
Parameter Estimation of the Linear Phase Correction
Model by Mixed-Effects Models

Dominic Noya,b, Raquel Menzesa

aCenter of Mathematics (CMAT), School of Science, University of Minho, Portugal
bDepartment of Basic Psychology, School of Psychology, University of Minho, Portugal

Abstract

The control of human motor timing is captured by cognitive models that

make assumptions about the underlying information processing mechanisms.

A paradigm for its inquiry is the Sensorimotor Synchronisation (SMS) task, in

which an individual is required to synchronise the movements of an effector,

like the finger, with repetitive appearing onsets of an oscillating external event.

The Linear Phase Correction model (LPC) is a cognitive model that captures

the asynchrony dynamics between the finger taps and the event onsets. It as-

sumes cognitive processes that are modelled as independent random variables

(perceptual delays, motor delays, timer intervals).

There exist methods that estimate the model parameters from the asyn-

chronies recorded in SMS tasks. However, while many natural situations show

only very short synchronisation periods, the previous methods require long asyn-

chrony sequences to allow for unbiased estimations (see Jacoby, Tishby, Repp,

Ahissar & Keller, 2015b). Also, depending on the task, long records may be

hard to obtain experimentally. Moreover, in typical SMS tasks, records are

repetitively taken to reduce biases. Yet, by averaging parameter estimates from

multiple observations, the existing methods do not most appropriately exploit

all available information.

Therefore, the present work is a new approach of parameter estimation to
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integrate multiple asynchrony sequences. Based on simulations from the LPC

model, we first demonstrate that existing parameter estimation methods are

prone to bias when the synchronisation periods become shorter. Second, we

present an extended Linear Model (eLM) that integrates multiple sequences

within a single model and estimates the model parameters of short sequences

with a clear reduction of bias. Finally, by using Mixed-Effects Models (MEM),

we show that parameters can also be retrieved robustly when there is between-

sequence variability of their expected values.

Since such between-sequence variability is common in experimental and nat-

ural settings, we herewith propose a method that increases the applicability of

the LPC model. This method is now able to reduce biases due to fatigue or

attentional issues, for example, bringing an experimental control that previous

methods are unable to perform.

Keywords: Linear Phase Correction Model, Sensorimotor Synchronisation,

Parameter Estimation, Mixed-Effects Models

1. Introduction

Humans coordinate their movements with nearby moving objects in the en-

vironment with a remarkable ease. This requires a highly timed communication

of the perception-action systems underpinning the movement control. In or-

der to investigate the underlying timing mechanisms, employed by the Central5

Nervous System (CNS), researchers study participants’ attempt to synchronise

their movements concurrently with repetitively occurring environmental events.

Synchronisation can be understood as a simplified type of coordination because

it is constrained in space and time. It is particularly important in activities

such as music, sports, and manufacturing. Synchronising movements with a10

partner was also shown to increase social aspects, such as social attachment

and cooperation (Wiltermuth & Heath, 2009; Valdesolo et al., 2010; Reddish

et al., 2013), rapport (Miles et al., 2009), and likability (Launay et al., 2014),

and it was traditionally used as a means to enhance self-esteem and obedience
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(Valturio, 1921).15

The study of motor synchronisation is mostly focused on effectors like the

fingers (Repp, 2005), the forearms (Mörtl et al., 2012), or the feet (van Ulzen

et al., 2008) to be timed with external events like auditory metronomes, light

displays, or interacting partner movements (Schmidt & Richardson, 2008; Noy

et al., 2017).20

A successful synchronisation requires the individual to a) perceive the event

onsets; b) perceive one’s movement onset; c) compute the asynchrony between

both onsets; d) compute the temporal progression of the repeated event series;

e) follow all these steps to predict upcoming event onsets.

Based on these perceptual processes, appropriate motor commands can be25

computed so that the asynchrony—between the movement and the event—

becomes reduced to a minimum (Grush, 2004; Van Der Steen & Keller, 2013).

When the external event is presented with constant temporal intervals (these

may also vary slightly), this paradigm is called Sensorimotor Synchronisation

(SMS) (Repp, 2005).30

There are cognitive models accounting for the empirical findings obtained

from SMS tasks. Cognitive models usually use a mathematical representation,

formalised as a parametrised system of equations that receives input, for exam-

ple, sensory cues about the onsets and previous asynchronies and intentions to

reduce the asynchrony (Wing & Kristofferson, 1973; Schulze & Vorberg, 2002;35

Jacoby et al., 2015b) and produce output, for example a motor response to re-

duce the next asynchrony or the actual asynchrony sequence. By solving (or

approximating) such systems, its parameters are revealed.

These models can be challenged by comparing their analytical or simulated

output—for a given input and set of parameters—with experimental observa-40

tions. By systematically manipulating the input, it can be validated whether

such processes–as postulated by the particular model– in fact underpin the in-

formation processing of the CNS.

Because in experiments there are always variables that can neither be ma-

nipulated nor controlled–i.e., there is noise within and beyond the CNS–these45
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problems are usually approached in a probabilistic manner. Within the frame-

work of probability theory, a model can be defined as a parametric family of

probability distributions. The combination of probability distributions (indexed

by parameters) determines the distribution of the input and associates a prob-

ability of occurrence to each output. Probabilistic models are used to model50

cognitive abilities. Usually, the challenge is to determine how the input and the

output relate to the model parameters in question (Myung, 2003).

In cognitive models of motor synchronisation, the output are the asynchrony

dynamics between the onsets of oscillating motion of an individual and the

onsets of a repetitively appearing stimulus. The subject of inquiry is the relation55

of these asynchronies to the parameters of the underlying timing model.

Our scope is a) to give a brief overview of such models, b) present their

current parameter estimation approaches and limitations, and c) to introduce

a novel approach of parameter estimation. In the introduction, we present

the synchronisation models of interest and the most recent parameter estima-60

tion method and illustrate that it is biased when certain experimental condi-

tions are not met (i.e., when the asynchrony sequences become shorter). In the

main section (methods and results), we present then an extended Linear Model

(eLM) revealing superior estimation performance in such conditions. Finally,

we present a Mixed-Effects Model, which is a further extension of the eLM,65

that also accounts for additional intergroup-specific variability. We show that

it most accurately and efficiently estimates the model parameters. The main

contribution of this work is the finding of robust parameter estimation methods

that allow validating the LPC model on more complex empirical observations

from movement synchronisation experiments.70

1.1. Timing Models

1.1.1. Continuation Tapping

In order to account for human timing processes, Wing & Kristofferson (1973)

developed a probabilistic cognitive model, which describes the timing behaviour

of individuals who have to execute repetitive movements at constant temporal75
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intervals. When the intervals are determined by an external metronome that

suddenly stops and the individual is required to continue executing the constant

movement intervals, this method is called the synchronization-continuation

paradigm. Based on the variability of the movement intervals (i.e., the time

between two successive taps), Wing & Kristofferson (1973) proposed the follow-80

ing model1:

Ij = Cj −Dj−1 +Dj , (1)

where Ij is the movement interval j, Cj is the internal representation of the

interval Ij (Time Keeper), and Dj comprises the perceptual and motor delays.

Ij is the temporal response interval bounded by two successive taps, which are

determined by Cj−1−Dj−2+Dj−1 and Cj−Dj−1+Dj . In follow-up studies, this85

was changed to Cj−Dj−1+Dj and Cj+1−Dj+Dj+1 (Schulze & Vorberg, 2002).

Cj and Dj are defined as independent random variables with Cj ∼ NV (μC , σ
2
C)

and Dj ∼ NV (μD, σ2
D).

The model in Equation 1 suggests that γI(1) is different of zero due to the

simultaneous presence of Dj−1 and Dj at the jth iteration. Assuming indepen-90

dent random variables, γI is supposed to be zero at larger lags (> 1). Taking

into account that Dj comprises perceptual and motor delays, the serial depen-

dence of Ij may reflect the degree of noise (variability) within their respective

information processing pathways (Wing & Kristofferson, 1973).

1.1.2. Linear Phase Correction Model95

Based on Wing & Kristofferson (1973)’s model, Schulze & Vorberg (2002)

developed the Linear Phase Correction model (LPC)

1For the introduction of the existing models and techniques, we used the notation of the

original articles. For this reason, notations of the same variables and parameters can vary

throughout this work.
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An+1 = (1− α)An + Tn +Mn+1 −Mn − C, (2)

where An is the asynchrony at iteration n, C is a constant metronome interval,

Mn is the motor delay, and Tn is the Time Keeper interval. Mn and Tn are

random variables with Mn ∼ NV (μM , σ2
M ) and Tn ∼ NV (μT , σ

2
T )100

Thus, the LPC describes the temporal behaviour of the observed asyn-

chronies An+1 as a linear combination of the preceding asynchronies An, a

cognitive representation of the external event structure Tn, and the information

processing delays within the CNS, Mn and Mn+1.

The LPC received empirical support for its validity (see e.g., Repp, 2005;105

Torre & Balasubramaniam, 2009; Zelaznik, Spencer & Ivry, 2002) and was ex-

tended to circumstances in which the base tempo of the metronome changed

(i.e., Cn as a function of n) and therefore μT had to be adjusted (i.e., period

correction) (Repp & Keller, 2004; Repp, 2001) or when the metronome ad-

justed its intervals as a function of the individuals’ movement dynamics (Repp110

& Keller, 2008).

1.1.3. Parameter Estimation Method

Traditionally, the parameters of the LPC model in Equation 2 were estimated

by the empirical auto-covariance function (acvf) (see Schulze & Vorberg, 2002).

Yet, it was argued that this estimation is biased when the asynchrony sequences115

are obtained from SMS tasks with variable metronome intervals. When the tem-

poral intervals changed or phase perturbations occurred—what is common in

natural settings—the parameters had to be estimated by fitting the empirical

acvf to computer simulations, which is slow and often no unique solution exists

(Jacoby et al., 2015b,a). Therefore, Jacoby et al. (2015b) suggested an alterna-120

tive method of parameters estimation, called the “bounded Generalized Least

Squares method” (bGLS). The bGLS method formalises the serial dependence of

asynchronies as a regression problem in which succeeding asynchronies linearly

depend on previous asynchronies.
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Jacoby et al. (2015b,a) rewrote the LPC in matrix form:125

y = Bx+ Z, (3)

where

y =

∣∣∣∣∣∣∣∣∣
A1 − E[Ak]

...

AN − E[Ak]

∣∣∣∣∣∣∣∣∣
, B =

∣∣∣∣∣∣∣∣∣
A0 − E[Ak]

...

AN−1 − E[Ak]

∣∣∣∣∣∣∣∣∣
, x = (1− α), Z =

∣∣∣∣∣∣∣∣∣
H0

...

HN−1

∣∣∣∣∣∣∣∣∣
,

and where Ak is the asynchrony at iteration k = 1, . . . , N , N is the length of

the sequence, E[Ak] is the expected value of Ak, α is the correction coefficient.

For this approach, N should be the same for all sequences.

Z follows a multivariate normal distribution with zero mean and N x N

variance-covariance matrix Σ. Considering that Z = [Z0, Z1, . . . , ZN−1]
T , where130

Zk = Tk + Mk+1 −Mk − E[Tk], it can be specified by γZ(j) = Cov[Zk, Zk+j ]

according to

γZ(1) = Cov[(Tk +Mk+1 −Mk), (Tk+1 +Mk+2 −Mk+1)]

= Cov[Mk+1,−Mk+1]

= −σ2
M ,

γZ(0) = V ar[Tk +Mk+1 −Mk]

= σ2
T + 2σ2

M ,

γZ(j) = 0, j > 1,

(4)

so that

Z ∼MVN(0,Σ), Σ = γZ(0)I + γZ(1)Δ,

γZ(0) = 2σ2
M + σ2

T , γZ(1) = −σ2
M , γZ(j) = 0, j > 1,
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Δ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

1 0 1
. . .

... 0

0 1 0
. . . 0

...
... 0

. . . 0 1 0

0
...

. . . 1 0 1

0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

I is a N x N identity matrix and Δ is a N x N matrix determining non-zero

correlations.135

The log-likelihood of x and Σ(σT , σM ) give Z (Z = y −Bx) is

l(x,Σ(σT , σM ) | Z) = −N

2
log(2π)− 1

2
log(|Σ|)− 1

2
(y −Bx)TΣ−1(y −Bx).

(5)

Since x and Σ (i.e., α, σT and σM ) are unknown, their estimation requires

to iteratively estimate x and Σ referred to as feasible Generalized Least Squares

(see Jung, 1987 in Repp, Keller & Jacoby, 2012). This means that x was esti-

mated when Σ was fixed at a particular (estimated) value and Σ was estimated140

when x was fixed at a particular (estimated) value. Because, the MLE estima-

tor coincides with the GLS estimator, as noted by Jacoby et al. (2015b), the

estimations could be performed by maximising l(x,Σ|Z) of Equation 5.

This parameter estimation method (bGLS) could be used on observations

from experiments with variable metronomes and it was generally less biased,145

more efficient, and faster than the traditional estimation techniques (Schulze &

Vorberg, 2002), for a wide range of settings (Jacoby et al., 2015b). In addition,

the bGLS method could capture the synchronisation dynamics of two or more

interacting individuals that coordinate in a group, as for instance when musical

orchestra elements had to be coordinated (see also Wing, Endo, Bradbury &150

Vorberg, 2014).

Yet, we identified three limitations of the presented methods:
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A) The presented methods require long asynchrony sequences. The more

traditional methods used the acvf of the asynchrony sequence (Schulze & Vor-

berg, 2002). For a meaningful acvf, it was suggested that the length should be at155

least min(N) ≥ 50 (Murteira et al., 1993). Similarly, the bGLS method searches

for an approximated MLE. This is only reliable and unbiased if the sequence is

relatively large (Ljung, 1998 in Jacoby, Keller, Repp, Ahissar & Tishby, 2015a).

As stated by Jacoby et al. (2015b), this should be at least min(N) ≥ 30.

But, in many natural situations that an experimenter might want to simu-160

late, synchronisation can be observed for only very short time periods. In dance,

partners alternately synchronise and eventually desynchronise their movements;

in manufacturing work, the demand to coordinate with machines and other

workers may be repetitive but short lasting; in a symphony orchestra, instru-

ments such as cello, violin, piano, and celesta stand alone or together, and165

sometimes start and stop for very short time periods. A typical strategy in

gait rehabilitation is that the patient synchronises the stepping pattern during

walking with external cues (see e.g., Lim, van Wegen, de Goede, Deutekom,

Nieuwboer, Willems, Jones, Rochester & Kwakkel, 2005), but only for a few

steps, probably in order to avoid fatigue. Short lasting interactions that involve170

movement synchronisation also exist in sports and in everyday coordination.

These activities have in common that the movements become synchronised very

quickly and last only short periods of time. Up to now, there do not seem to

exist appropriate estimation approaches within the framework of event-based

timing models, presented above, that can deal with short-lasting synchronisa-175

tion phenomena.

B) Another important limitation of the methods is that they disregard in-

formation due to averaging. In a typical experimental paradigm, one makes

inferences about parameters of the model that is supposed to have generated

the behaviour. To achieve this, behavioural records are usually obtained repet-180

itively, called trials or runs, and an average of these records, or their parameter

estimates of each trial is taken.

Yet, by averaging, one may lose essential information, outliers can bias the
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results, and if trials with different lengths are included, they are weighted equally

inducing further biases. It should be desirable to estimate the parameters with-185

out applying such “mean-function”. This is particularly important when there

is little information on each trial, that is, when trials are short. Thus, appropri-

ate methods must be developed that can estimate the parameters from multiple

and short asynchrony sequences.

Models that may account for such patterns are known as longitudinal mod-190

els, mixed effect models, multilevel regression models, extended linear models,

panel data models, growth curve models, etc. The repeated measurements of

asynchronies can be viewed as multilevel, where the lowest level are the asyn-

chronies nested within the sequence. At this lowest level, according to the LPC,

the asynchronies are not independent. The model parameters could then be195

estimated based on the within-sequence correlation structure. In the following,

we adopted the terminology of Pinheiro & Bates (2000). A model that captures

within-sequence correlations is referred to as extended Linear Models (eLM).

This model allows for the inclusion of all sequences within a single model rather

than computing an average.200

C) A third limitation is that there may be variability between the expected

asynchronies of each sequence that is neither captured by the LPC model nor by

the parameter estimation methods (we discuss this issue in Section 3.1). Such

between-sequence variability can be described by random intercepts, which are

associated with each individual sequence, sampled randomly from the popula-205

tion of sequences. When the model incorporates a particular within-sequence

correlation structure (as the eLM) and random intercepts, it is referred to as

Mixed-Effects Model (see Pinheiro & Bates, 2000).

The remainder of this article is structured as followed: In the method section,

we present the eLM, its further extension, the MEM, and their computations.210

Subsequently, in the results section, we demonstrate the superior performance

of the eLM to the bGLS in estimating parameters of the LPC model when the

sequences are short. Then, we demonstrate the superior performance of the

MEM to the eLM and the bGLS method, when estimating the parameters from
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sequences with varying intercepts.215

2. Methods

2.1. extended Linear Model (eLM)

We developed the eLM based on Pinheiro & Bates (2000). It is able to cap-

ture multiple sequences of asynchronies within a single model. Each asynchrony

is denoted by aij , i = 1, . . . ,m, j = 1, . . . , ni, where i indexes the sequence and220

j indexes the jth asynchrony within sequence i. The length of ai is denoted by

ni and N denotes here the length of all sequences together N =
∑m

i=1 ni.

2.1.1. Model

The model can be written for each sequence i as:

yi = xiβ + si,

si ∼MVN(0,Σi),
(6)

where yi is a (ni − 1) x 1 column vector of asynchronies of sequence i, xi is a225

(ni − 1) x 1 column vector of asynchronies of sequence i one iteration earlier

than the asynchronies in vector yi, si is a (ni − 1) x 1 column vector of the

errors of sequence i, and Σi is a (ni − 1) x (ni − 1) variance-covariance matrix

Σi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
T + 2σ2

M −σ2
M 0 · · · 0 0

−σ2
M σ2

T + 2σ2
M −σ2

M

. . .
... 0

0 −σ2
M σ2

T + 2σ2
M

. . . 0
...

... 0
. . . σ2

T + 2σ2
M −σ2

M 0

0
...

. . . −σ2
M σ2

T + 2σ2
M −σ2

M

0 0 · · · 0 −σ2
M σ2

T + 2σ2
M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The si corresponds to Z of the bGLS method: si =

[si1, si2, . . . , sini−1]
T , sij = Tij + Mij+1 − Mij − E[Tij ]. We changed its230
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notation to prevent confusion with the random effects column vector z,

introduced later. The model including all sequences is then

Y = MVN(Xβ,Σ), (7)

where Y and X are column vectors with dimension (N − m) x 1, and Σ is a

variance-covariance matrix with dimension (N −m) x (N −m)

Y X β S⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a12 − E[a1j ]

a13 − E[a1j ]

a14 − E[a1j ]
...

ai2 − E[aij ]

ai3 − E[aij ]

ai4 − E[aij ]
...

am2 − E[amj ]

am3 − E[amj ]

am4 − E[amj ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 − E[a1j ]

a12 − E[a1j ]

a13 − E[a1j ]
...

ai1 − E[aij ]

ai2 − E[aij ]

ai3 − E[aij ]
...

am1 − E[amj ]

am2 − E[amj ]

am3 − E[amj ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1− α) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11

s12

s13
...

si1

si2

si3
...

sm1

sm2

sm3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ni = 4, ∀i, i = 1, . . . ,m, for illustration purpose only.235

2.1.2. Computation

The LPC model parameters α, σT , and σM can be obtained from β and Σ.

Based on the approach of Pinheiro & Bates (2000), a single β and Σ can be

estimated by a model including all sequences.

For computational reasons, σ2 was factored out of Σi:240

Σi

σ2
= Λi. (8)

12



Λi is parametrized by λ:

Λi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 λ 0 · · · 0 0

λ 1 λ
. . .

... 0

0 λ 1
. . . 0

...
... 0

. . . 1 λ 0

0
...

. . . λ 1 λ

0 0 · · · 0 λ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Because it is a positive-definite matrix, it has an invertible square root Λ
1
2
i

so that Λi = (Λ
1
2
i )

TΛ
1
2
i . Then, Λ

−1
i = Λ

− 1
2

i (Λ
− 1

2
i )T , where Λ

− 1
2

i is the inverse of

Λ
1
2
i . The transformation to a linear model is then achieved by

y∗i = (Λ
− 1

2
i )T yi, s∗i = (Λ

− 1
2

i )T si, x∗i = (Λ
− 1

2
i )Txi, (9)

which provides the linear model

y∗i = x∗i β + s∗i , (10)

where s∗i ∼ NV ((Λ
− 1

2
i )T 0, σ2(Λ

− 1
2

i )TΛiΛ
− 1

2
i ) = NV (0, σ2Ii).245

For a fixed λ, the conditional MLEs are

β̂(λ) = ((X∗)TX∗)−1(X∗)TY ∗,

σ̂2(λ) =
(Y ∗ −X∗β̂)T (Y ∗ −X∗β̂)

(N −m)
,

(11)

where X = [X1, . . . , Xm]T , Y = [Y1, . . . , Ym]T , β = (1− α), and N =
∑m

i ni.

In the so called “profiled log-likelihood”, β can then be replaced by its con-

ditional MLE so that β is expressed as a function of λ, β(λ). Therefore, the

profiled log-likelihood is solely a function of λ:

l(λ|y)profiled = const− (N −m)log

√
(Y ∗ −X∗β̂)T (Y ∗ −X∗β̂)− 1

2

m∑
i=1

log|Λi|.

(12)
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By optimising Equation 12 and using λ̂ in Equation 11, the MLEs for β̂ and250

σ̂2 can be computed. Subsequently, by using λ̂, β̂, and σ̂2, the final LPC model

parameters are obtained by

α̂ = 1− β̂,

σ̂M =

√
−σ̂2λ̂,

σ̂T =
√

σ̂2 − 2σ̂2
M .

(13)

2.2. Mixed-Effects Model (MEM)

The MEM is an extension of the eLM that also incorporates random in-

tercepts (Pinheiro & Bates, 2000). It is able to capture multiple sequences255

of asynchronies within a single model and accounts for the between-sequence

variability of the expected asynchrony of each sequence.

2.2.1. Model

The MEM is denoted as

yi = xiβ + zibi + si,

bi ∼ NV (0, σ2
b ), si ∼MVN(0, σ2Λi), i = 1, . . . ,m,

(14)

where yi, xi, and si are defined as in Equation 6: yi is a (ni−1) x 1 column vector260

of asynchronies of sequence i, xi is a (ni− 1) x 1 column vector of asynchronies

of sequence i one iteration earlier than the asynchronies in vector yi, si is a

(ni − 1) x 1 column vector of the errors of sequence i, and Λi is a (ni − 1) x

(ni − 1) covariance matrix.

The bi is a m x 1 column vector of random effects for sequence i and zi is265

a (ni − 1) x m design matrix, indexing bi. The bi is normally distributed with

zero mean and (the scalar) standard deviation σb. It represents the variability

between the expected asynchrony values E[aij ] among the sequences. The bi

and si are independent within and between sequences.
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Y X β Z b S⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a12

a13

a14
...

ai2

ai3

ai4
...

am2

am3

am4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11

a12

a13
...

ai1

ai2

ai3
...

am1

am2

am3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1− α) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0 . . . 0

1 . . . 0 . . . 0

1 . . . 0 . . . 0
...

...
...

0 . . . 1 . . . 0

0 . . . 1 . . . 0

0 . . . 1 . . . 0
...

...
...

0 . . . 0 . . . 1

0 . . . 0 . . . 1

0 . . . 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b1

b1
...

bi

bi

bi
...

bm

bm

bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11

s12

s13
...

si1

si2

si3
...

sm1

sm2

sm3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where ni = 4, ∀i, i = 1, . . . ,m, for illustration purpose only.270

2.2.2. Computation

In order to obtain the parameters β, σb, and σ2, the following likelihood

function can be maximised:

L(β, δ, σ2 | y) = 1

(2πσ2)(N−m)/2
exp

(
−∑m

i=1 || ỹi − x̃iβ − z̃ib̂i ||2
2σ2

)
m∏
i=1

| δ |√
| z̃Ti z̃i |

,

(15)

where δ parametrises the variance-covariance matrix of the random effects bi

(which is here a scalar σb), σ is the residual standard error of si, ỹi, x̃i, and z̃i275

are the augmented data vectors

ỹi =

⎡
⎣yi
0

⎤
⎦ , x̃i =

⎡
⎣xi

0

⎤
⎦ , z̃i =

⎡
⎣zi
δ

⎤
⎦ , δ =

√
σ2

σ2
b

, (16)

and b̂i is estimated by:

b̂i = (z̃Ti z̃i)
−1z̃Ti (ỹi − x̃iβ), i = 1 . . . ,m. (17)
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Since the OLS for b̂i depends on β, and the OLS for β̂ depends on bi, they

must be estimated jointly (iteratively).

However, because the within-sequence errors are correlated, it was performed

a linear transformation of the variables, as previously (see Equation 9):280

y∗i = (Λ
− 1

2
i )T yi, s∗i = (Λ

− 1
2

i )T si, x∗i = (Λ
− 1

2
i )Txi, z∗i = (Λ

− 1
2

i )T zi, (18)

which provided the linear Mixed-Effects Model

y∗i = x∗i β + z∗i bi + s∗i ,

bi ∼ NV (0, σ2
b ), s∗i ∼MVN(0, σ2I), i = 1, . . . ,m.

(19)

Its profiled likelihood function can be expressed as

L(β, δ, σ2, λ | y)profiled = L(β, δ, σ2, λ | y∗)
m∏
i=1

|Λ−1/2
i |, (20)

where λ parametrises Λi, as in Equation 12. By optimising Equation 20, its

best fitting parameters can be obtained from which α, σT , and σM were com-

puted. For a detailed description of the proof and most efficient computation

of L(β, δ, σ2, λ | y)profiled, see Pinheiro & Bates (2000).

3. Results & Discussion285

In order to evaluate and compare the performance of different methods, we

simulated asynchrony sequences that could be the output of an experiment using

SMS tasks. This was done by running the LPC model in Equation 2. It received

as input a) an initial asynchrony A1, sampled from NV(0, 20), b) a constant

number of metronome events n, and c) a set of parameters (σT , σM , α). So,290

this model was iterated n times. Parameter settings were held close to those of

previous studies (Jacoby et al., 2015b). The output of a single simulation was

a sequence of asynchronies of length n. Similar to Jacoby et al. (2015b), one

parameter estimate was based on 15 of such sequences. For validation, we con-

sidered 50 estimates. Therefore, the LPC model was simulated 15 x 50 = 450295
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times and its mean estimate and the 95% confidence interval were computed

from the 50 estimates. The parameter estimation methods were evaluated by

considering its accuracy and efficiency with which they recovered the set of

parameters of the LPC model that had generated the data.

3.1. eLM and sequence length300

In order to compare the eLM with the bGLS, the asynchrony sequences were

simulated with different lengths (n = 5, n = 10, n = 30). Results revealed that

the eLM is less biased for different sequences lengths compared to the bGLS

method (see Figure 1). While the bias of the bGLS method increased with

decreasing sequence length and the size of the confidence intervals remained305

very similar, the eLM seems unbiased at any length but increased the confidence

intervals.

This was expectable, considering that the bGLS method averaged estimates

from single sequences. When estimating the parameters by approximating an

MLE from a short sequence, estimations can fail easily, which results in esti-310

mates that may consistently deviate from the theoretical mean. In addition,

mean estimates are very susceptible to outliers. Thus, when there are few asyn-

chronies, bGLS estimates can be biased.

In contrast, in the eLM method, a single parameter λ̂ is estimated by maxi-

mizing a profiled MLE (see Equation 12) involving all indexed sequences. After-315

wards, two single parameters β̂(λ) and σ̂(λ) can be estimated by the conditional

MLEs (see Equation 11) and a simple transformation reveals then the final pa-

rameter estimates of the LPC model α̂, σ̂M , and σ̂T (see Equation 13). This

method employs every single sequence for parameter estimation while other

sequences provide additional information about “what is going on” in the par-320

ticular sequence. This makes the eLM method more resistant to estimation

biases. However, short sequences should still lead to less efficient estimations.

This is here reflected by an increase of the confidence intervals.

Notwithstanding, the confidence intervals in the eLM are particularly large

at α around 1. Similar results were reported for the unbounded GLS method (see325
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Figure 1: Comparison of the LPC model parameter estimation methods as a function of true

α for different sequence lengths. The plots show the mean and the 95% confidence intervals

of 50 estimates for each α. The estimates of the bGLS method are displayed in red and

the estimates of the eLM method are displayed in magenta. Dots are the mean estimates.

When lying on the black line, the estimates coincide with the true values. The sequences

were obtained by simulating the LPC model with σM = 5, σT = 10 and α according to

the ordinate. Each estimate was obtained from m = 15 asynchronies sequences with varying

length (ni = 30, ni = 10, ni = 5, ∀i, i = 1, . . . , 15).

18



Jacoby, Keller, Repp, Ahissar & Tishby, 2015a). In future studies, additional

bounding conditions could be included and evaluated for the eLM method.

Concluding, the eLM method seems to exploit a trade-off between accuracy

(mean deviation from the “true” parameter) and efficiency (variability of the

estimations) in favour of the former. When uncertainty increases due to less330

information within the empirical observations, its efficiency decreased in order

to hold a high accuracy.

A shortcoming of the eLM method and the bGLS method is that they pre-

sume the same parameter settings among all sequences. Apparently, proposing

a general model, like the LPC, only has value if the process in question is stable335

in its parameter settings, as long as the environment is constant. However, when

the asynchronies were obtained from experiments, there should be variability

that is not related to the LPC model. For instances, in a repeated measurement

design, identical experimental conditions among trials are impossible to achieve.

When there are noise factors that are independent among all asynchronies, the340

variability is captured by the error term (ε) of the model. Yet, there may be

factors that have a unique contribution on each trial and are hard to control.

This leads to variability between trials that is neither accounted for by the LPC

model nor by the introduced parameter estimation methods.

Concretely, we have shown that the eLM is appropriate if the mean asyn-345

chrony is expected to be constant among sequences. Jacoby et al. (2015b)

normalised the asynchronies by the mean asynchrony obtained from so many

asynchrony records as possible. However, if each sequence is exposed to factors

that contribute uniquely to each sequence, such a normalisation is inappropri-

ate. Another possibility is to normalise each sequence by the mean asynchrony350

of the respective sequence. This can be done when using the eLM and the

bGLS method. Yet, for short sequences, such mean asynchrony might not be

very representative.

One possible solution to account for the variability would be to incorporate

another fixed effect in the eLM, with as many parameters as there are sample355

means. Considering that this value was sampled from a continuous distribution,
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the number of parameters would equal the number of sequences i = 1, . . . ,m.

But, we were not interested in making inferences about the specific effects of

these “noise factors” but must control them for an unbiased estimation of the

LPC model parameters. For this reason, a solution is to account for varying μai
360

among sequences i by incorporating random-effects (random intercepts) in the

eLM model, making it a single-level MEM. This requires the estimation of far

fewer parameters than when using fixed effects, and it seems theoretically more

plausible.

3.2. MEM and between-sequence variability365

In order to compare the MEM with the eLM and the bGLS method, we sim-

ulated asynchrony sequences with different magnitudes of the between-sequence

variability of the intercept (i.e., the expected asynchronies varied between se-

quences). The results revealed that the bGLS method and the eLM method

deteriorated with increasing between-sequence variability. The here presented370

eLM method normalised the sequences by the sample mean of each sequence

and the bGLS method computed the sample mean by all asynchronies from

all sequences. The biases increased with between-sequence variability and were

smaller for lower α. The patterns of these biases are quite complex and we do

yet not know how to interpret them.375

In contrast, the MEM method, which modelled the between-sequence vari-

ability by random intercepts, led to unbiased estimates for different magnitudes

of variability (see Figure 2). We further benchmarked the functions showing

that the most complex MEM method is slightly faster than the bGLS method

(MEM = 15ns, bGLS = 20ns). We, therefore, suggest that the MEM method380

is an appropriate alternative that can be used for single sequences when they

are sufficiently long and stationary, and for short and multiple sequences when

they are stationary.
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Figure 2: Comparison of the bGLS, eLM, and MEM when there is additional between-sequence

variability of E[aij ] that is not incorporated in the LPC model. These random intercepts were

sampled from NV (0, σ2
b ), σb = 2, 5, 10, as indicated at the top of the plots. The parameters

were estimated for different α from sequences of length ni = 30. The sequences were obtained

by simulating the LPC model with σT = 10 and σM = 5.
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4. General Discussion

The main goal of this work was to introduce unbiased methods of parameter385

estimation of the LPC model. Therefore, we simulated asynchrony sequences

from the LPC model, replicated the current “state of art” estimation method

(bGLS), and compared this with two here-developed methods in conditions that

often occur in experimental setups.

4.1. Contributions of the extended Linear Model (eLM)390

We demonstrated that the bGLS is prone to bias when the asynchrony se-

quences become shorter. We suggest that this owes to the inefficient technique

of averaging parameter estimates, particularly when there is little information

on each sequence. For this reason, we presented eLM, which integrates multi-

ple sequences into a single model. Our results revealed that eLM estimates the395

model parameters of longer and shorter sequences with less bias than the bGLS.

Besides the simultaneous consideration of multiple sequences, another ad-

vantage of such an approach is that it can deal with balanced and unbalanced

data. This implies that sequences of different lengths and/or missing values can

be included. In contrast to the bGLS method, the eLM weights stronger the400

sequences with greater lengths, what is appropriate because longer sequences

include more information and lead to less biased estimates. As far as we know,

the authors of the bGLS method did not address this issue. We assume that

shorter sequences or sequences with missing values were disregarded.

4.2. Contributions of the Mixed-Effects Model (MEM)405

The MEM is an extension of the eLM and also considers the between-

sequence variability of the expected asynchrony within each sequence. By re-

lating random effects to the asynchronies sharing the same sequence, the MEM

could flexibly account for this variability. It provided unbiased estimates where

the bGLS and the eLM methods largely deteriorated.410

For the simulation, we produced between-sequence variability by adding a

value, sampled from NV (0, σ2
b ), with different σ2

b , which was invariable within
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a sequence but variable between sequences. How could one justify the validity

of this manipulation?

When the different sequences result from repeated measurements on the415

same individual, such between-sequence variability might reside from an inter-

play of physiological factors—the properties of the individual sensory system—

and psychological factors—for instances attentional focus and distraction. In

order to achieve synchronisation, the asynchronies have to be perceived as such.

The perception of asynchrony depends on a complex interaction of a multi-420

tude of sensory cues from various modalities (e.g., tactile, auditory, & visual).

Different sensory systems vary in propagation, transduction, transmission, and

processing times, leading to different magnitudes of the physical (actual) asyn-

chronies when an environmental event is represented by multiple modalities (see

e.g., Noy, 2018).425

The attentional focus of the individual on a particular sensory cue deter-

mines the size of the asynchrony that is required to be perceived as synchronous.

Thus, attention might affect the information processing delays represented by

the parameter μM in the LPC model. Consequently, the individual might at-

tempt to achieve and stabilise different asynchronies, resulting in different mean430

asynchronies among sequences.

Yet, it is not clear why the attentional focus should vary between sequences

and not within a sequence. In a typical synchronisation experiment, event

sequences are presented visually on a computer screen or aurally through head-

phones and suddenly appear and disappear. Before a sequence is presented,435

the participant’s attention is purposefully caught by the presentation of, for in-

stance, a visual fixation cross or a beep sound. Individual sequences are usually

separated by short time periods. During stimulus presentation within a trial

(e.g., a sequence of 10 to 30 metronome clicks), an individual should be able to

stay focused and remains within a similar cognitive state. However, completing440

the task may require 15min to 120min; time enough for the individual’s mind to

wander and to focus different stimulus attributes. Although these issues should

be approached in further studies, we believe the presence of attentional shifts
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during such paradigms can produce between-sequence variability by affecting

information processing delays.445

When sequences are the performance of different individuals, then the

between-sequence variability could owe to factors specific to each individual.

This is, for example, the individual’s focus of attention. But also, the parame-

ter settings of the underlying LPC model (e.g., perceptional delays and motor

delays) should be different among individuals. Such individual differences pro-450

duce very large between-sequence variations.

While the former parameter estimation methods cannot be used when each

sequence is the performance of a different participant, the MEM approach can be

implemented. A possible application would be to assess the effects of particular

experimental conditions—for example, some stimulus properties—on general455

timing parameters. Then, one is not interested in making inferences about the

differences of the LPC parameters among individuals, but still, has to control

them in order to achieve unbiased estimates. This can be done by incorporating

random effects on the individual level, as illustrated by the present work.

Finally, another variability factor that could be controlled by the MEM is460

methodological. Variability between sequences could result from the stimulus-

presenting or the performance-capturing systems.

Concluding, we presented several examples that emphasise that it is highly

relevant to include random intercept parameters into methods that estimate

the parameters of the LPC model from experimental data. Here, we simulated465

sequences with between-sequence variability and assessed a model with a single

random intercept but such a model could also incorporate multiple and nested

random-effects.

4.3. Limitations

It must be mentioned that the eLM and the MEM approach estimated the470

parameters by maximising likelihood functions. Alternatively, one could have

used restricted maximum likelihood functions, which are generally more robust

since they consider the number of degrees of freedom (Pinheiro & Bates, 2000).
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In order to test this, we compared both functions by using the same observations

and we did not observe any significant differences. It is known that both can be475

maximised to estimate the same fixed effects and that the likelihood estimate

is unbiased for large overall sample sizes (Pinheiro & Bates, 2000). This is

usually the case in experimental setups. Nevertheless, future studies should

approach this question by estimating the parameters with both functions while

systematically manipulating the size of the sample.480

A limitation might be that the presented methods require stationary asyn-

chronies. This is difficult to assure for short synchronisation periods taking

into account that synchronisation might be a highly transient process (see e.g.,

van Ulzen, Lamoth, Daffertshofer, Semin & Beek, 2008). Nevertheless, sta-

tionary asynchronies are an important requirement of the LPC model and we485

suggest that non-stationarity should be prevented by cautiously designing the

experiments and preparing the data set for analysis, rather than being modelled

explicitly.

Another limitation of this work might be that between-sequence variabil-

ity values were chosen without being externally validated. For the LPC model490

parameter settings, we could use settings similar to previous studies (Jacoby

et al., 2015b; Schulze & Vorberg, 2002). For the between-sequence variability,

however, we have chosen values based on several tests and theoretical plausi-

bility. Future studies should address this question and actually quantify the

between-sequence variability that occurs in SMS tasks.495

Related to the previous limitations, the here developed methods were vali-

dated on simulated asynchrony sequences. The next step should be to validate

the methods on observations obtained from experiments.

Finally, our work was strictly concerned with the LPC model. The principal

assumption of the LPC model is that corrections are performed on the perceived500

deviations from the participants’ taps from the corresponding stimulus event

onset. Surely, this is a quite simplistic model of reality since it presumes that

even highly small asynchronies are registered by the individual. There are plenty

of studies showing that asynchronies falling into a temporal integration window
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are actually not perceived as such and, consequently, might not be corrected505

(see Vroomen & Keetels, 2010). It would be interesting to evaluate this model

regarding the inquiry of asynchrony thresholds for awareness, phase, and period

correction, etc. (see Repp, 2005).

Nevertheless, this work does not address the plausibility of the LPC model

but instead proposes a more flexible approach to parameter estimations, likely510

to increase the applicability of the model to more complex settings. Moreover,

motivated by parsimony as a fundamental principle for developing models, the

LPC still finds great use in basic and applied research (see Jacoby, Tishby, Repp,

Ahissar & Keller, 2015b).

4.4. Further Contributions515

One advantage of the approaches here developed is the existence of val-

idated software for fitting the eLM and the MEM, namely the “nlme” and

the “lmer” R-packages. Their use requires a different parametrization of the

variance-covariance matrix, but, besides being more robust, they are also quicker

than the bGLS method.520

Moreover, in order to examine the different parameter estimation methods,

we translated the Matlab code provided by Jacoby et al. (2015b) into R code

and adjusted it for the particular question. We also implemented computational

methods presented in Pinheiro & Bates (2000), in order to flexibly modify the

Mixed-Effects model structure for the purpose of our study. All programs (R525

codes) developed for this study are available on GitHub (2017).

4.5. Conclusions

In sum, we provided a general framework of Mixed-Effects Models to esti-

mate the parameters of the LPC model. We do not claim for the overall validity

of the LPC. A more profound exploration of the LPC applicability to a large530

scope of natural settings is outside the scope of this work. Nevertheless, we

demonstrated that Mixed-Effects Models are highly useful for achieving unbi-

ased and efficient parameter estimations of the LPC from synchronisation per-

formances in SMS tasks. It remains to explore the extension of these methods,
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to more complex and realistic models, incorporating period correction, phase535

transition, and non-stationary asynchronies.
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