AGRADECIMENTOS

Em primeiro lugar, um agradecimento especial ao Professor Doutor António Augusto Magalhães da Cunha e ao Professor Doutor Carlos António Alves Bernardo, meus orientadores científicos, pelos conhecimentos que me transmitiram e pelos conselhos e sugestões sempre oportunos. A ambos o meu agradecimento.

À Escola Superior de Tecnologia e Gestão de Leiria por me ter proporcionado as facilidades necessárias para a execução desta tese.

Aos meus colegas de Departamento de Engenharia Mecânica e, em particular, ao Carlos Capela pelo entusiasmo que me transmitiram, pela disponibilidade e amizade.

Ao Departamento de Engenharia de Polímeros da Universidade do Minho por ter tornado possível este projecto e pela simpatia que, em todas as ocasiões muitos dos seus elementos me manifestaram.

À Professora Teresa Nunes e ao Ricardo do departamento de Materiais do Instituto Superior Técnico, pela inestimável contribuição nos ensaios de RMN.

Ao laboratório de Microscopia Electrónica da Universidade do Minho – Braga, pelas facilidades concedidas na utilização do equipamento na execução dos ensaios de microscopia de varrimento electrónico.

À Cabopol, principalmente à Carla, pele colaboração prestada na execução dos ensaios de MFI.

À minha família por toda a atenção que me mereciam e não lhes dispensei. Um agradecimento especial ao meu filho Luís e ao meu marido que, com as suas sugestões e participação ajudaram a tornar possível a elaboração desta tese.

Aos meus pais.

Projecto parcialmente financiado por uma bolsa do PRODEP III, medida 5/Acção 5.3 Formação Avançada de Docentes do Ensino Superior. Concurso 2/5.3/PRODEP/2000. Projecto: 5.3/C/1065.001/00, Doutoramentos.

> Ausenda L. A. Mendes 2005

TÍTULO

Estudo de Mecanismos de Degradação do Polietileno em Reciclagem Primária

RESUMO

Este trabalho teve como objectivo final estudar, com base em diferentes técnicas experimentais, as alterações de propriedades que ocorrem durante o reprocessamento de peças moldadas em polietilenos, relacionando-as com as alterações químicas e microestruturais sofridas pelos respectivos polímeros.

Para o efeito, foram utilizadas misturas de material virgem e reciclado de 5 variedades de polietileno: 4 de alta densidade (PEAD) e 1 de baixa densidade (PEBD). A gama de materiais utilizados permitiu considerar no estudo o efeito da massa molecular e do grau de ramificação nos mecanismos de degradação associados ao reprocessamento sucessivo em moldação por injecção.

Os resultados obtidos baseiam-se em conjuntos de moldações correspondentes a 10 ciclos de reprocessamento com diferentes graus de incorporação de material virgem. Os provetes obtidos (ou amostras de material retiradas dos mesmos) foram posteriormente a um conjunto alargado de ensaios de avaliação comportamental (mecânicos, reológicos e térmicos), bem como caracterização química e microestrutural (incluindo espectroscopia de infra-vermelhos e ressonância magnética nuclear).

As análises efectuadas permitiram comprovar a coexistência de dois mecanismos de degradação da estrutura polimérica, em resultado das reacções termooxidativas associadas ao ambiente termo-mecânico imposto durante o processo de moldação por injecção. De facto, os resultados obtidos evidenciam o desenvolvimento de reticulações e cisão de cadeias moleculares. O peso relativo destes dois mecanismos é dependente da estrutura do material e das condições de processamento utilizadas.

Foi também possível verificar que os polietilenos de massa molecular mais elevada apresentam uma maior sensibilidade à degradação durante o processamento. Analogamente, verificou-se que o polímero mais ramificado, o PEBD é menos susceptível aos fenómenos termo-degradativos.

O trabalho permitiu ainda concluir que a reciclagem primária de polietileno, quando efectuado de acordo com protocolos adequados, traduz -se numa diminuição pouco significativa das propriedades deste material.

TITLE

Study of Mechanisms of Degradation of the Polyethylene in Primary Recycling.

ABSTRACT

This thesis envisaged the study of the dependence of the material properties on the continous reprocessing of injection moulded polyethylene. It is based on the use of a wide range of exprimental techniques and relates the observed changes in the material behaviour with the chemical and microstructural modifications developed in selected polymers.

Five different grades were used for this purpose, including four types of high density polyethylene (HDPE) and one variety of low density polyethylene (LDPE), in the form of mixtures between virgin and recycled material. This range of polymers enabled the study of importance og the material molecular weight and degree of branching on the degradation mechanisms associated the reprocessing actions in injection moulding.

The obtained results were based on mouldings collected from ten reprocessing cycles, with different levels of incorporation of virgem material. The respective moulded specimens (or the material samples got from them) were submitted to an extensive list of tests in order to assess the the macriscopical behaviour (mechanical, rheological and thermal) and to evaluate chemical and microstructural modifications (among other techniques, infra-red sepctroscopy and nuclear magnetic ressonance were used).

The developed studies allowed to prove the coexistence of two distinct degradation mechanisms, as a result of thermo-oxidative reactions associated to the thermo-mechanical environment resulting from the injection moulding process. It is evident from the obtained results, the development of both crosslinks and chain scissions in the polymer chains. The relative importance of these two mechanisms is dependent on the material structure and on the processing conditions used.

It was also possible to confirm that the polyethylenes with higher melecular mass evidence a lower sensitivity to degradation during processing. Furthermore, higher branched polymers (as the LDPE) proved to be less sensitive to the studied thermo-degradative phenomena.

This work also concluded that primary recycling of polyethylene, if performed under adequate procedures, leads to minor material property loss.

ÍNDICE

ÍNDICE DE FIGURAS	vi
ÍNDICE DE TABELAS	xi
SÍMBOLOS GERAIS E ABREVIATURAS	xii
1 -INTRODUÇÃO	
1.1 - Enquadramento da reciclagem de termoplásticos	1
1.2 - Referências	9
2 - DEGRADAÇÃO DO POLIETILENO REPROCESSADO POR INJECÇÃO	
2.1 - O Polietileno	13
2.2 - Reciclagem Primária	17
2.3 - Mecanismos de Degradação do Polietileno	22
2.4 - Efeitos Degradativos durante o Processo de Moldação por Injecção	27
2.5 - Referências	27
3 - TÉCNICAS E PROCEDIMENTOS EXPERIMENTAIS	
3.1 -Materiais	31
3.2 - Processamento de Moldação por Injecção	31
3.3 - Procedimento de Reciclagem Primária	33
3.4 - Propriedades Gerais das Moldações	34
3.4.1 - A cor	34
3.4.2 - A massa	34
3.4.3 – A densidade	35
3.5 - Comportamento Reológico	35
3.5.1 - Índice de fluidez	36
3.5.2 - Reometria	36
3.6 - Comportamento Mecânico	36
3.7 - Morfologia	37
3.7.1 – Microscopia de Varrimento Electrónico	37
3.7.2 – Microscopia de Luz Polarizada	37
3 8 - Análise Ouímica e Física	38
3.8.1 – Espectroscopia de Infravermelho com Transformadas de Fourier	38
3.8.2 – Espectroscopia de Ressonância Magnética Nuclear	40
3.8.3 - Análise Térmica	44
3.8.3.1 – Procedimento Experimental	46
3.0 - Referências	46
4 - RESULTADOS E DISCUSSÃO	10
4 1 - Moldações	51
4 1 1 - Obtenção das Moldações	51
4 1 2 - Caracterização Geral das Moldações	53
4.1.2 Caracterização Gerar das Mordações 4.1.2 L - A Cor	53
4.1.2.1 A Massa	55
4 1 2 3 - A Densidade	60
4.2 - Comportamento Reológico	63
$4.2 \pm \text{Comportamiento Reologico}$	63
4.2.1 - Indice de l'Indice 4.2.2 - Reometria	68
4.2.2 - Reollicita A.3 Comportamento Mecânico	70
4 4 - Morfologia	90
4.4.1 - Microscopia de Varrimento Electrónico SEM	00
4.4.2 Microscopia de Luz Polarizada	100
4.5 Caracterização Eísico Ouímico	100
4.3 - Caracienzação Pisico-Quinnea	102

4.5.1 - Espectrofotometria de Infravermelhos com Transformadas de	102
Fourier-FTIR	
4.5.2 - Espectrofotometria de Ressonância Magnética Nuclear - RMN	114
4.5.3 – Análise Térmica	120
4.6 - Referências	125
5 - INTERLIGAÇÃO ESTRUTURA COMPORTAMENTO MECÂNICO e REOLÓGICO	
5.1 – Interligação Comportamento Mecânico - Comportamento Reológico	127
5.2 – Inter-RelaçãoComportamento Mecânico e Estrutura Molecular	132
6 - CONCLUSÕES	139
7 - SUGESTÕES PARA TRABALHOS FUTUROS	141
Anexo A	143
Anexo B	145
Anexo C	148
Anexo D	150

ÍNDICE DE FIGURAS

1 - Introdução

Figura 1.1 -	
e	Crescimento comparado de materiais de engenharia
Figura 1.2 -	Alternativas para redução do impacto ambiental de materiais plásticos
Figura 1.3 -	Impacto ambiental de uma embalagem vs material usado no seu fabrico
Figura 1.4 -	Previsão da evolução dos diferentes tratamentos do lixo
2 – Degradaçã	ão do Polietileno durante o Processo de Reprocessamento Por Injecção
Figura 2.1 -	Representação da unidade repetitiva do polietileno
Figura 2.2 -	Representação esquemática dos três principais tipos de polietileno
Figura 2.3 -	Evolução do consumo mundial de polietileno
Figura 2.4 -	Curvas de degradação de resistência ao impacto e MFI (PEAD)
Figura 2.5 -	Diagrama esquemático do ciclo de processamento de um polímero
Figura 2.6 -	Grupos cromóforos mais comuns nos compostos orgânicos
Figura 2.7 -	Esquema da degradação de uma macromolécula por radiação ou ataque químico
Figura 2.8 -	Formação de radicais primários
Figura 2.9 -	Formação do radical peróxido
Figura 2.10-	Formação do grupo carboxilo e radical hidrocarboneto
Figura 2.11-	Mecanismo de formação de peróxido de hidrogénio
Figura 2.12-	Reticulações entre radicais alquilo
Figura 2.13-	Reticulações entre radicais alquilo e alcoxi
Figura 2.14-	Oxidação térmica do polietileno
3 - Técnicas e	Procedimentos Experimentais
Figura 3.1 -	Máguina de inicesão Demos NCIII utilizado no maiosto
1 Iguia 5.1 -	Maquina de injecção Demag NCIII utilizada no projecto
Figura 3.2 -	Provete utilizado nos ensaios de tracção
Figura 3.2 - Figura 3.3 -	Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica
Figura 3.2 - Figura 3.3 - Figura 3.4 -	Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U
Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 -	Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U ¡Orientação dos núcleos magnéticos
Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 -	 Maquina de injecção Demag NCIII utilizada no projecto Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U ¡Orientação dos núcleos magnéticos Espectro RMN ¹H - PEAD 7625 n₀k₌₀
Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 - Figura 3.7 -	 Maquina de injecção Demag NCIII utilizada no projecto Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U ¡Orientação dos núcleos magnéticos Espectro RMN ¹H - PEAD 7625 n₀k₌₀ Espectro RMN ¹H - PEAD 7625 n₁₀k₌₀
Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 - Figura 3.7 - Figura 3.8 -	Maquina de injecção Demág NCIII utilizada no projectoProvete utilizado nos ensaios de tracçãoEsquema de montagem para observação microscópicaEspectro FTIR do PEAD 9089UOrientação dos núcleos magnéticosEspectro RMN ¹ H - PEAD 7625 $n_0k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0,5}$
Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 - Figura 3.7 - Figura 3.8 - Figura 3.9 -	Maquina de injecção Demág NCIII utilizada no projecto Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U sOrientação dos núcleos magnéticos Espectro RMN ¹ H - PEAD 7625 $n_0k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0,5}$ Esquema de um calorímetro diferencial de varrimento
Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 - Figura 3.7 - Figura 3.8 - Figura 3.9 - Figura 3.10 -	Maquina de injecção Demág NCIII utilizada no projecto Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U :Orientação dos núcleos magnéticos Espectro RMN ¹ H - PEAD 7625 $n_0k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0,5}$ Esquema de um calorímetro diferencial de varrimento Termograma de fusão do PEAD 9089U $n_1k_{=0}$
Figura 3.2 - Figura 3.3 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 - Figura 3.7 - Figura 3.8 - Figura 3.9 - Figura 3.10 - Figura 3.11 -	Maquina de injecção Demág NCIII utilizada no projecto Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U ;Orientação dos núcleos magnéticos Espectro RMN ¹ H - PEAD 7625 $n_0k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0,5}$ Esquema de um calorímetro diferencial de varrimento Termograma de fusão do PEAD 9089U $n_1k_{=0}$ Representação esquemática da integração do termograma
Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 - Figura 3.7 - Figura 3.8 - Figura 3.9 - Figura 3.10 - Figura 3.11 - 4 – Resultado	Maquina de injecção Demág NCIII utilizada no projecto Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U ;Orientação dos núcleos magnéticos Espectro RMN ¹ H - PEAD 7625 $n_0k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0,5}$ Esquema de um calorímetro diferencial de varrimento Termograma de fusão do PEAD 9089U $n_1k_{=0}$ Representação esquemática da integração do termograma s e Discussão
Figura 3.2 - Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 - Figura 3.7 - Figura 3.8 - Figura 3.9 - Figura 3.10 - Figura 3.11 - 4 – Resultado Figura 4.1 -	Maquina de injecção Demág NCIII utilizada no projecto Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U iOrientação dos núcleos magnéticos Espectro RMN ¹ H - PEAD 7625 $n_0k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0,5}$ Esquema de um calorímetro diferencial de varrimento Termograma de fusão do PEAD 9089U $n_1k_{=0}$ Representação esquemática da integração do termograma s e Discussão Variação da pressão na cavidade do molde com o tempo - PEAD 7731
Figura 3.2 - Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 - Figura 3.7 - Figura 3.8 - Figura 3.9 - Figura 3.10 - Figura 3.11 - 4 – Resultado Figura 4.1 - Figura 4.2 -	Maquina de injecção Demág NCHI utilizada no projecto Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U :Orientação dos núcleos magnéticos Espectro RMN ¹ H - PEAD 7625 $n_0k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_10k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_10k_{=0,5}$ Esquema de um calorímetro diferencial de varrimento Termograma de fusão do PEAD 9089U $n_1k_{=0}$ Representação esquemática da integração do termograma s e Discussão Variação da pressão na cavidade do molde com o tempo - PEAD 7731 Variação da pressão na cavidade do molde com o tempo - PEAD 7625
Figura 3.2 - Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 - Figura 3.7 - Figura 3.8 - Figura 3.9 - Figura 3.10 - Figura 3.11 - 4 – Resultado Figura 4.1 - Figura 4.2 - Figura 4.3 -	Maquina de injecção Demag NCHT utilizada no projecto Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U Orientação dos núcleos magnéticos Espectro RMN ¹ H - PEAD 7625 $n_0k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0,5}$ Esquema de um calorímetro diferencial de varrimento Termograma de fusão do PEAD 9089U $n_1k_{=0}$ Representação esquemática da integração do termograma s e Discussão Variação da pressão na cavidade do molde com o tempo - PEAD 7731 Variação da pressão na cavidade do molde com o tempo - PEAD 7625 Variação da pressão na cavidade do molde com o tempo - PEAD 7625 Variação da pressão na cavidade do molde com o tempo - PEAD 3H634
Figura 3.1 - Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 - Figura 3.7 - Figura 3.8 - Figura 3.9 - Figura 3.10 - Figura 3.11 - 4 – Resultado Figura 4.1 - Figura 4.2 - Figura 4.3 - Figura 4.4 -	Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U :Orientação dos núcleos magnéticos Espectro RMN ¹ H - PEAD 7625 $n_0k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0,5}$ Esquema de um calorímetro diferencial de varrimento Termograma de fusão do PEAD 9089U $n_1k_{=0}$ Representação esquemática da integração do termograma s e Discussão Variação da pressão na cavidade do molde com o tempo - PEAD 7731 Variação da pressão na cavidade do molde com o tempo - PEAD 3H634 Variação da pressão na cavidade do molde com o tempo - PEAD 3H634
Figura 3.2 - Figura 3.2 - Figura 3.3 - Figura 3.4 - Figura 3.5 - Figura 3.6 - Figura 3.7 - Figura 3.8 - Figura 3.9 - Figura 3.10 - Figura 3.10 - Figura 3.11 - 4 – Resultado Figura 4.1 - Figura 4.2 - Figura 4.2 - Figura 4.3 - Figura 4.5 -	Maquina de injecção Demág NCIII utilizada no projecto Provete utilizado nos ensaios de tracção Esquema de montagem para observação microscópica Espectro FTIR do PEAD 9089U sOrientação dos núcleos magnéticos Espectro RMN ¹ H - PEAD 7625 $n_0k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0}$ Espectro RMN ¹ H - PEAD 7625 $n_{10}k_{=0,5}$ Esquema de um calorímetro diferencial de varrimento Termograma de fusão do PEAD 9089U $n_1k_{=0}$ Representação esquemática da integração do termograma s e Discussão Variação da pressão na cavidade do molde com o tempo - PEAD 7731 Variação da pressão na cavidade do molde com o tempo - PEAD 3H634 Variação da pressão na cavidade do molde com o tempo - PEAD 9089U Variação da pressão na cavidade do molde com o tempo - PEAD 9089U Variação da pressão na cavidade do molde com o tempo - PEAD 3H634 Variação da pressão na cavidade do molde com o tempo - PEAD 9089U Variação da pressão na cavidade do molde com o tempo - PEAD 3H634 Variação da pressão na cavidade do molde com o tempo - PEAD 3H634

Figura 4.6 -Variação da pressão máxima na cavidade do molde em função do MFI Figura 4.7 -Variação da cor com o número de ciclos de processamento - PEAD 7731 Figura 4.8 -Variação da cor com o número de ciclos de processamento - PEAD 9089U Figura 4.9 -Massa média das moldações vs nº de ciclos de processamento - PEAD 7731 Figura 4.10 -Massa média das moldações vs nº de ciclos de processamento - PEAD 7625 Figura 4.11 -Massa média das moldações vs nº de ciclos de processamento - PEAD 3H634 Figura 4.12 -Massa média das moldações vs nº de ciclos de processamento - PEAD 9089U Figura 4.13 -Massa média das moldações vs nº de ciclos de processamento - PEBD 2304 Figura 4.14 -Massa média das moldações vs nº de ciclos de processamento - PEAD 7731T Figura 4.15 -Massa média das moldações vs nº de ciclos de processamento - PEAD 9089UT Figura 4.16 -Massa média das moldações vs nº de ciclos de processamento - PEAD recuperado Figura 4.17 -Densidade das moldações versus nº de ciclos de processamento - PEAD 7731 Figura 4.18 -Densidade das moldações versus nº de ciclos de processamento - PEAD 7625 Densidade das moldações vs nº de ciclos de processamento - PEAD 3H634 Figura 4.19 -Figura 4.20 -Densidade das moldações vs nº de ciclos de processamento - PEAD 9089U Figura 4.21 -Densidade das moldações versus nº de ciclos de processamento - PEBD 2304 Figura 4.22 -Índice de fluidez vs nº de ciclos de processamento - PEAD 7731 Figura 4.23 -Índice de fluidez vs nº de ciclos de processamento - PEAD 7625 Figura 4.24 -Índice de fluidez vs nº de ciclos de processamento - PEAD 3H634 Figura 4.25 -Índice de fluidez vs nº de ciclos de processamento - PEAD 9089U Figura 4.26 -Índice de fluidez vs nº de ciclos de processamento - PEAD 7731T Figura 4.27 -Índice de fluidez vs nº de ciclos de processamento - PEAD9089UT Figura 4.28 -Índice de fluidez vs ciclos de processamento - PEAD recuperado Figura 4.29 -Índice de fluidez vs ciclos de processamento - PEBD 2304 Figura 4.30 -Variação da viscosidade de corte com a taxa de corte - PEAD 7731 Figura 4.31 -Variação da viscosidade de corte com a taxa de corte - PEAD 7625 Figura 4.32 -Variação da viscosidade de corte com a taxa de corte - PEAD 3H634 Figura 4.33 -Variação da viscosidade de corte com a taxa de corte - PEAD 9089U Figura 4.34 -Variação da viscosidade de corte com a taxa de corte - PEBD 2304 Figura 4.35 -Força vs alongamento - PEAD 7731 Figura 4.36 -Força vs alongamento - PEAD 7625 Figura 4.37 -Força vs alongamento - PEAD 3H634 Figura 4.38 -Força vs alongamento - PEAD 9089U Figura 4.39 -Força vs alongamento - PEAD recuperado Figura 4.40 -Força vs alongamento - PEBD 2304 Figura 4.41 -Tensão máxima vs nº de ciclos de processamento - PEAD 7731 Figura 4.42 -Módulo secante_(E =1%) vs nº de ciclos de processamento - PEAD 7731 Deformação à rotura vs nº de ciclos de processamento - PEAD 7731 Figura 4.43 -Figura 4.44 -Tensão máxima vs nº de ciclos de processamento - PEAD 7731T Figura 4.45 -Módulo secante_($\varepsilon = 1\%$) vs n° de ciclos de processamento - PEAD 7731T Figura 4.46 -Deformação à rotura vs nº de ciclos de processamento - PEAD 7731T

Figura 4.47 -	Tensão máxima vs nº de ciclos de processamento - PEAD 7625
Figura 4.48 -	Módulo secante $_{(\epsilon = 1\%)}$ vs n° de ciclos de processamento - PEAD 7625
Figura 4.49 -	Deformação à rotura vs nº de ciclos de processamento - PEAD 7625
Figura 4.50 -	Tensão máxima vs nº de ciclos de processamento - PEAD 3H634
Figura 4.51 -	Módulo secante $_{(\epsilon = 1\%)}$ vs n° de ciclos de processamento - PEAD 3H634
Figura 4.52 -	Deformação à rotura vs nº de ciclos de processamento - PEAD 3H634
Figura 4.53 -	Tensão máxima vs nº de ciclos de processamento - PEAD 9089U
Figura 4.54 -	Módulo secante $_{(\epsilon = 1\%)}$ vs n° de ciclos de processamento - PEAD 9089U
Figura 4.55 -	Deformação à rotura vs nº de ciclos de processamento - PEAD 9089U
Figura 4.56 -	Tensão máxima vs nº de ciclos de processamento - PEAD 9089UT
Figura 4.57 -	Módulo secante $_{(\epsilon = 1\%)}$ vs n° de ciclos de processamento - PEAD 9089UT
Figura 4.58 -	Deformação à rotura vs nº de ciclos de processamento - PEAD 9089UT
Figura 4.59 -	Tensão máxima vs nº de ciclos de processamento - PEAD recuperado
Figura 4.60 -	Módulo secante $_{(\epsilon = 1\%)}$ vs n° de ciclos de processamento - PEAD recuperado
Figura 4.61 -	Deformação à rotura vs nº de ciclos de processamento - PEAD recuperado
Figura 4.62 -	Tensão máxima vs nº de ciclos de processamento - PEBD 2304
Figura 4.63 -	Módulo secante $_{(\epsilon = 1\%)}$ vs n° de ciclos de processamento - PEBD 2304
Figura 4.64 -	Deformação à rotura vs nº de ciclos de processamento - PEBD 2304
Figura 4.65 -	Imagens SEM de superfícies de fractura - PEAD 7731
Figura 4.66 -	Imagens SEM de superfícies de fractura - PEAD 7625
Figura 4.67 -	Imagens SEM de superfícies de fractura - PEAD 3H634
Figura 4.68 -	Imagens SEM de superfícies de fractura - PEAD 9089U
Figura 4.69 -	Imagens SEM de superfície de fractura - PEBD 2304
Figura 4.70 -	Fotografia obtida por microscopia de luz polarizada - PEAD 7731
Figura 4.71 -	Fotografía obtida por microscopia de luz polarizada - PEAD 9089U
Figura 4.72 -	Fotografia obtida por microscopia de luz polarizada - PEAD recuperado
Figura 4.73 -	Índices de reticulação e cisão vs nº de ciclos de processamento - PEAD 7731
Figura 4.74 -	Índices de reticulação e carbonilo I vs nº de ciclos de processamento - PEAD 7731
Figura 4.75 -	Índices de carbonilo I de carbonilo II vs nº ciclos de processamento - PEAD 7731
Figura 4.76 -	Índices de reticulação e cisão vs nº de ciclos de processamento - PEAD 7625
Figura 4.77 -	Índices de reticulação e carbonilo I vs nº ciclos de processamento - PEAD 7625
Figura 4.78 -	Índices carbonilo I e carbonilo II vs nº ciclos de processamento - PEAD 7625
Figura 4.79 -	Índices de reticulação e cisão vs nº de ciclos de processamento - PEAD 3H634
Figura 4.80 -	Índices de reticulação e carbonilo I vs nº ciclos de processamento - PEAD 3H634
Figura 4.81 -	Índices carbonilo I e carbonilo II vs nº ciclos de processamento - PEAD 3H634
Figura 4.82 -	Índices de reticulação e cisão vs nº de ciclos de processamento - PEAD 9089U
Figura 4.83 -	Índices de reticulação e carboniloI vs nº ciclos de processamento - PEAD 9089U
Figura 4.84 -	Índices de reticulação e cisão vs nº ciclos de processamento - PEAD recuperado
Figura 4.85 -	Índices de reticulação e carbonilo I vs ciclos de processamento - PEAD recuperado
Figura 4.86 -	Índices de carboniloI e carbonilo II vs ciclos de processamento - PEAD recuperado

Figura 4.87 -	Índices de reticulação e cisão vs nº de ciclos de processamento - PEBD 2304
Figura 4.88 -	Índices de reticulação e carbonilo I vs nº ciclos de processamento - PEBD 2304
Figura 4.89 -	Índices de carbonilo I e carbonilo II vs nº ciclos de processamento - PEBD 2304
Figura 4.90 -	Variação dos grupos CH2 e CH3 vs nº de ciclos de processamento - PEAD 7731
Figura 4.91 -	Variação dos grupos CH2 e CH3 vs nº de ciclos de processamento - PEAD 7625
Figura 4.92 -	Variação dos grupos CH2 e CH3 vs nº de ciclos de processamento - PEAD 3H634
Figura 4.93 -	Variação dos grupos CH2 e CH3 vs nº de ciclos de processamento - PEAD 9089U
Figura 4.94 -	Variação dos grupos CH2, CH3 vs nº ciclos de processamento - PEAD recuperado
Figura 4.95 -	Variação dos grupos CH_2 , CH_3 vs nº de ciclos de processamento - PEBD 2304
Figura 4.96 -	Termograma -PEAD 7731: diferentes ciclos, condições de processamento e composições
Figura 4.97 -	Entalpia de fusão vs número de ciclos de processamento - PEAD 7731
Figura 4.98 -	Entalpia de fusão vs número de ciclos de processamento - PEAD 7625
Figura 4.99 -	Entalpia de fusão vs número de ciclos de processamento - PEAD 3H634
Figura 4.100 -	Entalpia de fusão vs número de ciclos de processamento - PEAD 9089U
Figura 4.101 -	Entalpia de fusão vs número de ciclos processamento - PEAD recuperado
5 - Inter-Relag	ção Estrutura - Processamento – Propriedades
Figura. 5.1 -	Tensão máxima vs índice de fluidez - PEAD 7731
Figura 5.2 -	Tensão máxima vs índice de fluidez - PEAD 3H634
Figura 5.3 -	Tensão máxima vs índice de fluidez - PEAD recuperado
Figura 5.4 -	Tensão máxima vs índice de fluidez - PEBD 2304
Figura 5.5 -	Módulo secante _($\varepsilon=1\%$) vs índice de fluidez - PEAD 7731
Figura 5.6 -	Módulo secante _($\varepsilon=1\%$) vs índice de fluidez - PEAD 7625
Figura 5.7 -	Módulo secante _($\varepsilon=1\%$) vs índice de fluidez - PEAD 3H634
Figura 5.8 -	Módulo secante _($\epsilon=1\%$) vs índice de fluidez - PEBD 2304
Figura 5.9 -	Deformação à rotura vs índice de fluidez - PEAD 7731
Figura 5.10 -	Deformação à rotura vs índice de fluidez - PEAD 7625
Figura 5.11 -	Deformação à rotura vs índice de fluidez - PEAD 3H634
Figura 5.12 -	Deformação à rotura vs índice de fluidez - PEAD recuperado
Figura 5.13 -	Deformação à rotura vs índice de fluidez - PEBD 2304
Figura 5.14 -	Tensão e módulo secante _($\epsilon=1\%$) vs razão índice ret/índice de cisão - PEAD 7731
Figura 5.15 -	Tensão e módulo secante _($\epsilon=1\%$) vs razão índice ret/índice de cisão - PEAD 3H634
Figura 5.16 -	Tensão e módulo secante _($\epsilon=1\%$) vs razão índice ret/índice de cisão - PEAD 9089U
Figura 5.17 -	Tensão e módulo secante _(e=1%) vs razão índice reticulação/índice de cisão -PEAD recuperado
Figura 5.18 -	Tensão e módulo secante _($\epsilon=1\%$) vs razão índice ret/índice de cisão - PEBD 2304
Figura 5.19 -	Deformação à rotura vs razão índice de reticulação/índice de cisão - PEAD 7731
Figura 5.20 -	Deformação à rotura vs razão índice de reticulação/índice de cisão - PEAD 3H634
Figura 5.21 -	Deformação à rotura vsrazão índice de reticulação/índice de cisão - PEAD 9089U
Figura 5.22 -	Deformação à rotura vs razão índice de reticulação/índice de cisão - PEBD recuperado
Figura 5.23 -	Deformação à rotura vs razão índice de reticulação/índice de cisão - PEBD 2304
Anexo B	

Figura B.1 - Variação da cor com o número de ciclos de processamento - PEAD 7625

- Figura B.2 Variação da cor com o número de ciclos de processamento PEAD 3H634
- Figura B.3 Variação da cor com o número de ciclos de processamento PEAD recuperado
- Figura B.4 Variação da cor com o número de ciclos de processamento PEBD 2304

Anexo D

Figura D.1 -	Espectros RMN do ¹ H - PEAD 7731 $n_0k_{=0}$
Figura D.2 -	Espectros RMN do ¹ H - PEAD 7731 $n_{10}k_{=0}$
Figura D.3 -	Espectros RMN do ¹ H - PEAD 7731 $n_{10}k_{T=0,5}$
Figura D.4 -	Espectros RMN do ¹ H - PEAD 7625 $n_0k_{=0}$
Figura D.5 -	Espectros RMN do ¹ H - PEAD 7625 $n_{10}k_{=0}$
Figura D.6 -	Espectros RMN do ¹ H - PEAD 7625 $n_{10}k_{=0,5}$
Figura D.7 -	Espectros RMN do ¹ H - PEAD 3H634 $n_0k_{=0}$
Figura D.8 -	Espectros RMN do ¹ H - PEAD 3H634 $n_{10}k_{=0}$
Figura D.9 -	Espectros RMN do ¹ H - PEAD 3H634 $n_{10}k_{=0,5}$
Figura D.10 -	Espectros RMN do ^{1}H - PEAD recuperado n_{1}
Figura D.11 -	Espectros RMN do ^{1}H - PEAD recuperado n_{4}
Figura D.12 -	Espectros RMN do ¹ H - PEAD recuperado n ₇
Figura D.13 -	Espectros RMN do ¹ H - PEAD 9089U $n_0k_{=0}$
Figura D.14 -	Espectros RMN do ¹ H - PEAD 9089U $n_{10}k_{=0}$
Figura D.15 -	Espectros RMN do ¹ H - PEAD 9089U $n_{10}k_{T=0,5}$
Figura D.16 -	Espectros RMN do ¹ H - PEBD 2304 $n_0k_{=0}$
Figura D.17	Espectros RMN do ^{1}H - PEBD 2304 $n_{10}k_{=0}$
Figura D.18 -	Espectros RMN do $^1\mathrm{H}$ - PEBD 2304 $n_{10}k_{=0,5}$

ÍNDICE DE TABELAS

1 – Introdução

Tabela 1.1 - Redução de material (% ponderal) em função do tipo de embalagem

2 - Degradação do Polietileno Durante o Processo de Reprocessamento por Injecção

Tabela 2.1 - Percentagem de resíduos produzidos por diversas técnicas de processamento

3 - Técnicas e Procedimentos Experimentais

Tabela 3.1 - Características dos materiais estudados

Tabela 3.2 - Condições de moldação

4 - Resultados e Discussão

- Tabela 4.1 Massa média e desvio padrão dos lotes produzidos
- Tabela 4.2 Massa média para temperaturas de injecção elevadas
- Tabela 4.3 Massa média PEAD recuperado
- Tabela 4.4 Densidade das moldações
- Tabela 4.5 Índice de fluidez PEAD 7731T e 9089UT
- Tabela 4.6 Índice de fluidez PEAD recuperado
- Tabela 4.7 Propriedades mecânicas PEAD 7731
- Tabela 4.8 Propriedades mecânicas PEAD 7731T
- Tabela 4.9 Propriedades mecânicas PEAD 7625
- Tabela 4.10 Propriedades mecânicas PEAD 3H634
- Tabela 4.11 Propriedades mecânicas PEAD 9089U
- Tabela 4.12 Propriedades mecânicas PEAD 9089UT
- Tabela 4.13 Propriedades mecânicas PEAD recuperado
- Tabela 4.14 Propriedades mecânicas PEBD 2304
- Tabela 4.15 Resultados FTIR PEAD 7731
- Tabela 4.16 Resultados FTIR PEAD 7625
- Tabela 4.17 Resultados FTIR PEAD 3H634
- Tabela 4.18 Resultados FTIR PEAD 9089U
- Tabela 4.19 Resultados FTIR PEAD recuperado
- Tabela 4.20 Resultados FTIR PEBD 2304
- Tabela 4.21 Espectroscopia do ¹H- PEAD 7731
- Tabela 4.23 Espectroscopia do ¹H- PEAD 3H634
- Tabela 4.24 Espectroscopia do ¹H- PEAD 9089
- Tabela 4.25 Espectroscopia do ¹H- PEAD recuperado
- Tabela 4.26 Espectroscopia do ¹H- PEBD 2304
- Tabela 4.27 Entalpia de fusão e grau de cristalinidade PEAD 7731
- Tabela 4.28 Entalpia de fusão e grau de cristalinidade PEAD 7625
- Tabela 4.29 Entalpia de fusão e grau de cristalinidade PEAD 3H634
- Tabela 4.30 Entalpia de fusão e grau de cristalinidade PEAD 9089U
- Tabela 4.31 Entalpia de fusão e grau de cristalinidade PEAD recuperado
- Tabela 4.32 Entalpia de fusão e grau de cristalinidade PEBD 2304

Anexo C

Tabela C.1 - Índice de Fluidez

LISTA DE SIMBOLOS E ABREVIATURAS

ASTM	American Society for Testing and Materials	
atm	Atmosfera (pressão)	1,013×10 ⁵ Pa
bar	Bar (pressão)	1×10 ⁵ Pa
C _p	Capacidade térmica medida a pressão constante	JK ⁻¹
F	Caudal de alimentação	
0	Caudal de material à saída	
R	Caudal de material reciclado	
V	Caudal de material virgem	
mW	Caudal térmico	miliwatts
HC1	Cloreto de hidrogénio	
h	Constante de Planck	$6,626 \times 10^{-34}$ Js
ϵ_{ced}	Deformação à cedência	%
ε _{rot}	Deformação na rotura	%
$d_{n0k=0} \\$	Densidade do material antes de qualquer processamento	
d _{n1k=0}	Densidade do material obtido após o 1º ciclo de processamento	
ΔΕ	Diferença de energia entre o estado final (β) e o estado inicial (α) da matéria	J
DMS	Dimetilsilano	
ΔH_{tf}	Entalpia de fusão à temperatura do ensaio	J/g
ΔH_{tf100}	Entalpia de fusão do polietileno 100% cristalino	J/g
FTIR	Espectroscopia de infravermelhos com transformadas de Fourier	
dH/dt	Fluxo de calor	Js-1
F _{máx}	Força máxima	Ν
υ	Frequência da radiação	s ⁻¹
Xc	Grau de cristalinidade	%
С-ОН	Grupo álcool	
C=0	Grupo carbonilo	
СООН	Grupo carboxilo	
C-O-C	Grupo éter	
I _{CI}	Indice de carbonilo I	
I _{CII}	Índice de carbonilo II	
Ic	Indice de cisão	
MFI	Índice de fluidez	g/10min
Iret	Indice de reticulação	
I ₀	Intensidade da luz incidente	
Ι	Intensidade da luz transmitida	
ISO	International Organization for Standardization	
\overline{M}	Massa molecular média do polímero	g/mol
n ₀	Material antes de entrar na máquina de injecção	
n _n	Material após o ciclo n	
$E_{\epsilon=1\%}$	Módulo a 1% de deformação	MPa
nm	nanómetro	10 ⁻⁹ m

α	Percentagem de d _{n0k=0}	
1-α	Percentagem de d _{n1k=0}	
PE	Polietileno	
PEAD	Polietileno de alta densidade	
PEBD	Polietileno de baixa densidade	
PELBD	Polietileno linear de baixa densidade	
РР	Polipropileno	
P_n	Propriedade do material à enésima operação	
P_{I}	Propriedade do material após a 1ª injecção	
P_0	Propriedade do polímero antes do primeiro processamento	
RMN	Ressonância magnética nuclear	
T_{pm}	Temperatura correspondente à fusão do polímero	°C
т	Temperatura correspondente à intercessão da linha de base com a tangente à curva	90
I _{eim}	inferior do pico de fusão	ť
т	Temperatura correspondente à intercessão da linha de base com a tangente à curva	°C
I efm	superior do pico de fusão	t
T _{im}	Temperatura correspondente ao limite inferior da área de fusão	°C
T_{fm}	Temperatura correspondente ao limite superior da área de fusão	°C
t	Tempo	S
σ_{rot}	Tensão na rotura	MPa
$k_{T=\!0}$	Teor de material virgem em misturas processadas a temperaturas elevadas	
k = 0	Teor de material virgem na mistura	
k	V/V+R - razão de material virgem	
η	Viscosidade do polímero	Pa.s