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Abstract: Fires have significant impacts on soil erosion and water supply that may be exacerbated
by future climate. The aims of this study were: To simulate the effects of a large fire event in the
SWAT (Soil and Water Assessment Tool) hydrological model previously calibrated to a medium-sized
watershed in Portugal; and to predict the hydrological impacts of large fires and future climate on
water supply and soil erosion. For this, post-fire recovery was parametrized in SWAT based on satellite
information, namely, the fraction of vegetation cover (FVC) calculated from the normalized difference
vegetation index (NDVI). The impact of future climate was based on four regional climate models
under the stabilization (RCP 4.5) and high emission (RCP 8.5) scenarios, focusing on mid-century
projections (2020–2049) compared to a historical period (1970–1999). Future large fire events (>3000 ha)
were predicted from a multiple linear regression model, which uses the daily severity rating (DSR) fire
weather index, precipitation anomaly, and burnt area in the previous three years; and subsequently
simulated in SWAT under each climate model/scenario. Results suggest that time series of satellite
indices are useful to inform SWAT about vegetation growth and post-fire recovery processes. Different
land cover types require different time periods for returning to the pre-fire fraction of vegetation
cover, ranging from 3 years for pines, eucalypts, and shrubs, to 6 years for sparsely vegetated low
scrub. Future climate conditions are expected to include an increase in temperatures and a decrease in
precipitation with marked uneven seasonal distribution, and this will likely trigger the growth of burnt
area and an increased frequency of large fires, even considering differences across climate models.
The future seasonal pattern of precipitation will have a strong influence on river discharge, with less
water in the river during spring, summer, and autumn, but more discharge in winter, the latter being
exacerbated under the large fire scenario. Overall, the decrease in water supply is more influenced
by climate change, whereas soil erosion increase is more dependent on fire, although with a slight
increase under climate change. These results emphasize the need for adaptation measures that target
the combined hydrological consequences of future climate, fires, and post-fire vegetation dynamics.

Remote Sens. 2019, 11, 2832; doi:10.3390/rs11232832 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-1841-209X
https://orcid.org/0000-0001-5423-5890
https://orcid.org/0000-0002-0164-249X
https://orcid.org/0000-0003-1983-936X
https://orcid.org/0000-0003-1683-5267
https://orcid.org/0000-0002-9462-5938
http://dx.doi.org/10.3390/rs11232832
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/23/2832?type=check_update&version=2


Remote Sens. 2019, 11, 2832 2 of 16

Keywords: future climate; fire; hydrological impacts; post-fire recovery; satellite data; SWAT model

1. Introduction

Water supply (in terms of quantity, seasonality, and quality) and the control of soil erosion in
watersheds worldwide are threatened by various pressures, such as fires and climate change, that
affect the functioning of ecosystems [1,2]. Fires reduce soil infiltration due to the formation of a topsoil
hydrophobicity layer, and they promote surface runoff and soil erosion with consequences for water
quality [3,4]. These negative effects of fires may be exacerbated by future climate change [5].

Although fire plays a role in the dynamics of many ecosystems, influencing biodiversity and
landscape heterogeneity [6], they are considered a natural hazard, becoming more frequent, intense,
and large, associated to more economic and social impacts, often with human fatalities [7]. Even if
wildfires are a common feature in regions under the Mediterranean type of climate, the determinants
of fire regimes are rapidly modified by changes in the landscape, climate, and socio-economic
factors [4,5,7]. Weather conditions favorable for fires, in combination with ignition sources and fuel
availability, are projected to increase in the future [8]. However, there is substantial uncertainty
regarding vegetation–fire feedbacks and how they will influence future shifts in fire regimes [5,9].

The hydrological impacts of management practices (e.g., in agriculture), land cover, and climate
change have long been assessed using hydrological modeling, and in particular, using SWAT (Soil and
Water Assessment Tool), a widely used hydrological model developed by the United States Department
of Agricultural Research (USDA) in the early 1990s [10]. Although post-fire runoff and soil erosion
have long been evaluated using other hydrological/soil erosion models [11–14], only recently they have
started being modeled in SWAT. In some cases through a simulation of different scenarios of land cover
thus approaching post-fire vegetation conditions in a static way [15], in other cases by performing
a statistical analysis rating infiltration and flow as the proportion of area burned [16], or modifying key
model parameters in post-fire conditions [17], coupled with a land-use update model [18]. All of these
approaches focus on evaluating the water balance components, while excluding soil erosion. In general,
these simulations predict a reduction of water storage due to decrease in infiltration, and an increase
in peak flows resulting in the high probability of floods occurrence after fire. Recently, SWAT was
applied to evaluate both the water balance and soil erosion, modifying key parameters and validating
for observed streamflow and erosion in burnt hillslopes in a watershed in central Portugal; the study
concluded that fire-prone forests might not provide the anticipated soil protection and water quality
regulation services [19].

However, in all of these studies, climate change and fire scenarios for the future were never
addressed. Moreover, previous studies advocate the need to include vegetation dynamics through
process-based models to improve models of fire probability under climate change [20,21]. In this
regard, satellite data can play a crucial role to inform ecosystem models, either as input data,
to validate/calibrate model results, or as a tool to sequentially update variables, reducing model
uncertainty [22]. Therefore, here we combined SWAT and satellite data to assess the hydrological and
erosional impacts of fires, and to simulate those effects combined with future climate change. The study
took advantage of a previous application of SWAT in the Vez watershed (Portugal) and updated the
model with a calibration for large fire events and post-fire recovery, which was informed by satellite
data. The main novelty resides in simulating the consequences of both future climate and fire regime
on water quantity and seasonality and on soil erosion, in a dynamic way, particularly considering
post-fire vegetation regrowth.
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2. Materials and Methods

2.1. Study-Area

The Vez is a subsidiary of river Lima, and drains a medium-sized watershed (260 km2) in northwest
Portugal. This mountainous watershed, mainly set on granite bedrock, has a complex topography with
altitudes ranging from 30 to 1400 m and slopes above 25% in half of the watershed. It receives high
levels of precipitation all year, with the exception of two drier months in summer (July and August).
Annual precipitation is about 1500 mm and average temperature is 13 ◦C. The main land cover in
the watershed is shrubland (tall and dwarf), followed by forests (of oaks, pines, and eucalypts) and
agriculture in the valleys rotating grass in the winter and corn in summer (Table 1).

Table 1. Land cover classes in the Vez watershed when a large fire occurs. Burnt in 2006, two classes
were assigned for each land cover, to respect the geometry, e.g., FIMI and MIFI, before and after the fire,
respectively. FIMI has the same vegetation parameters as MIGS; MIFI has the parameters for burnt
shrub (Table 2).

Condition SWAT Class % Land Cover

Unburnt
80%

MIGS—shrub 33
BSVG—low shrub 7.5

CARV—oak 7.5
EUCL—eucalypts 1

PINU—pine 7
CORN—agriculture (maize + pasture) 19

URBN—urban low residential 5

Burnt in 2006
20%

FIMI—shrub/MIFI—burnt shrub 12
FIBS—low shrub/BSFI—burnt low shrub 5.6

FICA—oak/CAFI—burnt oak 1.4
FIEU—eucalypts/EUFI—burnt eucalypts 0.3

FIPI—pine/PIFI—burnt pine 0.7

This watershed is frequently affected by fires, especially in summer. Particularly, a large fire event
occurred from the 8–15 August 2006, burning 23% of the watershed (i.e., about 8000 ha). The event
was characterized by three fires in different places (Figure 1a. Part of the affected area was inside of the
Peneda-Gerês National Park, in particular, inside the special zone for protection of old-growth oak
(Quercus robur) forests, an important habitat for several endangered fauna and flora species. Because
the landscape is highly prone to fires in the dry periods, namely in areas with flammable vegetation
types (shrubland, pines, and eucalypts), abandoned land, and steep slopes, there is high fire recurrency,
with some areas experiencing 4–6 fires within 16 years (Figure 1b). The frequency of years with total
burnt area above 6000 hayr−1 is increasing in the last decade, as well as years with the mean area burnt
per fire event above 500 ha, set as the value to be considered as a large fire (Figure 1c).
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Figure 1. Fires in the Vez watershed. (a) Burnt area in the large fire event that occurred in August 
2006 in the Vez watershed; (b) fire recurrency (years) in 16 years (2000–2016); (c) total and mean per 
fire event burnt area in the watershed (19902016); (d) the Vez watershed location in northwest 
Portugal. 

2.2. Satellite Data to Support SWAT Parametrization 

The utility of satellite-derived data to support hydrological modeling, in particular, SWAT, is 
growing in the last years, mainly for watersheds with in-situ data scarcity. Examples range from the 
calibration and validation of evapotranspiration process [23], to using rainfall satellite products 
forcing the SWAT model in places where in-situ data is absent [24]. Here, satellite data were used to 
inform the vegetation growth model in SWAT: First to calibrate leaf area index (LAI) through 
vegetation parameters, and afterwards to calibrate post-fire recovery time steps by land cover type. 

To calibrate vegetation parameters related to LAI, a time series from the LAI MODIS product 
(MOD15A2, collection 5, 8-day, 1 km) was used to extract LAI average values for different land cover 
types (assuming ≥75% cover as a pure land cover pixel) for the period 2003–2008, the same period of 
SWAT calibration in the watershed. This information was used to manually fine-tune vegetation 
parameters in SWAT, such as the minimum leaf area index (ALAI_MIN) (Table 2), to approximate 
SWAT LAI values and patterns with the ones observed from the satellite. 
  

Figure 1. Fires in the Vez watershed. (a) Burnt area in the large fire event that occurred in August 2006
in the Vez watershed; (b) fire recurrency (years) in 16 years (2000–2016); (c) total and mean per fire
event burnt area in the watershed (1990–2016); (d) the Vez watershed location in northwest Portugal.

2.2. Satellite Data to Support SWAT Parametrization

The utility of satellite-derived data to support hydrological modeling, in particular, SWAT,
is growing in the last years, mainly for watersheds with in-situ data scarcity. Examples range from the
calibration and validation of evapotranspiration process [23], to using rainfall satellite products forcing
the SWAT model in places where in-situ data is absent [24]. Here, satellite data were used to inform
the vegetation growth model in SWAT: First to calibrate leaf area index (LAI) through vegetation
parameters, and afterwards to calibrate post-fire recovery time steps by land cover type.

To calibrate vegetation parameters related to LAI, a time series from the LAI MODIS product
(MOD15A2, collection 5, 8-day, 1 km) was used to extract LAI average values for different land cover
types (assuming ≥75% cover as a pure land cover pixel) for the period 2003–2008, the same period
of SWAT calibration in the watershed. This information was used to manually fine-tune vegetation
parameters in SWAT, such as the minimum leaf area index (ALAI_MIN) (Table 2), to approximate
SWAT LAI values and patterns with the ones observed from the satellite.
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Table 2. SWAT model parameters for vegetation unburnt and burnt.

Parameter Description
Vegetation Unburnt (Burnt)

Pine FIPI
(PIFI)

Eucalypts
FIEU (EUFI)

Oak
FICA (CAFI)

Shrub
FIMI (MIFI)

Low Shrub
FIBS (BSFI)

BLAI Maximum potential leaf area
index (m2/m2)

4
(1)

3.7
(1)

6
(1)

2
(0.5)

5
(0.5)

ALAI_MIN
Minimum leaf area index for
plant during dormant period

(m2/m2)

3.9
(1)

3.4
(1)

0.75
(1)

1.8
(0)

0
(0)

USLE_C
Minimum value of USLE C

factor for water erosion
(factor)

0.001
(0.004)

0.001
(0.008)

0.001
(0.002)

0.001
(0.004)

0.005
(0.008)

OV_N (.hru) Curve number for moisture
condition

0.8
(0.1)

0.4
(0.1)

0.8
(0.2)

0.8
(0.1)

0.17
(0.1)

PHU_PLT Heat units to maturity 3500
(1500)

3500
(1500)

3500
(1500)

2500
(1000)

1500
(500)

Secondly, time-series of the fraction of vegetation cover (FVC) was estimated from the normalized
difference vegetation index (NDVI), extracted from MODIS/Terra image time-series (MODIS product
MOD13Q1, 16-day, 250 m), by applying the formula [25]:

FVC =
NDVI−NDVImin

NDVImax −NDVImin
(1)

where NDVImin and NDVImax correspond to NDVI values for bare soil (FVC = 0) and dense vegetation
(FVC = 1), respectively. Using FVC facilitates interpretation, since it is not unitless, unlike NDVI.
This way, an estimate of FVC for each 250 × 250 m square, for every 16 days, was obtained. These
values allowed us to monitor post-fire recovery in the study area identified as burnt in 2006 in the
MODIS burnt area product MCD64A1 (collection 6, monthly, 1 km). By grouping these temporal
profiles by land cover class and calculating the median values using only pixels with a percentage area
of that class equal or greater than 60%, we were able to extract median profiles of post-fire recovery for
each land cover class.

Additionally, we estimated the time when vegetation started to regrow after fire, by identifying
the first local minimum after fire (i.e., negative-to-positive inflexion point) in the long-term trend,
obtained by using a seasonal–trend procedure based on the LOESS smoother (STL) time-series
decomposition [26].

2.3. SWAT Hydrological Model Setup for Fire and Post-Fire Recovery

SWAT (Soil and Water Assessment Tool) is a widely used hydrological model to evaluate a broad
range of environmental problems, such as the impact of agricultural practices, climate, and land cover
changes on water resources [10]. It was successfully applied to the Vez watershed with climate and
land cover change scenarios by Carvalho-Santos et al. [27], further developed with mapping and
spatial analyses by Carvalho-Santos et al. [28]. However, in those previous studies, a major fire event
that occurred in August 2006 was neglected during calibration procedures, mainly due to the lack
of knowledge on post-fire consequences and how to address them with SWAT. Therefore, here we
maintained all the steps for the SWAT application and calibration used in the previous study [27],
further updated with a setup for fire (based on the one developed by Nunes et al. [19]) and with
post-fire recovery (based on dynamic SWAT management operations and estimated from satellite data,
as previously explained in Section 2.2). The software used was ArcSWAT version 2012.

The Vez watershed was divided in 10 sub-basins and 717 HRUs (hydrologic response units)
with the same slope, land cover (Table 1), and soil type. The model was forced with daily climatic
values (1999–2008 with 4 years of warming-up to setup initial conditions) for five local precipitation
stations and one climatic station for maximum and minimum temperature, solar radiation, relative
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humidity, and wind speed. Ten elevation bands were created to increase the spatial representation of
precipitation and temperature, with a precipitation lapse rate of 1100 mm/km and a temperature lapse
rate of −5 ◦C/km. The vegetation and soil parameters, as well as sensitive parameters for streamflow
and sediment calibration, were the same as in Carvalho-Santos et al. [27]. For crops, it was assumed
that 20% of the agricultural area was under permanent pasture and 80% under a rotation between corn
in summer and pasture in winter. Management operations were established accordingly, starting corn
growth in May, including fertilizer and auto-irrigation for harvesting in September, followed by winter
pasture starting in October to be harvested in the following spring (April).

Calibration and validation were made against daily discharge and total suspended solids measured
in one station close to the watershed outlet (2003–2008) [27]. A good agreement between model
predictions and field observations related with discharge and sediments was obtained for calibration and
validation exercises. Model performance was considered good according to a Nash–Sutcliffe efficiency
(NSE) of 0.76 and a percentage of bias (PBIAS) of −15% for calibration of discharge. The calibration of
sediments was considered adequate, given the limited observed values, but supported with values
and parameters from the literature [27].

Fire was parameterized as follows: In the selected HRUs, previously clipped for the fire event
in 2006 (Figure 1a), fires were simulated by settling a “burn” operation in SWAT on 10 August 2006,
with BURN_FRLB (fraction of vegetation that burns) at 0.9. Since this operation is designed to
simulate small fires in farming operations and therefore does not activate soil erosion in SWAT, we
also performed a “harvesting and kill” operation on 15 August 2006, to remove vegetation from the
ground and thus simulate more realistically the impact of wildfires on soil erosion in SWAT. In the
spring of 2007, vegetation covers started to grow in burnt areas (Figure 2a), according to parameters
described in Table 2, for burnt vegetation types. SWAT parameters for burnt vegetation/land cover
were based on a previous publication in a comparable watershed in Central Portugal [19]. From these
parameters, USLE_C (land cover factor for soil erosion) was settled based on Fernández and Vega [29]
that compared modeling soil erosion values after fire with observed ones in the neighboring region
of Galicia (Spain); values below 0.008 for USLE_C were associated to low-intensity fires. LAI was
established as 1 in the following years after fire to perform the shrub domination in the first period
of recovery. Satellite information (Figure 2a) was used to setup post-fire recovery in SWAT, and thus
reproduce vegetation regrowth and, consequently, the fire hydrological consequences for the land
covers affected by fire (oak, pine, eucalypt, tall shrub, and low shrub in the top of the mountains).
This was done in a rotation scheme according to the number of years each land cover returns to the
level of pre-fire cover, representing post-fire conditions for soil erosion and water supply quantity
and quality.

2.4. Future Climate Scenarios

Future climate projections were obtained from four realizations of the SMHI-RCA4 regional
climate model (RCM), driven by four global climate models providing boundary conditions for
the regional simulations, included in the European Coordinated Regional Climate Downscaling
Experiment (EURO-CORDEX, http://www.euro-cordex.net/), which is part of the wider CORDEX
Initiative. The finest spatial resolution of these simulations, 0.11 degrees latitude–longitude, overtakes
those achieved in previous modeling coordinated experiments using hydrostatic regional climate
models, and thus was considered for this study. The four driving GCMs (General Circulation Models),
namely, CNRM-CM5, EC-EARTH, IPSL-CM5A-MR, and MPI-ESM-LR, belong to the ensemble of
models used as a basis for the latest IPCC (Intergovernmental Panel for Climate Change) assessment
report (AR5, IPCC 2013) and are part of the Coupled Model Intercomparison Project phase 5 (CMIP5).
Future projections considered two representative concentration pathway (RCP) scenarios [30], namely,
RCP 4.5 and RCP 8.5. RCP 4.5 is a stabilization scenario assuming that radiative forcing is stabilized at
4.5 W/m2 by and after 2100, reaching a peak around the mid-21st century [31], while RCP 8.5, also
referred to as “business as usual”, hypothesizes a high pathway emission scenario characterized by

http://www.euro-cordex.net/
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increasing greenhouse gas emissions over time and corresponding radiative forcing reaching values
greater than 8.5 W/m2 by 2100 and continuously increasing.

For this study, we considered the following RCA4 model variables extracted over the region of
interest: Daily maximum and minimum temperature, precipitation, surface downwelling shortwave
radiation, and relative humidity. The temperature and precipitation data were bias-adjusted considering
as a reference the observed climatology of E-OBS [32], available for the European domain at 0.25 degrees
(~25 km) spatial resolution from 1970 up to 2005. Bias correction was performed pixel-by-pixel in
the chosen domain and consisted of the adjustment of the long-term climatology using additive
correction factors for the temperature and multiplicative correction factors for the precipitation [33,34].
The bias-adjusted temperature and precipitation data were further downscaled using orographic
(lapse-rate) correction for the former and a stochastic downscaling method, the RainFARM [35,36],
for the latter. Regional climate model data were tested in their ability to reproduce the conditions
observed during the historical period 1970–1999 and employed to project future evolution and changes
under the RCP 4.5 and RCP 8.5 scenarios in the next decades (2020–2049).
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2.5. Large Fires in the Future 

Future projections of annual burnt area were made for the future climate scenarios following the 
empirical approach proposed by Sousa et al. [37]. Annual burnt area in the Vez watershed was 
modeled based on historical data for rainfall, fire weather index, and fire history, and compared to 
observed annual burnt area, between 1990–2005, freely available from the Portuguese Institute for 

Figure 2. (a) Temporal profile of the fraction of vegetation cover (FVC) in a sample pixel, illustrating the
procedure used for obtaining profiles of post-fire recovery and estimations of time to start vegetation
regrowth after fire. (b) Average observed times for post-fire recovery by land cover type in the Vez
watershed after the large fire event of August 2006 (BSVG—sparsely vegetated low shrub; MIGS—tall
shrub). (c) Modeled leaf area index (LAI) of pine in SWAT, before and after vegetation parameter
calibration, compared with MODIS LAI. (d) Modeled LAI of pine when a fire event is simulated in
SWAT (the simulation shown is for 2020–2027, as the calibration period (2003–2008) was too short to
reproduce LAI of post-fire).

2.5. Large Fires in the Future

Future projections of annual burnt area were made for the future climate scenarios following
the empirical approach proposed by Sousa et al. [37]. Annual burnt area in the Vez watershed was
modeled based on historical data for rainfall, fire weather index, and fire history, and compared to
observed annual burnt area, between 1990–2005, freely available from the Portuguese Institute for
Nature Conservation and Forests. Monthly rainfall anomalies (rainfall total—long-term average) were
taken from E-OBS gridded dataset for Europe [32]. Fire weather was calculated based on the daily
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severity rating (DSR) fire weather index [38], using climate data at midday for temperature, relative
humidity, rainfall, and wind speed taken from the ERA-Interim reanalysis [39]. The analysis used the
number of extreme fire weather days per month, calculated as the number of days with DSR above
the 95th percentile from all values in spring, summer and autumn. Fire history was calculated as the
accumulated burnt area in previous years.

A multiple linear regression model was developed by relating annual burnt area with (1) the
rainfall anomalies from February to April and from July to August (representing the growing and
summer dry seasons), (2) the extreme fire weather days between June and August (representing the
main fire season), and (3) the total burnt area in the three previous years (representing fuel availability).
Burnt area values calculated using this regression showed a good agreement with observations for the
period 1990–2005 (r2 = 0.69), even when using modeled burnt area values to represent burnt area in
previous years, because before 1990 there were no data available (r2 = 0.65). The parameters of the
regression were similar to the ones calculated for the northwest Iberian Peninsula by Sousa et al. [37].

Future DSR values for 2020–2049 were calculated for all climate scenarios, and bias-corrected using
an empirical quantile mapping approach [40]. These values were combined with rainfall projections
(Section 2.3) to calculate annual burnt area for 2020–2049 for each climate scenario and model. The years
with burnt area larger than 4000 ha, which is the 75th percentile of the historical burnt area in the
watershed, were selected to run large fire events in SWAT. As some consecutive years with large fire
events were predicted for the future (given the fire-prone meteorological conditions) and since only one
map of burnt area in 2006 was used, we left at least 3 years between large fires to allow for vegetation
to return to the pre-fire level of fraction cover (Figure 2a), and we searched instead for a year with
a 3000 ha burnt area where the predicted fire could be simulated in SWAT (Table 3). This approach
captured the favurable meteorological conditions for fire in the respective years, and also the post-fire
meteorological conditions that strongly influence soil erosion. For the 4-year warming-up period
(2016–2020), a fire was established in 2016 (Figure 1c). For the historical period (1970–1999), the same
procedure was done, but without fire in the warming-up period. Both climate change only scenarios
and climate change with large fire scenarios were performed in the same project in ArcSWAT to avoid
some residual uncertainty.

3. Results and Discussion

3.1. Post-Fire Recovery in SWAT Based on Satellite Data

Satellite data were found to be very useful to parameterize vegetation growth processes in SWAT
(Figure 2). MODIS LAI time-series helped to manually fine-tune vegetation parameters in SWAT to
correctly reproduce growth cycle. In the example of pine (Figure 2c), SWAT LAI after calibration
improved substantially, in particular to adjust minimum and maximum LAI to MODIS LAI values.

Regarding post-fire recovery, all land cover types started to regrow in the next spring after fire
(March/April 2007) (Figure 2b). Different land cover types are associated with different average periods
for returning to the level of pre-fire vegetation cover: 3 years for PINE/EUCL (mixed stands of pine
and eucalypts) and MIGS (tall shrub); 4 years for OAK; and 6 years for BSVG (low shrub in the top
of mountains). BSVG is the land cover type that takes more time to recover, probably due to the
predominance of shallow soils in the top of the mountains, with depleted seed bank storage due to
recurrent fires, and to the adverse climatic conditions such as strong winds and low temperatures that
limit regrowth.

Areas dominated by eucalypts, pines, and tall shrubs take 3 years to return the same level of
cover of pre-fire conditions, which may be related to the capacity of these species to quickly regenerate,
much due to their higher capacity of surviving fire and resprouting. In fact, a study conducted in four
plots of eucalypts after fire in central Portugal showed that this species is fire-resilient with a very high
probability of surviving fire, depending on the respective fire severity, and the most common post-fire
recovery type was basal resprouting [41]. In another study, NDVI time-series was used to model
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post-fire vegetation recovery in Portugal, with results indicating that transitional woodland-shrub
presents shorter recovery times, while coniferous tend to recover more slowly [42]. However, in our
study, FVC was used instead of NDVI; the study area was smaller and did not contain the full range of
vegetation types as in that study and the return to 100%, instead of 50%, of the pre-fire level was used as
measure of post-fire recovery, which may show different results. Another source of uncertainty in our
results is that the post-fire recovery curves were extracted from pixels with 75% (or higher whenever
possible) of dominant land cover type. The small size and the large landscape heterogeneity of our
study area prevents us to extract post-fire recovery curves from a significant number of “pure pixels”
(i.e., 100% of dominant land cover type). In addition, our post-fire recovery curves were computed
from pixels that may have burnt at different intensities, which can help explain the relatively slow
post-fire recovery of fraction cover for some forest types.

The fraction of vegetation cover (FVC) by land cover type is a realistic approach to reproduce
post-fire recovery in SWAT (Figure 2a). Thus, in the first years after fire until full recovery, LAI is low
to simulate shrub dominance. Then, each land cover will eventually return to the pre-fire level of cover,
according to the respective number of years. Overall, the SWAT model was able to reproduce post-fire
recovery for each land cover type, with a marked difference in the evolution of LAI values through
time when a fire was simulated (Figure 2b).

3.2. Climate and Large Fires in the Future

In general, less precipitation and a temperature increase are expected in the Vez watershed
in 2020–2049 compared to the historical period (Figure 3a). However, climate models yield some
variability in the range of temperature change and especially for precipitation. Although a reduction is
expected, precipitation change ranges from about less 1% to about less 20% depending on the model
and scenario. In one case, i.e., when the regional climate model is driven by the EC-EARTH global
model in the RCP4.5 scenario, an increase in precipitation from about 8% is predicted.

In spite of the model ensemble spread in the annual precipitation change signal, the agreement
among the models improves at the seasonal scale: All models under both scenarios, in fact, simulate
more precipitation in winter and less in spring, summer, and autumn in the future, compared to
the past. The same seasonal signal was also observed in the previous SWAT application to the Vez
watershed, although using different climatic models and downscaling method [27].
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Figure 3. (a) Precipitation and temperature anomalies under future climate in the Vez watershed, by
climate model, for scenarios RCP 4.5 and 8.5, for 2020–2049 compared to 1970–1999. (b) Accumulated
burnt area for the future 30 years (2020–2049), by climate model and for scenarios RCP 4.5 and 8.5,
compared to 30 years of historical simulation (1970–1999), derived by a multiple linear regression model.
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Results from the multiple linear regression model for fire in the future show an increase in the
total burnt area, with a maximum increase of about 28% found in MPI-ESM-LR-driven regional model
simulations under the RCP 8.5 scenario (Table 3). A modeling study for the Mediterranean region
forecasts a substantial increase in burnt areas in the future, especially for Portugal [43]. Accumulated
burnt area is higher under the RCP 4.5 scenario than in RCP 8.5, especially for the CNRM-CM5- and
IPSL-CM5A-MR-driven simulations (Figure 3b). Only the EC-EARTH-driven climate model, under
the RCP 4.5 scenario, projects lower burnt area compared to historical conditions (Table 3), which is in
line with the precipitation increase predicted by the same model (Figure 3a).

Table 3. Indicators for fire regime in Vez watershed projected in the future period 2020–2049 compared
to the historical reference 1970–1999 (in brackets). The indicators result from a multiple linear regression
model forced by the RCA4 regional climate model driven by four different GCMs (General Circulation
Models) in RCP 4.5 and RCP 8.5 scenarios.

RCP 4.5 RCP 8.5

CNRM-
CM5

EC-
EARTH

IPSL-
CM5A-

MR

MPI-
ESM-

LR

CNRM-
CM5

EC-
EARTH

IPSL-
CM5A-

MR

MPI-
ESM-

LR

Change in burnt area compared with each
climate model historical (%) 18.4 −13.2 16.3 23.9 3.1 10.3 4.7 28.1

Total burnt area (ha—30 years) 80,267 58,292 80,342 66,701 69,889 74,060 72,294 68,974
Maximum burnt area per year (ha) 6 637 6 486 6 283 6 321 6 581 6 757 7 083 8 148
Minimum burnt area per year (ha) 0 6.5 31.8 0 44.2 0 0 0

Nº of years with burnt area 29 30 30 29 30 28 29 27
Nº of years with low burnt area

(<500 ha) (historical) 3 (3) 6 (0) 4 (3) 2 (1) 5 4 2 5

Nº of years with large burnt area
(>4000 ha) (historical) 7 (3) 2 (6) 5 (3) 2 (1) 6 6 3 5

Nº of years with large burnt area
(>3000 ha) (historical) 11 (5) 5 (3) 12 (4) 5 (3) 7 9 9 10

Nº of years with fires simulated in SWAT
(historical) 5 (4) 5 (4) 7 (4) 3 (3) 4 5 4 4

Total burnt area in SWAT (30 years) 40,000 40,000 56,000 24,000 32,000 40,000 32,000 32,000

A higher frequency of large fires is expected in the future compared to the historical period, as
shown by the calculated number of years with large burnt area (Table 3). However, previous research
has found that past fires limit the growth of vegetation and, in turn, help suppress future large fires
under climate change scenarios [44]. Although our regression model includes fire history as a predictor
variable (being able to explain almost 70% of observed burnt area), simple correlative models hold
important shortcomings. In the future, more sophisticated burnt area models using more variables and
non-linear relationships [45,46] or more sophisticated approaches such as random forests and boosted
regression trees [47] can be used to improve the robustness of burnt area predictions. The inclusion of
landscape dynamics in the future burnt area model is beyond the scope of this research but is also
worth exploring, considering the uncertainty in future climate vegetation feed-backs [9] and given
the widespread land abandonment that has taken place in the study area over the last decades [48].
Nonetheless, we consider our model based on climatic conditions adequate to simulate future burnt
areas to inform SWAT model. A previous study showed the best performance on modeling burnt
area in the northwest region of Iberian Peninsula, where the Vez watershed is located, comparing
with other regions, because of the strong relation between summer fires with climatic conditions in
spring [49]. The same authors showed concerns for the future increase of the fire risk in this region due
to the long-term reduction of the springtime precipitation, which is in line with our climate projections.

Overall, the increase in temperature and the marked seasonality of precipitation (more during
winter and less in spring, summer, and autumn) projected for the future will definitely influence
an increase of burnt areas in the Vez watershed, with expected increasing frequency of large fires events.
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3.3. Hydrological Impacts of Future Large Fires under Climate Change

According to our simulations, climate models project an increase in temperatures and
an intensification of the seasonality of precipitation in the Vez watershed for the future period
2020–2049. This will directly influence the river discharge, with moderate water reduction in summer
and a more visible reduction in spring and autumn, especially under the RCP 4.5 climate scenario
(Figure 4a). A small increase of discharge during winter is expected. These results from the ensemble
of SWAT outputs differ across climate models, which shows the amplitude of variance in simulated
discharge (Figure 4).
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When fire is considered in model simulations, the same patterns obtained under climate change
only are observed, compared to historic with fire (Figure 4b). Accordingly, a discharge reduction
in spring, summer, and autumn, but a bigger increase of water in the river during winter when
compared to historic with fire, especially in RCP 4.5, when more fires were modeled in SWAT (Table 3).
This results in higher water in the river due to an increase of surface runoff after fire that happens in
August (4–5 fires on average in 30 years). A modeling study to address the impacts of wildfire on
runoff applied in a similar medium watershed in the north of Portugal observed higher runoff peaks
after fire during rainy days [50].

However, a different result related to discharge when comparing both historical periods (future
climate and future climate with fire) is the slight reduction of water in the river when fires are modeled
(Figure 4b, comparing both historical simulations). This tendency applies to historical and RCP 8.5,
but not to RCP 4.5 (Figure 4a,b). This is probably related to the occurrence (or not) of favorable
meteorological conditions after fire in each scenario/climate model. Specifically, strong episodes of
precipitation will lead to quick surface runoff and increase discharge, which seems to be the case
of RCP 4.5 with fire. In turn, soft precipitation in combination with high temperature will foster
vegetation growth, especially fast-growing herbaceous plants, shrubs, and eucalypts, with increased
evapotranspiration, which seems to be the case in historical and RCP 8.5 simulations. A field-study of
long-term hydrological responses to large wildfire in Australia showed that, when eucalypts regenerate,
water yields are likely to decline and, conversely, when there is little or no eucalypt recovery, water
yields are expected to increase [51]. It should be noted however that results are analyzed at the outlet
of the watershed, where the effects on discharge are less visible when compared to the outlet of the
sub-basins affected by fire.

Soil erosion is expected to slightly increase with climate change, especially under RCP 4.5, but
when fires are included in SWAT simulations, soil erosion increases substantially (Figure 5a), suggesting
that the effect of fires on soil erosion is more severe than the effect of climate change. Similar results
were found in hydrological modeling studies with scenarios of climate change and fire applied to
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a watershed in central Idaho, USA, and in Alberta, Canada, regarding sediment yield increases with
fire for both historical and future climates, concluding that sediment yield is more sensitive to fire
occurrence than to climate change [13,51].
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To have soil erosion after fire, meteorological conditions favorable to erosion, such as autumn and
winter precipitation, must occur and coincide with the years with fires during the 30-year simulation.
This seems to be the case of future climate under RCP 4.5, that showed a slight increase of soil erosion
in the scenario of fire and climate change compared to historic, although with more fires occurring
than under RCP 8.5. In general, RCP 8.5 climate scenario becomes extreme by the end of the century,
and in this study, we simulate until mid-century (2049). Regarding the accumulated sediments in the
river outlet throughout the 30 years of simulation, it was the historical period of CM5A-MR climate
model that showed higher erosion, but the historical period of EC-EARTH that showed lower erosion
(Figure 5b). Interestingly, both CM5A-MR and EC-EARTH historical simulations in SWAT considered
four fires in the 30 years run period (Table 3), which seems to give more importance to post-fire
meteorological conditions, namely, the coincidence of higher precipitation in winter after the fire event,
than to the number of fires simulated itself. From here, climate model uncertainty can be observed and,
considering that the analysis at the ensemble level (average of the four climate models, Figure 5a),
must be taken with care.

3.4. Challenges for Landscape Adaptation to Large Fires and Future Climate

Portugal is the European country with the highest number of wildfires and the second with more
burnt area, the majority of ignitions having human origin, either intentional (42%) or negligent (28%) [52].
In addition, large fires in Portugal are driven by long-standing land abandonment processes and critical
weather conditions, occurring independently of large expenditures in fire-fighting resources [53].
According to our model simulations, future climate conditions are expected to increase burnt areas
and, more importantly, to increase the frequency of large fire events, with hydrological consequences
regarding the seasonality of river discharge and an increase of soil erosion (Figures 4 and 5). These
results emphasize the need for more integrative modeling approaches to predict the combined impacts
of climate change and large fires in the provision of hydrological ecosystem services and to provide
sound management guidelines.

Fuel management aimed at the creation of a fire-resilient landscape, often called fire-smart
management of forest landscapes, is an appealing and promising option for adaptation to climate
change and novel fire regimes [54]. In fact, land abandonment in rural areas and decreasing farming
activities have led to fuel accumulation, especially with fire-prone species, consequently increasing
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fire hazard in the last decades [55]. Still, a survey done among European Mediterranean foresters and
scientists gave more importance to adaptation measures related to firefighting efficiency and public
awareness than to fuel management [56]. To better adapt rural landscapes to fire and climate change,
integrated fire management, as well as communication between research and management entities, are
required [56].

Traditionally, landscape adaptation management options for lowering fuel accumulation include
grazing control, the creation of fire breaks, lowering tree density, and prescribed fire [56]. Interestingly,
a modeling study showed an increase of 200% for future burnt areas in a scenario of “no adaptation”
by 2090, but an increase below 50% in the scenario of prescribed burning (fuel control) [57]. In addition,
prescribed fires can contribute to grassland recovery and the regeneration of particular plant species,
and although soil proprieties can be affected, depending on initial soil characteristics, the effects are less
severe than those of wildfires, because of the limited soil heating and lower fire intensity and severity [3].
In light of our results, management policies alternative to those implemented nowadays (mostly
focused on fire suppression than in prevention) should aim to reduce fire severity but simultaneously
ensure the long-term supply of ecosystem services and functions such as climate change mitigation
or water regulation. In this sense, fire-smart strategies based upon cover type conversions from
fast-growing forest species (e.g., eucalyptus plantations) to less flammable species (e.g., native oak
species) have been proposed as an adaptive option to cope with climate change and increase ecosystem
resistance to fire [54], with potential co-benefits for hydrological ecosystem services [27].

4. Conclusions

Large fires and future climate impact on soil erosion and hydrology were simulated in the Vez
watershed, northwest Portugal, using the SWAT (Soil and Water Assessment Tool) hydrological model.
The model was parametrized for post-fire recovery based on satellite data, which improved model
replicability on vegetation dynamics after fire. To our knowledge, this was the first time SWAT
was used to simulate both future climate and large fires for the mid-century period (2020–2049) in
a dynamic way.

In the future (2020–2049), an increase in temperatures and a decrease in precipitation with marked
uneven seasonal distribution are expected, as well as a forecasted increase in the burnt area and in the
frequency of large fires, when compared to historical period (1970–1999). This will directly influence
seasonal discharge in the river, with less water during spring, summer, and autumn, and more water
during winter, exacerbated by large fires. Soil erosion increase is substantially higher under fire
scenarios, although with a slight increase under climate change, especially under RCP 4.5 scenario that
predicts more precipitation. Overall, the decrease in water supply is more influenced by climate change,
whereas soil erosion increase is more dependent on fire. An important point is that meteorological
conditions that follow the months after fire, which are highly random, are the critical aspect influencing
discharge, but more importantly, soil erosion intensity.

The understanding of fire consequences on hydrological services provision under future climate
may support decision-makers in choosing better options for landscape adaptation and post-fire
mitigation, sustaining efforts to achieve SDG 7—climate action and 15—Life on Land.
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