This platform includes dependability fea-

tures that can be used to improve the fault tolerance system. Moreover, the hard-core embedded in the

SmartFusion2 presents low-power characteristic that fits with low-end focus of this dissertation.

The soft-core Mi-V RV32IMA with AHB interface is the chosen soft-core for this project due to the

AHB interface and the reduced LE utilization compared to the other AHB soft-core implementations from

Microsemi. Furthermore, its untethered characteristic and the board support without requiring any modi-

fication are taken into account during the core selection.



4. Lock-V Architecture

Themain goal of this work is the development of a fault tolerance mechanism and the core components

of a DCLS system with design diversity at core level leveraged by one hard-core Arm Cortex-M3 and a RISC-

V-based the soft-core Mi-V RV32IMA. Figure 4.1 depicts the proposed system architecture, Lock-V, which is

responsible to supports all the components of a DCLS system, core synchronization, output comparation,

error detection, and rollback features.

Figure 4.1: Proposed DCLS architecture, Lock-V.

Due to design diversity requirements, the Lock-V resorts two different processor architectures. Given
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so, this approach does not allow the error detection at instruction level. This can be overcome by imple-

menting checkpoints along the application execution flow, which can output specific data/register values

for the comparation. Moreover, this type of architecture, the DCLS, is an active redundancy which requires

a execution interruption whenever a checkpoint is reached, in order to apply its error detection mechanism.

The Lock-V is divided in two main modules: (1) the software module, and (2) the hardware module.

The hardware module includes the two different processors, the xLockstep accelerator that provides to the

system the DCLS capabilities, and all the interfaces to connect the cores with the xLockstep accelerator,

through memory mapped interface provided by APB3. The xLockstep architecture as well its submodules

are detailed in the section 4.1. The accelerator, the processors and their connections in the platform

Microsemi SmartFusion2 establish the architecture Lock-V, described in section 4.2. The software module

is responsible to compile and to produce the binary machine code for each core architecture from the main

application. This work also provides a framework in order to simplify the adaptation process of a normal

application to a DCLS application, as detailed in the next chapter 5. To provide these characteristics, the

module is composed by an API that details how the software uses the memory mapped feature to use the

accelerator. The section 4.3 presents the API that supports the accelerator.

4.1 xLockstep architecture

The xLockstep accelerator was developed under a modular design methodology, and written with ver-

ilog. The Figure 4.2 shows all the modules and interfaces combined to generate the xLockstep accelerator.

Figure 4.2: xLockstep architecture overview.
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The accelerator has four interfaces, two APB3, and two interrupt signals, one for each core. Inside

the top module is included all the modules to provide the DCLS capabilities, two APB3 interfaces, a timer,

a checker, a FSM, and a set of data storage.

The accelerator includes a set of control, status and data registers to allow the system to be controlled

and used from outside using registers handled by the cores through the APB3 interface. All the registers are

32-bits and they includes two read-only status registers, two write-only control registers, and four write-only

registers for each core:

• Control Register - Write-only register (Figure 4.3) that is responsible to control the system, and

is composed by 6 bits:

• bit_Enable, it enables the system when it is set, and it resets the system when it is clear;

• bit_SynchroX, it starts the synchronization when it is set and the necessary conditions are

met, and it finishes the synchronization and comparison when the bit is clear;

• bit_DataSel_X where X can be 0 or 1, indicates the number of data to compare, which can

varies from 1 to 4 according to Table 4.1;

Table 4.1: bit_DataSel_X selection according with number of data to compare.

Number of data to compare bit_dataSel_1 bit_dataSel_0
1 0 0
2 0 1
3 1 0
4 1 1

• bit_EnInterrupt, when this bit is set the system uses the interrupt interface showed in Fig-

ure 4.2. When xLockstep finishes the comparison the interrupt signal is activated until the

bit_SynchroX is cleared;

• bit_ErrorSolve is used to inform the accelerator in case of error that the error was fixed.

Figure 4.3: Control Register.

• Status Register - This register, Figure 4.4, is read-only, and it provides information about the

accelerator state. The register has the bit_busy to inform if the xLockstep accelerator is busy or
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not, the system is busy in the Synchro and Checker states. Also, the register has three others bits,

bit_stateFSM_X (X can be 0, 1, or 2) to indicate the actual FSM state. Every time that the FSM

state updates, the states of these bits are also updated;

Figure 4.4: Status Register.

• TimeOut Register - This write-only register used to load the timer module with the time out value

(see subsection 4.1.2 to understand the register utility);

• Error Status Register - This read-only register, Figure 4.5, provides information about the er-

rors status. If the data comparison gets a mismatch between data, the xLockstep uses the bits

bit_dataError_X to inform what dataX is corrupted. If one of the cores does not reach the check-

point within the allocated time as defined in the TimeOut register, then xLockstep will set the

bit_timeOut_CoreX, where X corresponds to the core that did not reach the checkpoint;

Figure 4.5: Error Status Register.

• DataX Register - Write-only registers, where X go from 0 to 3. These registers are used to compare

the specified data when a checkpoint is achieved. See subsection 4.1.3 to know more about these

registers.

The xLockstep accelerator has four different modules: (1) the FSM module that coordinates all the

others submodules; (2) the Timermodule is responsible to synchronize the cores; (3) the Checkermodule

is in charge of data comparison between the cores; and (4) the APB3 interface modules which provides

the communication between the cores and the xLockstep accelerator.
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4.1.1 Finite State Machine Module

The FSMmodule is responsible to manage the other modules. To achieve that, it uses the FSM showed

in Figure 4.6. The FSM has six states: Start, Idle, Synchro, Checker, Resume, and Error.

Figure 4.6: FSM to manage the xLockstep architecture.

On system-reset this module goes to the Start state. The Start state only changes to the Idle state,

and to change to Idle it requires that the two cores set the bit_Enable. If one of the bits bit_Enable is clear,

the xLockstep change to Start state.

When the xLockstep accelerator is in the Idle state, it updates the TimeOut value in the Timer module.

Both status registers are updated, and it is continuously verifying the Control register. If any change occurs

in the Control register, the xLockstep updates its configuration (for example, enable interrupt). If one of

the two bit_SynchroX is activated, the state change to Synchro state, this happens when one core reaches

a checkpoint and sets its bit_SynchroX.

In Synchro state, the xLockstep enables the Timer module to start a counter, and one of the next two

situations can occurs: (1) the other core reaches the checkpoint and set the bit_SynchroX into the time
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specified in the TimeOut value, and the state change to the Checker state, if no time out occurs; or (2)

the counter in Timer module reaches the TimeOut value, which means that the other core did not reach

the checkpoint into the specified time, and a TimeOut flag is set in the Timer module, leading to a state

change to Error state.

During the Checker state, the system will enable the Checker module, that compares the output from

both processors. If the outputs are not the same, the Checker module will set the error flag. At the end

of the comparison the Checker will set the endOfCheck flag. After the comparison, if there were errors in

the processor’s output, the FSM state changes to Error state, otherwise it will change to Resume state.

If an error happens in the data comparison, or if one of the cores do not reach the checkpoint within

the TimeOut value, the xLockstep changes to the Error state until both cores notify the xLockstep that

the error was fix through the bit bit_ErrorSolve (ErrorFix flag is equal to the logic and between the two

bits bit_ErrorSolve, one for each core) and that the synchronization is over through the bit bit_SynchroX

(Continue flag is equal to the logic not-and between the two bits bit_SynchroX, one for each core). If

Continues and ErrorFix flags are activated, the system changes to Idle state. During the Error state, the

xLockstep updates the Status and Error Status registers and if the interrupt is enable, the system sets the

interrupt flag.

In the Resume state, the system updates Status register and sets the interrupt flag in the case of the

interrupt being enabled. The system stays in this state until both cores clear the two bits bit_SynchroX in

order to set the flag Continue, if the flag Continue is enabled, the system changes to Idle state.

4.1.2 Timer Module

This module is responsible for synchronizing both cores, and in doing so, it includes a counter system.

This mechanism is activated when one of the processors reaches a checkpoint. Then the Timer module

is enable, and it starts the counter. If the counter reaches the TimeOutValue before the second processor

reaching its checkpoint, the module outputs a timeout error, otherwise no errors were found, the timer is

stopped, and the system follows its normal execution.

Figure 4.7 shows the architecture overview of the module in the subfigure 4.7a. It includes two

inputs apart from the clock and nReset inputs. The Enable input starts the counter when is set, and the

TimeOutValue, a input with 32-bit wide, is loaded by the first core that reaches the checkpoint, and it

is provided by the main system from the TimeOut register. It includes a output TimeOut, that signalizes

the occurrence of timeout situations. Also, it has a counter register to support the counter system. The

subfigure 4.7b shows the FSM that describes the module behaviour, and it is composed by three states:

• Reset state - in this state the counter value is zero. If the enable bit is set, the module changes to

the Count state. Also during this state the flag TimeOut is set to low;

• Count state - this state increments the counter at every clock cycle. The module stays in this state

until the counter reach the TimeOutValue (and it changes the state to TimeOut) or when the enable
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input is disabled (in this case, it changes to Reset state). During this state, the flag TimeOut does

not change its value;

• TimeOut state - when this state is reached, the flag TimeOut is set to high, and only changes to

Reset state when the enable input is disable.

(a) Architecture Overview (b) FSM

Figure 4.7: Architecture overview and FSM of the Timer module.

4.1.3 Checker Module

The Checker module compares the data from both processors, but it only compares four 32-bit reg-

isters at each execution. However, it is in this module that the system implements the error detection

capabilities. If any mismatch between the data occurs, the module signalizes it.

Figure 4.8 shows the architecture overview and the FSM that controls the module. The architecture

overview, in subfigure 4.8a, reveals the module inputs, apart from clock and nReset: (1) the Enable, that

starts the comparison; (2) the DataSelX is responsible to inform the number of data registers to compare

according with Table 4.1, and it is provided by the bits bit_DataSel_X from the Control register; and (3)

the Data_Core0 and the Data_Core1 that provide data for comparison. Also this module includes three

different outputs: (1) the EndOfCheck, which is the flag that informs the main system that the comparison

is concluded; (2) the ErrorDataX, which informs the system in case of mismatch between data, it has

four bits, one for each comparison, which is sent to the ErrorStatus registers; and (3) the SelectData, this

output is responsible to select data from both processors.

The FSM in subfigure 4.8b describes the module behaviour, which starts in the Idle state. During this

state, the outputs EndOfCheck and SelectDataX are set to zero when the the input Enable is activated the

state changes to the ErrorClean state, clearing the output ErrorDataX. The module stays only one clock

cycle in the ErrorClean state, and immediately changes to the Compare state. During this state, the first

data to be compared are already available in the Data_Core0 and Data_Core1 inputs. The Compare state

compares the input values, and changes the bit in ErrorDataX according to the compared data in case of

an error. The next state is the End state if the module finish all the data comparison (defined by EndOfData
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flag, this flag is set to high when the DataSelX is equal to SelectData) and it sets the EndOfCheck to high

and it stays in this state until the system disable the Checker module, otherwise, the next state is the

ImportData that increments the SelectData and imports the data from the DataX registers.

(a) Architecture Overview (b) FSM

Figure 4.8: Architecture overview and FSM of the Checker module.

4.1.4 APB3 Interface Module

In the system there are two slave-APB3 interface modules, one for each core. Each module includes

eight 32-bit registers to be aligned with the APB3 bus wide. This interface allows the communication

between both cores and the xLockstep accelerator.

This module was developed based on the APB3 specification [98], that allows to create a memory

mapped interface (Figure 4.9).

Figure 4.9: xLockstep memory-mapped address.
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The addresses are displayed in a offset system, because the absolute address varies with the bus

connection.

4.2 Lock-V hardware

The DCLS mechanism is implemented and deployed under the Microsemi SmartFusion2, depicted in

Figure 4.10, which corresponds to the SmartDesign from Microsemi Libero tool.

Figure 4.10: xLockstep design on Microsemi SmartFusion2.

The first step of the implementation was to add the Arm Cortex-M3 to the project, using the System

Builder that allows to configure the Microcontroller Subsystem (MSS). In the MSS was activated the use of

Direct Connection Mode, meaning that the Fabric Interface Controller (FIC) is exported out of the System

Builder to generate the clock for the other peripherals. Due to time constraints grasped during the time

analyses, the main clock exported from the MSS and shared with the other core and the peripherals was

reduced to 25MHz. Also, it was necessary to add FIC_AMBA_MASTER to the System Builder in order to

enabled the APB3 interface.

The second step was adding the Mi-V core to the SmartDesign which demands for extra cores to run,

such as a LSRAM controller (COREAHBLSRAM in the SmartDesign) to get access to an embedded Large

Static Random Access Memory (LSRAM) in the SmartFusion2. For this implementation, it is necessary
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to add extra hardware modules in order to synchronize both processors with the same system reset, as

detailed in [96]. Also it is necessary to add an APB3 to AHB bridge in order to connect the xLockstep

accelerator and the core Mi-V. In order to add debug capabilities to the MI-V processor, a JTAG debug

interface was added (COREJTAGDEBUG).

The third step was to add the xLockstep accelerator, and connect the APB3 interfaces with the respec-

tively APB3 bus. Also in each APB3 bus is included a CoreGPIO that allows to output signals from both

processors.

4.3 Lock-V API

In order to use the DCLS accelerator, an API was developed to allow the use of the xLockstep accelerator

with different processors due to its agnostic characteristic. The xLockstep accelerator is a memory mapped

peripheral that uses APB3 protocol to create the interface between both processors and the accelerator.

The API simplifies the use of the memory mapped interface, while offering an abstraction to the user with

the accelerator registers.

There is a library, that implements the API, x_lockstep, where are implemented the set of functions

below, that allows to initialize the accelerator, start the synchronization between cores, compare data to

achieve error detection, among other setting and runtime functions:

• XLOCKSTEP_init();

• XLOCKSTEP_synch();

• XLOCKSTEP_checker();

• XLOCKSTEP_resume();

• XLOCKSTEP_errorFix();

• XLOCKSTEP_config();

• XLOCKSTEP_getStatus();

• XLOCKSTEP_getErrorStatus().

These functions are divided by different modules described in sub sections bellow: the initialization

(subsection 4.3.1), the synchronization (subsection 4.3.2), the comparison (subsection 4.3.3), the runtime

duties (subsection 4.3.4), the configuration (subsection 4.3.5), and the status information (subsection

4.3.6). These set of modules described altogether the API to use the accelerator xLockstep.
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4.3.1 Initialization

The initialization is responsible to enable the xLockstep accelerator by setting to high the bit_Enable

in the Control register, see Figure 4.3.

The developed library includes the function XLOCKSTEP_init() to start the initialization. This function

initialises one side of the xLockstep accelerator by set the bit_Enable bit. It is necessary to initialise both

sides (one side for each processor) of the accelerator before starting the synchronization and comparison

tasks. When both sides are enabled, the xLockstep will change the state from Start to Idle.

4.3.2 Synchronization

The synchronization is the process to synchronize both cores at the same checkpoint without com-

paring data. The synchronization only starts if the xLockstep are in Idle state, and both processors are

synchronized if both have reached the checkpoint within the TimeOutValue. This process is only possible

if both cores already initiate the xLockstep accelerator. If the initialization is achieved with success, the

xLockstep changes to Idle state. The first core that reaches the checkpoint in the application will start the

synchronization by setting the bit_SynchroX in the Control register, and the xLockstep will start immedi-

ately the Timer module by changing to Synchro state. If the other processor reaches the checkpoint within

the time specified in TimerOut value, it will finish the synchronization by setting the bit bit_SynchroX and

the state will pass to Checker without comparing data and changes to Resume state. But if the last core

does not reach the checkpoint, the system will change to Error state with a timeout error, meaning that

the processors are not synchronized.

The library x_lockstep provides the function XLOCKSTEP_synch(), which starts or finishes the synchro-

nization by setting the bit bit_SynchroX. It is possible to configure the timeOut value for synchronization,

but it must be done before the function XLOCKSTEP_synch() call, see subsection 4.3.5 to know more

about xLockstep configuration.

4.3.3 Comparison

The comparison tasks is responsible to compare data between the cores in order to provide error

detection capabilities to the xLockstep. This process requires that both cores are synchronized and in

comparison to the synchronization, the former differs when the cores reaches the checkpoint, i.e, before

start the synchronization, they need to load the data to be compared. Because of that, when the cores are

synchronized, the xLockstep compares the data if any difference between data occurs, the comparison

module changes to Error state with a data error. Then the state changes to Resume state when the system

finish the comparison.

One constraint of this DCLS mechanism is the number of data to compare per execution. The system

can only compare up to four data blocks with 32 bits. The number of data to compare is defined in the
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two bits bit_DataSel_X before the core starts the synchronization. Table 4.1 shows the bits configuration

according with the number of data. Beyond these two bits, the system uses the same bits described in

synchronization to start and finish the synchronization process.

Despite the fact that ArmV7 architecture supports both little- and big-endian, in this work, it uses only

little-endian as the RISC-V processor. Then during comparisons it is not necessary to convert the data, but

if the data comparison occurs between two cores with different endianness, it is necessary to convert the

output of one of the two cores when it sends the data.

In the library, there is the function XLOCKSTEP_checker() to apply the comparison which requires as

argument the data and their size for performing the comparison.

4.3.4 Runtime duties

During the xLockstep execution, the application has some responsibilities to keep the integrity of the

system. When the accelerator finishes the synchronization or the comparison processes, it changes to the

Resume state if no error occurred. Afterwards, it is the accelerator’s responsibility to finish all the process,

by clearing the bit bit_SynchroX in each processor, allowing the xLockstep to change to Idle state. If an

error occurs during the accelerator execution, it changes to Error state, and in order to enable the system

to start a new synchronization or comparison, the application needs to inform the accelerator that the error

was solved by setting the bit bit_ErrorSolve, as well clearing the bit bit_SynchroX. Both bits are loaded into

the accelerator through the Control register. This will set the FSM to Idle state when the system changes

to Idle, the application needs to clear the bit bit_ErrorSolve.

The library includes two functions to apply the runtime responsibilities, the function XLOCKSTEP_resume()

and the XLOCKSTEP_errorFix(). The first function is used when no error happens and the xLockstep state

is in Resume. The second function is used when a error occurs it informs the accelerator that the error was

solved and it is possible to continue the normal execution. When the state changes to Idle, the application

needs to call the function XLOCKSTEP_resume() in order to clear the bit_ErrorSolve bit.

4.3.5 Configuration

The accelerator has two different fields for configuration. It allows to update the TimeOut value through

the TimeOut register and to enable or disable the interrupt interface through the bit bit_EnInterrupt in the

Control register. This configuration only comes into effect at the Idle state, therefore, it is important to send

the configuration before starting the synchronization. By default, the accelerator starts with the TimeOut

value 0xFFFFFFFF, and with the interrupt interface disabled.

The library provides one function that allows to configure both fields, the function XLOCKSTEP_config().

It receives two arguments, the timeout value, a 32-bits unsigned variable, and a “boolean” variable based

on a enumeration to enable or disable the interrupt interface.
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4.3.6 Status information

The accelerator includes two read-only registers: the Status register that provides the accelerator state;

and the Error Status register to get any error information. It is required to check the Status register before

starting any synchronization or comparison. The interrupt interface, when enabled, allows the application

to be interrupted only when the synchronization or comparison processes finishes. But to know if an error

has occurred, it is necessary to check the Status register.

There are two functions in the library that returns the registers mentioned above. The function XLOCK-

STEP_getStatus() that returns the Status register, and the function XLOCKSTEP_getErrorStatus() that re-

turns the Error Status register.

4.4 Summary

The DCLS architecture deployed on the SmartFusion2 presents several advances over traditional DCLS

mechanisms as it allows the development on an heterogeneous architecture with two different core proces-

sors in a agnostic fashion. To use other cores, they just need to be able to connect to the APB3 interface

and to map the accelerator in memory. However, depending on the core, it may be necessary to modify

the library to be coherent with the core architecture (for example, if the cores have different endianness in

data structures).

The xLockstep accelerator was deployed in FPGA in order to provide the DCLS mechanisms such as

error detection, however the recovery capabilities were not implemented in hardware, and such function-

alities are supported in software by the framework descried in the next chapter.



5. Lock-V Framework

This chapter presents the framework to support the DCLS system developed and explained in chapter

4. Also, this framework provides to the system the recovery capability to achieve a complete fault tolerance

system.

Section 5.1 presents the framework, describing its behaviour and the supported functionalities. In

section 5.2 and section 5.3, it explains how initialize and synchronize the system. Section 5.4 and section

5.5 detail how the framework provides the recovery capabilities.

5.1 Framework Overview

The main goal of this dissertation is the development of a fault tolerance system, a DCLS with a

heterogeneous architecture at core level. As mentioned in subsection 2.2.3, the lockstep technique uses

the output from both processors for error detection, and due to the design diversity, it is only possible

to apply the comparison between both processors in a loosely-coupled approach. This means that the

system requires the use of checkpoints throughout the application code in order to synchronize and to

compare the outputs from both processors. These outputs need to be previously selected because the

design diversity does not allow instruction comparison.

Normally, the system recovery in DCLS is applied by using rollback or rollforward to an integrity state.

In this work, the rollback was the chosen technique, and to use it, it is necessary to save states of integrity

during the program execution. The Figure 5.1 shows the execution flow of an DCLS as a fault tolerance

system with a rollback technique in a loosely-coupled comparison.

In this technique, both processors execute the same application, but only one processor outputs the

results, in this case the core master. First, the system starts the synchronization between both processors.

If the synchronization is successful, the system saves the processor contexts and runs the application code.

When a checkpoint is reached on both sides, the system compares the output from both processors, and

if any error is detected, the new processor contexts is saved and it continues the application code until a

new checkpoint is reached. Figure 5.1 shows an example of an active fault that affects the application and

corrupts the data in one of the processors. When the next checkpoint is reached, the comparison detects

a data error and notifies both processors about the detected error, which triggers the rollback system in
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Figure 5.1: DCLS execution flow with rollback.

both processors, taking the execution to the previous checkpoint state where a valid context is saved and

possible to be recovered.

In order to provide the error detection and the system recovery with a friendly interaction, this frame-

work offers to the user a set of functions to use the Lock-V architecture, as described in chapter 4. The

framework, using the library x_lockstep, provides five functions embedded in the library xLockV to achieve

the fault tolerance in the system:

• initLockV() - this function initializes the xLockstep accelerator and synchronizes the cores;

• checkpoint() - this function synchronizes both processors, but in contrast with the initLockV(), it

compares the selected data from the processors. Moreover, it returns a negative value in case of

error, or zero if the comparison executed without errors;
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• saveContext() - this function saves the processor context. This function is different from processor to

processor due to the different used ISA. To save the processor context, the function uses assembly

inline to copy the registers and the main stack. However, this function presents some constraints

in its utilization, as explained by the save context process at the section 5.4;

• rollback() - this function, as well the function saveContext above, uses assembly inline, but the

function rollback() resorts the saved data in the last call of the function saveContext() to restore

the system in the last saved integrity state. Due to the use of assembly inline, the function also

presents some constraints, that are detailed in section 5.5;

• errorFix() - This function is used to inform the xLockstep accelerator that the system fixed the error

and it is reliable to continue the execution.

5.2 Initialization

The initialization purpose is to start the accelerator from both processors, and at the same time to

synchronize the processors. This process consists of calling the function initLockV() at the application

start. The first processor to execute this function will send the start signal to the xLockstep accelerator

through this function XLOCKSTEP_init() and will wait until the other processor also executes the same

process. Afterwards, the xLockstep changes the state from Start to Idle.

5.3 Checkpoint

The checkpoint functionality aims to synchronize both processors due to the loosely-coupled imple-

mentation, and it is also used to compare the data output between both processors, providing the error

detection capability to the DCLS system. Figure 5.1 shows how the checkpoint system is used throughout

system execution.

The system only compares four words for each comparing round (each word has 32-bits), as shown by

the FSM behaviour in chapter 4. If it is necessary to compare a bigger amount of data outputs, the system

will require a new synchronization after comparing each four words. The function checkpoint() abstracts

the user from dealing with the required synchronization for more than four words during comparison.

This function returns the value 0, if no error occurs. However, if an error occurs during the process,

the function returns a negative integer. It can return -1 or -2, for a data error or timeout error, respectively.

5.4 Save Context

This functionality is used for context-switches during the application execution. After a checkpoint

being successfully reached, the application context is stored. Therefore, when the next checkpoint is
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reached and there are errors detected in the comparing outputs, the application can return to a previous

(valid) checkpoint and restore the previous processor’s state. Figure 5.1 shows when the save context

needs to be done. It is not mandatory to save the processor context after all the checkpoint, however, it

is advisable to do it. However, it is crucial to save the processor context after a checkpoint without errors.

During the development phase of an application with the Lock-V, the designer needs to know, that in case

of a detected error, the system will restore to the last call of the save context.

This framework provides the function saveContext() which does not use any arguments, and does not

return any value. It just saves to a protected memory area, the register file and the main stack. Due to

its implementation with assembly inline, it needs to be called every time in the function main(), as will be

explained later in this section.

5.4.1 Save Context Implementation

Due to the load-store type architecture of Arm Cortex-M3 and RISC-V (first the program loads the

registers with data from memory, executes the operations with the registers, and after, if necessary, it

stores the results to memory). Furthermore, since to the register file and memories are the most sensitives

to SEU in computer systems [99], it becomes crucial to save the register context when a rollback is needed.

Since memory fault tolerance is out of the scope of this dissertation, it is not considered as a fault sensitive

component. There are various solutions that use ECC or parity protection that can be implemented to make

the memory system more fault tolerance.

The function saveContext() when called, first saves the file registers, the main Frame Pointer (FP) and

the main Stack Pointer (SP). After saving these registers, it saves the main stack, using the previous FP

and SP. Finally, It saves the Program Counter (PC).

To save the register file and the main stack, it is necessary to know the register file and how the stack

system works, before and after the call of function. The Arm Cortex-M3 includes 17 registers [100]:

• R0 to R12 - This registers are for general-purpose;

• R13 or SP;

• R14 or Link Register (LR);

• R15 or PC;

• and the Program Status Register (PSR).

The Arm Cortex-M3 uses the R7 as a FP. If the system is in themain() function, and calls another one with

no arguments, the FP and the SP change, in order to provide a new stack. Figure 5.2 shows the stack,

the SP, and the FP before and after a function call. Before the function call, the main() FP points to the

address 0x20008000, and the main() SP points to the address 0x20007000, as shown in Figure 5.2a.
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After the function call, the FP points to the address, 0x20006FFC which stores the address of the FP in

the main(), 0x20008000, and the address of the four bytes above is the old address of the main() SP.

(a) Stack in main, before a function call. (b) Stack in function, after a function call.

Figure 5.2: Stack in Arm Cortex-M3 before and after a function call without arguments nested
functions. The address are merely illustrative.

These considerations are important, because the saveContext() saves all the register file, and also the

stack. And the reasons to be called every time this function in the main() are: (1) to avoid saving long

stack by constraining it only to the main() stack; (2) the complexity and the execution time of the called

function only increases if the system needs to save the main() stack and nested functions stacks; and (3)

if one function calls other functions, a different strategy should be drafted to save the main() FP.

The RISC-V core includes 32 registers [86]:

• X0 - hard-wire zero;

• X1 - return address;

• X2 - SP;

• X3 to X27 - multi purposed;

• X28 to X31 - temporary registers.

It is important to take some considerations about the architectures and their Application Binary In-

terface (ABI) during the development of this function and the rollback function described in subsection

5.5:

• The stack alignment proposed in RISC-V with XLEN equal to 32 is 8 bytes. If the XLEN is equal to

64, the alignment will be 16 bytes. In the core RV32IMA, it uses XLEN equal to 32 [101]. However,

the compiler supported by Microsemi does not follow the proposed alignment, and it uses a 4 bytes

alignment saving the stack and the FP during a function call;
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• As this framework saves the system stack, to restore it, in case of error, it is important to consider

the stack type, which are both descending. But the Arm Cortex-M3 has a full descending stack, in

contrast to Mi-V RV32IM that has an empty descending stack.

• Although, the core Mi-V RV32IMA has a different ISA, the way the system save the FP and the SP

is similar, but it requires some adaptations to develop the saveContext() function.

The saveContext() does not receive any argument and does not return any value. It needs to operate

in different ways from processor to processor due to the process of saving the processor context. In

order to solve that, the library xLockV includes a define statement to target the architecture to compile the

application.

5.5 Rollback

The rollback aims to restore the system to the previous valid state, saved by the saveContex() function.

This gives to the Lock-V system a strong fault tolerance capability. This framework includes a rollback()

function without arguments to apply the rollback over the saved state. As a constraint, this function requires

that the saveContext() function has been called at least once before a rollback call.

The subsection 5.4 details some specifications to take into considerations during the development of

the saveContext() and the rollback() functions. This function is only inline assembly, and it cannot have

any nested function to keep the rollback as simple (and faster) as possible.

The rollback process consists in restoring all the stack in the main(), after, restoring the register file

with the saved register file and finally, updating the PC. This way, at the end of this last update, the system

changes to the state exactly after the end of the saveContext().

5.5.1 ErrorFix Function

The xLockstep accelerator needs to receive the information that the error was fixed. However, due to

the characteristic mentioned before, the rollback() function cannot have any nested function call. Then,

the function errorFix() needs to be called after or before the rollback() execution in order to change the

state of the xLockstep accelerator from Error to Idle state.

5.6 Summary

The distance between the checkpoints in the application will define the time to error detection in the

system. If the system aims for critical or safety purposes, the distance should be shorter as possible.

However, shortening such distance, the application may loose its real-time capabilities. This trade-off

must be carefully taken into good consideration.
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As well, the number of data during the comparison needs to be taken into account during the devel-

opment phase. More comparing data between checkpoints causes the system to spend more time in the

error detection task.

Although the Lock-V hardware has an agnostic interface to any processor that allows the connection

with APB3, this framework needs to be adapted to the processor architecture because to achieve the

system recovery, it is necessary to use the functions saveContext() and rollback() written through inline

assembly. Therefore, saving register file as well as the stack, is ISA-dependent.



6. Evaluation and Results

This chapter presents the analysis performed under the Lock-V in order to test, evaluate, and validate

the fault tolerance system.

The first section presents the resources needed by the Lock-V architecture in the FPGA. Also, it presents

the memory and execution footprint caused by the use of the Lock-V in different applications.

The second section, as an answer to the third objective of this dissertation, explores the fault injection

system applied to a case study that uses the Lock-V architecture. The section finishes with the results

achieved by tests carried out on the case study.

All the tests are executed in the Lock-V architecture and the results that needed the application com-

pilation, were obtained without optimizations. The proposed DCLS system was deployed on a Microsemi

SmartFUsion2 with an Arm Cortex-M3 and a RISC-V-based processors are independently connected to

the xLockstep accelerator. The lock-V system runs at a frequency of 25MHz, which is applied to all mod-

ules: Arm-CortexM3, RISC-V-based soft-core, and xLockstep accelerator. Moreover, during the test, all the

results obtained, are using the Lock-V framework.

6.1 Lock-V Implementation Analysis

This section reports the cost by using the Lock-V coupled to a normal application compared to not using

the Lock-V mechanism. First, in subsection 6.1.1, it is presented the FPGA resource usage in the Lock-V

hardware. Subsection 6.1.2 covers the amount of memory that an application uses with and without the

Lock-V. Finally, subsection 6.1.3, also compares the execution footprint by comparing different applications

with and without Lock-V.

6.1.1 Fabric FPGA Resources Utilization

Table 6.1, shows the resource usage in the xLockstep accelerator, and howmuch resources are needed

by each submodule. Moreover, it includes the hardware resources required by the RISC-V soft-core and its

dependencies.

The report that returns the resources needed distinguishes the resources between the fabric and the

interface elements, in both, the report includes the 4-Inputs Look-Up Table (4-LUT) and the D-Type Flip-Flop
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(DFF) usage. Libero uses DFF as the sequential elements representation and the 4-LUT as a combination

element. The difference from the DFF and 4-LUT in the interface to the fabric is that the elements in

the interface use the Random Access Memorys (RAMs) and the math blocks, respectively. Table 6.1 only

shows the sum of the 4-LUT and the sum of the DFF from both, interface and fabric. This simplification is

due to the system which only uses interface elements in the RISC-V processor and its memory.

Table 6.1: Resource utilization of the xLockstep and the entire system described in section 4.2.

Module 4-LUT DFF
- APB3 Interface Slave 158 224
- APB3 Interface Master 158 224
- Checker 129 12
- Timer 81 35

xLockstep

Total 588 544
Mi-V RV32IMA 10511 5555
LSRAM Controller 2026 1219
Reset Synchronizer 0 4
Bus Connections 369 194

13494 7516
Total

Percentage (100%) 15.66% 8.72%

Lock-V requires a total of 13494 4-LUTs and 7516 DFFs, which represent around 15.66% and 8.72%

of the available 4-LUT and DFF elements respectively for the SmartFusion2 M2S090TS System-on-Chip

(SoC).

As it is possible to see in the Table 6.1, the xLockstep only uses 588 4-LUTs and 544 DFFs, that

corresponds to 0.68% and 0.63% of the available 4-LUT and DFF elements in the chosen platform, respec-

tively. Also, this resource utilization corresponds to 4.36% 4-LUTs and 7.24% DFFs compared to the Lock-V

implementation. The xLockstep accelerator includes two APB3 interfaces that uses 158 4-LUTs and 224

DFFs each one. The module Checker requires 129 4-LUTs and 12 DFFs, and the module Timer 81 4-LUTs

and 35 DFFs. To combine all the modules inside the accelerator, the xLockstep needs 62 4-LUTs and 49

DFFs.

The RISC-V soft-core uses a total of 10511 4-LUTs and 5555 DFFs, which corresponds respectively

to 77.89% and 73.91% of the system Lock-V, that it is a large part of the system. However, the soft-core

only represents 12.20% of 4-LUTs and 6.45% of DFFs in the entire fabric FPGA. To complete the system,

it was required to use the AHB and APB3 buses, the LSRAM Controller and the Reset Synchronizer, they

use 2395 4-LUTs and 1417 DFFs, these modules use in the Lock-V system a total of 17.75% 4-LUT and

18.85% DFF.

These results show that the xLockstep accelerator uses only a small fraction of the Lock-V system, less

than 10% of the resource usage. And the soft-core uses more than 70% of the entire system resources.
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6.1.2 Memory Footprint

In order to evaluate the memory footprint of the Lock-V framework, and to know its impact in the

system, two cases were considered with the same application:

• Without the Lock-V framework;

• With the Lock-V framework.

The application with the Lock-V framework is a simple code with a loop, it includes a initLockV() call

at the application beginning and two saveContext() calls, one after the initialization, and the other inside

the loop. Also, it includes a rollback() and a checkpoint() call inside the loop.

The results are obtained from the two processors, Tables 6.2 and 6.3, in the Arm side by invoking the

compiler with GNU ARM Cross Print Size, and in the RISC-V side by invoking the compiler with GNU RISC-V

Cross Print Size. Both results are in bytes and they include the size of: (1) the code segment (.text); (2)

the global or static variables segment (.data); and the uninitialized data segment (.bss).

Table 6.2: Arm memory footprint (values in bytes).

Arm side .text .data .bss total
Application without Lock-V 4656 16 59072 63744
Application with Lock-V 6384 80 60864 67328
Lock-V Overhead 1728 64 1792 3584

Table 6.3: RISC-V memory footprint (values in bytes).

RISC-V side .text .data .bss total
Application without Lock-V 3824 128 8196 12148
Application with Lock-V 6624 256 8864 15744
Lock-V Overhead 2800 128 668 3596

The different memory overhead in the global or static variables segment between the two compilations,

it is due to the fact that the Arm side has an alignment of 4 bytes in the stack, and the RISC-V side has an

alignment of 8 bytes.

Although the compilation results have very different values from each other. To include the framework

in the application there is only an increase of 3600 bytes approximately. More specifically, an increase of

3584 bytes through the compiler for the Arm core, and an increase of 3596 bytes for the RISC-V core.

6.1.3 Execution footprint

In order to evaluate the execution performance of the Lock-V, it was performed a set of micro bench-

marks. The obtained results represent the system overhead, in terms of clock cycles, caused by inserting
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the Lock-V framework. However, the results are only provided by the Arm Cortex-M3, because the instruc-

tion RDCYCLEH 1, which returns the clock cycles in the core RISC-V-based is out of date (the register to

read the clock cycles changes from the Microsemi implementation to the compiler implementation). To

measure the latency between executions it was used the available SysTick registers in the Arm Cortex-M3.

6.1.3.1 System recovery execution footprint

The first measurements, Table 6.4, presents the latency by calling individually the saveContext() and

the rollback() functions from the framework. The results for each function were obtained with the main()

stack size of 4x4 bytes.

Table 6.4: saveContext() and rollback() execution footprint (the main() stack size was 4x4 bytes).

Arm side Latency (clock cycles) Time (at 25 MHz)
saveContext() function 335 13.4 µs
rollback() function 248 9.92 µs

The saveContext() function executes in 335 clock cycles, which is equivalent to 13.4 µs at 25 MHz

frequency clock. And the rollback() function executes in 248 clock cycles that is 9.9µs at 25 MHz frequency

clock. The extra clock cycles in the saveContext() is due to the register reposition before it returns the

function call, such as the FP and the SP, while the rollback() function copies only all the previous saved

registers.

6.1.3.2 Error detection execution footprint

Tables 6.5 and 6.6 display the microbenchmarks performed over the checkpoint functionalities, under

different conditions. Although the results were extracted from the hardcore side, due to the DCLS synchro-

nization dependency during the checkpoint phase, the time execution between both processors remains

the same. The measurements to the checkpoint were performed by sending different numbers of data to

compare between the processors, from 0 to 100 blocks of 32 bits. These experiments were performed

under three different conditions: (1) without errors; (2) with an error in the first element to compare; and

(3) in the last element to compare.

Table 6.5 shows the results from themeasurements for the case without errors and with error in the first

comparing element. If the checkpoint does not sends data to compare, and only uses the functionality to

synchronize both processors in the same point, the execution footprint is 1119 clock cycles in the hardcore

Arm, this latency corresponds to 44.75 µs at 25 MHz. In this case, there is no example with error because

there is no data to compare. When the checkpoint compares only one data with 32 bits, in the case without

error the checkpoint spends 1459 clock cycles. If the data is wrong, the checkpoint spends less 815 clock

cycles, that corresponds to an overhead reduction. This difference is due to the checkpoint return from

1RDCYCLEH is a pseudo-instruction specifically for the ISAs RV32, for the ISAs RV64 it is used the RDCYCLE
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the function, as soon as the error is detected, without synchronization. If the checkpoints compare ten

elements, the latency is 2154 clock cycles without errors, and in case of error in the first element the latency

is 2134 clock cycles, which corresponds to a decrease in latency of 20 clock cycles. In this situation, the

overhead reduction is much smaller compared to the first case with one element to compare, due to the

synchronization after sending the first four data (section 5.3 explains this limitation). When the system

sends more 10 elements in the checkpoint to compare, it increases, on average, by 1767 clock cycles,

whether or not there is any error in the first element. The first element in the checkpoint is always the last

element to compare in the xLockstep accelerator, and due to that, when the system compares more than

four elements, and when errors are detected, the overhead increases, on average, by 22.60 clock cycles.

Table 6.5: Checkpoint execution footprint without errors and with error in first element to compare.

Number of Without Errors With Error (in 1st element)
Data Overhead (*)

(32 bits) Clock Time at Clock Time at Clock Time at
each) cycles 25 MHz (µs) cycles 25 MHz (µs) cycles 25 MHz (µs)
0 1119 44.75 - - - -
1 1459 58.35 644 25.76 ↓ 815 32.59
10 2154 86.16 2134 85.36 ↓ 20 0.80
20 3675 147.00 3661 146.44 ↓ 14 0.56
30 5757 230.28 5735 229.40 ↓ 22 0.88
40 7272 290.88 7256 290.24 ↓ 16 0.64
50 9360 374.40 9328 373.12 ↓ 32 1.28
60 10869 434.76 10843 433.72 ↓ 26 1.04
70 12949 517.96 12925 517.00 ↓ 24 0.96
80 14474 578.96 14464 578.56 ↓ 10 0.40
90 16556 662.24 16512 660.48 ↓ 44 1.76
100 18059 722.36 18041 721.64 ↓ 18 0.72

Avg. Increment
1767.22 70.69 1767.44 70.70 - -

(10 in 10 elements)
Avg. Overhead

- - - - ↓ 22.60 0.90
(10 to 100 elements)
(*) The overhead is the difference between the case without error and the case with error.
Overhead symbols: ↑ - Increase of overhead; ↓ - Decrease of overhead.

Table 6.6 shows the results for the cases without errors and with error in the last element to compare

through the checkpoint. The obtained results when there are no errors in the processor’s output, are the

same as presented on Table 6.5. Additionally, when the checkpoint compares only one element, the results

are equal to the mention before, since the last element is at the same time the first element during the

comparison process. Moreover, in case of error in the last element, when the data to compare is bigger or

equal to four elements, the system spends only on average 771.90 clock cycles, that corresponds to 30.88

µs. If the checkpoint uses four or more elements to compare, in case of error in the last element, the

clock cycles spent is approximately the same, mainly, due to the the xLockstep accelerator characteristic
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that always compares four elements each time. The overhead from no error to error in the last element

reduces approximately in 1767 clock cycles when ten more elements are added to the checkpoint array.

Table 6.6: Checkpoint execution footprint without errors and with error in last element to compare.

Number of Without Errors With Error (in last element)
Data Overhead (*)

(32 bits) Clock Time at Clock Time at Clock Time at
each) cycles 25MHz (µs) cycles 25MHz (µs) cycles 25MHz (µs)
0 1119 44.75 - - - -
1 1459 58.35 644 25.76 ↓ 815 32.59
10 2154 86.16 771 30.84 ↓ 1383 55.32
20 3675 147.00 773 30.92 ↓ 2902 116.08
30 5757 230.28 771 30.84 ↓ 4986 199.44
40 7272 290.88 771 30.84 ↓ 6501 260.04
50 9360 374.40 773 30.92 ↓ 8587 343.48
60 10869 434.76 776 31.04 ↓ 10093 403.72
70 12949 517.96 769 30.76 ↓ 12180 487.2
80 14474 578.96 771 30.84 ↓ 13703 548.12
90 16556 662.24 771 30.84 ↓ 15785 631.4
100 18059 722.36 773 30.92 ↓ 17286 691.44

Avg. Increment
1767.22 70.69 0.22 0.01 1767.00 70.68

(10 in 10 elements)
Avg. Overhead

- - 771.90 30.88 - -
(10 to 100 elements)
(*) The overhead is the difference between the case without error and the case with error.
Overhead symbols: ↑ - Increase of overhead; ↓ - Decrease of overhead.

These results show that, in case of error, the worst case for the error detection capability occurs when

the faulty data is allocated in the first element of the array to compare. And the best scenario occurs when

the faulty data is allocated in the last element of the array to compare.

Table 6.7 represents the execution footprint with and without errors using a function to calculate

the Fibonacci sequence. The Fibonacci function scalability allows to understand the impact of using

the Lock-V with one or more checkpoints during the function execution. These measurements show the

difference between using more or less checkpoints, and to analyse the difference, the tests were made in

different conditions, and for each condition, the tests were performed by calculating the first 10, 15, or

20 Fibonacci sequence values. The conditions include the function execution without errors, with error in

the first element, as shown in the figure 6.1c, or in the last element, as shown in the figure 6.1d, from the

Fibonacci sequence. Moreover, in each condition, the Lock-V was tested with one or N checkpoints, where

N corresponds to the number of elements that the Fibonacci function calculates. For example, when the

Fibonacci function calculates the first ten elements, if the system includes only one checkpoint (figure

6.1a), this one will be reached after the function calculates the ten elements, and the checkpoint sends

ten elements to compare. But if the system includes N checkpoints, in this case ten checkpoints (figure
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6.1b), the checkpoint will be reached after each calculated element, and the checkpoint only sends one

element to compare.

(a) Fibonacci function with one check-
point.

(b) Fibonacci function with N check-
points.

(c) Fibonacci function with with error
in the first element.

(d) Fibonacci function with with error
in the last element.

Figure 6.1: Fibonacci sequence calculation with one (a) or N (b) checkpoints. And Fibonacci
sequence with error in the first (c) or in the last (d) element.

In order to compare and to analyse the overhead by using the Lock-V mechanism, it was also measured

the Fibonacci function without the Lock-V integration. To calculate the first ten elements of Fibonacci

sequence, the system without Lock-V spends 26785 clock cycles. For the first fifteen elements, the system

uses 299132 clock cycles, and to calculate the first twenty elements the system spends 3323420 clock

cycles.

When the system includes the Lock-V mechanism, in the case that no error happens and there is only

one checkpoint as it is demonstrated in figure 6.1a, the system uses 27253 clock cycles, 299789 clock

cycles, and 3324077 clock cycles to calculate the first 10, 15, and 20 Fibonacci elements respectively. That

corresponds to an increase in the overhead of 1.75% for 10 elements, 0.22% for 15 elements, and 0.02%

for 20 elements. In the case when the system uses N checkpoints, figure 6.1b, the system increases the

overhead from 1.75% to 29.65% for 10 elements, also it increases from 0.22% to 3.84% for 15 elements,

and it increases from 0.02% to 0.44% for 20 elements in the Fibonacci sequence calculation.

If the sequence has an error in the first element of the Fibonacci sequence, for the case when the

system only includes an checkpoint, the overhead increase is 1.68%, 0.21%, and 0.02% for 10, 15, and

20 elements, respectively. The overhead is smaller compared to the case without error, because when

the system detects the error it discards the synchronization and instantly returns to apply the recovery if

possible. When the system includes N checkpoints and the error is in the first element, the first checkpoint
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will detect the error. In this case, the Lock-V detects the error faster than the previous case. Although this

is a specific case of the system, the results show an decrease of overhead compared to the case without

Lock-V of 94.58%, 99.51%, and 99.96% for 10, 15, and 20 elements calculation. It is also necessary

to take into account that the system when detects the error, it does not finish the Fibonacci calculation

successfully, and it will require to start the execution from the last saved state if the system has the recovery

enabled.

In the case with one checkpoint and the error is in the last element from Fibonacci sequence, the

overhead is smaller than the case with an error in the first element, the reason for this small reduction

is the error detection during the comparison, the last element in the checkpoint is the first element to be

compared. The results show an increase of overhead of 1.59%, 0.21%, and 0.02% for 10, 15, and 20

elements. When the system includes N checkpoints and the error is also in the last element, the results

are quite similar to the case with N checkpoints without errors. There is an overhead increase of 30.10%,

3.87%, and 0.45% for 10, 15, and 20 elements calculation respectively.

Table 6.7: Lock-V execution footprint with and without errors, using Fibonacci function.

Fibonacci(10) Fibonacci(15) Fibonacci(20)
Clock Cycles Overhead (%) Clock Cycles Overhead (%) Clock Cycles Overhead (%)

Without Lock-V
26785 - 299132 - 3323420 -

With Lock-V
No Errors
1 checkpoint 27253 ↑ 1.75% 299789 ↑ 0.22% 3324077 ↑ 0.02%
N checkpoints (*) 34727 ↑ 29.65% 310628 ↑ 3.84% 3338172 ↑ 0.44%
Error in 1st element
1 checkpoint 27236 ↑ 1.68% 299766 ↑ 0.21% 3324062 ↑ 0.02%
N checkpoints (*) 1451 ↓ 94.58% 1451 ↓ 99.51% 1451 ↓ 99.96%
Error in last element
1 checkpoint 27212 ↑ 1.59% 299772 ↑ 0.21% 3324060 ↑ 0.02%
N checkpoints (*) 34846 ↑ 30.10% 310708 ↑ 3.87% 3338431 ↑ 0.45%
(*) The number N of checkpoints is equal to the argument of the function Fibonacci(N)
Overhead symbols: ↑ - Increase of overhead; ↓ - Decrease of overhead.

In case of error, the best scenario occurs with N checkpoints and the error is in the first element. The

worst case occurs when the system has N checkpoints and the error is in the last element. It is possible

to see, due to the Fibonacci scalability, that the impact of the Lock-V reduces with the increase of the

application execution time. Also, the impact of using 1 or N checkpoints become more similar to each

other with the increase of the application execution time.

6.2 Fault Injection Case Study

For this case study, a new design was developed to validate the Lock-V system as a fault tolerance one.

Figure 6.2 shows the new design that includes a peripheral with UART features to monitor the system.
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Also, this new design includes the fault injection mechanism.

Figure 6.2: Lock-V architecture with fault injection mechanism and monitor system.

The fault injection mechanism is only implemented in the Arm Cortex-M3 through a random timer

interruption. At every interruption, the mechanism provokes a random bit-flip in one of the Arm bank

registers, also randomly, in order to provoke a fault in the processor. Moreover, to the monitor system

knows the number of faults that had already been provoked, it was added to the xLockstep a new register

in the APB3 interface to count the number of faults, this register is updated at each interruption.

The xLockstep suffered some adaptations which allow monitoring the system. It was added to the the

fabric FPGA a coreUART peripheral that receives data from the xLockstep accelerator and sends it through

the onboard serial port adapter.

Every time an error occurs and the xLockstep detects it, the coreUART sends to the system monitor the

number of faults and the error type. If the error occurs due to a timeout, the system will need a reset. But,

if the error is a data mismatch, both cores will execute the rollback function, which sends the execution

flow to a previous valid state. If the core RISC-V-based executes the application correctly, and if an error

occurs in the Cortex-M3 is expected that the accelerator recognizes it and reports to the system monitor.
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To know if the system continues the execution correctly, after both cores send the errorFix(), the coreUART

informs the system monitor that the execution continues correctly.

6.2.1 Results

During this test, it was injected a total of 98957 faults in the bank register of the hardcore Arm. These

faults originated 93 errors, where 85 are data errors and the 8 are timeOut errors. The data error occurs

when the data from the two cores is different. The timeOut error occurs when one of the cores does not

reach the checkpoint.

Table 6.8 shows the fault injection results with and without the Lock-V DCLS The system with and

without Lock-V had 8 timeOut errors, and due to the Lock-V inability to recover from timeOut errors, its

error correction is 0% for this type of error. In the case of data errors, the Lock-V detects 85 errors, without

Lock-V the system is not able to correct the errors, but with Lock-V the system was able to correct 83 (out

of 85), which give a success rate of 97.65% error correction for data errors.

Table 6.8: Fault injection results with and without Lock-V.

Faults Errors Error Correction (%)
Without Lock-V With Lock-V

TimeOut error - 8 8 0.00%
Data error - 85 2 97.65%
Total 98957 93 10 89.25%

This results proved the high fault coverage in the error detection mechanism. However, it only presents

a high rate of error correction against data errors. To increase the recovery and error capabilities, it is

necessary to implement an extra type of rollback for the cases when the error is a timeOut one.

6.3 Summary

Due to the small resource utilization of the xLockstep accelerator, shown in subsection 6.1.1, it is

possible to implement the Lock-V in a largest number of FPSoC platform.

In case of data error, the error detection capability achieves the best performance when the checkpoint

sends the faulty data in the last element of the array to compare, and the worst case occurs when the

faulty data goes in the first element of the checkpoint array.

The results obtained in the case study show that the Lock-V mechanism has a good fault tolerance

capability against data errors, however, when the system suffers a timeOut error, the Lock-V cannot recover

from it.
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The research and development for technology with power consumption efficiency while keeping good

performance ratios does not stop. This can be achieved with reduced transistor’s size, higher clock fre-

quencies, and lower operating core voltages. Consequently, the systems present new dependability lacks.

To answer this issue, this dissertation presents a solution for fault tolerance with focus on low-end devices.

Themajor contribution of this work is the new fault tolerance system that uses a lockstep technique with

design diversity. Whereas the typical lockstep approach provides a strong fault tolerance technique, they

present a weakness against CMF. Then, this dissertation concept, adds to lockstep technique an effective

technique against CMF, the design diversity at ISA level. So far, to the best of the author’s knowledge,

there are no similar implementations beyond the mention before.

The solution uses DCLS in a heterogeneous architecture that includes two different processor archi-

tectures, a hard-core Arm Cortex-M3 and a soft-core RISC-V, the MI-V RV32IMA. Also it includes extra

hardware developed in FPGA, the xLockstep accelerator, which supports the lockstep methodology and

applies the comparison between both processors in a loosely-coupled fashion. The Lock-V uses APB3

interfaces to connect both processors with the xLockstep accelerator. All the hardware combined provides

synchronization and error detection capabilities to the system.

Moreover, this solution provides a framework that combines the hardware and software to achieve

error detection and system recovery capabilities in the Lock-V system, that are the keys capabilities to

achieve fault tolerance. Also, this framework provides a simple and easy use of the Lock-V architecture.

This solution is agnostic enough to provide a fault tolerance approach in different FPSoC platforms,

however, due to architectural incompatibilities, minor changes always need to be performed for other

processor architectures.

To increase the effectiveness of the error detection, first the user should select the critical parts in

the application, for example, before generating an output. And second, use inside the critical parts the

checkpoint function with more intensity, for example, compares the outputs.

The recovery capability in the Lock-V provides a good performance against data errors, with 97.65% of

error correction. The system can detect and recover from error states, except when one of the processors

does not reach the checkpoint.

Depending on the distance between checkpoints and the number of data to compare, the time to

execute the application varies. The more data the application sends to compare, the more time the

68
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system uses in fault tolerance duties. Also, the less is the distance between checkpoints, the higher is

the percentage of execution time in fault tolerance tasks compared to the entire execution time. Using the

Lock-V involves a trade-off during the conversion from the normal application to the fault tolerance one.

The checkpoints distance and the amount of data between comparisons need to be defined according

to the application purpose. The efficiency of the Lock-V system was verified and validated by using fault

injection over the register file. Also, it was analysed the extra latency by adding the Lock-V to a system.

This latency varies according to the use of the checkpoint during the application.

Thus, it is concluded, that the proposed Lock-V system, composed by the DCLS architecture with

design diversity, and the Lock-V framework, is a fault tolerance system that offers a high rate of error

detection and protection against SEU and CMF, in other words, the systems presents a high fault coverage.

7.1 Future Work

This dissertation presented the research and development work in regards to the combination of two

techniques, the lockstep technique, a DCLS methodology, and the design diversity at core level. Although

this dissertation presenting, there are some future implementations that can be pointed out:

• Adapt the system to other bus widths. The system only works with APB3 with a 32-bits bus width.

To perform another bus width it is necessary to change how the registers work in the APB interface,

also the checker and the timer modules uses 32 bits registers to compare the timer counter and

the data respectively.

• Increase the support for more processor architectures and versions. The xLockstep accelerator

presents an agnostic feature, however, the framework will need modifications to use the save context

and rollback features in other core architectures.

• Change the system to multi-core (more than two cores). This adaptation is more complex, the

checker module will need a full reconfiguration to compare all data. It is possible to upgrade the

system and to add a voting module, this allows the fault tolerance system to choose the best way

to follow in case of error.

Taking into consideration the agnosticism of the system developed for lockstep, the adaptation of

the system for a TMR is a good step for higher performance and a better availability in the system.

Also, according with Pierce, TMR is the best choice for fault tolerance systems if the cost and

performance are the most important criteria [2].

• The core RISC-V-based used in this dissertation, the MIV_RV32IMA_L1_AHB, provides ECC func-

tionalities that include SEC and DED techniques. It is possible to use this feature in the instruction

or data cache, and in case of error inside, an event signalizes the user that an error has been

corrected or detected. If this functionality is added to the system, it will be more effective in fault
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tolerance capabilities. However, it requires adaptation, to in case of error correction, do not apply

the rollback, and in case of error detection, apply specific processes to correct the error.

• The case study shows that the Lock-V does not present a good fault tolerance capability against

timeOut errors. The next step to improve the Lock-V is to implement a rollback solution for this type

of error.

• Implement adaptative checkpoints, which can be enabled/disabled in run-time, according to the

error rate that is being achieved during the execution. This way, when the system is performing in

a scenario that is more prone to faults, checkpoints that were initially disabled can be activated to

improve the error detection.

7.2 Publications

During the development of this work, this dissertation has contribute for two publications:

• I. Marques, C. Rodrigues, S. Pinto, T. Gomes, and A. Tavares, “Arquitetura Heterogénea para

Sistemas Tolerantes a Falhas Baseada em Arm e RISC-V,” in XV Jornadas sobre Sistemas Recon-

figuráveis – REC’2019, (Guimarães, Portugal), Feb. 2019

• C. Rodrigues, I. Marques, S. Pinto, T. Gomes, and A. Tavares, “Towards a Heterogeneous Fault-

Tolerance Architecture based on Arm and RISC-V Processors,” in IECON 2019 - 45th Annual Con-

ference of the IEEE Industrial Electronics Society, vol. 1, pp. 3112–3117, Oct. 2019.
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