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Abstract. We extend the generic framework of reproducibility for reuse
of randomness in multi-recipient encryption schemes as proposed by Bel-
lare et al. (PKC 2003). A new notion of weak reproducibility captures not
only encryption schemes which are (fully) reproducible under the criteria
given in the previous work, but also a class of efficient schemes which can
only be used in the single message setting. In particular, we are able to
capture the single message schemes suggested by Kurosawa (PKC 2002),
which are more efficient than the direct adaptation of the multiple mes-
sage schemes studied by Bellare et al. Our study of randomness reuse in
key encapsulation mechanisms provides an additional argument for the
relevance of these results: by taking advantage of our weak reproducibil-
ity notion, we are able to generalise and improve multi-recipient KEM
constructions found in literature. We also propose an efficient multi-
recipient KEM provably secure in the standard model and conclude the
paper by proposing a notion of direct reproducibility which enables tighter
security reductions.
Keywords. Randomness Reuse. Multi-Recipient. Hybrid Encryption.

1 Introduction

Generating randomness for cryptographic applications is a costly and security-
critical operation. It is often assumed in security analysis that parameters are
sampled from a perfect uniform distribution and are handled securely. More-
over, various operations performed by a cryptographic algorithm depend on the
random coins used within the algorithm. These operations, such as a group expo-
nentiation, can be quite costly and prevent the use of the scheme in constrained
devices. Therefore, minimising the amount of fresh randomness required in cryp-
tographic algorithms is important for their overall efficiency and security.

One approach to minimise this problem is to reuse randomness across multi-
ple instantiations of cryptographic algorithms, namely in the context of batch op-
erations where (possibly different) messages are encrypted to multiple recipients.
This avenue must be pursued with caution, since randomness reuse may hinder
the security of cryptographic schemes. However, when possible, this technique



allows for significant savings in processing load and bandwidth, since partial re-
sults (and even ciphertext elements) can be shared between multiple instances
of a cryptographic algorithm.

Examples of this method are the multi-recipient encryption schemes pro-
posed by Kurosawa [11], the mKEM scheme by Smart in [12], the certificateless
encryption scheme in [3] where randomness is shared between the identity-based
and public-key components, and the cryptographic workflow scheme in [2].

Bellare et al. [4], building on the work of Kurosawa [11], systematically study
the problem of reusing randomness. The authors examine multi-recipient encryp-
tion, and consider the particular case of constructing such schemes by running
multiple instances of a public-key encryption (PKE) scheme, whilst sharing ran-
domness across them. An interesting result in this work is a general method for
identifying PKE schemes that are secure when used in this scenario. Schemes
which satisfy the so-called reproducibility test are guaranteed to permit a hybrid
argument proof strategy which is generally captured in a reproducibility theorem.
Bellare et al. later leveraged on these results to propose a stateful encryption
framework [5] which enables more efficient encryption operations.

In this paper we extend the above theoretical framework supporting the
reuse of randomness to construct multi-recipient encryption schemes. The main
contribution of this paper is a more permissive test that permits constructing
a wider class of efficient single message multi-recipient schemes. Of particular
interest are the optimised modified versions of the ElGamal and Cramer-Shoup
multi-recipient encryption schemes briefly mentioned by Kurosawa in the final
section of [11]. We show that these schemes do not fit the randomness reuse
framework originally proposed by Bellare et al. and propose extensions to the
original definitions which capture these as well as other similar schemes. The
technique that we employ to prove the main Theorem (Theorem 1) deviates
from that of [4] and may be of independent interest in other contexts.

We then turn our attention to the KEM/DEM paradigm and focus on key
encapsulation mechanisms [7]. Adaptation of the results in [4] is straightfor-
ward if one focuses on multi-recipient KEMs generating independent keys for
each recipient. The interesting case arises when one considers single key multi-
recipient KEMs. To construct these schemes efficiently by reusing randomness,
we define the notion of public key independent KEM3. However, we find that
if such a KEM satisfies an appropriate modification of the reproducibility test
of Bellare et al. it cannot be secure. To compensate for this negative result, we
propose an alternative generic construction of efficient single key multi-recipient
KEMs based on weakly secure and weakly reproducible PKEs. We also present
a concrete efficient construction, which is secure in the standard model.

The paper is structured as follows. In Section 2 we define what we mean
by secure multi-recipient PKEs and full reproducibility, and go on to define
weak reproducibly. Concrete schemes are analysed in Section 3. In Section 4
we examine extensions of the previous results to KEMs. Finally, in Section 5

3 This closely related to the notion of partitioned identity-based KEMs independently
proposed by Abe et al. in [1].
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we propose a new approach to the reproducibility generalisation that captures
tighter security reductions, discuss the results we obtained using this strategy,
and conclude with some associated open problems.

2 A New Notion of Reproducibility

2.1 Multi-Recipient PKEs

An n-Multi-Recipient PKE (n-MR-PKE) [4] is defined similarly to a standard
PKE scheme, with two exceptions: (1) The key generation algorithm is param-
eterised with a domain parameter I which ensures compatibility between users’
key pairs and various spaces4. We denote the randomness, message and cipher-
text spaces by the letters R, M and C respectively; and (2) The encryption
algorithm takes a list of n message/public key tuples and outputs a list of n
ciphertexts.

Given a PKE scheme we can build the associated n-MR-PKE as follows. The
key generation and decryption algorithms are identical to the underlying PKE
(which we call the base PKE). Encryption is defined naturally by running multi-
ple parallel instances of the base PKE encryption algorithm. If the randomness
tapes in all instantiations are constant, the resulting n-MR-PKE scheme is called
randomness reusing. In case there are common parameters that may be shared
by all public keys to improve overall efficiency5, these are included in the domain
parameter I. The formal security model for an n-MR-PKE, as defined in [4], con-
siders the possibility of insider attacks by allowing the adversary to corrupt some
of the users by maliciously choosing their public keys. This ensures that security
is still in place between the legitimate recipients, or in other words, that there
is no “cross-talk” between the ciphertexts intended for different recipients.

In this work we are interested in a special case of n-MR-PKEs where the
same message is sent to all recipients. We refer to this special case as single
message (n-SM-PKE for simplicity), and note that such a scheme can also take
advantage of randomness reuse. This specific case is a recurring use-case of n-
MR-PKEs in practice, and one could ask if the single message restriction makes
it any easier to construct n-MR-PKE schemes. More precisely, is there a wider
range of schemes that can be used to construct efficient n-SM-PKEs through
randomness reuse?

Below is the simplified security model for n-SM-PKEs. There is an important
difference to the n-MR-PKE model: the adversary is no longer able to corrupt
users. The reason for this is that, since all recipients will be getting the same
message, there is no need to enforce security across the individual ciphertexts.
We will also see in Section 4 that this weaker model is particularly relevant in
the hybrid encryption scenario. Throughout the game, the adversary also has
access to O1 and O2, which denote a set of oracles, as follows:

4 This parameter is generated once for all users and henceforth, unless specifically
stated otherwise, we leave its generation as implicit to simplify notation.

5 For example in a Diffie–Hellman based scheme, this might include a domain modulus
and generator which all parties use to create key pairs.
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– If atk = CPA then O1 = O2 = NULL;
– If atk = CCA6 then O1 is a set of decryption oracles one for each PKi and O2

is same as O1 except that no component C∗
i of the challenge ciphertext C∗

can be submitted to an oracle corresponding to PKi.

IND-atk
1. For i = 1, . . . , n

(SKi, PKi)← Gn−SM−PKE(I)
2. (M0, M1, s)← AO1

1 (PK1, . . . , PKn)
3. b← {0, 1}
4. C∗ ← En−SM−PKE(Mb, (PKi)

n
i=1)

5. b′ ← AO2

2 (C∗, s)

AdvIND−atk

n−SM−PKE
(A) := |2 Pr[b′ = b]− 1|.

2.2 Weak Reproducibility for PKEs

Definition 1. A PKE scheme is fully reproducible if there exists a probabilistic
polynomial time (PPT) algorithm R such that the following experiment returns
1 with probability 1.

1. (PK, SK), (PK′, SK′)← GPKE(I)
2. r ←RPKE(I); M, M ′ ←MPKE(I)
3. C ← EPKE(M, PK; r)
4. If R(PK, C, M ′, PK′, SK′) = EPKE(M

′, PK′; r) return 1, else return 0

It is shown in [4] that an IND-atk secure PKE scheme satisfying the above
definition can be used to construct an efficient IND-atk secure n-MR-PKE, by
reusing randomness across n PKE instances. This result is interesting in itself,
as it constitutes a generalisation of a proof strategy which can be repeated,
almost without change, for all schemes satisfying the reproducibility test. This
is a hybrid argument where an n-MR-PKE attacker is used to construct an
attacker against the base scheme. The reproducibility algorithm generalises the
functionality required to extend a challenge in the single-user PKE security
game, to construct a complete challenge for the n-MR-PKE security game.

The SM security model proposed in the previous section is somewhat simpler
than the original model in [4], so it is conceivable that a wider range of PKE
schemes can be used to construct secure n-SM-PKEs, namely efficient random-
ness reusing ones. Hence, we are interested in defining a less restrictive version of
reproducibility that permits determining whether a PKE scheme can be safely
used in the single message scenario, even if it does not satisfy the full repro-
ducibility test above. The following definition achieves this.

Definition 2. A PKE scheme is weakly reproducible (wREP) if there exists a
PPT algorithm R such that the following experiment returns 1 with probability
1.
6 In this paper we use IND-CCA to denote a fully adaptive chosen ciphertext attack

sometimes denoted by IND-CCA2.
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1. (SK1, PK1), (SK2, PK2), (SK3, PK3)← GPKE(I)
2. r ←RPKE(I); M, M ′ ←MPKE(I)
3. C1 ← EPKE(M, PK1; r); C2 ← EPKE(M, PK2; r)
4. If R(PK1, C1, M, PK2, SK2) 6= C2 return 0
5. If R(PK1, C1, M

′, PK3, SK3) 6= R(PK2, C2, M
′, PK3, SK3) return 0, else return 1

Similarly to the original REP definition, the wREP definition follows from
the generalisation of the hybrid argument which allows reducing the security
of a randomness reusing n-SM-PKE to that of its base scheme. The intuition
behind the definition is as follows. We are dealing which single message schemes.
Therefore we only require correct reproduction when the two messages are the
same. When the messages are different, we relax the definition and require only
that R is source-PK independent (condition 5). This property is easy to check.

To see why more schemes might satisfy this definition, note that R is not even
required to produce a valid ciphertext when the messages are different. In Sec-
tion 3 we analyse specific PKE schemes and give a formal separation argument
which establishes that the wREP definition is meaningful: there are schemes
which satisfy this definition and which are not fully reproducible. Conversely,
it is easy to check that the following Lemma holds, and that wREP fits in the
original reproducibility generalisation.

Lemma 1. Any scheme which is fully reproducible is also weakly reproducible.

The following theorem shows that the wREP definition is sufficient to guaran-
tee n-SM-PKE security. The proof uses techniques which are somewhat different
from that in [4] and may be of independent interest in other contexts.

Theorem 1. The associated randomness reusing n-SM-PKE scheme of an IND-
atk public-key encryption scheme is IND-atk secure if the base PKE is weakly
reproducible. More precisely, any PPT attacker A with non negligible advantage
against the randomness reusing n-SM-PKE scheme can be used to construct
attackers B and D against the base PKE, such that:

AdvIND−atk

n−SM−PKE
(A) ≤ n · AdvIND−atk

PKE
(B) + (n− 1) · AdvIND−atk

PKE
(D).

Proof. We present the argument for the IND-CPA case, since the IND-CCA
version is a straightforward extension where simulators use their knowledge of
secret keys and external oracles to answer decryption queries. We begin by defin-
ing the following experiment, parameterised with an IND-atk attacker A against
the randomness reusing n-SM-PKE scheme, and indexed by a coin b and an
integer l such that 0 ≤ l ≤ n.

Expl,b(A)

1. (P̂K, ŜK)← GPKE(I)
2. (PKi, SKi)← GPKE(I), for 1 ≤ i ≤ n
3. (M0, M1, s)← A1(PK1, . . . , PKn)
4. Ĉ ← EPKE(Mb, P̂K)
5. Ci ← R(P̂K, Ĉ, M1, PKi, SKi), for 1 ≤ i ≤ l
6. Ci ← R(P̂K, Ĉ, M0, PKi, SKi), for l + 1 ≤ i ≤ n
7. c← A2(C1, . . . , Cn, s)
8. Return c
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Looking at this experiment, and recalling from the wREP definition that R
performs perfect reproduction when the input message is the same as that inside
the input ciphertext, we can write the following equation:

AdvIND−atk

n−SM−PKE
(A) = |Pr[Expn,1(A) = 1]− Pr[Exp0,0(A) = 1]|.

This follows from the advantage definition, and fact that when (l, b) = (n, 1),
then Ĉ will encapsulate M1, and all challenge ciphertexts are reproduced with
M1, which gives rise to a valid n-IND-atk ciphertext encapsulating M1. The
same happens for M0, when (l, b) = (0, 0).

We now define a probabilistic algorithm B which tries to break the base PKE
scheme using A.

B1(P̄K)

1. Select l at random such that 1 ≤ l ≤ n
2. (PKl, SKl)← (P̄K,⊥)
3. (PKi, SKi)← GPKE(I), for 1 ≤ i ≤ n and i 6= l
4. (M0, M1, s)← A1(PK1, . . . , PKn)
5. Return (M0, M1, (M0, M1, l, P̄K, (PK1, SK1), . . . , (PKn, SKn), s))

B2(C̄, (M0, M1, l, P̄K, (PK1, SK1), . . . , (PKn, SKn), s))

1. Cl ← C̄
2. Ci ← R(P̄K, C̄, M1, PKi, SKi), for 1 ≤ i ≤ l − 1
3. Ci ← R(P̄K, C̄, M0, PKi, SKi), for l + 1 ≤ i ≤ n

4. b̂← A2(C1, . . . , Cn, s)

5. Return b̂

To continue the proof, we will require the following two Lemmas, which we shall
prove shortly.

Lemma 2. For 1 ≤ l ≤ n − 1, and for any PPT adversary A, there is an
adversary D such that

AdvIND−atk

PKE
(D) = |Pr[Expl,1(A) = 1]− Pr[Expl,0(A) = 1]|.

Lemma 3. For 1 ≤ i ≤ n, the output of algorithm B and that of Expl,b(A) are
related as follows:

Pr[b̂ = 1|l = i ∧ b̄ = 1] = Pr[Expi,1(A) = 1]

Pr[b̂ = 1|l = i ∧ b̄ = 0] = Pr[Expi−1,0(A) = 1].

Here b̄ is the hidden bit in C̄.

Let us now analyse overall the probability that B returns 1, conditional on the
value of the hidden challenge bit b̄. Since B choses l uniformly at random, we
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may write:

Pr[b̂ = 1|b̄ = 1] =
1

n

n∑

i=1

Pr[b̂ = 1|l = i ∧ b̄ = 1]

Pr[b̂ = 1|b̄ = 0] =
1

n

n∑

i=1

Pr[b̂ = 1|l = i ∧ b̄ = 0].

Taking advantage of Lemma 3, we can rewrite these as:

Pr[b̂ = 1|b̄ = 1] =
1

n

n∑

i=1

Pr[Expi,1(A) = 1]

Pr[b̂ = 1|b̄ = 0] =
1

n

n∑

i=1

Pr[Expi−1,0(A) = 1].

Subtracting the previous equations and rearranging the terms, we get

n(Pr[b̂ = 1|b̄ = 1]− Pr[b̂ = 1|b̄ = 0]) −

(

n−1∑

i=1

Pr[Expi,1(A) = 1] −

n−1∑

i=1

Pr[Expi,0(A) = 1])

= Pr[Expn,1(A) = 1]− Pr[Exp0,0(A) = 1].

Considering the absolute values of both sides and using Lemma 2, we can write

nAdvIND−atk

PKE
(B) + (n− 1)AdvIND−atk

PKE
(D) ≥ AdvIND−atk

n−SM−PKE
(A).

In other words
AdvIND−atk

n−SM−PKE
(A) ≤ (2n− 1)ǫ,

where ǫ is negligible and the theorem follows. �

We now prove the required lemmas.

Proof. (Lemma 2) We build an algorithm Dl = (D1,l, D2,l) which runs A in
exactly the same conditions as it is run in Expl,b, and which can be used to win
the IND-atk game against the base PKE with an advantage which is the same
as A’s capability of distinguishing between Expl,0 and Expl,1.

D1,l(P̄K)

1. (PKi, SKi)← GPKE(I), for 1 ≤ i ≤ n
2. (M0, M1, s)← A1(PK1, . . . , PKn)
3. Return (M0, M1, (M0, M1, P̄K, (PK1, SK1), . . . , (PKn, SKn), s))

D2,l(C̄, (M0, M1, P̄K, (PK1, SK1), . . . , (PKn, SKn), s))

1. Ci ← R(P̄K, C̄, M1, PKi, SKi), for 1 ≤ i ≤ l
2. Ci ← R(P̄K, C̄, M0, PKi, SKi), for l + 1 ≤ i ≤ n

3. b̂← A2(C1, . . . , Cn, s)

4. Return b̂
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D simply uses the challenge public key P̄K in place of P̂K in the experiment, and
uses the PKE challenge C̄ in place of Ĉ. Note that the only visible difference to
the definition of Exp is that D does not know S̄K, which it does not need, and
that the IND-atk hidden bit b̄ is used in place of b. We can therefore write, for
a given value of l:

Pr[b̂ = 1|b̄ = 1] = Pr[Expl,1(A) = 1]|

Pr[b̂ = 1|b̄ = 0] = Pr[Expl,0(A) = 1]|,

and consequently

AdvIND−atk

PKE
(D) = |Pr[Expl,1(A) = 1]− Pr[Expl,0(A) = 1]|.

�

Proof. (Lemma 3) We present here the proof for the first case in the Lemma, and
leave the second case, which is proved using a similar argument, for Appendix
A. The first case of the Lemma states that

Pr[b̂ = 1|l = i ∧ b̄ = 1] = Pr[Expi,1(A) = 1].

We must show that the probability distribution of the inputs presented to A is
exactly the same in the scenarios corresponding to both sides of the equation
above. This is trivially true for the public keys that A1 receives, since all of them
are independently generated using the correct algorithm. Regarding the challenge
ciphertext that A2 gets, we start by expanding the values of (C1, . . . , Cn).

In Expi,1(A), we have Ĉ = EPKE(M1, P̂K; r) and:

Cj = R(P̂K, Ĉ, M1, PKj , SKj) for 1 ≤ j ≤ i

Cj = R(P̂K, Ĉ, M0, PKj , SKj) for i + 1 ≤ j ≤ n.

On the other hand, in B2(C̄, s̄), given that l = i and b̄ = 1 we have C̄ =
EPKE(M1, P̄K; r) and:

Ci = C̄

Cj = R(P̄K, C̄, M1, PKj , SKj) for 1 ≤ j ≤ i− 1

Cj = R(P̄K, C̄, M0, PKj , SKj) for i + 1 ≤ j ≤ n.

To show that the distributions are identical, we split the argument in three
parts and fix the values of all random variables, considering the case where
the public keys provided to A in both cases are the same, and that the implicit
randomness in both Ĉ and C̄ is the same r. We show that the resulting challenge
ciphertexts in both cases are exactly the same:

– j = i: Note that in the second scenario we have Ci = C̄, while in the first
scenario we have Ci = R(P̂K, Ĉ, M1, PKi, SKi). Since Ĉ encrypts M1, the result
of R is perfect and equal to EPKE(M1, PKi; r) = C̄.
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– j < i: In this range, challenge components are identical in both scenarios:
they are perfect reproductions EPKE(M1, PKj ; r), since M1 is passed to R both
in encrypted and plaintext form.

– j > i: In this range, challenge components are outputs of R, but in this case
we cannot claim that they are identical without resorting to the properties
of the wREP algorithm. For different message reproduction, condition 5 of
Definition 2 ensures that

R(P̂K, Ĉ, M0, PKj , SKj) = R(P̄K, C̄, M0, PKj , SKj)

as required.

This means that the first case of the Lemma follows. �

3 Kurosawa’s Efficient Schemes

In this section we analyse modified versions of ElGamal and Cramer-Shoup en-
cryption schemes briefly mentioned by Kurosawa [11] as a way to build efficient
single-message multiple-recipient public key encryption schemes. These schemes
permit establishing a separation between the original reproducibility notion pro-
posed by Bellare et al. and the one we introduced in the previous section.

3.1 Modified ElGamal

The modified ElGamal encryption scheme is similar to the ElGamal encryption
scheme and operates as follows. The key generation algorithm GPKE(I) on input
I := (p, g) returns the key pair (SK, PK) = (1/x, gx) for x← Z∗

p. The encryption
algorithm EPKE(M, PK; r) returns the ciphertext (u, v) := ((gx)r, m · gr) for r ←
Z∗

p. The decryption algorithm DPKE(u, v, 1/x) returns the message m := v/(u1/x).
Theorem 2 establishes the security of the modified ElGamal scheme as well

as its weak reproducibility property. Theorem 3 shows that modified ElGamal
establishes a separation between the notions of full and weak reproducibility.

Theorem 2. Modified ElGamal is (1) IND-CPA secure under the decisional
Diffie–Hellman assumption, and (2) weakly reproducible.

Proof. (1) The proof is similar to that for the ElGamal encryption scheme.
(2) The weak reproducibility algorithm R on input (gx, u, v, m′, gx′

, 1/x′)
returns ((v/m′)x′

, v). We now check that R satisfies the two properties required
by the wREP definition. If m′ = m, then v/m′ = (m ·gr)/m = gr and the output
is a valid encryption of m′ under gx′

using random coins r. Note also that R’s
output does not dependent on the public key gx and hence the second property
is also satisfied. �

Theorem 3. The modified ElGamal encryption is not fully reproducible under
the CDH assumption.
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Proof. Let (g, ga, gb) ∈ G3 denote the CDH problem instance. Our goal is to com-
pute gab. The reproduction algorithm on input (p, g, gx, grx, m · gr, m′, gy, 1/y)
outputs (gry, m′ · gr). We pass to R the input (p, ga, g, gb, 1, 1, ga, 1) which could
be written as (p, h, h1/a, hb·1/a, 1, 1, h, 1) where h = ga. Note that since R suc-
ceeds with probability 1, it will run correctly on the above input instance even
though its distribution is far away from those that R takes. Here implicitly we
have x = 1/a, from rx = b/a we get r = b, and m = h−b. Hence the first
component of the output of R will be (h1)b = gab. �

3.2 Modified Cramer-Shoup

Another construction of an efficient n-SM-PKE hinted at by Kurosawa in [11]
is based on the CS1a encryption scheme of Cramer and Shoup [7], modified in
an analogous manner to the ElGamal encryption scheme as presented in the
previous section. In this case, the construction is secure against adaptive chosen
ciphertext attacks in the standard model. Modified versions of the other schemes
presented in [7] also pass the weak reproducibility test without being fully re-
producible. The following scheme, however, is the most efficient as it shares ĝ as
a domain parameter.

The scheme is defined as follows. The domain parameter is I := (p, g, ĝ, H),
where g and ĝ are generators of a group G of prime order p and H denotes
a cryptographic hash function. The key generation algorithm GPKE(I) outputs
(x1, x2, y1, y2, z), a random element of (Zp)

5, as the secret key and the public
key is set to be (gx1 ĝx2, gy1 ĝy2 , gz). Encryption and decryption algorithms are:

EPKE(m, PK)
– (e, f, h)← PK

– u← Zp

– â← ĝu

– b← hu

– c← m · gu

– v ← H(â, b, c)
– d← eufuv

– Return (â, b, c, d)

DPKE((â, b, c, d), SK)
– (x1, x2, y1, y2, z)← SK

– v ← H(â, b, c)
– a← b1/z

– If ax1+y1vâx2+y2v 6= d return ⊥
– m← c/a
– Return m

Theorem 4. The modified Cramer-Shoup scheme is (1) IND-CCA under the
DDH assumption and (2) weakly reproducible.

The proof of the first part of theorem is essentially that of the standard Cramer-
Shoup scheme in [7]. We omit the proof details due to space limitations. Regard-
ing the second part of Theorem 4, the weak reproduction algorithm is a natural
extension of the one presented for modified ElGamal, returning

(â, (c/m′)z′

, c, (c/m′)u(x′

1
+v′y′

1
)âu(x′

2
+v′y′

2
)),

where v′ := H(â, (c/m′)z′

, c). A very important distinction in this case, however,
is that the reproduction algorithm produces an output which may not be a valid
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ciphertext. In fact, for different message reproduction, the encryption algorithm
would never be able to produce something like the resulting ciphertext. The
returned output is, however, indistinguishable from a valid ciphertext under the
decisional Diffie–Hellman assumption. The fact that the outputs of R may not
be identically distributed to the outputs of the encryption algorithm, but merely
indistinguishable, implies that the proof strategy presented in [4] does not apply
for this scheme. On the other hand, note that the technique presented in the
proof of Theorem 1 covers this and other similar schemes.

4 Hybrid Encryption

Practical applications of public key encryption are based on the hybrid paradigm,
where public key techniques are used to encapsulate symmetric encryption keys.
Formally, this is captured by the KEM/DEM framework [7]. Sharing randomness
across multiple instances of a KEM may be justified, as before, as a means to
achieve computational savings when performing batch operations. In this section
we study randomness reuse for KEMs, a problem which has not been formally
addressed by previous work.

The KEM primitive takes the recipient’s public key as the single parameter
to the encapsulation algorithm. In particular, unlike what happens in PKEs, one
does not control the value of the encapsulated key: this is internally generated
inside the KEM primitive, and its value depends only on the recipient’s public key
and on the randomness tape of the encapsulation algorithm. Since in this work
we are interested on the role of randomness inside cryptographic algorithms, this
leads us to the following categorisation of KEMs.

Definition 3. A KEM scheme is public key independent if the following exper-
iment returns 1 with probability 1.

1. (SK, PK), (SK′, PK′)← GKEM(I)
2. r ←RKEM(I)
3. (K, C)← EKEM(PK; r); (K ′, C′)← EKEM(PK

′; r)
4. If K = K ′ return 1, else return 0

Considering what happens when one shares randomness across several instances
of an encapsulation algorithm immediately suggests two independent adapta-
tions of KEMs to the multi-recipient setting. The first, which we generically call
multi-recipient KEMs (n-MR-KEMs), are functionally equivalent to the inde-
pendent execution of n KEM instances, thereby associating an independent en-
capsulated secret key to each recipient. The second, which we will call single-key
multi-recipient KEMs (n-SK-KEMs), given that the same secret key is encapsu-
lated to all recipients, is akin to the mKEM notion introduced in [12].

Adaptation of the results in [4] to n-MR-KEMs is straightforward. The same
is not true, however, for n-SK-KEMs. To justify why this is the case, we present
a reproducibility test for KEMs in Definition 4. It is a direct adaptation of the
reproducibility test for PKEs, considering that there is no message input to the
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encapsulation algorithm and that this returns also the encapsulated secret key.
It can be easily shown that any KEM satisfying this test can be used to construct
an efficient n-MR-KEM with randomness reuse.

Definition 4. A KEM is called reproducible if there exists a PPT algorithm R
such that the following experiment returns 1 with probability 1.

1. (SK, PK), (SK′, PK′)← GKEM(I)
2. r ←RKEM(I)
3. (K, C)← EKEM(PK; r); (K ′, C′)← EKEM(PK

′; r)
4. If R(PK, C, PK′, SK′) = (K ′, C′) return 1, else return 0

An n-SK-KEM, referred to as an mKEM in [12], is a key encapsulation
mechanism which translates the hybrid encryption paradigm to the multi-cast
setting: it permits encapsulating the same secret key to several different receivers.
The point is that encrypting a single message to all these recipients can then be
done using a single DEM instantiation based on that unique session key, rather
than n different ones. This provides, not only computational savings, but also
bandwidth savings, and captures a common use of hybrid encryption in practice.
The natural security model for n-SK-KEMs is shown below.

IND-atk
1. For i = 1, . . . , n

(SKi, PKi)← Gn−SK−KEM(I)
2. s← AO1

1 (PK1, . . . , PKn)
3. b← {0, 1}
4. (K0, C

∗)← En−SK−KEM((PKi)
n
i=1)

5. K1 ← {0, 1}κ

6. b′ ← AO2

2 (C∗, Kb, s)

AdvIND−atk

n−SK−KEM
(A) := |2 Pr[b′ = b]− 1|.

As usual, the adversary also has access to O1 and O2, which denote a set of
oracles, as follows:

– If atk = CPA then O1 = O2 = NULL;
– If atk = CCA then O1 is a set of decapsulation oracles, one for each PKi, and
O2 is same as O1 except that no component C∗

i of the challenge ciphertext
C∗ can be submitted to an oracle corresponding to PKi.

Unlike n-MR-KEMs there does not seem to be a natural way of constructing
n-SK-KEMs from single-recipient KEMs. The fact that the same key should be
encapsulated for all recipients makes public key independent KEMs the only
possible candidates to be used as base KEMs. However, any public key indepen-
dent scheme which satisfies a reproducibility test such as that in Definition 4
must be insecure, as anyone would be able to use the reproducibility algorithm
to obtain the secret key in an arbitrary ciphertext. In the following we show how
the weak reproducibility notion for PKEs we obtained in Theorem 1 actually fills
this apparent theoretical gap, as it permits capturing the efficient n-SK-KEMs
constructions we have found in literature. We conclude this section proposing a
concrete construction of an efficient n-SK-KEM secure in the standard model.
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4.1 Generic Construction of n-SK-KEMs

One trivial way to build secure randomness reusing n-SK-KEMs is to use a
secure weakly reproducible encryption scheme, and to set a random message to
be the ephemeral key. However, the underlying encryption scheme must have the
same security guarantees as those required for the KEM. A more practical way
to build a fully secure n-SK-KEM is to use a weaker PKE through the following
generic construction, which generalises the mKEM scheme proposed in [12] and
extends a construction by Dent in [8]. The domain parameters and key generation
algorithm are the same as those of the underlying PKE. Encapsulation and
decapsulation algorithms are:

En−SK−KEM(PK1, . . . , PKn)
– M ←MPKE(I)
– r ← H(M)
– For i = 1 . . . , n

Ci ← EPKE(M, PKi; r)
– C ← (C1, . . . , Cn)
– K ← KDF(M)
– Return (K, C)

Dn−SK−KEM(C, SK)
– M ← DPKE(M, SK)
– If M =⊥ return ⊥
– r ← H(M)
– If C 6= EPKE(M, PK; r) return ⊥
– K ← KDF(M)
– Return K

Here H and KDF are cryptographic hash functions. The security of this scheme
is captured via the following theorem, proved in Appendix B.

Theorem 5. The above construction is an IND-CCA secure n-SK-KEM, if the
underlying PKE is IND-CPA and weakly reproducible, and if we model H and
KDF as random oracles. More precisely, any PPT attacker A with non negligible
advantage against the generic n-SK-KEM can be used to construct an attacker
B against the base PKE, such that:

AdvIND−CCA

n−SK−KEM
(A) ≤ 2n(qH + qK + qD)AdvIND−CPA

PKE
(B) + ǫ,

where qH , qK and qD are the number of queries the adversary makes to H, KDF
and decapsulation oracles and ǫ denotes a negligible quantity.

The security argument for this construction has two parts. The first part
establishes the one-way security of the n-SK-PKE scheme associated with the
base PKE. This follows directly from the weak reproducibility theorem in Section
3.2 and the fact that one-wayness is implied by indistinguishability7. The second
part builds on the previous result to achieve IND-CCA security in the n-SK-KEM
setting, using a general construction laid out by Dent in [8]. In this construction
one models the hash function H and KDF as random oracles and shows that
the queries placed by any adversary with non-negligible advantage in breaking
the n-SK-KEM scheme can be used to invert the one-wayness of the underlying
n-SM-PKE scheme.

7 We assume that various message spaces have exponential size in the security param-
eter.

13



The mKEM in [12] fits the general framework we introduced in this paper
by instantiating the above construction with the ElGamal encryption scheme.
The results in this work permit introducing two interesting enhancements over
the mKEM in [12] if the above construction is instantiated with the modified
ElGamal scheme:

– Stronger security guarantees disallowing benign malleability. The security
model in [12] disallows decapsulation queries on any ciphertext which de-
capsulates to the same key as that implicit in the challenge.

– More efficient encryption algorithm, saving n− 1 group operations.

4.2 An Efficient n-SK-KEM Secure in the Standard Model

In this section we propose an efficient n-SK-KEM scheme which is IND-CCA
secure in the standard model. To the best of our knowledge, it is the first such
construction to achieve this level of security and efficiency. The scheme is an
adaptation of a KEM proposed by Cramer and Shoup in [7], which is public
key dependent and therefore cannot be used as a black-box to construct an
n-SK-KEM. The adapted scheme is defined as follows.

The domain parameter is I := (p, g, ĝ, H, KDF), where g and ĝ are generators
of a group G of prime order p, H is a cryptographic hash function and KDF is
a key derivation function. The key generation algorithm Gn−SK−KEM(I) outputs
SK = (x1, x2, y1, y2, z), a random element of Z4

p×Z∗
p, as the secret key and PK =

(e, f, h) = (gx1 ĝx2, gy1 ĝy2 , gz) as the public key. Encapsulation and decapsulation
algorithms are:

En−SK−KEM(PK1, . . . , PKn)
– u← Zp

– â← ĝu

– b← gu

– K ← KDF(â, b)
– For 1 ≤ i ≤ n

(ei, fi, hi)← PKi

ai ← hu
i

vi ← H(â, ai)
di ← eu

i fuvi

i

– Return (K, â, a1, . . . , an, d1, . . . , dn)

Dn−SK−KEM((â, a, d), SK)
– (x1, x2, y1, y2, z)← SK

– v ← H(â, a)
– b← a1/z

– If bx1+vy1 âx2+vy2 6= d
return ⊥

– K ← KDF(â, b)
– Return K

A proof that the n-SK-KEM scheme proposed above is IND-CCA secure
under the decisional Diffie–Hellman assumption, provided that the hash function
is target collision resistant, and that the KDF function is entropy smoothing will
appear in the full version of this paper.

5 Tighter Reductions

In [4] the authors present tighter security reductions for the multi-recipient ran-
domness reusing schemes associated with the ElGamal and Cramer-Shoup en-
cryption schemes. These reductions rely on the random self-reducibility property
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of the DDH problem. The tighter reductions are achieved by using this property
to unfold a single DDH problem instance, so that it can be embedded in the
multiple challenge ciphertext components required in the multiple user setting.
In these proofs, the extra public keys and challenge ciphertexts required in the
reduction are chosen in a controlled manner. For instance, one public key might
have a known discrete logarithm with respect to another. The following notion of
reproducibility could be viewed as a generalisation of this type of proof strategy
for tight reductions.

Definition 5. A PKE scheme is called directly reproducible (dREP) if there
exists a set of PPT algorithms R = (R1, R2, R3) such that the following experi-
ment returns 1 with probability 1.

1. (SK, PK)← GPKE(I)
2. (PK′, s)← R1(PK)
3. M ←MPKE(I); r ←RPKE(I)
4. C ← EPKE(M, PK; r); C′ ← EPKE(M, PK′; r)
5. If C′ 6= R2(C, s) return 0
6. If C 6= R3(C

′, s) return 0, else return 1

We require the distributions of PK and PK′ to be identical.

Note that R1 controls the generation of the public keys and the main repro-
duction algorithm (R2) may take advantage of the state information produced
by the first algorithm. The existence of the third algorithm is required for the
simulation of decryption oracles for CCA secure schemes. It is easy to verify that

Theorem 6. The associated randomness reusing n-SM-PKE scheme of a di-
rectly reproducible and IND-atk secure encryption scheme is also secure in the
IND-atk sense. More precisely, any PPT attacker A against the randomness
reusing n-SM-PKE scheme can be used to build an attacker B against the base
scheme, such that:

AdvIND−atk

n−SM−PKE
(A) ≤ AdvIND−atk

PKE
(B).

The above notion of reproducibility, not only permits deriving tighter security
reductions, but also gives rise to a new test for detecting additional schemes
which allow randomness reuse. In fact, it can be shown that a modified version
of the escrow ElGamal encryption scheme is directly but not weakly reproducible
(see Appendix C).

Furthermore, unlike weak and full reproducibility, this new notion respects
the Fujisaki-Okamoto transformation [9] for building IND-CCA secure schemes,
as it does not explicitly handle the encrypted message. It therefore establishes a
new set of chosen-ciphertext secure single message multi-recipient schemes with
tight security reductions in the random oracle model.

Direct reproducibility also poses an interesting problem, which concerns pub-
lic key encryption schemes with chosen ciphertext security in the standard model.
In particular, the case of the Cramer-Shoup encryption scheme remains open,
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as we were unable to construct the required reproduction algorithms. We leave
it as an open problem to find such an algorithm, or to design an analogous re-
producibility test which admits encryption schemes which are IND-CCA secure
in the standard model.
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A – Proof of the Second Case of Lemma 3

Proof. We now prove the Lemma for the case

Pr[b̂ = 1|l = i ∧ b̄ = 0] = Pr[Expi−1,0(A) = 1].

The argument is similar to the previous case. We must show that the probability
distribution of the inputs presented to A is exactly the same in the scenarios
corresponding to both sides of the equation above. This is trivially true for the
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public keys that A1 receives, since all of them are independently generated using
the correct algorithm. Regarding the challenge ciphertext that A2 gets, we start
by expanding the values of (C1, . . . , Cn).

In Expi−1,0(A), we have Ĉ = EPKE(M0, P̂K; r) and

Cj = R(P̂K, Ĉ, M1, PKj , SKj) for 1 ≤ j ≤ i− 1

Cj = R(P̂K, Ĉ, M0, PKj , SKj) for i ≤ j ≤ n.

On the other hand, in B2(C̄, ŝ), given that l = i and b̄ = 0 we have C̄ =
EPKE(M0, PK; r) and

Ci = C̄

Cj = R(PK, C̄, M1, PKj , SKj) for 1 ≤ j ≤ i− 1

Cj = R(PK, C̄, M0, PKj , SKj) for i + 1 ≤ j ≤ n.

To show that the distributions are identical, we split the argument in three parts
and fix the values of all random variables, considering the case where the public
keys provided to A in both cases are the same, and that the implicit randomness
in both Ĉ and C̄ is the same r. We show that the resulting challenge ciphertexts
in both cases are exactly the same:

– j = i: Note that in the second scenario we have Ci = C̄, while in the first
scenario we have Ci = R(P̂K, Ĉ, M0, PKi, SKi). Since Ĉ encrypts M0, the result
of R is perfect and equal to EPKE(M0, PKi; r) = C̄.

– j < i: In this range, challenge components are outputs of R, but in this case
we cannot claim that they are identical without resorting to the properties of
R described in Definition 2 for different message reproduction, which ensure
that

R(P̂K, Ĉ, M1, PKj , SKj) = R(P̄K, C̄, M1, PKj , SKj)

as required.
– j > i: In this range, challenge components are identical in both scenarios:

they are perfect reproductions EPKE(M0, PKj ; r), since M0 is passed to R both
in encrypted and plaintext form.

This means that the second case of the Lemma follows. �

B – Proof of Theorem 5

Proof. Let A denote an IND-CCA adversary against the generic construction
with non-negligible advantage. Modelling hash functions as random oracles, we
construct an algorithm B with non-negligible advantage in the OW-CPA game
for the n-SM-PKE. One-way security notion can be easily adapted to multi-
recipient schemes. Note that one-wayness of an n-SM-PKE is not necessarily
implied by the one-wayness of its base PKE [10]. However, since indistinguisha-
bility implies one-wayness and indistinguishability property is inherited from
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the base scheme due to the wREP property, we do have that the n-SM-PKE is
OW-CPA. The concrete reduction is:

AdvOW−CPA

n−SM−PKE
(A) ≤ AdvIND−CPA

n−SM−PKE
(B) + ǫ1 ≤ nAdvIND−CPA

PKE
(C) + ǫ2.

Here ǫ1 and ǫ2 are negligible quantities, assuming that the message space has
a size super-polynomial in the security parameter. We omit the straightforward
details of the proof.

On receiving the n public keys for the OW-CPA game, B passes these values
on to algorithm A. During A’s first stage, algorithm B replies to A’s oracle
queries as follows:

– H queries: B maintains a list L ⊆ Mn−SM−PKE(I) × Rn−SM−PKE(I) which
contains at most qH pairs (M, r). On input of M , if (M, r) ∈ L then B
returns r, otherwise it selects r at random from the appropriate randomness
space, appends (M, r) to the list and returns r.

– KDF queries: B maintains a list LK ⊆Mn−SM−PKE(I)×Kn−SK−KEM(I) which
contains at most qK + qD pairs (M, k). On input of M , if (M, k) ∈ LK then
B returns k, otherwise it selects k at random from the appropriate key space,
appends (M, k) to the list and returns k.

– Decapsulation queries: on input (C, PK), B checks for each (M, r) ∈ L if
EPKE(M, PK; r) = C; if such a pair exists, B calls the KDF simulation proce-
dure on value M and returns the result to A. Otherwise B returns ⊥.

At some point A will complete its first stage and return some state informa-
tion. At this point, B calls the outside challenge oracle, and obtains a challenge
ciphertext (C1, . . . , Cn) on some unknown M∗. Algorithm B now checks if A has
queried for decapsulation on a tuple (Cℓ, PKℓ) during its first stage. If this is the
case, algorithm B terminates. Otherwise it generates a random K∗ and provides
this to A along with the challenge ciphertext.

In the second stage, B answers A’s oracle queries as in stage one. When A
terminates, B randomly returns a message from L or LK .

Now we analyse the probability that this answer is correct.
B’s execution has no chance of success (event SB) if it terminates at the end

of A’s first stage (event T ). Therefore:

Pr[SB] = Pr[SB ∧ ¬T ] = Pr[SB|¬T ] Pr[¬T ]

Note that the challenge encapsulation is independent of A’s view in the first
stage, so that A could only have queried decapsulation for one of the challenge
encapsulations by pure chance. However, the size of the valid encapsulation space
for each public key is the same as the message space. This means that the
probability that B continues to execute is

Pr[¬T ] = 1−
qD

M

where M = |Mn−SM−PKE(I)|.
Given that termination does not take place, B’s simulation could be imperfect

if one of the following events occur:
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– Event E1: The adversary places a decapsulation query for a valid ciphertext,
and B returns ⊥.

– Event E2: The adversary queries H or KDF for the unknown M∗ value.

Event E1 occurs if A finds a valid ciphertext without querying H to obtain
the randomness required to properly construct it. The probability of this is

Pr[E1] ≤
qDγn

R
,

where R = |Rn−SM−PKE(I)| and γn = γn(I) is the least upper bound such that
for every n-tuple (PKi)

n
i=1, every M ∈ Mn−SM−PKE(I), every j ∈ {1, . . . , n} and

every C ∈ Cn−SM−PKE(I) we have

|{r ∈ Rn−SM−PKE(I) : [En−SM−PKE(M, (PKi)
n
i=1; r)]j = C}| ≤ γn(I).

This follows from the fact that, since H is modelled as a random oracle, A can
only achieve this by guessing the randomness value. Moreover, the probability
that a given randomness generates a valid ciphertext is at most γn/R and there
are at most qD such queries.

Note that we can write

Pr[E1 ∨ E2] ≤ Pr[E1] + Pr[E2] ≤
qDγn

R
+ Pr[E2].

On the other hand, since A operates in the random oracle it can have no
advantage if event E1 ∨ E2 does not occur. Hence we can write

(1/2)AdvIND−CCA

n−SK−KEM
(A) = Pr[SA]− 1/2

= Pr[SA ∧ (E1 ∨ E2)] + Pr[SA ∧ ¬(E1 ∨ E2)]− 1/2

≤ Pr[E1 ∨ E2] + 1/2− 1/2

≤ Pr[E2] +
qDγn

R
.

Now:

AdvOW−CPA

n−SM−PKE
(B) = Pr[SB] = Pr[SB|¬T ](1−

qD

M
)

=
1

|L|+ |LK |
Pr[E2](1 −

qD

M
)

≥
1

qH + qK + qD
(Pr[E2]−

qD

M
).

and rearranging the terms

Pr[E2] ≤ (qH + qK + qD)AdvOW−CPA

n−SM−PKE
(B) +

qD

M

Putting the above two results together we get:

AdvIND−CCA

n−SK−KEM
(A) ≤ 2(qH + qK + qD)AdvOW−CPA

n−SM−PKE
(B) + 2qD(

1

M
+

γn

R
).

�
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C – Direct and Weak Reproducibility Separation

Let us consider a modified version of a scheme proposed by Boneh and Franklin
[6] known as escrow ElGamal. In this scheme the domain parameter is I :=
(p, g, h) where h = gt for t← Z∗

p. The key generation algorithm outputs (1/x, gx)
as the secret-public key pair for x ← Z∗

p. The encryption algorithm on input a
message m and a public key gx returns (u, v) := ((gx)r, m · e(g, h)r) where r is
random in Z∗

p. One is able to decrypt this ciphertext using the secret key 1/x

by computing m := v/e(u, h1/x). Here e : G × G → GT is a non-degenerate
efficiently computable bilinear map [6].

The randomness reuse properties of this scheme are as follows.

Theorem 7. The modified escrow ElGamal encryption scheme given above is
(1) IND-CPA under the decisional bilinear Diffie–Hellman assumption; (2) di-
rectly reproducible; and (3) not weakly reproducible if the computational Diffie–
Hellman assumption holds in G.

Proof. (1) The security proof is analogous to that of escrow ElGamal.
(2) The direct reproducibility algorithm R = (R1, R2, R3) operates as follows.

Algorithm R1 on input a public key gx returns ((gx)s, s) where s is a random
element in Z∗

p. The algorithm R2 on input a ciphertext (u, v) = (gxr, m ·e(g, h)r)
and state information s returns (us, v). It is easily seen that R produces a valid
encryption of m under (gx)s. Algorithm R3 returns (u1/s, v). Note that the public
key (gx)s is identically distributed to public keys returned by the key generation
algorithm.

(3) Let (g, ga, gb) ∈ G3 denote the CDH problem instance. Our goal is to
compute gab. The reproduction algorithm on input

(p, g, h, gx, grx, m · e(g, h)r, m, gy, 1/y)

outputs (gry, m · e(g, h)r). To compute gab we pass to R the input

(p, ga, g, g, gb, e(gb, ga), 1, ga, 1).

This could be written as:

(p, g′, g′1/a, g′1/a, g′b·1/a, e(g′, g′1/a)b, 1, g′, 1),

where g′ = ga. Note again that since R succeeds with probability 1, it will run
correctly on the above input instance. Here implicitly we have x = 1/a, and
from rx = b/a we have r = b, and m = 1. Therefore the first component of the
output will be (g′1)b = gab. �
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