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General symmetry considerations are used to establish the type of constitutive relations that characterize the
electromagnetic response of a material with a given magnetic point group. For clarity, the constitutive relations
are generalized to explicitly include two additional secondary vector fields related to the magneto- and the
electro-toroidal moments. Local energy conservation, as expressed by the Poynting-Heaviside theorem, is in-
voked to constrain the structure of the possible material tensors. In this way, the different types of non-dis-

sipative materials with local interactions can be classified according to the different electromagnetic effects that
are allowed by their magnetic point group symmetry. The electromagnetic response of some selected materials,
chosen for illustrative purposes, is briefly discussed.

1. Introduction

Maxwell's equations specify how charges and currents generate
electromagnetic fields, but not how those fields influence distributions
of charges and currents within a material. Therefore, a self-consistent
description of electromagnetic fields in matter requires an additional
set of equations to characterize the material response, the so-called
medium constitutive relations.

A constitutive relation must specify how secondary material fields,
as the electric displacement D and magnetic flux density E, depend on
electromagnetic excitations described for instance by the electric @ and

magnetic ﬁ fields'. In most practical situations, the interaction of ra-
diation with matter is weak enough to consider a simple linear response
regime. In these cases, a constitutive relation for a given material must
define the specific linear dependences of the secondary fields on the
electromagnetic excitations and their spatial or temporal derivatives.
Historically, these relationships have been defined mostly on an em-
pirical and trial-and-error basis (see for instance Ref. [1] and references
therein), where only fragmentary symmetry considerations take a part.

The growing interest and the increasing quest for new materials or
metamaterials displaying complex optical behaviour stemming from
the strong magneto-electric coupling, chirality, false chirality or non-
reciprocity, recommends a more integrated analysis on the possible
constitutive relations and linear cross magneto-electric effects. This
work aims to draw the attention to the fact that the consideration of two
additional secondary fields, together with the use of Neumann's
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principle [2] and the requirement of local energy conservation (as ex-
pressed by the Poynting theorem [3]), suffices to establish adequate
constitutive relations for any linear insulating medium, once its mag-
netic point group is known. Also, the corresponding form of the elec-
tromagnetic energy density, the magneto-electric effects permitted by
symmetry, and the compliance of the medium with the Lorentz theorem
of reciprocity [4] can also be established.

2. The different types of excitation fields

Any quantity in physics can be classified according to the way it
transforms under space inversion, 1, and time reversal 1'. In the parti-
cular case of vector-like quantities, which define one oriented axis in
space, change sign if rotated by 180°, and comply with the usual vector
algebra, one can add to those operations all the proper and improper
rotations about that axis. This set of operations form the group co/mm1l’
(or D.,;,)- This group has eight 1D irreducible representations (as shown
in table-1 using the notation of reference [5]).

There are four different types of vector-like quantities, each of
which can be labeled by one of the four irreps that are odd under 2-fold
rotations around an axis perpendicular to co-fold. All these four types of
vectors can be identified among the primary and secondary electro-

— - —
magnetic fields: N/ x 2, b,V x D, and B are G-type vectors (space
=
even and time even), ¢ and D are P-type vectors (space odd and time

-
even), h and B? are M-type vectors (space even and time odd), and

! This definition of “primary” and “secondary” fields is, to some extent, a matter of choice or convenience, and different combination are found in literature.
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Table 1

The eight 1d-irreps of the group co/mm1’. Here, symbols 1, 1, 1, and 2, denote
the operations identity, inversion, time reversal, and a 2-fold rotation around an
axis perpendicular to co-fold. The vector-like quantities define oriented axes in
space and transform under the irreducible representations that are odd under
2,. All these four types of vectors can be identified among the primary and
secondary electromagnetic fields: V/ x @ , " .V x D , and E are G-type
vectors (space even and time even), € and D are P-type vectors (space odd and
time even), ﬁ and 1_3) are M-type vectors (space even and time odd), and YV x T;
YV x E, E.> and f)) are T-type vectors (space odd and time odd). The four “bi-
directors” (N, C< , L, and ? ), which are even under 2,, transform as the
four possible types of irreducible linear isotropic response functions. The cor-
responding limiting groups are shown in the last column. The labels of the
different irreducible representations correspond to those used in Ref. [5].

1 1 1 2 Limiting group

Electro-toroidal a 1 1 1 -1 El'

Electric i 1 -1 1 -1 coml

Magnetic i 1 1 -1 -1 Em
Magneto-toroidal T 1 -1 -1 -1 % m

Neutral v 1 1 1 1 %ml’
Space-odd g 1 -1 1 1 o021

Time-odd bt 1 1 -1 1 S

m

Magneto-electric i 1 -1 -1 1 ©

YV X n , V % ?, 2 and D are T-type vectors (space odd and time
odd). This means, in particular, that there are four types of electro-
magnetic excitations with separate irreducible symmetries. In principle,
each of these types of excitation can induce different responses in a
given medium [6].

The idea that there exist four types of separate electromagnetic
excitations is, in fact, an old one. Drude noted, in 1900, that the ob-
served rotation of the polarization of a plane wave in a chiral medium
could be described if an additional term proportional to &/ x ¢ was
added to the polarization of the medium [7]. This led Born to include in
1915 a “chiral term” in the definition of the electric displacement
(3 = E[? + [S(v X ?)D [8], and Fedorov to extend such a modifica-
tion also to the definition of the magnetic induction field (
B = #[E) + B(V x E’)]) [9,10]. In this way, it became clear that the
circulations of the electric or the magnetic field (or, alternatively, their
time derivatives [11]) should be considered as separate excitations

. — — - — — -
[12]. Also, magneto-electric effects (D =¢¢ + ah or B = uh +ae )
were established as possible [13,14].

From a thermodynamic point of view, primary and secondary fields
are defined as mutually conjugate entities that can be distinguished by
their intensive or extensive nature. For instance, the electric and the
electric displacement fields, ¢ and D , are examples of thermodynamic
conjugate quantities ( W = Z.dD represents a thermodynamic work).
Therefore, the existence of four different types of primary electro-
magnetic vector fields, with separate symmetries, implies the con-
sideration of their conjugate counterparts. Let us denote the four dif-
ferent types of irreducible primary excitations by € , s ,, and l_), and
their conjugate responses by B s E) s 8 , and ? Then, a general linear
constitutive relation relating these two sets of vectors is:

D Eoal g4oyd s
B af @ oyb o ph s
S Tl= = _ —|X|>
G Byt p af 8
T P T
4 D
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The response of the linear medium is characterized by a set of
16 second-rank tensors (or tensor densities) that transform in different
ways under space inversion and time reversal. The diagonal tensors
relate vectors of the same symmetry and are, therefore, even under time
reversal and space inversion. In the isotropic limit, these response
functions transform as the trivial representation N shown in table-1,
whose limiting group (eo/mm1’) accepts any magnetic point group as a
sub-group. Therefore, these functions are always present in any mag-
netic crystal. For non-diagonal tensors, however, some sort of symmetry
breaking is required. The a-tensors, for instance, are odd both under
time reversal 1’ and space inversion 1, and even under 1’ = 1’ x 1. As a
result, this type of response is only allowed for magnetic point groups
that accept the limiting group co/m’'m’ (irrep F ) as a supergroup
(magneto-electric point groups). In the same way, the -tensors (even
under time reversal 1’ and odd under space inversion I and I’) and the
y-tensors (even under space inversion 1 and odd under 1’ and 1’) are

only possible for space-odd point groups (those that accept the ¢
limiting group e021’ as supergroup) and time-odd point groups (those
that accept the L limiting group oco/mm as a supergroup), respectively.

The symmetry constraints required for the onset of the different
possible electromagnetic cross-effects can, therefore, be grouped into
four distinct irreducible classes, each defined by the corresponding
limiting group. These classes characterize the possible types of irre-
ducible electromagnetic media: the neutral medium (no symmetry
breaking), the space-odd medium (loss of 1 and 1’), the time-odd
medium (loss of 17 and 1’), and magneto-electric medium (loss of 1” and
D.

3. The requirement of energy conservation

Tensors within a given class share the same symmetry constraints.
This fact may suggest that not all tensors in that class are independent.
In the case of an insulating non-dissipative medium, for example, the
requirement of energy conservation forces the linear response matrix to
be Hermitian. Therefore, all the individual diagonal tensors must be
Hermitian, and all the non-diagonal tensors must be related in pairs by
Hermitian conjugation:  «’® = ?‘3)*, g = gd@ r’ and
7(3)1. In this way, the number of independent tensors is re-
duced to ten. It is interesting to look at this matter with more detail in
order to characterize the form of the electromagnetic energy density
that can be ascribed to each of the four irreducible types of electro-
magnetic media.

Energy conservation is usually expressed in the framework of the
Poynting-Heaviside theorem [3]. The conventional interpretation of
this theorem rests on a number of assumptions, which are discussed
with some detail for instance in [4, 15]. One of these assumptions is
that the total electromagnetic energy density of any linear medium can
be identified with the electrostatic energy and the magnetic energy
obtained in a quasi-static approximation, even in the case of arbitrary
time-varying fields. In other words, it is assumed that the time rate of
change of the energy density can be entirely expressed by two terms
involving only the electric and magnetic fields (% =20 + FB?)
From a symmetry point of view, however, there are four primary and
four secondary irreducible fields to consider. Therefore, in general, we
have four separate symmetry independent contributions to the time rate
of change of the energy density:

7O =

du _
dt

—

D+RB+TC+71T-T

(2)

The additional contributions are strictly dynamical (vanish for static
fields) and are non-linear (involve more than one response functions),
which justifies the use of the conventional approach. However, in some
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cases, these dynamical contributions cannot be ignored because they
are responsible for the lowest order energy signatures of some linear
cross-effects.

Let us illustrate this point by considering the cases of the neutral and
the space-odd media. In the first case (neutral medium), only the di-
agonal tensors in (1) are allowed by symmetry. To be concrete, let us

—
take E’ =V x Z and T = YV x h (an alternative representation

- _ 7 -
would be @ = h and

—_—
transparent medium, (\/ X ?) = —E, and (V x h) = B , one can cast
equation (2) in the form:

?). Then, by using Maxwell equations for a

(%)n —TD+RB+(VXT)G+(Vxh)T=

—CET+RTE N+ h-(@FE)R + C-E-TET=
1d o5 —_— = _._ _ = o
Ea[ef +h-g-h + h-(@g-p)h +é(E"7T€)é|

Here, the last step requires that all the diagonal tensors are
Hermitian. The additional dynamical contributions to the energy den-
sity (2) involve, in this case, the product of three response functions and
can be discarded in a linear approximation. The conventional approach
is therefore entirely justified for a neutral medium.

Let us now consider the example of the space-odd (s-0) medium. In
this case, in addition to the diagonal tensors, we have to take into ac-
count all the non-diagonal (-tensors in (1). Then,

du

(%)J—o = (E)n + ??(v X ?) + ??(v X F)) + (v x ?)

FET+(Vxh) Fon
= (%)" BB +RBD -BET+DER
:(i—‘:)n—?-F-§i+ﬁ:b3—§>‘:8?+5’-ﬁ-é
=( di:)" BRI + RIS+ (R PbET + TE R
_[CFFD + DB B - (h BFE + BB R

The four additional terms can be written as time derivatives of
scalar functions if 8¢ = f¢, and F’* = ,? Retaining only the terms that
are linear in the p-pseudo-tensors (which are nevertheless of the second
order since they involve the product of two response functions), we
obtain the lowest order correction to the electromagnetic energy den-
sity that results from breaking inversion symmetry:

— = _ _: = _ =
Uy o=ty + [N -BEET — T-BLT-H | + ..

(3)

The new energy term represents a signature of the electro-electro-
toroidal [P = B4 (V x )] the
[I\_/f = Eb(v X E))] effects, which are permitted in space-odd media. It
resembles the Z™ component of the third-rank Zilch pseudo-tensor Zi
first introduced by Lipkin [16], a quantity that has been recognized as a
measure of the chirality of the field [17-23]. This is not unexpected
since chirality necessarily implies the existence of electro-electro-
toroidal and magneto-magnetotoroidal responses (although the con-
verse is not true: a non-chiral medium may exhibit thesejffects). But,
the important point to stress concerns the fact 8 and B¢ are in fact
independent pseudo-tensors. That is, the electro-electrotoroidal and
magneto-magnetotoroidal responses of a time-odd medium are in-
dependent. Interestingly, this independence is obliterated if the energy
contribution of the secondary fields G andT is ignored. In such a case,
the surviving lower order terms are limited to

ST T TS . .
[-¢-B4FE-h + h-B2E- €], and can be expressed in the desired form

and magneto-magnetotoroidal
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:f [ﬁﬁ?? - ?Ejfﬁ] only if E‘* Bb. This type of constraint,
however, is not required by symmetry “.

An entirely similar situation occurs in the case of the time-odd
medium, where the tensors y* and y¢ are independent of each other,

and Hermitian conjugate to ¥ and y* , respectively. Here, the lowest

Ml

order signature of this effect in the energy density is
B T \ .
[€74Ee — h 7P ). In contrast, in the case of the magneto-electric ef-

S~
fect, the lowest order term in the energy density, ¢ &h ,is entirely due

to the pseudo-tensor & = ?’r, while the tensors @& and &' give rise to
separate contributions of at least of the third order. In this case, the
fields G and T can again be safely ignored. The results concerning both
the form of the corresponding electromagnetic energy density and the
constraints imposed on the medium tensors by the requirement of local
energy conservation are summarized in table-2.

4. Electromagnetic ferroics and related susceptibilities

Each of the four types of electromagnetic secondary vector fields
can be induced in a medium by external forces or, if allowed by the
symmetry, exist spontaneously without any external action. In this
latter case, the medium is said to be ferroic or, if two or more secondary
fields exist simultaneously, multiferroic®. Figure-1 shows the relation-
ship between the four sets of conjugate electromagnetic vector fields
and the possible sets of electromagnetic cross effects described by
second rank tensors (or tensor densities). Each tensor (or tensor den-
sity) linking the same nodes are related by Hermitian conjugation.

The material tensors can be decomposed into symmetric and anti-
symmetric components (for instance: ay = az® + %aé}jk T:, where the
superscript § identifies the symmetric component of the tensor c;, §j. is

the Levi-Civita tensor density, Tisa magneto-toroidal moment, and a is
some arbitrary coefficient). The anti-symmetric components must
transform as one of the four vector moments and, therefore, are only
present if that vector moment is allowed by the symmetry. Hence, the
four diagonal tensors may have an antisymmetric component only if the
phase is ferroelectrotoroidal (g; = &;* + %gdek, for instance), while
the non-diagonal tensors or pseudotensors may show anti-symmetric
parts in ferromagnetotoroidal (a; = ay¥ + %aﬁvk T., as seen above),
ferroelectric (f:‘i_i = ﬁys + %bé‘ngk, or ferromagnetic = US + %gé,-jkMk)
phases *. The structure of each of these tensors or vector moments is
entirely dictated by the magnetic point group of the material and can be
readily found by using, for instance, the resource MTENSOR available in
the Bilbao Crystallographic Server [25]. Table-3 lists the possible linear
effects and spontaneous vector moments permitted for each of the 122
magnetic point groups.

The response of the medium becomes more complex as its symmetry
is reduced. All the holohedral magnetic point groups [m3m1'(32.2.119),
6/mmml’ (27.2.101), 3ml’ (19.2.69), 4/mmm1’ (15.2.54), m
mml’ (8.2.25), 2/m1’ (5.2.13), and 11’ (2.2.4)] forbid off-diagonal ten-
sors and force the medium to behave as neutral. Within each crystal
class, specific reductions of the full symmetry can be found to induce all
the non-trivial irreducible responses. For instance, in the cubic system
the groups m’3’'m’ (32.5.122), 4'32°(30.3.114), and m3m (32.1.118)
ensure irreducible responses of the magneto-electric, space-odd, and

2This restriction has been invoked, for instance, in the analysis of the bi-
isotropic medium reported in Ref. [24]. Here, the corresponding scalars #? and
B¢ were forced to be equal to ensure local energy conservation.

The concept of ferroic is here used in the sense of pyroic, since the possibility
of domain switching by an external conjugate field is not relevant for the
present analysis.

4 The existence of a spontaneous vector moment is however a necessary but
not a sufficient condition for the existence of an antisymmetric part of a second
rank tensor. For example, the group mm21'allows the existence of a sponta-
neous polarization but still constrains the space-odd -tensors to be symmetric.
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Table 2
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Possible constitutive relations for each of the four types of irreducible electromagnetic media. Energy conservation, as expressed by the Poynting-Heaviside
theorem, imposes constraints of the material tensors (third column), and on the form of the electromagnetic energy density (fourth column: only the lowest order

terms are shown).

Medium Constitutive relations Constraints Energy density
neutral D =i¢; £ %[?-E-? +ATE + )
7 27 z
=Hag =
G =5V x? -
n
T=7(7xh)
Space-odd D=7 + UV x T £ JRET+HTH +
BE=Fh +8°(V xh); 4 Tater _og=T
ﬁ—u Xh); 5 +|hB Ee — B TEH + .|
G=p(Vx?)+p%: _
T
T=m(Vxh)+g% _
8
5
Time-odd D=5¢ + 74V x 1) £ %[?-?-? +RER 4
- — T '
Booh 45 —. H e —_, =
E Eh +7"(V x :) 5 +[EF9Ee - h7"Th + ..
G =5V x7?)+7¥th; =
TRV xh)+7'7 _
7?4
F=p
magneto-electric D=7 + adn: £ %[?.E.? + ﬁﬁz + .+
= _ 7y " _
i_m + 7T ~ 5 HTER + .
G=F(VxT)+aTV xh) .
T=7(V xh)+&(Vx7) =
al=ab;
g=g

-

D,

=
e

A
Q.

QI yRII
oQ

QU
Q

ISz

Il

7by
St

ab
= >

B, h p A , 1
Fig. 1. The four electromagnetic ferroic orders and the related response func-

tions. Tensors linking the same corners of the square are related by Hermitian
conjugation.

time-odd type, respectively. The same happens in the triclinic system
with the groups 1’ (2.3.5), 11’ (1.2.2), and 1 (2.1.3). Further reduction of
the symmetry within each class increases the complexity of the re-
sponse, ensuring reducible constitutive relations for which more than
one type non-diagonal tensors are allowed. For example, for the chiral
cubic group 432, all the linear cross-effects are possible. This means
that any of the primary excitations, by itself, is capable of inducing any
of the four secondary moments. The electromagnetic response becomes

340

especially complex in the case of seven groups [1(1.1.1), 2(3.1.6), 2’
(3.3.8), m’' (4.3.11) , 4 (9.1.29), 3 (16.1.60), 6 (21.1.76)] because here not
only all the first order effects are allowed, but also all the four types of
secondary moments can co-exist in the same system.

The structure of a given tensor for a specific magnetic point sym-
metry must take into account the limitations imposed by the require-
ment of energy conservation. For example, the diagonal tensors of any
non-ferroelectrotoroidal transparent medium must be purely symmetric
and, therefore, real, to preserve their Hermitic nature. In a ferroelec-
trotoroidal medium, these tensors may have an anti-symmetric com-
ponent which, for the same reason, must be purely imaginary. Consider,
for instance, the ferroelectrotoroidal group 2'/m’(5.5.16) . Since this
group allows for the existence of an electrotoroidal moment parallel to
the monoclinic axis (G, # 0), then it also permits the existence of a
purely imaginary component in any of the diagonal tensors. In the case
of the dielectric tensor, for instance, the purely imaginary components
g''51 = —€''13 x iG, are permitted, along with a real symmetric non-di-
agonal counterpart (¢'5; = £’)3). Because all the non-diagonal tensors are
forbidden for this symmetry, the corresponding medium remains of the
neutral type: a given secondary moment is solely induced by the cor-
responding conjugate primary field.

The non-diagonal tensors are not constrained to be Hermitian.
Consider the example of the non-pyroic and chiral group 4221’ (12.2.41).
Here, the only non-diagonal tensors allowed are the space-odd §-ten-
sors, which are forced to be symmetric due to the non-ferroic nature of
the group. Specifically, in this case, the B-tensors are constrained to be
diagonal with §,, = 8,, = a, and B;; = b, where a and b are complex
numbers. The only constraint imposed by the Poynting-Heaviside the-

orem is limited to the conditions 8¢ = ﬁ, and F’T = F . In the case of a
polar group, the g-tensors can also display an anti-symmetric compo-
nent. This component can eventually be the only one permitted by the
symmetry. In the case of the group 6mml’ (25.2.92), for example, the
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Table-3
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Electromagnetic cross-effects and ferroic phases allowed (full square W) or forbidden (open square []) for each of the 122 magnetic point groups. Each group is
denoted by its Hermann-Mauguin symbol, and by its number according to the Bilbao Server (MPOINT). Symmetry, the corresponding medium remains of the neutral
type: a given secondary moment is solely induced by the corresponding conjugate primary field.
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B-tensors are constrained to be purely anti-symmetry and to have a
single component 3, = —f,, that is proportional to a polarization along
the z-axis, P;.

As it is well known, real and imaginary components of the different
constitutive tensors of a non-dissipative medium with local interactions
have frequency dependences of different parity. This merely results
from the fact that both primary and secondary fields are, in this case,
real functions of time. In a time-odd medium, for instance, an electric
polarization AP can be induced by an applied toroidal magnetic field

V x ¥.In general, this linear response is non-instantaneous and can be
- ! - g
expressed as AP (1) = [ 7(t— ") [V x h ()] dt’. Here, the kernel
—o0

¥ (t — t') is forced to be real because both AI_;(I) and V' x E}(I’J are real
+o0
fields. As a result, its Fourier transform ¥ (w)= f ¥ ()edr is

bounded to have real and imaginary components that are necessarily
even and odd functions of frequency, respectively. This observation
allows us to identify, in a straightforward way, which of the possible
effects are or are not reciprocal.

Reciprocity can be defined in a number of ways. In network theory,
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for instance, a signal is called reciprocal if its propagation (in a given
medium) is symmetric under the interchange of the signal source and
signal detector. In the present context, it is adequate to adopt a defi-
nition that directly relates primary and secondary vector fields in linear
media [26,27]. Accordingly, a given linear medium will be reciprocal if
the amplitude of a secondary field, polarized along X, and propagating
along E,, arising from an exciting field of unit amplitude, polarized
along x,, and with propagation vector E, is exactly equal to the am-
plitude of a secondary field, polarized along X, and propagating along
— E; that results from an exciting field of unit amplitude, polarization
Xp, and propagating vector — E,. With this definition, reciprocity can be
traced back to the local properties of the material medium. According
to Post [28], a non-dissipative medium with local interactions will be
reciprocal, in the above sense, if all the elements of the constitutive
tensor remain invariant under a simultaneous reversal in sign of time
and frequency. With this practical definition, the reciprocal or non-re-
ciprocal nature of a medium can be immediately checked, simply by
inspecting how the symmetry allowed tensors transform under time-
frequency inversion (see table-4).

The knowledge of the magnetic point group of a given material
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Table 4

The reciprocal or non-reciprocal character of the ef-
fects described by the real (X') and imaginary (X' "
components of the different constitutive tensors.

Reciprocal Non-reciprocal
= A
I i
p—=p 7 —=p
o . g

7 s a 7w

B -E [
7y 77

Fort = —t and @ = —w

allows us to establish both the type of the electromagnetic response and
the structure of the tensors describing the linear effects permitted by
the symmetry of that material. The different contributions to the elec-
tromagnetic energy density and the reciprocal or non-reciprocal char-
acter of each response function can also be readily found. The sys-
tematic use of this information provides, therefore, a rigorous and
symmetry-based framework that is very useful, either in the planning of
experiments or in the understanding of the different properties ob-
served in a given material, without relying upon or invoking specific
microscopic mechanisms. In the next paragraph, we explore a few
practical examples to illustrate these points.

5. A few examples
5.1. Space-odd medium

The RMnO; compounds are prototype examples of the so-called
“type-Il magnetoelectric multiferroics” [29-33]. Let us consider the
example of TbMnOs [33]. The parent phase of this compound is de-
scribed by the grey group Pbnm1’ (z = 4). Below Ty = 48K, the Mn%*
S,-spins form an incommensurate collinear structure modulated along

the y-axis [propagation vector ? = (0, 8. 0), with g ~ 0,27]. The sym-
metry of this first incommensurate phase is described by the magnetic
superspace group (mssg) Pbnm1’(080)s00s [34]. At zero magnetic field
and below T = 27K, the magnetic modulation acquires an additional
component of modulated S;-spins, which shares the same propagation
vector but has a phase shift of ” relatively to the pre-existing S, wave.
The symmetry of this cycloidal incommensurate phase (the spins form a
cycloid in the yz-plane) is described by the polar mssg Pbn2;1’(080)s00s
[34]. At low temperatures, a uniform magnetic field applied along the
z-axis stabilizes another cycloidal phase (with the same propagation
vector), this time formed by a superposition in quadrature of the ori-
ginal S,-wave with a S,-wave. The symmetry of this field induced phase
is described by the polar mssg P2,nml’(080)000s. The magnetic field
rotates the cycloid plane and the orientation of the spontaneous po-
larization changes from ?//2 to ?//2.

The evolution of the point group of the system across this phase
sequence is mmml’ — mmml’ — mm2l’ - 2mml’ (this latter transi-
tion being induced by the magnetic field). As can be seen in table-3, the
system remains neutral in the first two phases (the parent phase and the
first incommensurate phase). Only the diagonal constitutive tensors are
allowed, and these are forced to be symmetric (diagonal) and real. The
material is therefore reciprocal. For the two cycloidal phases, the point
group becomes mm21’,or 2mml’in the case of the field-induced phase.
Here the material type changes from neutral to the space-odd. The
complex components f,and S, of the §-tensors are now permitted, in
addition to the diagonal tensors that remain constrained to be diagonal
and real. In these phases, the system is ferroelectric but it is neither
multiferroic nor magnetoelectric. Hence, it must be the presence of the
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Fig. 2. The cycloidal polar phases of TbMnOs: (a) In the zero field phase, the
cycloid lies on the yz-plane and P'//%. Here the complex components §,,and
8,,0f the 3-tensors are allowed by symmetry and the external field E’/ /Zinduces
a magnetization along the z-axis (parallel to the spontaneous polarization), but
cannot induce a toreidal moment; (b) For the alternative cycloid, the magnetic
field induces a magnetization along the z-axis, and a magnetotoroidal moment
along the y-axis (13) via the ﬁz‘gcoefﬁcient. In this case, the sign ofl> can be
adjusted to lower the energy of the phase via the symmetry allowed trilinear
coupling M3 Py.

inverse magneto-magnetoroidal effect, expressed by the F  that allows
an external uniform magnetic field to influence the stability of the two
competing cycloidal phases. Consider the zero-field cycloidal phase
(point group mm?21’) and a magnetic field applied along the z-axis (hs),
as depicted in Fig. 2a. In this case, the external field induces a mag-
netization along the z-axis (parallel to the spontaneous polarization),
but cannot induce a toroidal moment. For the alternative cycloid,
however, hiinduces a magnetization along the z-axis, and a magneto-
toroidal moment along the y-axis (T;) via the 6253c0ef'ﬁcier1t (see Fig. 2b).
The sign ofT; can be adjusted to lower the energy of the phase via the
symmetry allowed trilinear coupling T,M;P,. Since P, = (SiS, — S;Sy),
My = py;hs, and T = 62’3]13, the contribution of this stabilizing term
grows with the square of the field and the amplitude of the S,-wave. It is
through this term that the competing cycloidal phase is stabilized by the
magnetic field.

5.2. Time-odd medium

At room temperature, paramagnetic MnF, shows a tetragonal
structure described by the grey group P4,/mnm1l’. Below Ty=67K, the
Mn spins show an anti-ferromagnetic alignment along the z-axis,
breaking time reversal and reducing the symmetry to Ref. P4;/mnm’
[35]. The point group of this magnetic phase is therefore 4 /mm'm
(15.4.56), a symmetry that allows symmetric time-odd y-tensors with
only one independent element (y,; = ¥,,), and diagonal tensors con-
strained to be diagonal with two independent elements (for the di-
electric tensor, for example, g, = &, # &3). The presence of this time-
odd coefficient allows several effects that can be experimentally sear-
ched for. For example, a sinusoidal electric (magnetic) field applied
along the x-axis may induce an electric polarization (magnetization)
along the y-axis, with the same frequency of the exciting field, due to
the imaginary part of y,,. The magnitude of this effect may eventually
be too small to be detected but it is certainly interesting to be aware of
its existence when studying the electromagnetic response of the com-
pound.

Similar effects can be expected for ferromagnetic NiCr,0y4, but here
with the addition of a spontaneous Faraday effect. This compound has a
parent phase described by the paramagnetic space group
I4,/amd1’(point group 4/mmm17(15.2.54)), a symmetry that forbids any
non-diagonal tensors and forces a neutral response with diagonal real
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tensors. At T, = 74K, the spins within each of the Ni and Cr sub-lattices
order themselves parallel to each other, but in opposite directions
[N mN, 0), (=mE, —mE", 0)],giving rise to a ferrimagnetic phase
with a net magnetization in the xy-plane [36]. The symmetry of this
ordered phase corresponds to the group Fd'd’d (in a non-standard set-
ting®), a symmetry that allows a spontaneous magnetization along the
z-direction ([110] direction in the parent phase cell), and non-zero
time-odd coefficients y,, # %,.As a result, an anti-symmetric component
of the y-tensor is allowed, and a spontaneous circular birefringence is
expected for light propagating along the z-axis ([110] direction in the
parent phase cell).

5.3. Magnetoelectric medium

Orthorhombic LiMnPO,4 has a paramagnetic phase described by the
grey group Pnmal’. At about Ty=34K the Mn spins order along the x-
axis, giving rise to an antiferromagnetic phase described by the mag-
netic space group Pn'm’a’(order parameter symmetry: mlj_) [37]. The
magnetic point group changes therefore from mmml’(8.2.25) to
m’'m'm’ (8.5.28), a group that forbids any ferroic order, but allows di-
agonal magnetoelectric, dielectric, and magnetic permeability tensors,
with three independent coefficients. As a result, in the ordered phase,
an electric ¢ field applied along any crystallographic axis gives rise to a
magnetization M and a polarization P parallel to that axis (via the
corresponding magnetoelectric o) and electric susceptibility X coeffi-
cients, respectively), thus preventing the induction of a magnetotor-
oidal moment ? = (F X I\_A" ). But, even if the induction of a magne-
totoroidal moment by an electric field via a linear effect is forbidden by
the magnetic point group of the phase (see Table 2), the collinearity of
the induced Mand Fmay not be kept for arbitrary orientations of the
field. In that case, a magnetotoroidal moment T does arise via non-
linear effects. For example, an electric field applied in the xy-plane
gives rise to a magnetotoroidal moment along the z-axis, via a second-
order effect (T ~ (610t — &a01)€1€2).

It is interesting to note that a slight change in the symmetry of the
order parameter may have important effects on the magnetoelectric
response. Consider for instance the case of GdsGe, (see Fig. 3). As in the
preceding example, the paramagnetic phase of this compound also
display the symmetry described by the magnetic space group
Pnmal’but the magnetic ordered phase results here from the con-
densation of an order parameter of different symmetry (mI}_): the three
sub-lattices of Gd spins orient themselves along the z-axis, forming an
antiferromagnetic arrangement with symmetry Pnm’a[38]. The point
group changes from mmm1'(8.2.25) to mm’m(8.3.26), a magnetoelectric
point group that allows two independent magnetoelectric coefficients,
a3 and ), along with a spontaneous magnetotoroidal moment T;. Here,
an electric field applied in the xz-plane induces a magnetization that is
non-collinear with the induced polarization, being the two vectors ex-
actly orthogonal to each other when the field is oriented along the x- or
z-axis. A static electric field applied along the x-axis, for instance,
produces a polarization 1? ~ g€, and a magnetization J\_f ~ czflelig.
Notice that although the electric field cannot affect the magnitude or
the orientation of the spontaneous magnetotoroidal moment via a
linear effect (since the ¥-tensors are null by symmetry), it can change
its magnitude via a second-order effect (AT, ~ a6, ¢2). Of course, these
effects are maintained if the applied electric field is time dependent.
But, in this case, we have also to consider the additional dynamic effect,
due to &@®, of the electric field induced electrotoroidal moment. For a
harmonic field applied along (1) = ¢cos(w)g, for example, we have
to consider, in addition to the induced polarization (}_; ~ zl,?cos(cut)fl)
and magnetization M~ oz, € cos(wi)%;, the induced electrotoroidal

SThe transformation to the standard setting is {(—a + b, ¢, a + b); %

[25].
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Fig. 3. The antiferromagnetic spin arrangement in GdsGes: the magnetic point
group of this magnetic phase is mm’m (8.3.26), a group that permits two in-
dependent magnetoelectric coefficients, aj;and @), along with a magnetotor-
oidal moment 7. As a result, a static electric field applied along the x-axis (e,)
induces, via a linear effect, a polarization 1_J> ~gie.% and a magnetization
M ~ abe,ty, along with a change of the magnitude of T; via a second-order
effect (AT ~ azjenef).

= ;= Ao .
moment G ~ afjwe sin(wt)arising from the presence of the in-
dependent magnetoelectric coefficients as;.

5.4. Electrotoroidal neutral medium

Calcium manganese-germanium garnet, CasMnyGes0q,, has a
parent cubic structure described by the space group Pm3m1’. At about
T = 516K there is a structural phase transition to a tetragonal phase,
which originates from the cooperative ordering of the Jahn-Teller dis-
tortions of the oxygen octahedra [39-41]. The tetragonal distortion is,
however, so small (i ~ 1,003) that several attempts for establishing the
space group of the tetragonal phase have failed [42]. The groups
P4/mmml'and P4/ml’ have been considered as an alternative. These
two groups are group-subgroup related and differ by the absence or
presence of a ferroaxial distortion of symmetry I3;(referred to the
P4/mmm1'group). In both cases, the electromagnetic response of the
material remains of the neutral type (see table-2), meaning that a given
field can only excite its conjugate moment. But if that distortion exists,
then a spontaneous electrotoroidal moment oriented along the tetra-
gonal axis is allowed (G3). Therefore, the structure of the diagonal
tensors is different in the two cases: they are limited to be real and
diagonal for the 4/mmm (15.11.53) point group, but have, in addition,
purely imaginary non-diagonal coefficients for 4/m(11.1.35). The di-
electric tensor, for instance, is limited to two independent coefficients
in the first case (g, = &, and &;), and three independent coefficients in
the second case (g, = &5, &3, and ig, = —igy). Hence, a harmonic
electric field applied along the xy-axis, ?(1) = elcos(cu[)ﬁ, gives only
rise to a time-dependent polarization along that axis for 4/mmm, but
originates to an additional polarization component along the };in the
case of 4/m. This additional component oscillates with a phase lag of
Twith respect to the applied electric field. This observation could
eventually help to elucidate which of the two groups is actually realized
in the calcium manganese-germanium garnets below their high-tem-
perature structural transition.

5.5. Full reducible medium

At room temperature, FePO, has an orthorhombic paramagnetic
structure described by the grey space group Pnmal’. BelowTy = 125K
the Fe-spins order into an antiferromagnetic arrangement due to the
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condensation of a magnetic order parameter with a symmetry mij-,
giving rise to a chiral phase with symmetry P2,2,2, [43]. As a result, the
system changes from the neutral type (only diagonal real tensors are
allowed to the full reducible type (all the material tensors are allowed).
The point symmetry of the ordered phase excludes, however, all the
ferroic orders, forcing all the different tensors to remain diagonal. This
implies that all the cross electromagnetic effects are here permitted, and
a single external field may in principle induce any type of secondary
moment. For example, an electric field e,applied along Nean eventually
induce a polarization [P, = (2—10' — 1)e,], a magnetization [M, = alie], a
electrotoroidal moment [G, = e ], and a magnetotoroidal moment
[Ti = y{,e1], all parallel to that axis. For an arbitrary orientation of the
field, the different induced momenta are not forced to be parallel to
each other.

6. Conclusion

The constitutive relations of any linear and non-dissipative medium
with local interactions can be consistently classified according to the
type of electromagnetic effects that are allowed by its magnetic point
group. The well-establish need to consider four different types of
electromagnetic excitations with separate symmetries requires, for
consistency, the explicit consideration of four conjugate secondary
fields. In this way, it is ensured that all the symmetry independent
contributions to the electromagnetic energy density are included, and
all the constraints imposed by the conservation of energy are properly
evaluated.

The type of the electromagnetic response is entirely dictated by the
point symmetry. In each crystal class, the holohedral magnetic point
group always forces the system to be of the neutral type. Here, the non-
diagonal material tensors in (1) are forbidden, and a given excitation
field can only induce its conjugate field. Appropriate reductions of
symmetry within each crystal class can give rise to the onset of different
irreducible responses when the particular point group accepts only one
of the non-trivial limiting groups [c021’ (space-odd), co/mm(time-odd),
or co/m’m’(magneto-electric)] as a supergroup, Further reductions of
the symmetry within each class result in partial or full reducible re-
sponses, when two or all the three limiting groups are accepted as
common supergroups, respectively.

The consideration of the magnetic point group of a system provides
an instrumental and often ignored information concerning the possible
linear electromagnetic effects that can be expected. In this sense,
symmetry offers a simple, practical and model-independent tool to in-
terpret and explore the details of the electromagnetic response of ma-
terials
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