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a b s t r a c t

Over the last three decades a large number of experimental studies on several quasi one-
dimensional (1D) metals and quasi 1D Mott–Hubbard insulators have produced evidence
for distinct spectral features identified with charge-only and spin-only fractionalized
particles. They can be also observed in ultra-cold atomic 1D optical lattices and quantum
wires. 1D exactly solvable models provide nontrivial tests of the approaches for these
systems relying on field theories. Different schemes such as the pseudofermion dynamical
theory (PDT) and the mobile quantum impurity model (MQIM) have revealed that the
1D correlated models high-energy physics is qualitatively different from that of a low-
energy Tomonaga–Luttinger liquid (TLL). This includes the momentum dependence of the
exponents that control the one- and two-particle dynamical correlation functions near
their spectra edges and in the vicinity of one-particle singular spectral features.

On the one hand, the low-energy charge-only and spin-only fractionalized particles
are usually identified with holons and spinons, respectively. On the other hand, ‘‘particle-
like’’ representations in terms of pseudoparticles, related PDT pseudofermions, and MQIM
particles are suitable for the description of both the low-energy TLL physics and high-
energy spectral and dynamical properties of 1D correlated systems.

The main goal of this review is to revisit the usefulness of pseudoparticle and PDT
pseudofermion representations for the study of both static and high-energy spectral and
dynamical properties of the 1D Lieb–Liniger Bose gas, spin-1/2 isotropic Heisenberg chain,
and 1D Hubbard model. Moreover, the relation between the PDT and the MQIM is clar-
ified. The fractionalized particles and related composite pseudoparticles/pseudofermions
emerging within such non-perturbative 1D correlated systems are qualitatively different
from the Fermi-liquid quasiparticles. In contrast to the holons and spinons, the relation to
the electron creation and annihilation operators of the operators associated with the 1D
Hubbard model three fractionalized particles is uniquely defined. The occupancy configu-
rations of such fractionalized particles generate all energy and momentum eigenstates of
that model. Both the static and dynamical properties of the three models under review
are shown to be controlled at all energy scales by pseudofermion phase shifts associated
with only zero-momentum forward scattering. The corresponding microscopic processes
are much simpler than those of the underlying particles non-perturbative interactions.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Within quantum physics the isolated electrons are split into smaller components, earning them the designation of
a fundamental particle. However this does not necessarily apply when several electrons are brought together. Also the
collective behavior of interacting bosonic particles may not be described in terms of that of isolated bosons.

On the one hand, most of the current understanding of many-particle quantum systems involves the concept of a
quasiparticle. In three dimensions, starting from free constituents obeying either fermionic or bosonic statistics, one builds
a many-particle ground state as either a Fermi sea or a Bose–Einstein condensate. Interactions then adiabatically deform
the ground state into a Fermi liquid with well-defined electron-like excitations, or a condensate state with Bogoliubov-like
modes, respectively. In both cases, these well-defined excitations are conveniently described as quasiparticles. Moreover,
they reveal themselves via sharp lines in dynamical correlation functions, indicative of free-particle-like coherently
propagating modes.

On the other hand, one-dimensional (1D) interacting systems are characterized by a breakdown of the basic Fermi
liquid quasiparticle picture. Indeed, no quasiparticles occur when the electrons range of motion is restricted to a single
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spatial dimension [1,2]. In a 1D chain correlated electrons rather split into basic fractionalized charge-only and spin-only
particles [2–4]. These fractionalized particles can move with different speeds and even in different directions in the 1D
many-electron system. Electrons in that system have this ability because they behave like waves. When excited, such waves
can split into multiple waves, each carrying different characteristics of the electron. This occurs because collective modes
take over. Indeed, applying perturbations does not create single Fermi-liquid quasiparticles. It rather originates an energy
continuum of excitations described by exotic fractionalized particles. The latter emerge within 1D many-particle systems.
However, they cannot exist independently outside such systems. Moreover, they are not adiabatically connected to free
particles. Hence they must be described using a different language.

In electronic systems and spin chains these characteristic fractionalized-particle continua of excitations have been
observed [5–8]. Realizations of 1D quantum liquids are numerous. They can take the form of, for example, quasi-1D
materials. Over the last three decades, many angle-resolved photoemission spectroscopy (ARPES) studies on several quasi-
1D metals and quasi-1D Mott–Hubbard insulators have indeed revealed separate charge and spin spectral features. This
includes the ARPES spectra of the compoundK0.3MoO3 and other quasi-1Dmaterials [9], quasi-1D organicmetals (Bechgaard
salts) (TMTSF)2PF6, (TMTSF)2ClO4 (where TMTSF is tetramethyltetraselenafulvalene), and (TMTTF)2PF6 (where TMTTF is
tetramethyltetratiafulvalene) [10], quasi-1Dmetal Li0.9Mo6O17 [11,12], quasi-1D organic conductor tetrathiafulvalene tetra-
cyanoquinodimethane (TTF–TCNQ) [13–16], quasi-1DMott–Hubbard insulators SrCuO2 and Sr2CuO3 [5,17–20], NaV2O5 [21],
Na0.96V2O5 [22], SrCuO2 and V6O13 [23], doped quasi-1D Mott–Hubbard insulator Sr2CuO3+δ [24], 1D metallic surface state
on an anisotropic InSb(001) surface covered with Bi [25], and metallic 1D line defects in transition dichalcogenides such as
MoSe2 [26].

Moreover, similar charge-like and spin-like spectral features were seen as well by electron energy-loss spectroscopic
studies on quasi-1D metals and other low-dimensional materials [27]. They were also seen in high-resolution resonant
inelastic X-ray scattering on the quasi-1D Mott–Hubbard insulator Sr2CuO3 [6,7]. The high-resolution resonant inelastic
X-ray scattering experiments on CaCu2O3 reported in Ref. [8] reveal that the orbital hopping in that compound can select
different degrees of dimensionality. A spin–orbital fractionalization along the leg direction x through the xz orbital channel
was observed as in a 1D system. The mode separation in 1D correlated bosonic and fermionic models and corresponding
fractionalized particles are also observed in 1D trapped ultracold atomic gases and ultra-cold atoms on 1D optical lattices
[28–38] and quantum wires [39].

The non-perturbative nature of 1D correlated systems prevents their study by conventional perturbative many-body
techniques. Nonetheless, some of these systems are exactly solvable by the Bethe ansatz (BA). This method was developed
by Bethe in 1931 [40]. He applied it to the spin-1/2 isotropic Heisenberg chain [41]. The BA turned out to be not only useful for
that model, but also a very powerful method for a wide range of integrable models. This applies both within and outside the
scope of condensedmatter physics. The BAprovides the exact energy eigenvalues and some thermodynamic quantities. Com-
binedwith bosonization [2–4,42–44] or the conformal-invariance associatedwith the spectra finite-size corrections [45,46],
the BA allows the computation of low-energy physics quantities. This has revealed that 1D correlatedmodels share common
low-energy properties associated with the universal class of the Tomonaga–Luttinger liquid (TLL) [44,47,48].

One of themain challenges in the study of the 1D correlated systems properties is the calculation of dynamical correlation
functions. Indeed, it has been difficult to apply the BA to the derivation of high-energy dynamical correlation functions. (In
this review ‘‘high energy’’ means excitation energy values beyond those of the low-energy TLL validity.) The high-energy
dynamical correlation functions of some integrablemodelswith spectral gap [49] and spin lattice systems [50] can be studied
by the form-factor approach. However, form factors of more complex integrable systems such as the 1D Hubbard model
remains an unsolved problem.

The pseudofermion dynamical theory (PDT) has allowed to access that model high-energy dynamical correlation
functions beyond the low-energy TLL limit [51]. The theory relies on a suitable pseudofermion representation of the 1D
Hubbardmodel BA solution. Shortly after the PDTwas introduced, novel approaches that rely on amobile quantum impurity
model (MQIM) method have been developed to tackle the high-energy physics of both non-integrable and integrable 1D
correlated quantum problems [52–57]. The exponents characterizing the dynamical correlation functions singularities have
been found by both such schemes to be functions of momenta. They differ significantly from the predictions of the linear TLL
theory [13,51–64].

There are several methods and representations for the study of some of the quantum problems reviewed in this paper.
The charge-only and spin-only fractionalized particles that emerge in 1D correlated electronic systems [1,2] are within them
usually identifiedwithholons and spinons, respectively [65–67]. The conventional holons and spinons have been constructed
inherently to be associated with the charge and spin elementary excitations of integrable electronic models, respectively.
Moreover, spinons are used to describe the elementary excitations of spin chains. Holons and spinons are defined in terms
of the deviation of the charge and spin BA distributions, respectively, from their ground-state value [40,68–79]. This general
definitionwas implemented for the spin excitations of the spin-1/2 XXX chain in Ref. [68]. For the charge and spin excitations
of the 1D Hubbard model it was used in Refs. [69,71,74]. A corresponding preliminary example of a spin-1/2 spinon is the
spin-1/2 color spinor introduced in Ref. [76] for the solvable 1D Gross–Neveu model [77]. Its spectrum is associated with
one ‘‘hole’’ emerging under a transition from a spin-singlet ground state to an excited energy eigenstate, in a sequence of BA
spin quantum numbers. The spin-1/2 spin waves introduced in Ref. [78] for the spin-1/2 XXX chain have a similar definition.

The ‘‘particle-like’’ representations in terms of the pseudoparticles and related pseudofermions discussed in this paper
have a uniquely defined yet non-perturbative relation to the models physical particles. (In this review ‘‘physical particles’’



4 J.M.P. Carmelo, P.D. Sacramento / Physics Reports 749 (2018) 1–90

refer to the bosons, spins 1/2, and electrons associated with the operators in the models Hamiltonian usual expressions.)
The term ‘‘pseudoparticle’’ appeared early in the literature of the Hubbard model [80,81]. More recently it has been used
for particles other than those reviewed here [82]. The latter are the pseudoparticles that emerge within 1D integrable
models [83,84]. This includes inmodelswithAbelian globalU(1) symmetry [61,85], spin-1/2 chainswith a single non-Abelian
global SU(2) symmetry [62,86–88], and more complex electronic models [89–105]. In spite of the non-perturbative one-
particle properties of integrable 1D correlated systems, the description of their two-particle static properties is within the
pseudoparticle representation very similar to that of a Fermi liquid. Indeed, it is controlled by Landau parameters associated
with pseudoparticle residual interactions f functions [89–93].

The PDT pseudofermions are generated from the pseudoparticles under a unitary transformation. It is such that the
pseudofermion energy spectrum lacks the pseudoparticle f functions term. As a result, within the thermodynamic limit
(TL) the pseudofermions spectrum has no energy interaction terms [64]. Under the transitions from a ground state to
one- or two-particle excited states, the pseudofermions scatter off those created or annihilated under the transition.
Under such scattering events, the pseudofermions merely acquire a phase shift. Such pseudofermion zero-momentum
forward-scattering processes control both the low-energy and high-energy dynamical correlation functions of integrable
1D correlated models [51,63,64]. This renders the pseudofermion representation particularly suitable to the study of high-
energy dynamical correlation functions.

The pseudoparticle and related pseudofermion representations are here discussed within the constructs of three
prominent 1D correlated systems: The 1D Bose gas with two-body repulsive interaction [106–113], the spin-1/2 isotropic
Heisenberg chain [40,72,78,114,115], and the repulsive 1D Hubbard model [69–71,73,116–130]. One of the motivations
of this review is the physical interest of the pseudoparticle and pseudofermion representations of such low-dimensional
correlated systems, which is not purely theoretical. The studies of this review refer to the TL within which the imaginary
part of the complex rapidities in the BA equations of models with non-Abelian global symmetries simplify [72,73]. The BA
complex rapidities string deviations [131,132] from such ideal strings do not affect in that limit the properties reviewed
here.

One of the first applications of the BA to models with Abelian U(1) symmetry was the study of a continuum problem
of bosons interacting by a two-body δ-function potential with interaction parameter c. Now it is known as 1D Lieb–Liniger
Bose gas [106–113]. The model properties depend on the ratio c/nb. Here nb is the boson density. As a field theory, this
is the repulsive quantum nonlinear Schrödinger model [111]. Although the original quantum problem is given in terms of
bosons, the occupancies of model BA distribution have a Pauli-like character, being only zero or one. The model can be
simulated in systems of ultra-cold bosonic atomic 1D optical lattices [28,30,31]. Its charge dynamical structure factor can be
probed in experimental Bragg spectra of such ultra-cold atoms [33,34]. The static properties of the 1D Lieb–Liniger Bose gas
revisited in this review are shown to be naturally described by fermionic-like pseudoparticles with no internal degrees of
freedom [61,85]. The high-energy one- and two-boson dynamical correlation functions spectral weights are derived within
the related pseudofermion representation. They are controlled by pseudofermion phase shifts.

The spin-1/2 isotropic Heisenberg chain [41] is a 1Dmodel of spins 1/2with a coupling constant J . It was the first quantum
systemever to be solved by the BA in 1931 [40]. This spin-chainmodel remains of great interest due to its underlying richness.
In crystals where there is some 1D anisotropy, the model spin chains actually appear and describe the dominant physical
behavior [133,134]. Several crystals are known to realize a 1D spin chain described by the spin-1/2 isotropic Heisenberg
model. Examples are KCuF3, Sr2CuO3 and CuPzN, which have been probed by neutron scattering [135–141]. High-resolution
resonant inelastic X-ray scattering revealed the model spectrum in TiOCl [134] and La2CuO4 [142]. The spin-1/2 XXX chain
can as well be prepared in a 1D ultra-cold atomic trap [32]. The static properties of the spin-1/2 XXX chain discussed in this
paper are discussed by use of a representation in terms of spin-neutral composite pseudoparticles [62]. Their constituents
are spin-singlet pairs of the model physical spins 1/2. The spin currents of the energy eigenstates are also revisited. It is
shown in terms of an exact spin current expression that the elementary currents associated with the model conventional
spinons describe the translational degrees of freedom of the model physical spins 1/2 in multiplet configurations. However,
such spinons are shown not contain the spin internal degrees of freedom of the latter spins. The model spin dynamical
correlation functions are also discussed. They are found to be controlled by the scattering phase shifts of spin-neutral
composite pseudofermions.

The general Hubbardmodelwas originally introduced as a toymodel to study d-electrons in transitionmetals [116,117]. It
features electrons that can hop between nearest-neighbor lattice sites due to the finite hopping integral t . Its sites represent
atoms, that are arranged in an ordered, crystalline pattern of well-defined geometry. When two electrons of opposite spin
projection are on the same site, they have to pay the energy U due to their mutual repulsion. This introduces additional
electronic correlations beyond those of a statistical nature due to the Pauli principle. The model properties depend on the
ratio U/t . In this paper the parameter u ≡ U/4t is often used.

One of the few rigorous results for the Hubbard model on any bipartite lattice refers to its global symmetry. It is
well known that on such lattices the model Hamiltonian has two global SU(2) symmetries [143–146]. Consistently, in
the early nineties of the past century it was found that for u ̸= 0 the Hubbard model on a bipartite lattice has at least
a SO(4) = [SU(2) ⊗ SU(2)]/Z2 symmetry. It contains the η-spin and spin SU(2) symmetries [144,145]. More recently it
was found in Ref. [147] that for u ̸= 0 and on any bipartite lattice its global symmetry is actually larger and given by
[SO(4)⊗U(1)]/Z2 = [SU(2)⊗SU(2)⊗U(1)]/Z2

2 . (This is equivalent to SO(3)⊗SO(3)⊗U(1).) The SU(2) andU(2) = SU(2)⊗U(1)
symmetries in the model [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 global symmetry refer to the spin and charge degrees of freedom,
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respectively. The charge U(2) = SU(2) ⊗ U(1) symmetry includes a SU(2) η-spin symmetry and a U(1) lattice hidden
symmetry beyond SO(4). The latter symmetry is called c-lattice U(1) symmetry in this review. It is indeed associated with
the lattice degrees of freedom.

The Hubbard chain is the simplest condensed-matter toy model for the description of the role of correlations in the
exotic properties of quasi-1D materials [13–16,148]. It is an important correlated electronic system whose BA solution
was first derived by the coordinate BA [69,70]. This has followed a similar solution for a related continuous model with
repulsive δ-function interaction [149]. Its BA solution was also reached by the inverse-scattering method [120–127]. The
non-perturbative relation of the pseudoparticles and related pseudofermions to the electrons involves in the case of the 1D
Hubbard model an electron–rotated-electron unitary transformation. It is performed by the exact BA solution. The well-
known U/t → ∞ Ne-electron wave functions factorization [4,119,150–163] gives rise under such a unitary transformation
to a finite-U/t factorization of theNe-rotated-electronwave functions. The corresponding electron–rotated-electron unitary
operator is uniquely defined in terms of the matrix elements between the model energy and momentum eigenstates.

The static properties of the 1D Hubbard model discussed in this review are shown to be described by a quantum
liquid of several pseudoparticle branches. This includes c pseudoparticles without internal degrees of freedom, spin-neutral
composite pseudoparticles, and a third type of η-spin-neutral composite pseudoparticles. The constituents of the latter
are η-spin-singlet pairs of η-spin-1/2 fractionalized particles [51,63,64,105]. The model one- and two-electron dynamical
correlation functions are in this paper reviewed in the suitable pseudofermion representation. Within it such functions
spectral weights are controlled by pseudofermion scattering phase shifts [13,51,58,59,63,64].

Concerning new developments, the fact that fractionalized particles are observed in quantum wires [39] renders them
candidates for technological applications. Quantumwires arewidely used to connect quantum ‘‘dots’’. Theymay in the future
form the basis of quantum computers. Thus the further understanding of the properties of these fractionalized particles may
be important for such quantum technologies. It could as well help to develop more complete theories of superconductivity
and conduction in low-dimensional condensed-matter systems.

Another new development is the study of the effects of electron finite-range interactions. In the case of 1D, the
most physically interesting problems with such interactions are described by non-integrable models. This would be an
important new development, since such effects occur in actual low-dimensional systems. For instance, the exponent that
controls the suppression of the density of states of most quasi-1D metals [14,15] and metallic 1D line defects in transition
dichalcogenides [26] is larger than 1/8. This is a unmistakable signature of electron finite-range interactions [3].

TheMQIMwas developed to tackle the high-energy physics of both non-integrable and integrable 1D correlated quantum
problems [52,53]. In this review the relation between the PDT pseudofermions and the MQIM particles is clarified. The
extension of the MQIM to non-integrable 1D correlated electronic systems with long-range interactions is a complex
problem. The universality in the vicinity of high-energy one-electron spectral functions singular lines foundwithin theMQIM
in Ref. [52] has been preliminarily used to construct a finite-range renormalized model generated from the 1D Hubbard
model by a transformation, upon gently turning on suitable potentials [26].

In general, units of both Planck constant h̄ and lattice constant a are used in this paper. In the figures u andU stand forU/4t
and U/t , respectively. If not stated otherwise, the word state refers in this review to an energy and momentum eigenstate.
Concerning the general layout of what will be discussed in the following sections, the paper is organized as follows.

In Section 2 the use of a pseudoparticle representation for the 1D Lieb–Liniger Bose gas is addressed. This includes the
study of the model static and low-temperature quantities within that representation. A related pseudofermion represen-
tation is used to study the high-energy behavior of the one-boson spectral function and charge dynamical structure factor
near their spectra edges.

The representation of the spin-1/2 isotropic Heisenberg chain in terms of n-pseudoparticles is the topic addressed in
Section 3. Here n = 1, . . . ,∞ refers to the number of singlet pairs of the model physical spins 1/2 that are bound within
a composite n-pseudoparticle. The use of such a representation simplifies the study and derivation of the model static and
low-temperature quantities. Moreover, a related pseudofermion representation is used in that section to compute the spin
longitudinal and transverse dynamical structure factors in the vicinity of their spectra lower thresholds. The relation of
the dynamical structure factors peaks to the inelastic neutron scattering experiments on actual spin-chain compounds is
discussed. The spinon representation of the model is also addressed. A related extended BA n-bands hole representation
valid for the model in its full Hilbert space is discussed. Combining the n-pseudoparticle and n-bands hole representations
provides valuable physical information on the processes that control the model spin currents. The relation of both the
n-pseudoparticles and n-band holes to the model physical spins 1/2 is also clarified.

In Section 4 the 1DHubbardmodel is introduced. Out of the infinite choices of rotated electrons that follow from its global
[SU(2)⊗SU(2)⊗U(1)]/Z2

2 symmetry, those that emerge from the specific electron–rotated-electron unitary transformation
performed by the BA solution are considered. The latter rotated electrons degrees of freedom separation is shown to lead to
three types of fractionalized particles: The c pseudoparticles without internal degrees of freedom, the rotated spins 1/2, and
the rotated η-spins 1/2.

As in the case of the spin-1/2 XXX chain, there emerge within the many-particle system composite sn pseudoparticles
that have n = 1, . . . ,∞ neutral pairs of rotated spins 1/2 bound within them. This issue is revisited in Section 5. Additional
composite ηn pseudoparticles that have n = 1, . . . ,∞ neutral pairs of rotated η-spins 1/2 bound within them emerge
within the system as well. The relation of the different pseudoparticle types and corresponding n-band holes to the rotated
electrons and electrons is discussed and clarified.
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In Section 6 the 1D Hubbard model c and αn pseudoparticle quantum liquid is the issue under review. Several physical
quantities are derived within the framework of such a quantum liquid by methods that resemble those used in Fermi-liquid
theory. The internal configurations of the spin-singlet pairs and η-spin-singlet pairs are found to have a binding and anti-
binding character, respectively.

The dynamical correlation functionswithin the pseudofermion representation is the general issue addressed in Section 7.
The PDT version suitable to the 1DHubbardmodel is shortly reviewed. Its simplified version applicable to the 1D Lieb–Liniger
Bose gas and spin-1/2 XXX chain is also discussed. The effects of varying the spin density on the 1D Hubbard model spectral
properties are shortly revisited. Finally, the simpler case of the 1D Bose gas dynamical correlation functions is used to clarify
the relation between the PDT and the MQIM approaches.

2. The 1D Lieb–Liniger Bose gas

As a first example of application of the pseudoparticle representation of the BA, we consider the 1D Bose gas with two-
body repulsive contact interaction. It was introduced in 1963 by Lieb and Liniger [106,107]. The model particles satisfies
Bose–Einstein statistics. It is the simplest example of BA solution. Its Hamiltonian describes particles interacting with each
other via a two-body potential. The energy and momentum eigenfunctions and eigenvalues can be calculated exactly by
the BA. This integrable model helped to shape the understanding of quantum integrability [108–112]. It represents the non-
relativistic limit of several integrable field theories [164–166]. The results of Yang and Yang reported in Ref. [110] were a
significant step toward a deeper understanding of the physics of the Lieb–Liniger gas. Indeed, they presented for the first
time a grand canonical description of the model in equilibrium.

The model seemed to be only of academic interest until with the sophisticated experimental techniques developed in
late XX and XXI st century, it became possible to produce this kind of gas using real bosonic ultra-cold atoms as particles.
Hence in addition to being a paradigmatic example of a system of interacting bosons on the continuum, it became as well
experimentally relevant for the physics of elongated clouds of cold atoms with contact interactions [34,167–170].

As the temperature is lowered, a uniform gas of bosons in three dimensions will undergo a transition to a Bose–Einstein
condensate (BEC). In 1D, low-energy fluctuations prevent long-range order. For trapped gases, the situation changes. Three
regimes become possible in 1D: true condensate, quasi-condensate, and a strongly interacting regime, with BEC limited to
extremely small interaction between particles [31].

Trapped 1D gases are now accessible experimentally in all regimes [28,30]. The most challenging to obtain is the
strongly interacting case. It can survive without fast decay due to a reduced three-body recombination rate, consequence
of fermionization. A natural starting point for the theoretical description of 1D atomic gases in this last regime is indeed
provided by bosons with delta-function interaction. In that case the fermionization refers to the Pauli-like zero and one
allowed occupancies of the BA quantum numbers. As mentioned above, the charge dynamical structure factor of that 1D
Lieb–Liniger Bose gas can be probed in experimental Bragg spectra of ultra-cold atoms on optical lattices [28,33,34].

2.1. The pseudoparticle representation of 1D Lieb–Liniger Bose gas BA solution

The Hamiltonian of the 1D Bose gas with two-body repulsive interaction is in units of h̄ = 1 and bare mass m = 1/2
given by,

Ĥ = −

N∑
j=1

∂2

∂x2j
+ 2c

∑
j′>j

δ(xj − xj′ ) − µNb . (1)

Here and throughout this review, δ(x) denotes the usual Dirac delta-function distribution, xj is the position of the jth particle,
c > 0 gives the strength of the repulsive interaction, and µ is the chemical potential. This Hamiltonian describes a set of
Nb particles with bosonic statistics. All properties of the 1D Lieb–Liniger Bose gas depend on the ratio c/nb. Here nb is the
particle density nb = Nb/L. The limit of infinite repulsion, c → ∞, is often called the Tonks–Girardeau limit [171,172].

The Bethe ansatz method is named after the work by Hans Bethe. Bethe found the energy eigenfunctions and spectrum
of the 1D spin-1/2 isotropic Heisenberg model [40]. The 1D Lieb–Liniger Bose gas was the next model solved by coordinate
BA more than 30 years later. Since it is the simplest example of BA, the BA is introduced here for that model. We start by
considering the case of only two bosons, Nb = 2. The wave function is assumed to be a symmetrized product of plane waves
of both bosons,

ψ(x1, x2) = ψ1(x1, x2) for x1 > x2
= ψ2(x1, x2) for x2 > x1 .

The functions ψ1(x1, x2) and ψ2(x1, x2) are expressed as what is called BA wave functions,

ψ1(x1, x2) = A1 2(I) ei(k1x1+k2x2) + A2 1(I) ei(k2x1+k1x2) for x1 > x2
ψ2(x1, x2) = A1 2(II) ei(k2x1+k1x2) + A2 1(II) ei(k1x1+k2x2) for x2 > x1 .

By using Bose statistics, ψ2(x2, x1) = ψ1(x1, x2), one finds that the amplitudes in these equations obey the relations,

A1 2(I) = A1 2(II) ≡ A1 2 and A2 1(I) = A2 1(II) ≡ A2 1 .
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A key feature associatedwith the BAwave function for this model is that it is continuous at x1 = x2 whereas its derivative
is discontinuous. The second derivative discontinuity reads,(

−
∂2

∂x21
−
∂2

∂x22

)
ψ |x2<x1 −

(
−
∂2

∂x21
−
∂2

∂x22

)
ψ |x1<x2 = 2c ψ |x1=x2 .

It then follows from the corresponding continuity and discontinuity conditions that the amplitudes A1 2 and A2 1 satisfy
the following relation,

A1 2

A2 1
=

k1 − k2 + i c
k1 − k2 − i c

≡ S1 2 .

S1 2 is here the scattering amplitude. It corresponds to an interchange of the regions x1 < x2 and x1 > x2 that actually refers
to an interchange of the particles.

The system is considered to be on a ring with length L. The wave function must then satisfy the boundary condition,

ψ(x1 + L, x2) = ψ(x1, x2) for x1 < x2 .

Its use leads to,

eikjL =

∏
l̸=j

Sl j =

∏
l̸=j

kj − kl + i c
kj − kl − i c

for j = 1, . . . ,Nb . (2)

This is the BA equation that herewas derived forNb = 2. However, it turns out that it is valid for anyNb. The corresponding
Nb-boson BA wave function is then found to be given by,

ψ(x1, . . . , xNb ) =

Nb!∑
ιj∈SNb

Aι e
i
∑Nb

j=1 kιj xj .

Here SNb is the permutation group of Nb elements, ι is one of the elements of SNb , and the amplitude reads,

Aι = (−1)ι
Nb∏
j>l

(
kιj − kιl − i c sgn{xj − xl}

)
.

(Further details on the Nb-boson BA solution can be found in Ref. [112].)
By taking the logarithm of Eq. (2), one arrives to the following form for the BA equations of the 1D Lieb–Liniger Bose

gas [85,106,107],

qj = kj +
2
L

N∑
l=1

arctan
(
kj − kl

c

)
where qj =

2π
L

Ij and j = 1, . . .,∞ . (3)

The l = 1, . . . ,Nb summation in this equation runs over the subset of occupied ql quantum numbers out of the full
j = 1, . . . ,∞ set {qj} and corresponding subset of rapidities kl. The different occupancy configurations of the related
j = 1, . . . ,∞ quantum numbers Ij in this equation (defined modulo L) generate all the model energy and momentum
eigenstates. Such numbers are successive integers or half-odd integers according to the boundary conditions,

Ij = 0,±1,±2, . . . ,±∞ for Nb odd ,

= ±
1
2
,±

3
2
, . . . ,±∞ for Nb even . (4)

As confirmed in the following, the corresponding quantities qj = (2π/L) Ij in Eq. (3) play the role of discrete momentum
values. The quantum numbers, Eq. (4), are successive integers or half-odd integers. The discrete momentum values qj =

(2π/L) Ij have though the usual spacing for any energy and momentum eigenstate,

qj+1 − qj =
2π
L

where j = 1, . . . ,∞ . (5)

The set of j = 1, . . . ,∞ quantities kj on the right-hand side of Eq. (3) are the BA real momentum rapidities mentioned
above. The term rapidity was first used by L. Hulthén in 1938 [173] to parametrize the roots of the spin-1/2 isotropic
Heisenberg chain. For it and other models whose BA solution is more complex than that of the present 1D Bose gas, rapidity
is actually an analogy with relativistic kinematics, in the relative motion problem. In that case a velocity may become non-
additive due to a transformation, as the Lorentz transformation. One then introduces related suitable alternative additive
parameters, called rapidities.

The actual quantum numbers whose occupancy configurations generate the model energy eigenstates are not the
momentum rapidities. They are rather the set of numbers {qj} = {(2π/L) Ij}. The corresponding set j = 1, . . . ,∞ of numbers
{Ij} is given in Eq. (4). Each energy eigenstate is defined by the subset l = 1, . . . ,Nb of numbers {ql} = {(2π/L) Il} that are
occupied.
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The BA equations, Eq. (3), define for each specific subset l = 1, . . . ,Nb of occupied quantum numbers {ql} = {(2π/L) Il}
the corresponding related set j = 1, . . . ,∞ of real momentum rapidities kj for the energy eigenstate under consideration.
The physicalmeaning of these equations is thus directly related to that of suchmomentum rapidities, kj = k(qj). For instance,
the energy eigenvalues depend on the occupancy configurations of the subset l = 1, . . . ,Nb of quantum numbers {ql} and
thus {Il} through them.

The momentum rapidities, kj = k(qj), and thus the BA equations, Eq. (3), that define them, contain important physical
information beyond the mere dependence of the energy eigenvalues on the subset l = 1, . . . ,Nb of occupied numbers
{ql}. For instance and as further discussed below in Section 2.2, one finds from straightforward manipulations of these
equations that the momentum rapidities kj = k(qj) of energy eigenstates whose subset l = 1, . . . ,Nb of occupied numbers
{ql} = {(2π/L) Il} differs from that of a ground state in only the occupancies of Nex ≪ Nb such numbers have a simple form.
For such states, Nex/Nb → 0 for Nb → ∞. Indeed, their momentum rapidities are within the TL expressed in terms of the
corresponding ground-statemomentum rapidity k0(qj) as k(qj) = k0(qj+2πΦ(qj)/L). Here 2πΦ(qj) =

∑Nex
l=1 (αl) 2πΦ(qj, ql)

is a dressed phase shift. The quantity αl reads αl = −1 and αl = +1 when the occupancy of the number ql changes relative
to the ground state from occupied to unoccupied and vice versa, respectively. Furthermore, the important two-parameter
dressed phase shifts 2πΦ(qj, ql) are the solution of coupled equations that are directly extracted from the BA equations,
Eq. (3).

Hereweuse the functional representation of Ref. [85].Within it, the energy andmomentumeigenvalues are of the general
form,

E =

Nb∑
l=1

k2l − µNb =

∞∑
j=1

N(qj)k2(qj) − µNb and P =

Nb∑
l=1

kl =

∞∑
j=1

N(qj)k(qj) =

∞∑
j=1

N(qj)qj , (6)

respectively. The distribution function N(qj) appearing here is such that N(qj) = 1 and N(qj) = 0 for occupied and
unoccupied qj values, respectively. We associate one pseudoparticle with each of the Nb occupied momentum values qj of
such a distribution. That discrete momentum variable, Eq. (3), has the range qj ∈ [−∞,∞]. The equality between the two
last terms of the momentum expression in Eq. (6) is confirmed by suitable manipulations of the BA equation, Eq. (3).

Each energy eigenstate has specific values for the distribution function N(qj). The j = 1, . . . ,∞ rapidity momentum
values kj on the right-hand side of Eq. (3) are for each state functions of the j = 1, . . . ,∞ momentum values qj, Eq. (3),
kj = k(qj). The pseudoparticles of the 1D Lieb–Liniger Bose gas have no internal structure. Within an alternative ‘‘holon’’
representation, the holons would be associated with the unoccupied momentum values qj. However, for the present model
there is no advantage in considering such a representation.

For a ground state with Nb bosons, the pseudoparticle momentum distribution function is of the form [85],

N0(qj) = θ (qF − |qj|) where qF = π

(
nb −

1
L

)
≈ π nb and qιF = ι

2π
L

Nb,ι for ι = ± . (7)

The distribution θ (x) reads in this review θ (x) = 1 for x > 0 and θ (x) = 0 for x ≤ 0. Moreover, qF is in Eq. (7) the
pseudoparticle Fermimomentum.Within the TL, one canuse thenumberNb,ι of ι = −1 left and ι = +1 right pseudoparticles,
with the ground-state left and right Fermi momentum value qιF as given in Eq. (7). (In that limit, the Nb-odd occupancy of
the qj = 0 momentum refers to a 1/L correction to the numbers of left and right pseudoparticles that can be ignored.)

The excited states momentum distribution functions can be written as,

N(qj) = N0(qj) + δN(qj) . (8)

Here N0(qj) is the ground state momentum distribution function, Eq. (7), and δN(qj) is the corresponding momentum
distribution function deviation. Under transitions from the Nb-boson ground state to Nb + δNb-boson excited states for
which δNb is an even number, the deviations, Eq. (8), can have the values 0,+1, and−1. Under transitions to Nb +δNb-boson
excited states for which δNb is an odd number, one must account for the overall ±π/L shifts in the set of j = 1, . . . ,∞
discrete momentum values qj, Eq. (3). This effect is due to the corresponding quantum numbers Ij being successive half-odd
integers for Nb even and integers for Nb odd, as reported in Eq. (4). We denote the corresponding overall shifts by (2π/L)Φ0

where the parameterΦ0 reads,

Φ0
= 0 for δNb even and Φ0

= ±
1
2

for δNb odd . (9)

For δNb odd one must then add the term ±1/2 to the above δN(qj) values 0, +1, or −1.
In spite of the bosonic nature of the present quantum problem, the BA quantum numbers, Eq. (4), and corresponding

discrete momentum values, Eq. (3), have Pauli-like occupancies zero and one, respectively. Due to such a fermionization,
the pseudoparticles that carry these momentum values are not simple ‘‘dressed bosons’’. Indeed, addition or removal of one
boson of vanishing energy to and from the ground state involves two pseudoparticle excitations that cannot be decomposed:
(a) addition or removal, respectively, of one pseudoparticle of momentum ±qF ≈ ±πnb at the ground-state Fermi points
and (b) a collective excitation of all remaining pseudoparticles, each contributing with a small fraction ∓π/L or ±π/L to
the momentum of the added or removed boson, respectively. This latter excitation results from the pseudoparticle discrete
momentum values, Eq. (3), shake up. This effect is associated with the transition between the two set of quantum number
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values in Eq. (4) upon changing Nb by one. Although in the present TL each fraction ∓π/L or ±π/L is vanishing small, if
we multiply by the number of ≈ Nb pseudoparticles of the Fermi sea this gives ∓qF or ±qF , respectively. Such a collective
excitation occurs upon any transition between two arbitrary states differing in the number of bosons by an odd number.

It is useful to classify the general deviations δN(qj) into deviations δNF (qj) and δNNF (qj) for which the quantity qF − |qj|
vanishes and remains finite within the TL, respectively. A particle subspace (PS) is spanned by a ground state and the set of
all states generated from it by a finite number of pseudoparticle processes such that

∑
∞

j=1 |δNNF (qj)|/L → 0 as L → ∞. The
transitions from the ground state to its PS excited states include the shake-up effects. Those are associated with the overall
momentum shifts (2π/L)Φ0 of all the system pseudoparticles.

In the following we consider the pseudoparticle quantum liquid described by the present model Hamiltonian in the PS
of a ground state with arbitrary value of the boson density nb. The excitation energy δE = En − E0 of the corresponding PS
states is up to O(1/L) given by [85],

δE =

∞∑
j=1

ε(qj)δN(qj) +
1
L

∞∑
j=1

∞∑
j′=1

1
2
f (qj, qj′ ) δN(qj)δN(qj′ ) . (10)

The only restriction to the applicability of the pseudoparticle energy functional, Eq. (10), is that associated with the PS
definition, i.e. limL→∞

∑L
j=1|δN

NF (qj)|/L → 0.
The pseudoparticle dispersion ε(qj) in the term of first order in the deviations is plotted in Fig. 1 as a function of the

momentum qj for several densities nb and interaction c values. It is of the form,

ε(qj) = ε0(qj) − µ where ε0(qj) = (k0(qj))2 + 2
∫ Q

−Q
dk k Φ̄(k, k0(qj)) and Q = ±k0(±qF ) . (11)

Here ±Q are the Fermi rapidity momenta, the ground-state momentum rapidity function k0(qj) is the solution of the BA
equation, Eq. (3), for the ground-state distribution, Eq. (7), and Φ(qj, qj′ ) is a dressed phase shift in units of 2π . Its physical
meaning is clarified below in Section 2.2. It can be written as,

Φ(qj, qj′ ) = Φ̄(k0(qj), k0(qj′ )) . (12)

The related momentum-rapidity phase shift Φ̄(k, k′) in units of 2π appearing here obeys the integral equation,

Φ̄(k, k′) = −
1
π

arctan
(
k − k′

c

)
+

1
πc

∫ Q

−Q
dk′′

Φ̄(k′′, k′)

1 +
( k−k′′

c

)2 . (13)

The chemical potential µ on the right-hand side of Eq. (11) and the energy bandwidth of the ground-state occupied
pseudoparticle sea can be written as,

µ = ε0(qF ) = Q 2
+ 2

∫ Q

−Q
dk k Φ̄(k,Q ) and

WF = ε0(qF ) − ε0(0) = Q 2
+ 2

∫ Q

−Q
dk k (Φ̄(k,Q ) − Φ̄(k, 0)) , (14)

respectively. Hence ε(±qF ) = 0.
The f functions in the term of second order in the momentum distribution function deviations on the right-hand side of

Eq. (10) are given by,

f (qj, qj′ ) = v(qj) 2π Φ(qj, qj′ ) + v(qj′ ) 2π Φ(qj′ , qj) +
v

2π

∑
ι=±

2πΦ(ιqF , qj) 2πΦ(ιqF , qj′ ) , (15)

where f (q, q′) = f (−q,−q′). The pseudoparticle group velocities in this expression read v(qj) = v(q)|q=qj where,

v(q) =
dε(q)
dq

and v = v(qF ) , (16)

and v = v(qF ) is the (pseudoparticle) Fermi velocity.
As the form of the expressions in Eqs. (10)–(16) indicates, for the model in a PS the present representation refers to a

quantum liquidwhose pseudoparticles have residual zero-momentum forward-scattering interactions. Those are associated
with the energy terms of second order in the deviations in the general energy spectrum, Eq. (10). The difference relative to the
zero-momentum forward-scattering interactions of Fermi-liquid quasiparticles is that the latter is valid only in the limit of
vanishing excitation energy. Indeed, due to themodel integrability, the pseudoparticles zero-momentum forward-scattering
interactions rather refer to all energy scales. Hence the pseudoparticle lifetime is infinite. Furthermore, the pseudoparticle
occupancy configurations generate all energy and momentum eigenstates from the boson vacuum. On the contrary, in a
Fermi liquid the states generated by quasiparticle occupancy configurations are energy eigenstates only in the limit of
vanishing excitation energy.
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Fig. 1. The pseudoparticle energy dispersion ε(q), Eq. (11), plotted as a function of the continuous momentum q associated in the TL to qj such that
qj+1 − qj = 2π/L for several densities nb and interaction c values. (In the figures nb is denoted by n.)

Within two-boson excitations, the functions f (qj, qj′ ) play a role similar to that of the f functions in Fermi-liquid theory.
The following ‘‘renormalized’’ Fermi velocities determine the low-energy expressions of several physical quantities [85],

vi = v +
1
2π

∑
ι=±

(ι)i f (qF , ιqF ) = v (ξ i)2 where i = 0, 1 . (17)

The f functions, Eq. (15), in Eq. (17) involve the dressed phase shifts 2πΦ(qj, qj′ ), Eq. (12). Their connection to the
BA equation, Eq. (13), occurs through the momentum rapidity function kj = k(qj) of PS excited states with general
distributions N(qj) = N0(qj) + δN(qj), Eq. (8). Their use in the BA equations leads to solutions of the form k(qj) =

k0(qj + [1/L]
∑

j′δN(qj′ ) 2πΦ(qj, qj′ )). The quantity Φ(qj, qj′ ) appearing here is related to the rapidity phase shift Φ̄(k, k′),
Eq. (12). The latter obeys the integral equation, Eq. (3). It emerges directly from suitable manipulations of the BA equation.

The i = 0 and i = 1 quantities vi/v = 1+(1/2πv)
∑

ι=±
(ι)i f (qF , ιqF ) play the role of symmetric charge and antisymmetric

current Landau parameters, respectively. The related parameters ξ 0 and ξ 1 in Eq. (17) are the following simple symmetric
and antisymmetric combinations, respectively, of dressed phase shifts in units of 2π at the Fermi points,

ξ i = 1 +Φ(qF , qF ) + (−1)iΦ(qF ,−qF ) where i = 0, 1 . (18)

(Here in Φ(qF , qF ) and in other phase shifts of this review whose two momenta are the same, (qF , qF ) refers to the TL
in which (qF , qF ± 2π/L) is for simplicity written as (qF , qF ).) Manipulations of Eqs. (12), (13), and (18) reveal that such
parameters are related as ξ 1 = 1/ξ 0 and that ξ 1 = ξ 1(Q ). Here ξ 1(k) is the solution of the integral equation ξ 1(k) =

1 + (c/π )
∫ Q

−Q dk′ξ 1(k′)/[c2 + (k − k′)2] where ±Q = k0(±qF ) and qF = πnb. Its solution is mathematically simplest in the
nb/c ≪ 1 and nb/c ≫ 1 limits. This leads to the following limiting expressions, which, as all the model quantities, depend
only on the ratio nb/c ,

ξ 1 = 1/ξ 0 ≈ 1 +
2nb

c
for nb/c ≪ 1 and ξ 1 = 1/ξ 0 ≈

√
π

√
nb

c
= π1/2

(nb

c

)1/4
for nb/c ≫ 1 . (19)

The related ‘‘renormalized’’ velocities v0 and v1, Eq. (17), and the Fermi velocity v = v(qF ), Eq. (16), are given by the
following expressions and obey the following relations,

v0 =
v2

2πnb
and v1 = 2πnb where v = 2πnb(ξ 0)2 =

2πnb

(ξ 1)2
. (20)

The velocities v, v0, and v1 are plotted in Fig. 2 as a function of the density nb for c = 1.
The usual TLL parameter K0 can be written as K0 = (ξ 1)2 = (1/ξ 0)2. This is consistent with at low energy the

pseudoparticles referring to a representation of the universal TLL. Its results can be reached by other approaches [2,57],
as for instance conformal field theory [174–176]. When, as in Eq. (17), the two momenta of the f functions, Eq. (15), are at
the Fermi points, they read f (qF ,±qF ) = π [v0 − v ± (v1 − v)]. This signals the emergence of the low-energy TLL physics.

The system compressibility is controlled by excited states. Their momentum distribution function deviations are given
by [85],

δN(q) = δ(qF − |q|) δqF . (21)
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Fig. 2. The group velocity and the two ‘‘renormalized’’ Fermi velocities, Eqs. (17) and (20), (left panel) and the inverse compressibility χ−1 , Eq. (22), (right
panel) as a function of the density nb for c = 1 and several interaction c values, respectively. (In the figures nb is denoted by n.)
Source: The plots of v, v0 and v1 (left) were produced using data from Fig. 3 of Ref. [85].

From their use in Eqs. (10) and (14), one readily finds that ∂µ(nb)/∂nb = −v0 π where v0 is defined in Eq. (17). The
compressibility is then easily found to read,

χ = −
1
n2
b

1
∂µ(nb)/∂nb

=
1
π n2

b

1
v0
. (22)

The inverse compressibility χ−1 is plotted in Fig. 2 as a function of the density nb for several interaction c values.
An expression for the low-temperature entropy is derived by means of simple combinatorial arguments that rely on the

allowed occupancies of the discrete momentum values qj, Eq. (3), being only zero and one. The result is,

S = −2
∞∑
j=1

(
N(qj) ln[N(qj)] + Nh(qj) ln[Nh(qj)]

)
. (23)

Here Nh(qj) ≡ 1 − N(qj) and N(qj) is a Fermi–Dirac distribution. Its temperature-dependent BA energy dispersion ε(qj) is
obtained in a self-consistent way, as in a Fermi liquid. In the present low-temperature limit we can use in it the T = 0
energy dispersion, Eq. (11). Although the original particles are bosons, in connection to and due to the BA quantum numbers
Ij allowed occupancies, Eq. (4), the pseudoparticles obey a Pauli-like occupancy of their momentum values qj = (2π/L) Ij.
Hence their thermal momentum distribution function deviation δN(qj) is given by,

δN(qj) =
1

1 + eε(qj)/kBT
− N0(qj) . (24)

From the use in the energy functional, Eq. (10), of Eqs. (23) and (24), provided one accounts for that ε(±qF ) = 0, it is
straightforward to obtain the well known TLL low-temperature specific-heat leading order term [174–176],

cV =
L kB π
3 v

(kBT ) . (25)

The charge conductivity real part has the general form σ (ω) = 2π D δ(ω)+σreg (ω). The charge stiffness or DrudeweightD
characterizes here the response to a static field. σreg (ω) describes the absorption of light of frequencyω. Both such quantities
can be expressed in terms of the charge current operator [177]. Since the system has translational invariance, for this model
that operator commutes with the Hamiltonian. As a result, the real conductivity spectrum has no incoherent part. From the
conductivity sum rule one then finds,

Re σ (ω) = 2π D δ(ω) where 2π D = v1 = 2πnb . (26)

2.2. Pseudofermions and dynamical correlation functions

It useful for the study of the dynamical correlation functions of the 1D Lieb–Liniger Bose gas and other integrable
models to provide some basic information on dynamical correlation functions of general many-body quantum systems.
Time correlation functions of dynamical variables play an important role in the description of such systems. It is well known
that transport coefficients and the cross sections for scattering of physical particles are directly related to time correlation
functions. The simplest dynamical properties are the linear response to an external perturbation. Most macroscopic
measurements are in the linear regime. This is becausemacroscopic perturbations are very small on the scale of microscopic
forces.
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The fluctuation–dissipation theorem states that at zero and finite temperature the linear response of the system to a
time-varying perturbation is the same as and is connected to fluctuations, respectively, that naturally occur in statistical
equilibrium [178,179]. This means that the response of a system in thermodynamic equilibrium to a small applied force is
connected to its response to a spontaneous fluctuation. Therefore, the theorem connects the linear response relaxation of a
system from a prepared non-equilibrium state to its statistical fluctuation properties in equilibrium. So there are two basic
ways to calculate the response: either waiting for the system to fluctuate by itself or applying a perturbation and see what
happens. The second is often referred to as the Kubo method. (In the present case of 1D integrable models, see Ref. [180].)

Within quantum field theory, the operators become functions of space and time, Ô(x, t). Consider two operators Â(x, t)
and B̂(x, t) and that the basic dynamical correlation functions,

χ (x, t; x′t ′) = ⟨Â(x, t) B̂(x′, t ′)⟩ , (27)

where

Â(x, t) = eiĤ t Â(x)e−iĤ t and B̂(x, t) = eiĤ t B̂(x)e−iĤ t , (28)

are written within the Heisenberg representation. Here Ĥ is the Hamiltonian of the model under consideration and ⟨...⟩

stands for the thermal average for finite temperatures T > 0 and the ground-state expectation value at T = 0.
The dynamical correlation functions, Eq. (27), are the building blocks of several physically relevant dynamical correlation

functions. This includes, for instance, the dynamical correlation functions,

χret(x, t; x′t ′) = −i θ (t − t ′) ⟨[Â(x, t) B̂(x′, t ′) ± B̂(x′, t ′) Â(x, t)]⟩ and

χ ′′(x, t; x′t ′) = ⟨[Â(x, t), B̂(x′, t ′)]⟩ , (29)

where in the retarded correlation function χret(x, t; x′t ′) expression + and − refers to fermions and bosons, respectively. In
most cases of physical interest, the correlation function χ ′′(x, t; x′t ′) plays the role of the quantity that describes absorption
or dissipation. The related retarded correlation function χret(x, t; x′t ′) is characterized by the presence of the step function
θ (t−t ′). Usually, when thinking about scattering amplitudes, oneworkswith time-ordered (Feynman) correlation functions.
Those are relevant for building perturbation theory.

Inmost cases zero temperature is considered in this review, so that ⟨...⟩means ground-state expectation value ⟨GS|...|GS⟩.
The systems considered in it exhibit within the TL translational invariance in both space and time. Hence the dynamical
correlation functions depend only on the differences x−x′ and t−t ′, respectively. One then defines the dynamical correlation
functions in momentum and frequency space by the Fourier transforms,

χ̃ (k, ω) =

∫
dx
∫

dt e−i(k x−ω t) χ (x, t; 0, 0) .

In the problems under consideration in this review one has that Â(x, t) = Ô(x, t) and B̂(x, t) = Ô†(x, t) in Eqs. (27) and
(29), so that for instance,

χret(x, t; x′t ′) = −i θ (t − t ′) ⟨[Ô(x, t) Ô†(x′, t ′) ± Ô†(x′, t ′) Ô(x, t)]⟩ and

χ̃ret(k, ω) =

∫
dx
∫

dt e−i(k x−ω t)χret(x, t; 0, 0) . (30)

It is useful to express the dynamical correlation function χ̃ret(k, ω) in this equation in a Lehmann representation. At zero
temperature it reads,

χ̃ret(k, ω) =

∑
ν

|⟨ν|Ô(k)|GS⟩|
2

ω − (Eν − EGS) + iδ
so that

−
1
π

Im χ̃ret(k, ω) =

∑
ν

|⟨ν|Ô(k)|GS⟩|
2
δ(ω − (Eν − EGS)), (31)

where δ is as usual an infinitesimal number,
∑

ν is a sum that runs over energy eigenstates, and,

Ô(k) =

∫
dx e−ik x Ô(x) .

Correlation functions are important quantities inmany branches of physics. For instance, in the framework of the physics
of ultracold quantum gases, they provide valuable information about the quantum many-body wave function beyond the
simple density profile [113]. The charge dynamical structure factor of a 1D Lieb–Liniger Bose gas is an example of a dynamical
correlation function that can be probed in experimental Bragg spectra of ultra-cold atoms on optical lattices [33,34].

There is an alternative fermionic representation for the 1D Lieb–Liniger Bose gas in terms of new entities called
pseudofermions. These emerge naturally from the pseudoparticles in a given PS. Such an alternative representation is
particularly suitable for the study of the dynamical correlation functions of the integrable models reviewed in this paper.
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Their emergence from the pseudoparticles involves an important property of the momentum rapidity functions kj = k(qj)
of the excited states of any PS. Manipulations of the BA equations, Eq. (3), that involve the use of distributions of form
N(qj) = N0(qj) + δN(qj), Eq. (8), and the expansion of these equations in such deviations, reveals that the excited-state
functions kj = k(qj) can be exactly expressed in terms of the corresponding ground-state rapidity function k0j = k0(qj) as
follows,

k(qj) = k0(q̄j) for j = 1, . . . ,∞ . (32)

Here,

q̄j = qj +
2πΦ(qj)

L
for j = 1, . . . ,∞ where 2πΦ(qj) =

∞∑
j′=1

δN(qj′ ) 2πΦ(qj, qj′ ) . (33)

The pseudofermion representation associates each occupied discrete canonical momentum value q̄j, Eq. (33), with one
pseudofermion. The quantity 2πΦ(qj) is below confirmed to be a scattering pseudofermion phase shift. It is such that
2πΦ(qj+1) − 2πΦ(qj) = O(1/L). Hence the spacing of the discrete canonical momentum values is to leading O(1/L) order
the usual one,

q̄j+1 − q̄j =
2π
L

+ O(1/L2) for j = 1, . . . ,∞ . (34)

However, a similar equality does not hold for the discrete canonical momentum values separation for l values such that l/Nb
is finite as Nb → ∞, q̄j+l − q̄j ̸= l (2π/L). (It does though for l = ∞.)

Since 2πΦ(qj+1)/L − 2πΦ(qj)/L is of O(1/L2) order there is no level crossing. By this it is meant that the two sets {qj}
of pseudoparticle momenta and {q̄j} of pseudofermion canonical momenta are similarly ordered for j = 1, . . . ,∞. For
each excited state there is then a pseudoparticle–pseudofermion unitary transformation associated with the one-to-one
correspondence between qj and q̄j = qj + 2πΦ(qj)/L. The equality, q̄j = qj, holds for the PS ground state, so that for it
pseudoparticles and pseudofermions are identical particles.

A key property of the pseudofermion representation, which renders it the most appropriate for the study of dynamical
correlation functions, is that upon expressing the energy functional, Eq. (10), in terms of the discrete canonical momentum
values q̄j = q̄(qj), Eq. (33), it simplifies up to O(1/L) order to,

δE =

∞∑
j=1

ε(q̄j)δN (q̄j) . (35)

The transformation from qj to q̄j = qj + 2πΦ(qj)/L absorbs the energy interacting term in Eq. (10). The pseudofermion
canonical momentum distribution N (q̄j) in Eq. (35) is defined as N (q̄j) = N(qj) where q̄j = q̄(qj) for j = 1, . . . ,∞. The
pseudofermion energy dispersion ε(q̄j) has exactly the same form as that given in Eq. (11) with the momentum qj replaced
by the corresponding canonical momentum, q̄j = q̄(qj).

In contrast to the equivalent energy functional, Eq. (10), that given in Eq. (35) has no energy interaction terms of second-
order in the deviations δN (q̄j). Indeed by expanding the canonical momentum q̄j around qj in Eq. (35) and considering all
energy contributions up toO(1/L) order, one recovers after some lengthy yet straightforward algebra the energy functional,
Eq. (151), which includes terms of second order in the deviations δN(qj). Their absence from the corresponding energy
spectrum, Eq. (35), is a consequence of the scattering phase shift functional 2πΦ(qj), Eq. (33), being incorporated in the
pseudofermions canonical momentum, Eq. (33).

Physically, the quantity ±2πΦ(qj, qj′ ), Eq. (12), is the phase shift of a pseudofermion of ground-state momentum qj. It is
acquired upon it scattering off a pseudofermion created (+) or annihilated (−) at a momentum qj′ under a transition from
the ground state to a PS excited state. The momentum qj′ refers to that state canonical momentum q̄j′ = qj′ + 2πΦ(qj′ )/L.
Hence 2πΦ(qj) =

∑
∞

j′=1 δN(qj′ ) 2πΦ(qj, qj′ ), Eq. (33), is the overall scattering phase shift acquired by such a pseudofermion
upon scattering off all pseudofermions created or annihilated under that transition.

The ι = ± pseudoparticle Fermi points given in Eq. (7) for a ground state also exist for the excited states that span the
corresponding PS. Here we denote the ground-state numbers of right (ι = +) and left (ι = −) pseudoparticles by N0

b,ι.
Hence the Fermi points in Eq. (7) read qιF = ι 2π

L N0
b,ι. The PS excited states pseudoparticle Fermi points are of the form

qιF = ι 2π
L N0

b,ι + δqιF where δqιF = [2π/L] δNF
b,ι and δNb,ι = δNF ,0

b,ι +Φ0 for ι = ±. The deviation δNF ,0
b,ι in this equation refers

to the number of pseudoparticles (and pseudofermions) at the ι = ± Fermi points. It results from the creation or annihilation
pseudoparticle processes andΦ0 is the non-scattering phase shift, Eq. (9), in units of 2π .

Two quantities that play a key role within the pseudofermion representation of the present model are the ι = ±

pseudofermion Fermi points deviations,

δq̄ιF = δqιF +
2πΦ(qιF )

L
for ι = ± . (36)

Specifically, the square of such deviations δq̄ιF in units of 2π/L, which is denoted by 2∆ι ≡ (δq̄ιF/[2π/L])
2, corresponds to

two important ι = ± fluctuations functionals of the theory. Within the PDT they control the one- and two-particle matrix
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elements quantum overlaps. From manipulations that rely on the form of the phase shift 2πΦ(qj) in the pseudoparticle-
momentum pseudofermion-canonical-momentum transformation qj → qj + 2πΦ(qj)/L, Eq. (33), one finds in the TL that,

2∆ι({qj′}) ≡

(
δq̄ιF
2π/L

)2

=

⎛⎝ξ 1 δJFb + ι
δNF

b

2ξ 1
+

∞∑
j′=1

δNNF (qj′ )Φ(ιqF , qj′ )

⎞⎠2

for ι = ± . (37)

The summation
∑

∞

j′=1 δN
NF (qj′ ) runs here over a set of finite j′ = 1, . . . ,NNF

b values where NNF
b =

∑
∞

j′=1 |δNNF (qj′ )|. Hence
2∆ι({qj′}) depends on a corresponding set of finite q1, . . . , qNNF

b
momentum values.

On the one hand, the deviations δNF
b =

∑
ι=±
δNF

b,ι and δJ
F
b =

1
2

∑
ι=±

(ι)δNF
b,ι in Eq. (37) refer to the low-energy part of

the excitations. On the other hand, within the TL the high-energy contributions are associated with the deviation δNNF (qj′ )
as defined above. The pseudofermion creation or annihilation at and in the vicinity of the Fermi points is rather accounted
for by the deviations δNF

b and δJFb .
For low-energy PS excited states for which δNNF (qj′ ) = 0 for all qj′ values away from the ι = ± pseudofermion Fermi

points, the fluctuation functionals, Eq. (37), become the ι = ± fields conformal dimensions of a conformal field theory,

2∆ι0 ≡

(
δq̄ιF
2π/L

)2

=

(
ξ 1 δJF + ι

δNF

2ξ 1

)2

for ι = ± . (38)

In the low-energy limit the model can be mapped into a conformal field theory [174–176]. As given in Eq. (18), within the
pseudofermion representation the low-energy parameter ξ 1 = 1/ξ 0 naturally emerges from the pseudofermion phase shifts
at the Fermi points. ξ 1 = 1/ξ 0 is actually the dressed charge of the conformal field theory [174–176]. Furthermore, since
the usual low-energy TLL parameter K0 [2,57] merely reads K0 = (ξ 1)2.

As shortly reported in Section 7.2, the PDT introduced in Refs. [13,16,51,58,59,63,64,181] for the 1D Hubbard model
has been extended to simpler integrable models such as the present 1D Lieb–Liniger Bose gas [61] and the spin-1/2 XXX
chain [62]. The PDT is associated with the pseudofermion representation of suchmodels. One of the goals of this review is to
clarify the relation between the PDT and the MQIMmethods [52,53,57]. For simplicity, below in Section 7.4 and Appendix A
the present 1D Lieb–Liniger Bose gas is used to address that problem. The basic relation is qualitatively similar for the more
complex models also reviewed in this paper. The relation of the 1D Lieb–Liniger Bose gas PDT to the MQIM of Ref. [57]
allows the expression of the general PDT ι = ± pseudofermion Fermi points fluctuations functionals, Eq. (37), in terms
of the MQIM shift function FB(k|k′) defined in Eqs. (7) and (8) of Ref. [57]. In that reference it is called FB(ν|µ) whereas
here its variables ν and µ are replaced by our notation for the momentum rapidities, k and k′, respectively. Furthermore,
the corresponding limiting values ±q are replaced by our notation ±Q for them, Eq. (11). From the use of the relation
Φ(ιqF , qj′ ) =

ξ1

2 − FB(ιk0(qF ), k0(qj′ )), Eq. (A.9) of Appendix A, one readily finds that,

2∆ι({qj′}) =

⎛⎝ξ 1 (δJFb +
δNNF

b

2

)
+ ι

δNF
b

2ξ 1
−

∞∑
j′=1

δNNF (qj′ ) FB(ιQ |k0(qj′ ))

⎞⎠2

for ι = ± , (39)

where δNNF
b =

∑
∞

j′=1 δN
NF (qj′ ) ≤ NNF

b =
∑

∞

j′=1 |δNNF (qj′ )|.
By considering low-energy excited states for which δNNF (qj′ ) = 0 for all qj′ values away from the ι = ± pseudofermion

Fermi points, the functionals, Eqs. (37) and (39), acquire the simplified form, Eq. (38). Hence both the PDT and the MQIM
naturally contain the present model low-energy conformal field theory. In the case of the PDT, the link of the functionals to
the conformal dimensions in the correlation functions obtained from the BA [174–176] can be understood as described in
the following.

The property that the excitation energy spectrum, Eq. (35), has no pseudofermion energy interactions simplifies the
expression of the dynamical correlation functions in terms of pseudofermion spectral functions. The lack of energy
interactions achieved under the pseudoparticle-momentum pseudofermion-canonical-momentum transformation qj →

qj + 2πΦ(qj)/L, Eq. (33), has though a price: The usual integer or half-integer dynamical correlation functions exponents
of non-interacting and Fermi-liquid like quantum systems are replaced by the interaction and momentum dependent
exponents whose expressions involve the ι = ± functional dimensions, Eqs. (37) and (39).

The pseudofermion representation involves a mere unitary transformation under which the integer or half-integer BA
quantum numbers Ij in qj =

2π
L Ij, Eqs. (3) and (4), are shifted to Ij → Īj where Īj = Ij + Φ(qj). The pseudofermion phase

shift Φ(qj) in units of 2π appearing here, Eq. (33), is in general both interaction and momentum dependent. The dynamical
correlation functions usual integer or half-integer dimensions are mapped under the transformation associated with such a
shift, Ij → Ij +Φ(qj), onto the exotic interaction and momentum dependent functionals, Eqs. (37) and (39).

This is why the exponents that control the dynamical correlation functions line shape in the vicinity of well-defined
types of (k, ω)-plane singular spectral features are interaction and momentum dependent functionals. In the low-energy
limit, the general ι = ± functional dimensions 2∆ι({qj′}) in Eqs. (37) and (39) where j′ = 1, . . . ,NNF

b lose their momentum
dependence. Indeed, they refer to excited states for whichNNF

b = 0. However they remain being interaction dependent since
they become the ι = ± fields conformal dimensions 2∆ι0, Eq. (38).
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In the case of the more complex 1D Hubbard model, the PDT contains as well the conformal field theory as a limiting
behavior. (For further technical information on the link of the generalized dimensions, Eqs. (37) and (39), to the conformal
dimensions in the correlation functions also obtained from the BA and how the PDT leads in the low-energy limit to exactly
the same correlation functions as conformal-field theory, see Ref. [181].)

The generalized functional dimensions in Eqs. (37) and (39) correspond to an important step beyond conformal-field
theory. They apply actually both at low and high energy. Hence one can learn from the pseudofermion representation
new insights beyond the model low-energy physics. Indeed, the additional deviations

∑
∞

j′=1 δN
NF (qj′ )Φ(ιqF , qj′ ) in Eq. (37)

actually control the high-energy regime of dynamical correlation functions. The corresponding generalized dimensions,
Eqs. (37) and (39), are confirmed in the following and in Sections 7.2 and 7.4 to play an important role in the dynamical
correlation functions spectral weight distributions. For instance, the interaction and momentum dependent exponents that
control the dynamical correlation functions line shape in the vicinity of well-defined types of (k, ω)-plane singular spectral
features are within the PDT a superposition of the such generalized dimensions. This refers to the vicinity of these functions
(k, ω)-plane lower or upper thresholds. In the case of one-particle spectral functions, this applies as well near a particular
type of singular features called within the PDT branch lines.

Within the PDT the dynamical correlation functions are written in terms of pseudofermion spectral functions. Such
functions spectral weights can be expressed as Slater determinants written in terms of anticommutators of pseudofermion
operators. (For simplicity, in the case of the present model we do not introduce here the corresponding pseudofermion
operator algebra.) The Slater determinants are written in terms of anticommutators of pseudofermion operators. Their
expressions involve the overall phase-shift functional,

2πΦT (qj) = 2πΦ0
+ 2πΦ(qj) = 2πΦ0

+

∞∑
j′=1

δN(qj′ ) 2πΦ(qj, qj′ ) . (40)

The corresponding dynamical correlation functions one- and two-boson spectral weights are written in terms of such
anticommutators. Their dependence on the phase-shift functional 2πΦT (qj) is the mechanism through which the shake up
effects occurring in the pseudofermion canonical momentum band under the transitions to the excited states lead to the
Anderson’s orthogonality catastrophes [182]. Such a shake up refers to the change from the ground-state momentum values
q0j to the excited states canonical momentum values q0j + 2πΦT (qj)/L = qj + 2πΦ(qj)/L. (Here qj = q0j + 2πΦ0/L are the
pseudoparticle momentum values of the excited state.)

The different nature of the dynamical correlation functions of the pseudofermion quantum liquid relative to those of a
Fermi liquid originates from these Anderson’s orthogonality catastrophes. Those are associated with finite contributions to
the one- and two-boson spectral weight distributions from a large number of low-energy and small-momentum particle–
hole processes in the pseudofermion band. The form of the functional dimensions, Eq. (37) and (39), results from these
contributions [61].

In the following we provide the momentum dependent exponents obtained from the PDT. Those control the line shape
of the one-boson addition and removal spectral functions and two-boson charge dynamical structure factor near their
thresholds. These dynamical correlation functions for the boson problem were studied first by the MQIM [57]. Recently the
use of the PDT reached exactly the same spectra and momentum dependent exponents for such functions [61]. (In Ref. [57]
analytical expressions for these exponents were derived yet their momentum dependence has not been plotted.)

The one-boson removal and addition spectral functions are given by [57,61],

SB(k, ω) ≡ B(k, ω) =

∑
f

|⟨f ,Nb − 1|Ψ̂k|GS,Nb⟩|
2
δ(ω − ωB(k)) , (41)

and

SA(k, ω) ≡ A(k, ω) =

∑
f

|⟨f ,Nb + 1|Ψ̂ †
k |GS,Nb⟩|

2
δ(ω − ωA(k)) , (42)

respectively. HereωB(k) = ENb
GS −ENb−1

f ,ωA(k) = ENb+1
f −ENb

GS , En is the excited states energy, E0 that of the ground state, and Ψ̂ †
k

and Ψ̂k are boson creation and annihilation operators. Furthermore, the charge dynamical structure factor reads [57,61,183],

SD(k, ω) ≡ S(k, ω) =

∑
f

|⟨f |ρ̂k|GS⟩|
2
δ(ω − ωD(k)) , (43)

where ωD(k) = Ef − EGS and ρ̂k is the Fourier transform of the local density operator ρ̂x. As mentioned above, the charge
dynamical structure factor, Eq. (43), can be probed in ultra-cold atom systems through low-momentum Bragg excitations
[33,34],

The (k, ω)-plane lower (cτ = −1) or upper (cτ = 1) thresholds of the energy spectra of the above dynamical spectral
functions have for the momentum range k ∈ [0, 2πnb] the general form,

ωτ = cτ ε(qF − k) where k = qF − q ∈ [0, 2πnb] . (44)
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Fig. 3. The spectra, Eq. (44), of the excitations associated with the dominant contributions to the one-boson removal (ω < 0) and addition (ω > 0) spectral
function (left panel) and charge dynamical structure factor (right panel) for c = 1 and density nb = 2. In the case of the latter factor, the spectrum edge
for k/qF ∈ [2, 4] and the weight above it associated with the next-order excitations has also been included. The momentum scale qF and energy scale WF
are the pseudoparticle Fermi momentum, Eq. (7), and energy bandwidth of the ground-state occupied Fermi sea, Eq. (14), respectively. (As in Ref. [61], nb
is denoted by n in the figures.)
Source: From Ref. [61].

Here ε(q) is the energy dispersion, Eq. (11). The index τ reads τ = B for the one-boson removal spectral function, τ = A
for the one-boson addition spectral function, and τ = D for the two-boson dynamical structure factor. The coefficient cτ is
given by cτ = 1 for τ = B and cτ = −1 for τ = A,D. The spectra, Eq. (44), are shown in Fig. 3 for c = 1 and density nb = 2.

For small energy deviations (ω − ωτ (k)) > 0 in the vicinity of the (k, ω)-plane lower (cτ = −1) or upper (cτ = 1)
thresholds, the PDT leads to the following exact line shape [61],

Sτ (k, ω) = Cτ (ω − ωτ (k))ξτ (k) for k ∈ [0, 2πnb] where τ = B, A,D . (45)

Here Cτ is a coefficient whose value remains unchanged in the range of small energy deviations (ω − ωτ (k)) > 0 for which
this expression is valid. The momentum dependent exponents are given by,

ξτ (k) = −1 +

∑
ι=±

2∆ιτ = −1 +

∑
ι=±

(
ξ 1

2
+ ι

bτ
ξ 1

−Φ(ιqF , qF − k)
)2

. (46)

The ι = ± functional dimensions in this expression, 2∆ιτ = (δq̄ιF/(2π/L))
2, are those given in Eq. (37) for the excited states

specific to each of the τ = B, A,D dynamical correlation functions, bτ = 0 for τ = B, bτ = 1 for τ = A, and bτ = 1/2 for
τ = D. The one-boson removal upper threshold and addition lower threshold are in Fig. 3 the two boundary lines above and
below the ω = 0 axis, respectively.

The spectral feature in Eqs. (44)–(46) is called a branch line [61]. It is generated by elementary processes where only one
pseudofermion is created (and annihilated) outside the Fermi points. When in the (k, ω) plane there is no spectral weight
above (lower threshold) or below (upper threshold) that line, the corresponding dynamical correlation function analytical
expression is exact. If above or below it there is a very small amount of spectral weight, it is an approximation.

The latter approximation is valid for one-particle spectral functions whose spectral-weight distribution is not plateau-
like. In contrast, this is the general case for two-particle dynamical correlation functions. However, in the case of the 1D Lieb–
Liniger Bose gas charge dynamical structure factor, the spectral weight between the spectrum edge line for k/qF ∈ [2, 4] in
Fig. 3 and the rising branch line in that figure starting at k/qF = 2 vanishes in the nb/c → ∞ limit [61]. Hence we consider
here the charge dynamical structure factor for very large nb/c values in the vicinity of that branch line, which has the form,

ωD
= ε(k − qF ) where k = q + qF ∈ [2πnb,∞] for q ∈ [πnb,∞] . (47)

For small (ω − ωD(k)) > 0 values near it, an approximation for the dynamical structure factor is,

SD(k, ω) ≈ CD (ω − ωD(k))ξD(k) for k ∈ [2πnb,∞] . (48)

The momentum dependent exponent is here of the form,

ξD(k) = −1 +

∑
ι=±

(
ξ 1

2
−

ι

2ξ 1
+Φ(ιqF , k − qF )

)2

. (49)

The two τ = B, A one-boson spectral function exponents ξτ (k), Eq. (46), and the dynamical structure factor exponent
ξD(k), Eq. (49), are plotted in Fig. 4 as a function of the momentum k in units of qF = π nb for interaction c = 1 and several
densities nb values. For k/qF > 2 the latter exponent is an approximation. For the ranges k/qF ∈ [0, k∗/qF ] (where k∗ is
such that ξB(k∗) = 0) in Fig. 4 for which the exponent ξB(k) is negative, there are upper threshold singularity cusps in the
one-boson removal spectral function SB(k, ω), Eq. (41).
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Fig. 4. The exponents, Eq. (46), ξA(k) of the one-boson addition spectral function, ξB(k) of the one-boson removal spectral function, and ξD(k) of the charge
dynamical structure factor for c = 1 plotted as a function of the momentum in units of qF for the density nb values given in the figure panels. (The
momentum scale qF and energy scale WF are those of Fig. 3.) The latter exponent is exact for k/qF < 2 (solid lines) and an approximation for k/qF > 2
(dashed lines). For k/qF > 2 it is a better approximation for the values c = 1 and nb = 5 for which nb/c is largest. Only ξB(k) has negative values for a
limited momentum range associated with upper threshold singularity cusps in the one-boson removal spectral function. (As in Ref. [61], nb is denoted by
n in the figures.)
Source: From Ref. [61].

3. The spin-1/2 isotropic Heisenberg chain

The spin-1/2 XXX chain is again a quantum problem of interest. It is a paradigmatic example of an integrable strongly
correlated system that is experimentally relevant for the description of magnetic properties of spin-chain materials
[133,134,136,184,185]. At zeromagnetic field themodel contains antiferromagnetic correlations for exchange integral J > 0.
Those have been observed in dynamical quantities measured in inelastic neutron scattering experiments on spin-chain
compounds [136]. It can also be prepared in a 1D ultra-cold atomic trap [32].

Here we consider the spin-1/2 XXX chain in the TL. In that limit the complex rapidities in the BA equations simplify in
terms of the ideal strings of Ref. [72]. (The deviations from such ideal strings [131] do not affect in the TL the properties of
the model revisited in this section.)

The Hamiltonian of the general spin-1/2 Heisenberg chain with exchange integral J > 0 and anisotropy parameter∆ ≥ 0
in a magnetic field H reads,

Ĥ∆ = J
L∑

j=1

(∑
τ=x,y

Ŝτj Ŝ
τ
j+1 +∆ Ŝzj Ŝ

z
j+1

)
+ 2µB H

L∑
j=1

Ŝzj

where Ŝτ =

L∑
j=1

Ŝτj and Ŝ±
=

L∑
j=1

Ŝ±

j with τ = x, y, z . (50)

Here ˆ⃗S j and Ŝτ are the spin-1/2 operators at site j = 1, . . . , L with components Ŝx,y,zj and related total spin operators,
respectively, Ŝ±

j = Ŝxj ± iŜyj , and µB is the Bohr magneton.
At the isotropic point, ∆ = 1, the model contains antiferromagnetic correlations that have been observed in dynamical

quantities measured in experiments on spin-chain compounds [133,136,184,185],

Ĥ = J
L∑

j=1

ˆ⃗S j ·
ˆ⃗S j+1 + 2µB H

L∑
j=1

Ŝzj . (51)

Another observable of interest for our study of this model is the z component of the spin current operator,

Ĵz = −i J
L∑

j=1

(Ŝ+

j Ŝ−

j+1 − Ŝ+

j+1Ŝ
−

j ) . (52)

3.1. The model physics: fractional excitations, spin ordering, and magnetism

To address the phenomena brought about by quantummagnetic correlations, it is instructive to consider systems where
the charge degrees of freedom are frozen and only spin excitations remain. Such systems are usually described by spin-
only models. They are realized, for example, in Mott insulators where magnetic interactions between the local moments
of localized electrons are mediated by virtual exchange processes between neighboring electrons. One can describe the
magnetic correlations through models of localized quantum spins embedded on lattices. At zero magnetic field local
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moment antiferromagnetic phases frequently occur in the arena of strongly correlated electron systems. The phenomenology
displayed by the antiferromagnetic Hamiltonian depends sensitively on the geometry of the underlying lattice.

On the one hand, on a bipartite lattice of dimension d > 1, such as the square lattice, i.e. one in which the neighbors
of one sub-lattice A belong to the other sub-lattice B, the zero-field ground state of the spin-1/2 isotropic Heisenberg anti-
ferromagnet is close to a staggered spin configuration. It is known as a Néel state whose neighboring spins are antiparallel.
The linear spin-wave theory for antiferromagnets [186] relies onto an expansion that is valid provided that 1

N

∑
k⟨nk⟩ ≪ 1.

Here nk is the occupation number of the spin-wave state of momentum k. For the square lattice one finds 1
N

∑
k⟨nk⟩ ≈ 0.197,

which is indeed a rather small number. The elementary excitations above the zero-field antiferromagnetic ground state are
then spin waves of two flavors, due to the two sub-lattices. The elementary particle of a spin wave is called a magnon. It
carries a spin equal to one.

On the other hand, for the spin chain, the lattice is trivially bipartite. However, in the 1D case one rather finds that
1
N

∑
k⟨nk⟩ → ∞ at zero magnetic field [187]. This is due to the long-wavelength modes. Indeed, it is well known that the

zero-field ground state of the spin chain fails to develop long-range antiferromagnetic order. As a result, in 1D there is no
zero-field linear spin-wave theory small expansion parameter. This is why the perturbative expansion around an ordered
zero-field ground state is incorrect for the spin-1/2 XXX chain.

The zero magnetic field spin order and associated magnetism of that spin chain is thus of a different type. Fortunately,
in spite of its non-perturbative nature and lack of zero-field ground-state long-range order, one can extract important
information on that quantum problem physics from its exact BA solution. Rather than spin waves and magnons, the
elementary excitations of the zero-field spin-1/2 XXX chain, which correspond to well-defined BA quantum numbers
distributions, are often associated with phenomenological nontrivially interacting spin-1/2 particles called spinons. Their
energy dispersion relation is extracted from the BA [66,67,75,78,79]. (The phenomenological/empirical nature of the spinons
stems from their precise operational relation to the model physical spins not being defined.)

Consider some SU(2)-symmetric Hamiltonian, in more than one spatial dimension, made out of spin-1/2 particles, which
is in a ground state that spontaneously breaks the SU(2) symmetry. If one flips a single spin, a magnon is created, not a
spinon. Spinons that emerge in spin chains are much weirder. Since any local spin operator changes an integer amount of
spin, one cannot create a single spinon with a local operator. Hence spinons are examples of fractionalized particles: They
can only arise as part of a physical disturbance.

The spin-1/2 XXX chain whose Hamiltonian is given in Eq. (51) is a paradigmatic example of both a spin chain and
an integrable strongly correlated quantum many-body system. In this paper we review the related pseudoparticle and
pseudofermion representations of its exact BA solution. Such a solution refers explicitly to the lowest-weight states (LWSs)
or highest-weight states (HWSs) of the SU(2) algebra forwhich S = −Sz and S = Sz , respectively. Here (and in the following)
the spin and spin projection of the spin chain, Eq. (51), energy eigenstates have been denoted by S and Sz = −(L↑ − L↓)/2,
respectively. Lσ such that

∑
σ=↑,↓Lσ = L denotes the number of physical spins of projection σ =↑,↓. (The sign choice in the

expression Sz = −(L↑−L↓)/2 is the same as in Ref. [72], forwhich L↑ ≥ L↓ for a LWS.) The pseudoparticle and pseudofermion
representations also applies to the extendedHilbert space spanned by both the LWSs and correspondingmultiplet spin SU(2)
towers of states.

The BA gives direct access to the energy levels of an integrable system. This allows the computation of many equilibrium
quantities. The ground state energy of the spin-1/2 XXX chain was derived analytically within the TL in the early stages of
its studies [173]. However, it was not until the 1960s and early 1970s that its excitation spectrum was computed [68] and
its thermodynamic properties derived [72,188–192]. Equilibrium quantities are, nonetheless, not sufficient to completely
characterize the physics of correlated models.

The computation of dynamical quantities requires knowledge of matrix elements of spin operators between energy
eigenstates. This goes beyond the information that can be extracted directly from the BA. At zero field some of such states
are described by groups of real and complex BA rapidities. The spin dynamical structure factors are objects that motivated
partially by experimental work have been extensively studied in the case of zeromagnetic field [114,193–198]. In Section 3.7
we thus revisit the spin dynamical structure factors of the spin-1/2 XXX chain for the less studied case of a finite magnetic
field.

For a finite magnetic field H > 0 the Hamiltonian term 2µB H
∑L

j=1Ŝ
z
j in Eq. (51) does not commute with the global spin

SU(2) symmetry off-diagonal generators. It thus lowers the model global symmetry to U(1). However, for all spin density
values m = −2Sz/L ∈ [−1, 1] and corresponding fields h ∈ [−Hc,Hc] the S-fixed subspaces dimensions, and thus the
number of energy and momentum eigenstates that span them, exactly equals the number of fixed-S representations of the
SU(2) symmetry group. Here±Hc = ±J/µB are the critical fields for fully polarized ferromagnetism. Hence theH = 0model
non-Abelian global SU(2) symmetry controls and determines the states spectrum structure for allm and H values.

3.2. A functional representation of the spin-1/2 XXX chain Bethe-ansatz solution

The model Hamiltonian, Eq. (51), is solvable by the BA. The corresponding general BA equation is of the form [40,72],

2 arctan(Λj) = qj +
1
L

∑
α ̸=j

2 arctan
(
Λj −Λα

2

)
where mod 2π . (53)
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Here the α = 1, . . . , (L − 2S)/2 summation is over the subset of occupied qα quantum numbers out of the full set,

qj =
2π
L

Ij for j = 1, . . . , IS where IS = (L + 2S)/2 . (54)

The different occupancy configurations of the related quantum numbers Ij (defined modulo L) such that j = 1, . . . , IS
generate different energy and momentum eigenstates. The latter are successive integers or half-odd integers according to
the boundary conditions,

Ij = 0,±1, . . . ,±
IS − 1

2
for IS odd ,

= ±1/2,±3/2, . . . ,±
IS − 1

2
for IS even . (55)

The BA equation, Eq. (53), explicitly refers to the LWSs. However, relying on the model spin SU(2) symmetry one can
extend its exact solution to the non-LWSs. That global SU(2) spin symmetry imposes that the energy and momentum
eigenstates refer to state representations of the group SU(2). Consistently, the LWSs and the non-LWSs generated from them
used in our analysis are energy and momentum eigenstates. They are as well eigenstates of ( ˆ⃗S)2 and Ŝz with eigenvalues
S(S + 1) and Sz , respectively. We thus denote all 2L energy and momentum eigenstates by |lr, S, Sz⟩. Here lr stands for
all quantum numbers other than S and Sz needed to specify a state, |lr, S, Sz⟩. The non-LWSs are generated from the
corresponding ns = S + Sz = 0 LWS |lr, S,−S⟩ as,

|lr, S, Sz⟩ =
1

√
C
(Ŝ+)ns |lr, S,−S⟩ where C = (ns!)

ns∏
j=1

( 2S + 1 − j ) for ns = 1, . . . , 2S . (56)

The BA wave functions of the LWSs |lr, S,−S⟩ formally vanish when two rapiditiesΛj andΛj′ become equal (Fermi-like
statistics.) This property suggests that simply choosing α = 1, . . . , (L − 2S)/2 distinct quantum numbers qα among the set
of j = 1, . . . , IS allowed quantum numbers qj, which gives a dimension

(
(L+2S)/2
(L−2S)/2

)
, would allow the reconstruction of all 2L

states that span the model Hilbert space.
However such an expectation is misleading. Indeed due to the model non-Abelian global spin SU(2) symmetry and in

contrast to the simpler U(1) symmetry 1D Lieb–Liniger Bose gas, only some of the solutions to the general BA equation,
Eq. (53), are obtained in terms of real rapidities Λj. The model non-Abelian symmetry gives rise to new internal degrees
of freedom absent from that Bose gas. Those bring about new BA roots that involve groups of complex rapidities [40,72].
In the context of our study, the term thermodynamic Bethe ansatz (TBA) refers to the form obtained in Ref. [72] for the BA
equations in the TL. Within the TBA, the needed set of real and complex rapidities have the general form,

Λ
n,l
j = Λn

j + i(n + 1 − 2l) such that Λn,l
j = (Λn,n+1−l

j )∗ where l = 1, . . . , n , (57)

j = 1, . . . , Ln with n = 1, . . . ,∞, and the number Ln ≥ Nn is defined below. As confirmed in the following, the extra solutions
and corresponding states associated with the quantum numbers in the complex rapidities, Eq. (57), ensure that in each
S-fixed subspace the number of such states equals that of state representations of the model global spin SU(2) symmetry.

For n = 1 the rapidity, Eq. (57), is real and otherwise its imaginary part is finite. The rapidities are roots of Eq. (53). In
Eq. (57) they are partitioned in a configuration of strings, where a n-string is a group of n rapidities with the same real part
Λn

j . The number n is often called the string length and the real part of the set of n rapidities,Λn
j , is called the string center [1].

After some algebra, the use of rapidities of the form given in Eq. (57) in the general BA equation, Eq. (53), leads to a number
n = 1, . . . , (L − 2S)/2 of TBA equations. In general we consider that n = 1, . . . ,∞ in the TL, which is correct provided that
(1− Ls) is finite. Within themomentum-distribution functional notation used in this review, the TBA equations read [87,88],

qj = knj −
1
L

∑
(n′,j′)̸=(n,j)

Nn′ (qj′ )Θn n′ (Λn
j −Λn′

j′ ) . (58)

HereΘn n′ (x) is an odd function of x given in Eq. (B.1) of Appendix Bwhere n, n′
= 1, . . . ,∞. In that equation and throughout

this review δn,n′ is the usual Kronecker symbol.
The solutions of the TBA equations, Eq. (58), define the rapidities real part,Λn

j . In these n = 1, . . . ,∞ equations,

qj =
2π
L

Inj ∈ [q−

n , q
+

n ] where j = 1, . . . , Ln and q±

n = ±
π

L
(Ln − 1) , (59)

are the momentum values of a n-band associated with the set of Nn n-strings with the same n value. The quantum numbers
Inj are successive integers or half-odd integers according to the boundary conditions,

Inj = 0,±1, . . . ,±
Ln − 1

2
for Ln odd ,

= ±1/2,±3/2, . . . ,±
Ln − 1

2
for Ln even . (60)
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The distribution function Nn(qj) in Eq. (58) is such that Nn(qj) = 1 and Nn(qj) = 0 for ‘‘occupied’’ and ‘‘unoccupied’’ qj
values, respectively. Indeed, the qj values, Eq. (59), have the separation, qj+1 − qj = 2π/L, and only occupancies zero and
one. For each fixed n there is a number Ln of qj values given by [72,87,88],

Ln = Nn + Nh
n where Nh

n = 2S + Nh,0
n and Nh,0

n =

∞∑
n′=n+1

2(n′
− n)Nn′ . (61)

For consistency with the notation used for the 1D Lieb–Liniger Bose gas, here we have called Nn where n = 1, . . . ,∞ the
quantum numbers named Mn in the TBA studies of Ref. [72]. Otherwise we tend to use the notations and formalism of that
reference. Nn and Nh

n are in Eq. (61) the numbers of qj values that are occupied and unoccupied, respectively, and Nh,0
n is the

latter number in the case of a S = 0 energy and momentum eigenstate. Often an index α = 1, . . . ,Nn is used to label the
subset of occupied quantum numbers Inα of an energy and momentum eigenstate [72,87,88]. Moreover, in Eq. (58),

knj ≡ kn(qj) = 2 arctan
(
Λn

j

n

)
. (62)

(The relation of the n = 1 rapiditymomentum k1j = 2 arctan(Λ1
j ), Eq. (62) for n = 1, to the rapiditymomentum kj of Ref. [72],

such thatΛ1
j = cot(kj/2), is k1j = π − kj.)

The momentum eigenvalues P and the energy eigenvalues E are functionals of the n = 1, . . . ,∞ distribution functions
Nn(qj) given by,

P = π +

∞∑
n=1

Ln∑
j=1

Nn(qj) qj and E = −

∞∑
n=1

Ln∑
j=1

Nn(qj)
J
n

(
1 + cos knj

)
− 2µB H Sz , (63)

respectively.
The form of the momentum eigenvalues confirms that the quantum number variables qj defined in Eq. (54) such that

qj+1 − qj = 2π/L play the role of n-band momentum values. There is one such momentum band for each set of Nn n-strings
with the same length n = 1, . . . ,∞. For a given energy eigenstate, each such a n band has a well-defined set of Nn occupied
and Nh

n unoccupied momentum values qj. The full set of Ln = Nn + Nh
n momentum values qj is distributed within an interval

qj ∈ [q−
n , q

+
n ]. Its limiting values q±

n are given in Eq. (59) and Eq. (B.3) of Appendix B.
In the ensuing section it is confirmed that the set of quantum numbers associated with the TBA equations, Eq. (58),

allows the reconstruction of the 2L energy eigenstates that span the spin-1/2 XXX chain full Hilbert space. Out of such∑L
2S=0 (integers) N (S) = 2L states, there is for a given S a number N (S) = (2S + 1)Nsinglet(S) of states. Those correspond

to (2S + 1) multiplet configurations and a number Nsinglet(S) singlet configurations given in Eq. (C.1) of Appendix C.

3.3. The n-pseudoparticles representation of the spin-1/2 XXX chain Bethe-ansatz roots and its relation to the paired physical spins
1/2

The pseudoparticle representation introduced in the following is in the case of the XXX chain associatedwith its L physical
spins 1/2 rather than with spinons. The advantage is that such a representation is valid for the model full Hilbert and
parameter spaces. The energy eigenstates are a superposition of lattice occupancy configurations in which the L physical
spins 1/2 singly occupy L lattice sites. L is even and odd when the states spin S is an integer and half-odd integer number,
respectively. For all states that span a fixed-S subspace, the corresponding lattice occupancy configurations have then a
number 2S of sites occupied by a set of M = 2S physical spins 1/2 that participate in the multiplet configuration. The
complementary set of even number L − 2S of sites are singly occupied by L − 2S physical spins 1/2 whose configuration
forms a tensor product of singlet states.

Since all the N (S) energy eigenstates with the same S value have the same ˆ⃗S
2
eigenvalue, the energy and momentum

eigenstates are superpositions of such configuration terms. Each term is characterized by a different partition of L physical
spins 1/2 into 2S such physical spins that participate in a 2S + 1 multiplet, and a product of singlets involving the remaining
even number L− 2S of physical spins 1/2. The latter are associated with a corresponding number (L− 2S)/2 of singlet pairs.

The unpaired spins 1/2 and paired spins 1/2 are the members of such two sets of M ≡ 2S and 2Π ≡ L − 2S physical
spins 1/2, respectively. For a LWS, all physical unpaired spins 1/2 have up spin projection. The model TBA solution quantum
numbers are directly related to such M ≡ 2S up physical spins 1/2 and different types of singlet configurations involving
the remaining 2Π = L − 2S paired physical spins 1/2 and theirΠ = (L − 2S)/2 singlet pairs.

A n-string was defined above as a group of l = 1, . . . , n rapidities with the same real part Λn
j , Eq. (57). As confirmed

in the following, the set of n-strings of an energy eigenstate is directly related to the Π ≡ (L − 2S)/2 singlet pairs
involving the 2Π = L− 2S physical spins 1/2 that participate in singlet configurations. Specifically, each n-string refers to a
n-pairs configuration within which for n > 1 a number n of singlet pairs are bound. Such a binding is associated with the
corresponding imaginary parts, i(n + 1 − 2l), of the l = 1, . . . , n rapidities Λn,l

j = Λn
j + i(n + 1 − 2l), Eq. (57), with the

same real part Λn
j . The n > 1 singlet pairs that are bound within a n-pairs configuration associated with a string of length

n > 1 are called here bound singlet pairs. For n = 1 the rapidity Λ1,1
j imaginary part vanishes because a n = 1 n-string
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refers to a single singlet pair. The N1 unbound singlet pairs of an energy eigenstate are those that correspond its N1 n = 1 pair
configurations.

The rapidity Λn,l
j indexes n and l thus label the n-pairs configuration and a specific singlet pair, respectively. Moreover,

the usual string length n = 1, . . . ,∞ in Eq. (57) corresponds to the number of singlet pairs in each of the Nn n-pairs
configurations of a given state. The l = 1, . . . , n singlet pairs bound within a n-pairs configuration involve a number 2n
of physical spins 1/2. Those singly occupy 2n lattice sites.

Consistently with such a relation between the TBA n-strings and the Π = (L − 2S)/2 singlet pairs, the following exact
TBA sum rule holds for all energy eigenstates,

Π =

∞∑
n=1

nNn =
1
2
(L − 2S) , (64)

and thus π = Π/L =
∑

∞

n=1n nn =
1
2 (1 − ms). Here Nn is the number of n-pairs configurations that equals that of qj values

that are occupied, π is the density of singlet pairs, ms = 2S/L = M/L ≥ m that of unpaired spins 1/2, and nn = Nn/L. The
Π = (L − 2S)/2 singlet pairs under consideration involve the 2Π = L − 2S physical spins 1/2 that do not participate in
multiplet configurations.

The physical spins 1/2 configurations that generate an energy eigenstate are a superposition of local lattice occupancy
configurations. On the one hand, since each n-pairs configuration occupies a number 2n of lattice sites, the set of n-pairs
configurations of an energy eigenstate occupy a number 2Π =

∑
∞

n=12nNn of lattice sites. On the other hand, each of the
M = 2S unpaired physical spins 1/2 singly occupies a lattice site. Therefore, for an energy eigenstate of spin S, the following
number of sites sum rule is fulfilled,

L = M + 2Π = 2S +

∞∑
n=1

2nNn . (65)

There is a strong requirement for each n-string referring to a n-pairs configuration that involves a number 2n of
physical spins 1/2 and corresponding l = 1, . . . , n singlet pairs: That in the dimension of any S-fixed subspace N (S) =

(2S + 1)Nsinglet(S), the number of independent singlet configurations Nsinglet(S) be exactly the same when obtained from
the counting of two apparently different types of configurations. The first refers to the counting of the SU(2) group state
representations associated with the physical spins 1/2 independent configurations with the same spin S, Eq. (C.1) of
Appendix C. The second corresponds to the counting of independent n = 1, . . . ,∞ bands {qj} occupancy configurations
of the sets of Nn n-strings obeying the sum rule

∑
∞

n=1nNn = (L − 2S)/2, Eq. (64). (The factor (2S + 1) in the dimension
N (S) = (2S + 1)Nsinglet(S) refers to the number of multiplet configurations of the M = 2S unpaired physical spins 1/2.
Those are not part of n-pairs configurations singlet pairs.)

As shown inAppendix A of Ref. [72] for LWSs, the value of the numberNh
n = Ln−Nn of n-band holes that naturally emerges

from the TBA, Eq. (61), ensures that for each S-fixed subspace the singlet dimension Nsinglet(S) can indeed alternatively be
written as given in Eqs. (C.1) and (C.2) of Appendix C, respectively. This also holds for the multiplet towers of non-LWS
generated from S > 0 LWSs. Indeed, all 2S + 1 states of such a tower have exactly the same singlet configurations as the
corresponding S > 0 LWS.

The summation
∑

{Nn}
in Eq. (C.2) of Appendix C runs over all sets of n-strings numbers {Nn} corresponding to the same

fixed spin S = L/2 −
∑

∞

n=1nNn, as imposed by the exact sum rule, Eq. (64). On the one hand, this confirms the connection
between n-strings and the paired physical spins 1/2. On the other hand, it shows that the additional states described by
groups of complex rapidities, absent in the case of the 1D Lieb–Liniger Bose gas, ensure that the fixed-S subspaces dimension,
N (S) = (2S+1)Nsinglet(S) withNsinglet(S) given in Eq. (C.2) of Appendix C, exactly equals the corresponding number of spin-S
SU(2) symmetry representations, Eq. (C.1) of that Appendix.

From analysis of the TBA equations given in the previous section, one finds that there is a one-to-one correspondence
between the Nn n-pairs configurations with the same number n of singlet pairs of an energy eigenstate and the Nn occupied
momentum values qj of the corresponding n-band distributionNn(qj), respectively. This is consistent with the center of mass
of the set of the 2n-sites occupied by each n-pairs configurationmovingwithmomentum qj and all its 2n sites singly occupied
by paired physical spins moving coherently along with it. This occurs through processes within which the 2n paired spins
on such 2n occupied sites interchange position with theM = 2S unpaired physical spins 1/2 that singly occupy sites.

We associate one n-pseudoparticle and one n-band hole with each of the Nn occupied and Nh
n unoccupied momentum

values qj, respectively, of an energy eigenstate n-band. Such pseudoparticles are well defined within the TL to which the
TBA applies. Indeed, the TL ensures that the problems concerning the n-pseudoparticle internal degrees of freedom and
translational degrees of freedom, respectively, separate.

On the one hand, the internal degrees of freedom of a n-pseudoparticle refer to a n-pairs configuration. Hence there is one
n-pseudoparticle for each n-pairs configuration and corresponding BA roots. Those involve a group of l = 1, . . . , n rapidities
with the same real part, Eq. (57). If n > 1 the n-pseudoparticle has n = 2, . . . ,∞ singlet pairs bound within it. If n = 1,
its internal degrees of freedom correspond to a single unbound singlet pair. That a n-string of length n > 1 describes the
binding of n = 2, . . . ,∞ singlet pairs bound within a n-pseudoparticle clarifies its connection to the BA roots.

On the other hand, the momentum qj, Eq. (59), of a n-pseudoparticle refers to its translational degrees of freedom. Those
are associated with its center of mass motion. The set of N =

∑
∞

n=1Nn n-pseudoparticles, each carrying a momentum qj, of
a given energy eigenstate determine that state momentum eigenvalue, as given in Eq. (63).
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The magnons associated with the spin-wave representation of the spin-1/2 XXX model on for example a square lattice
carry spin one and are associated with an antiferromagnetic long-range order. In turn, the l = 1, . . . , n singlet pairs
bound within the Nn n-pseudoparticles that populate each n = 1, . . . ,∞ n-band of an energy eigenstate of the present
spin chain have spin zero. The n-pseudoparticles are indeed spin neutral particles. The energy eigenstates spin S and spin
projection Sz are thus determined by the numbers M±1/2 of unpaired spins 1/2 with spin projection ±1/2. Specifically,
S = (M+1/2 +M−1/2)/2 and Sz = −(M+1/2 −M−1/2)/2, respectively. The total number L±1/2 of physical spins with projection
±1/2 such that L = L+1/2 + L−1/2 then reads L±1/2 = Π + M±1/2.

There is a number of pseudoparticles sum rule. It is related to that of singlet pairs, Eq. (64). The latter sum rule implies
that N1 = L(1− Ls)/2−

∑
∞

n=2nNn. From the use of this relation in the number of pseudoparticles expression, N ≡
∑

∞

n=1Nn,
one confirms that the sum rule N =

∑
∞

n=1Nn =
1
2 (L − Nh

1 ) is obeyed. Here Nh
1 is the number of n = 1 band holes, Eq. (61)

for n = 1.
The set ofΠ =

∑
∞

n=1nNn = (L− 2S)/2 singlet pairs of an energy eigenstate are all bound within the set of N =
∑

∞

n=1Nn
composite n-pseudoparticles that populate it. The question is thus which is the relation of the model physical spins 1/2 to
the Nh

n = 2S + Nh,0
n holes in each n-band for which Nn > 0? The Nh

1 n = 1 band holes of the S = 0 ground-state excited
states are usually associated with spinons [65,199]. Hence this question also refers to the relation of spinons to the present
representation in terms n-pseudoparticles and unpaired spins 1/2. This is the issue clarified in the ensuing section.

3.4. Relation to the physical spins 1/2 of the holes in the TBA quantum numbers distributions

The spin-1/2 XXX chain in a uniform vector potential Φ/L whose Hamiltonian is given in Eq. (A2) of Ref. [87] remains
solvable by the BA. Its LWSs momentum eigenvalues, P = P(Φ/L), have the general form,

P(Φ/L) = P(0) +
L −

∑
n 2nNn

L
Φ = P(0) + LsΦ = P(0) + 2S

Φ

L
. (66)

TheΦ = 0 momentum eigenvalue P(0) is given in Eq. (63).
On the one hand, the current operator expectation values of the Φ → 0 LWSs can be derived from the Φ/L dependence

of the energy eigenvalues E(Φ/L) as ⟨Ĵz⟩ = dE(Φ/L)/d(Φ/L)|Φ=0. On the other hand, dP(Φ/L)/d(Φ/L)|Φ=0 gives the number
of spin carriers that couple to the vector potential. The natural candidates are the model L physical spins 1/2. However, the
form of the exact momentum eigenvalues, Eq. (66), reveals though that only the 2S unpaired spins 1/2 contributing to the
multiplet configurations couple to the vector potential Φ/L. Since the 2Π = L − 2S physical spins 1/2 left over are those
within theΠ = L/2 − S singlet pairs, this result is physically appealing.

The LWSs spin currents result from the above mentioned processes under which the 2n-site configurations of the
n-pseudoparticles interchange position under their motion along the lattice with the set of single-site 2S unpaired spins.
The BA separates each n = 1, . . . ,∞ branch of n-pseudoparticles in a different momentum n band. The inequality Nh

n ≥ 2S
follows from the BA choosing the number Nh

n of n band holes so that the fixed-S subspaces dimension obeys the sum
rule, Eq. (C.2) of Appendix C. The additional number

∑
∞

n′=n+12(n
′
− n)Nn′ of holes in each n band relative to the number

2S that equals that of unpaired spins 1/2 has an interpretation in terms of lattice sites occupancies. Indeed, locally it
corresponds to

∑
∞

n′=n+12(n
′
− n)Nn′ sites out of the

∑
∞

n′=n+12n
′ Nn′ sites occupied by bound singlet pairs within the state

under consideration. And this refers only to n′-pairs configurations with n′ > n such pairs. Only such sites in addition to the
2S sites occupied by unpaired spins are used by the n pseudoparticles as unoccupied sites. They interchange position under
their motion along the lattice with the spins 1/2 on such

∑
∞

n′=n+12(n
′
− n)Nn′ lattice sites. They are though occupied by

paired spins 1/2 with an equal number
∑

∞

n′=n+1(n
′
− n)Nn′ of opposite spin projections rather than by unpaired spins 1/2.

Therefore, such processes do not contribute to the spin current.
Indeed, on average only 2S holes out of the Nh

n = 2S +
∑

∞

n′=n+12(n
′
− n)Nn′ holes of each n band for which Nn > 0

contribute to the spin currents. The translational degrees of freedom of the 2S unpaired spins 1/2 are described by such
n-band holes. On average the virtual elementary currents carried by the two sets of

∑
∞

n′=n+1(n
′
− n)Nn′ remaining holes

exactly cancel each other. This is consistent with the overall spin current of S = 0 states for which Nh
n = Nh,0

n =∑
∞

n′=n+12(n
′
− n)Nn′ exactly vanishing.

The validity of this picture is confirmed by the form of the spin currents of the non-LWSs. Consider a general LWS
|lr, S,−S⟩ on the right-hand side of Eq. (56) carrying a current ⟨lr, S,−S|Ĵz |lr, S,−S⟩. Here Ĵz is the z component of the
spin current operator, Eq. (52). For simplicity, we denote that spin current by ⟨ĴzLWS(lr, S)⟩. In Appendix E it is shown that its
general TBA expression [87,88] can be written in terms of n-bands holes elementary currents jhn(qj) as follows,

⟨ĴzLWS(lr, S)⟩ =

∞∑
n=1

Ln∑
j=1

Nh
n (qj) j

h
n(qj) . (67)

Here Nh
n (qj) = 1 − Nn(qj) and lr labels the

∑
lr = Nsinglet(S) =

∑
{Nn}

∏
∞

n=1

(
Ln
Nn

)
independent singlet configurations of the

L−2S paired spins 1/2. Such configurations correspond to awell-defined set of numbers {Nn} of n-pairs configurations. Those
are associated with the energy and momentum eigenstates that span each fixed-S subspace. The n-bands holes elementary
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currents jhn(qj) in Eq. (67) are determined by the LWS rapidity functions kn(qj) obtainable from solution of the TBA equations,
Eq. (B.1) of Appendix B. They read,

jhn(qj) =
2J sin kn(qj)
2πσ n(kn(qj))

for qj ∈ [q−

n , q
+

n ] . (68)

The distribution 2πσ n(kj) appearing here is within the TL given by 2πσ n(kj) ≡ 2πσ n(k)|k=kj where 2πσ n(k) = dqn(k)/dk.
qn(k) stands in that derivative for the inverse function of the n-band rapidity momentum function kn(q).

We consider now that L is even and thus the states spin S is an integer number. However, within the TL the same results
are reached for L odd. All 2S unpaired spins 1/2 of that LWS have up-spin projection. The following exact relation between
the spin currents of the non-LWSs belonging to the same spin SU(2) tower and the spin current of the corresponding LWS
in terms of the numbersM±1/2 of unpaired spins 1/2 with spin projection ±1/2 holds [87,88],

⟨Ĵz(lr,M+1/2,M−1/2)⟩ =
(M+1/2 − M−1/2)

2S
⟨ĴzLWS(lr, S)⟩ . (69)

For each spin flip generated by application of the off-diagonal spin generator Ŝ+ in Eq. (56) (and Ŝ−) onto a state with
finite numbers M+1/2 and M−1/2, the spin current, Eq. (69), exactly changes by a LWS current quantum 2j−1/2 (and 2j+1/2).
The elementary currents j±1/2 in such quanta are given by,

j±1/2 = ±
⟨ĴzLWS(lr, S)⟩

2S
= ±

∑
∞

n=1
∑Ln

j=1 Nh
n (qj) j

h
n(qj)

2S
. (70)

Hence each unpaired spin 1/2 with spin projection ±1/2 carries such an elementary current j±1/2. For LWSs one has that
M+1/2 = 2S and M−1/2 = 0 whereas M+1/2 + M−1/2 = 2S for their non-LWSs. The general expression for the number of
n-band holes thus reads Nh

n = M+1/2 +M−1/2 +
∑

∞

n′=n+12(n
′
− n)Nn′ . For each of the 2S + 1 states in the same SU(2) tower,

an average numberM+1/2 andM−1/2 of holes in the n bands for which Nn > 0 describe the translational degrees of freedom
of theM+1/2 and M−1/2 unpaired spins 1/2 of spin projection +1/2 and −1/2, respectively.

The exact spin current expression, Eq. (69), is proportional to M+1/2 − M−1/2. The currents of two sets of M+1/2 and
M−1/2 unpaired spins of opposite spin projection then partially or totally (M+1/2 = M−1/2) cancel each other. Therefore, only
an average number |M+1/2 − M−1/2| of holes in the n bands for which Nn > 0 contribute to the spin current. The virtual
elementary currents of a corresponding average number 2Sη − |M+1/2 − M−1/2| +

∑
∞

n′=n+12(n
′
− n)Nn′ of holes in these

bands exactly cancel each other. For Szη = 0 non-LWSs for which M+1/2 = M−1/2 this is a total canceling. Such states have
zero spin current.

The spin stiffness D(T ) in the real part of the spin conductivity Drude peak, 2π D(T ) δ(ω), is for temperatures T ≥ 0 an
important physical quantity related to spin ballistic transport. Indeed, a finite spin stiffness implies the occurrence of such a
type of transport. At finite temperature T > 0 the spin stiffness can within the TL and for a fixed-Sz canonical ensemble be
expressed only in terms of the spin currents, Eq. (69), of all energy andmomentumwith that Sz value [87,88]. It then follows
that in the TL and within the canonical ensemble the spin stiffness of the spin-1/2 XXX chain vanishes as mz

= |2Sz | → 0
for T > 0. At zero temperature the spin stiffness expression has additional contributions from off-diagonal matrix elements
of the spin current operator. Some of those do not vanish in the mz

→ 0 limit. The zero-temperature spin stiffness is thus
finite in the TL formz

→ 0, as found below in Section 3.6. (It is given in Eq. (91).)
There is a direct relation between quantum spin transport and both local and quasi-local conservation laws

[201–203]. For the present model, the spin stiffness can be accessed by suitable use of the TBA [200]. It can also be accessed
employing a hydrodynamic description. Within it, the spin stiffness is calculated from the stationary currents generated in
an inhomogeneous quench from bipartitioned initial states [204]. That in themz

→ 0 limit the spin stiffness of the spin-1/2
XXX chain is within the TL finite at T = 0 and vanishes for T > 0 [87,88] is illustrated in Fig. 5. The stiffness curves plotted
in that figure were calculated by use of the TBA in Ref. [200] for the anisotropic spin-1/2 1D Heisenberg chain, Eq. (50). (The
XXX chain refers to the∆ = 1 isotropic point in the figure.)

There is a connection between ballistic and diffusive transport in the mz
→ 0 limit at nonzero temperatures when the

ballistic contribution of the spin-1/2 XXX chain vanishes [205].

3.5. The spinon representation as a limiting case of the n-bands hole representation

Consider LWSs for which the numbers M = 2S of physical unpaired spins 1/2 and Nh
n = 2S + Nh,0

n of holes in n bands
for which n > 1 are within the TL finite. The densities of unpaired spins 1/2 and n = 1 band holes of such states thus
behave in the TL as ms = 2S/L → 0 and nh

1 = Nh
1/L → 0, respectively. One has then that q±

n → 0 for such n > 1 bands
whosemomentum bandwidth vanishes. For LWSs for whichms ≪ 1 and nh

1 ≪ 1 one finds that the n-bands hole elementary
currents in Eq. (68) are given by jhn(qj) = J (n−1)

3n (2πnh
1)

2 sin
(

qj
mn

)
for n > 1. Hence jhn(qj) → 0 for the above class of LWSs.

An important quantum problem refers to the spin-1/2 XXX chain in the reduced subspace spanned by the above states
for which ms → 0 and nh

n → 0 for n > 1 as L → ∞. For it the expression of the LWS spin current, Eq. (67), and general
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Fig. 5. The spin stiffness of the spin-1/2 1D Heisenberg chain, Eq. (50), as a function of the anisotropy parameter ∆ at various temperatures. (Cjj is a
high-temperature proportionality constant [200].)
Source: From Ref. [200].

current, Eq. (69), simplifies to,

⟨ĴzLWS(lr, S)⟩ =

L1∑
j=1

Nh
1 (qj) j

h
1(qj) and

⟨Ĵz(lr,M+1/2,M−1/2)⟩ =
(M+1/2 − M−1/2)

2S

L1∑
j=1

Nh
1 (qj) j

h
1(qj) =

∑
ι=±

Mι1/2 × jι1/2 , (71)

respectively. Here,

j±1/2 = ±

∑L1
j=1 Nh

1 (qj) j
h
1(qj)

2S
and jh1(qj) =

2J sin k1(qj)
2πσ 1(k1(qj))

for qj ∈ [q−

1 , q
+

1 ] , (72)

are elementary currents, Eq. (70), carried by a unpaired physical spin 1/2 of projection±1/2 and the n = 1 band elementary
current spectrum, Eq. (68) for n = 1, respectively.

The spinon representation [65,199] applies to such a quantum problem. For it the expressions in Eqs. (71) and (72) are
valid. Such expressions also refer to energy and momentum eigenstates of arbitrary spin S described only by groups of real
rapidities. The spinon representation also applies to them.

Within such a representation, the spinons are theNh
1 = 2S+Nh,0

1 holes in the n = 1 band [65,199]. It is assumed that each
spinon carries a spin 1/2. For LWSs described by groups of real and complex rapidities for which Nh,0

1 =
∑

∞

n=22(n − 1)Nn

is finite, Nh,0
1 gives the number of such spinons in singlet configurations. The elementary currents of such spinons vanish.

This result is confirmed by the use of the BA solution for small Nh,0
1 values. In contrast, the currents of an average number 2S

of remaining spinons contribute to the spin current. The latter 2S spinons are intended to be a representation of the model
2S unpaired physical spins 1/2. In the case of LWSs described only by groups of real rapidities, one has that Nh,0

1 = 0 and
Nh

1 = 2S. For such states the Nh
1 = 2S spinons are intended to describe the 2S unpaired physical spins 1/2.

Each of the Nh
1 spinons of a LWS has been inherently constructed to carry an elementary current jh1(q

h
j ). This is consistent

with the LWS overall spin current reading
∑L1

j=1 N
h
1 (qj) j

h
1(qj), Eq. (71). The spinon representation has an empirical character.

This follows for it not providing operational relation of the spinons to the model physical spins 1/2. A relevant question is
thus whether a spinon carrying an elementary current jh1(q

h
j ), Eq. (72), has indeed internal degrees of freedom associated

with a spin 1/2 operator algebra?
This issue remains hidden in the case of LWSs. For them the spin current is the sum ⟨ĴzLWS(lr, S)⟩ =

∑L1
j=1 N

h
1 (qj) j

h
1(qj),

Eq. (71), of the elementary currents jh1(q
h
j ) associated with the Nh

1 spinons. It can be clarified though if one considers the
tower of non-LWSs corresponding to each LWS. It is useful to compare the spin currents obtained for the spin LWS and HWS
BA solutions. This reveals that if a spinonwith a givenmomentum qhj carried one spin 1/2, its elementary current would read
±jh1(q

h
j ) in the case of spin projection ±1/2. This would imply that one spin flip resulting from the application of the spin

SU(2) off-diagonal generator Ŝ± onto the non-LWS under consideration would lead to state spin current changes ∓2jh1(q
h
j ).

This is though in contrast to the exact expression of the general spin current ⟨Ĵz(lr,M+1/2,M−1/2)⟩ given in Eq. (71). That
expression reveals that the spin current changes under consideration rather read 2j∓1/2 = ∓[

∑L1
j=1 N

h
1 (qj) j

h
1(qj)]/(2S) for

the non-LWSs belonging to the spin SU(2) towers of the LWSs considered here. This shows one cannot associate the internal
degrees of freedom of one spin 1/2 with a BA discrete quantum number n = 1 band hole momentum qhj . Hence such internal
degrees of freedom can neither be associated with the corresponding spinon.
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Each of the Nh
1 spinons with a given momentum qhj carrying one spin 1/2 is appealing in the case of LWSs. In that case the

spinon elementary currents provide a faithful representation of the state overall spin current. However, the n = 1 band holes
associated with the spinons are mere neutral particles. An average number 2S of them merely describes the translational
degrees of freedom of the 2S physical unpaired spins 1/2. However, they lack their spin 1/2 internal degrees of freedom.
Such degrees of freedom are rather located on the 2S sites occupied by the physical unpaired spins 1/2 within the local
configurations whose superposition generates a state.

The spinon representation does not apply for general states with an arbitrary finite density ms = 2S/L = M/L of
unpaired spins 1/2 described by groups of real and complex rapidities. This is because the expressions in Eqs. (71) and
(72) do not account for all contributions to the spin current in Eqs. (67)–(70) of such general states. Indeed, such currents
are not determined by the ‘‘spinons’’ occupancy configurations alone. For such states, a number 2S of holes in each n band
for which Nn > 0 contributes to the spin current. And this applies to all n > 1 bands with finite n-pseudoparticle occupancy.
Hence the spinon representation is in this general case replaced by the extended n-bands hole representation considered in
Section 3.4. For it, the expressions in Eqs. (71) and (72) that only involve n = 1 band holes are replaced by those given in
Eqs. (67)–(70).

An extreme example refers to the LWSs whose Π = L/2 − S singlet pairs are all bound within a single gigantic
n = Π = L/2 − S pairs-configuration. The spin current ⟨ĴzLWS(lr, S)⟩ = −2J sin qj of these LWSs stems entirely from the
2S holes in the n = Π = L/2 − S band. Specifically, it results from their motion upon exchanging position with the single
gigantic pseudoparticle of momentum qj. This spin current has thus no contribution whatsoever from the holes in the n = 1
band. Indeed they do not exist because N1 = 0 for such states.

3.6. The n = 1 band pseudoparticles quantum liquid

For a LWS ground state the n-band limiting values q±
n in Eq. (59) and Eq. (B.3) of Appendix B are given by,

q±

1 = ±
π

L
(L1 − 1) = ±kF↑ and q±

n = ±
π

L
(Ln − 1) = ±(kF↑ − kF↓) for n > 1 . (73)

Here,

kF↑ =
π

2L
(L + 2S − 2) ≈

π

2
(1 + m) and kF↓ =

π

2L
(L − 2S − 2) ≈

π

2
(1 − m) . (74)

Furthermore, for such a ground state the n-pseudoparticle momentum distribution functions in Eq. (58), read,

N0
1 (qj) = θ (qF − |qj|) and N0

n (qj) = 0 for n > 1 . (75)

The n = 1 band Fermi momentum appearing here is given by,

qF = kF↓ =
π

2L
(L − 2S − 2) ≈

π

2
(1 − m) . (76)

Ground states are not populated by n-pseudoparticles forwhich n > 1. In the case of the n = 1 band,within the TL one can
classify the deviations δN1(qj) in Eq. (77) as δNF

1 (qj) and δN
NF
1 (qj), respectively. On the one hand, for the deviations δNF

1 (qj) the
bandmomentum qj is such that limL→∞(|qj|−kF↓) = 0. On the other hand, in the case of δNNF

1 (qj) themomentum difference
limL→∞(|qj|−kF↓) remains finite in the TL. PSs are in the present model subspaces spanned by a ground state and its excited
energy eigenstates with pseudoparticle overall deviations such that

∑L1
j=1|δN

NF
1 (qj)|/L → 0 and

∑
∞

n=2
∑Ln

j=1|δNn(qj)|/L → 0
as L → ∞.

From the use of expansions in the deviations δNn(qj) = Nn(qj) − N0
n (qj) in the TBA equations, Eq. (58), and energy

eigenvalues, Eq. (63), the excitation energy δE = Ef − EGS of PS excited states is up to O(1/L) order found to be given
by,

δE =

∞∑
n=1

Ln∑
j=1

εn(qj)δNn(qj) +
1
L

∞∑
n=1

∞∑
n′=1

Ln∑
j=1

Ln′∑
j′=1

1
2
fn n′ (qj, qj′ ) δNn(qj)δNn′ (qj′ ) . (77)

This n-pseudoparticle energy functional resembles that of the low-energy Fermi liquid. The main difference is that in a
Fermi liquid the quasiparticles undergo zero-momentum forward-scattering interactions only at low energies. In contrast,
due to the present spin chain integrability, the n-pseudoparticle undergo zero-momentum forward-scattering interactions
at all energy scales. This is why the energy functional, Eq. (77), applies at all energy scales.

The only restriction to the applicability of the n-pseudoparticle energy functional, Eq. (77), is associated with the PS
definition. It is thus such that within the TL the deviations δNNF

1 (qj) and δNn(qj) for n > 1 involve a finite number of
n-pseudoparticles. This implies that,

lim
L→∞

(∑L1
j=1|δN

NF
1 (qj)| +

∑
∞

n=2
∑Ln

j=1|δNn(qj)|
)

L
→ 0 . (78)
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The n-pseudoparticles introduced in Section 3.3 have internal degrees of freedom. Those refer to a n-pairs configuration
within which n = 2, . . . ,∞ singlet pairs of 2n physical spins 1/2 are bound when n > 1. For n = 1 they refer to a
single singlet pair. The energy eigenstates 2Π = L − 2S paired spins 1/2 that participate in singlet configurations are
not free particles. Indeed, they interact through the Hamiltonian first-neighboring exchange interactions, Eq. (51). All their
Π = (L − 2S)/2 singlet pairs are actually bound within (n > 1) or part of (n = 1) such states N =

∑
∞

n=1Nn composite
pseudoparticles. Within the corresponding pseudoparticle representation, this refers to the XXX chain physical spins 1/2
rather than to the usual spinons. Within it, the paired physical spins 1/2 exchange interactions. Those are described by
the pseudoparticles zero-momentum forward-scattering interactions associated with the f function terms in the energy
functional, Eq. (77).

TheM = 2S physical unpaired spins 1/2 left over are those participating in themultiplet configurations. They are not part
of composite n-pseudoparticles and have a free nature. As was discussed in Section 3.5, they singly occupy lattice sites that
play the role of empty sites for the n-pseudoparticles. Such pseudoparticles move along the lattice withmomentum qj, upon
interchanging positionwith the unpaired spins. As reported in that section, the spinons often used as elementary excitations
of the model zero-field ground state, are associated with the TBA n = 1 band holes. Within the present representation, an
average number 2S of such Nh

1 ≥ 2S holes describe the translational degrees of freedom of the M = 2S physical spins 1/2.
This justifies the free fermion nature of the corresponding spinons.

The n-pseudoparticle dispersion εn(qj) in Eq. (77) reads,

εn(qj) = ε0n(qj) + 2nµB h and ε0n(qj) = −
J
n

(
1 + cos kn0(qj) −

∫ π

−π

dk sin k Φ̄1 n(k, kn0(qj))
)
. (79)

Here kn0(qj) denotes the ground-state momentum rapidity kn(qj). The dressed rapidity phase shifts Φ̄n n′ (k, k′) and dressed
momentum phase shiftsΦn n′ (qj, qj′ ) in units of 2π are defined by the following integral equations and relation,

Φ̄n n′ (k, k′) =
1
2π
Θn n′

(
n tan(k/2) − n′ tan(k′/2)

)
−

1
4π

∫ Q

−Q
dk′′

Θ
[1]
n 1

(
n tan(k/2) − tan(k′′/2)

)
cos2(k′′/2)

Φ̄1 n′ (k′′, k′) ,

Φn n′ (qj, qj′ ) = Φ̄n n′ (kn0(qj), k
n′

0 (qj′ )) , (80)

respectively. Here Q = ±k10(±qF ) and Θ
[1]
n n′ (x) is the derivative of the function Θn,n′ (x), Eq. (B.1) of Appendix B given in

Eq. (B.2) of that Appendix.
The f functions in Eq. (77) read,

fn n′ (qj, qj′ ) = vn(qj) 2π Φn n′ (qj, qj′ ) + vn′ (qj′ ) 2π Φn′ n(qj′ , qj) +
v

2π

∑
ι=±

2πΦ1 n(ιqF , qj) 2πΦ1 n′ (ιqF , qj′ ) , (81)

where the group velocities are in the TL given by vn(qj) = vn(q)|qj=q with vn(q) = dεn(q)/dq. Moreover, v ≡ v1(qF ) is the
n = 1 pseudoparticle Fermi velocity.

When defined in general PSs, the spin-1/2 XXX chain is a quantum liquid of n = 1, . . . ,∞ n-pseudoparticle branches.
Such pseudoparticles have residual zero-momentum forward-scattering interactions associated with the term of second
order in the deviations in the energy functional, Eq. (77). At H = 0 the non-Abelian global spin SU(2) symmetry renders
gapless the excited energy eigenstates with n > 1 n-pseudoparticle occupancy. Those are described by groups of real and
complex rapidities. Hence the spin dynamical structure factors have contributions from transitions from the m = 0 ground
state to these excited states.

Turning on the magnetic field H , drives the system into m ̸= 0 PSs. For them there emerges an energy gap ∆s between
the m ̸= 0 ground state and its excited states described by groups of real and complex rapidities. Its minimum value
reads ∆min

s = ε2(0). For H > 0 the Hamiltonian term 2µB H
∑L

j=1Ŝ
z
j in Eq. (51) does not commute with the global spin

SU(2) symmetry off-diagonal generators. Hence for excitation energy below this energy gap the physics is that of a U(1)
symmetry quantum problem. Its states are described only by groups of real rapidities, as in the case of the 1D Lieb–Liniger
Bose gas. Consequently, for a finite magnetic field, H > 0, the model static and low-temperature properties are determined
by excitations associated with energy eigenstates with finite n-pseudoparticle occupancy N1 = (L− 2S)/2 only in the n = 1
band. The same applies to the leading-order contributions to the longitudinal and transverse spin dynamical structure factors
at finite energy scales below the gap∆s.

The physical quantities considered in the following have the same values both at H = 0 and in the H → 0 limit. We thus
consider finite magnetic fields in the range 0 < H < Hc below the critical magnetic field for fully polarized ferromagnetism
Hc = J/µB. Our following analysis refers to the model in m ̸= 0 PSs. They are spanned by energy eigenstates with finite
n-pseudoparticle occupancy only in the n = 1 band. For simplicity, often the n = 1 pseudoparticles are called pseudoparticles
and their index n = 1 is omitted from most quantities. For instance, the n = 1 band is sometimes in the following called
pseudoparticle band or simply band. Moreover, N1 = Π = (L− 2S)/2, Nh

1 = M = 2S, and L1 = (L+ 2S)/2 for the PSs under
consideration.

Within the TL, the set of j = 1, . . . , (L + 2S)/2 momentum values {qj} in the pseudoparticle band may be replaced by a
continuummomentumvariable, q ∈ [−kF↑, kF↑]. The set of real rapiditiesΛj = Λ(qj), Eq. (57) for n = 1, are then replaced by
a rapidity function,Λ = Λ(q) ∈ [−∞,∞], withΛ(±kF↑) = ±∞. The m ∈ [0, 1] ground states pseudoparticle momentum
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occupancy range is q ∈ [−kF↓, kF↓]. For m > 0 such states are thus populated by band holes for |q| ∈ [kF↓, kF↑]. (The BA
band is full for them = 0 absolute ground state.)

To second order in the band momentum distribution deviations δN(qj) = N(qj)−N0(qj), the energy spectrum functional
of the excited states has for the present subspaces the general form given in Eq. (10) with the summations

∑
∞

j=1 replaced
by
∑(L+2S)/2

j=1 . This is as given in Eq. (10) for the 1D Lieb–Liniger Bose gas. Furthermore, the energy dispersion in the term of
first order in the deviations is now ε(qj) ≡ ε1(qj), Eq. (79) for n = 1. The dispersion ε0(qj) ≡ ε01(qj) controls the spin density
curve as follows,

H(m) = −
ε0(kF↓)
2µB

|m=1−2kF↓
. (82)

This applies to the spin density intervalm ∈ ]0, 1] and thus to the corresponding magnetic-field range H ∈ ]0,Hc ].
The energy dispersions ε(qj) and ε0(qj) have in them → 0 andm → 1 limits the following analytical expressions,

ε(qj) = ε0(qj) = −J
π

2
cos(qj) for m → 0 ,

ε(qj) = −J[cos(qj) − 1] for m → 1 ,

ε0(qj) = −J[cos(qj) + 1] for m → 1 , (83)

respectively. Hence the corresponding group velocity v(q) = dε(q)/dq and Fermi velocity v = v(qF ) have the limiting
behaviors,

v(qj) = J
π

2
sin(qj) and v = J

π

2
for m → 0 ,

v(qj) = J sin(qj) and v = 0 for m → 1 . (84)

Furthermore, in the m → 0 limit, the dressed phase shift 2πΦ(qj, qj′ ) ≡ 2πΦ1 1(qj, qj′ ), Eq. (80) for n = n′
= 1, has in

units of 2π at qj = ι qF = ι kF↓ (where ι = ±) the limiting values,

Φ(ι kF↓, qj) =
ι

2
√
2

for qj ̸= ι kF↓ and Φ(ι kF↓, ι kF↓) =
ι

2
√
2
(3 − 2

√
2) . (85)

In the oppositem → 1 limit it reads in such units,

Φ(qj, qj′ ) =
1
π

arctan
(
1
2

[
tan

(qj
2

)
− tan

(qj′
2

)])
. (86)

The i = 0, 1 ‘‘renormalized’’ Fermi velocities vi have the same general expression as for the 1D Lieb–Liniger Bose gas,
Eq. (17). (Their specific expressions, Eq. (20), apply though only to that model.) The i = 0, 1 dressed phase shift parameters
ξ i in Eq. (20) have also the same general expression, Eq. (18).

For spin density m > 0 the energy gap ∆s between the ground state and the lowest-energy state with n > 1 band
finite n-pseudoparticle occupancy is an increasing function of m. For low temperatures T < ∆s/kB the entropy has the
form given in Eq. (23) with the summation

∑
∞

j=1 replaced by
∑(L+2S)/2

j=1 . Furthermore, the thermal momentum distribution
function deviation δN(qj) has also the same general form as for the 1D Lieb–Liniger Bose gas, Eq. (24). The energy dispersion
is however model dependent. The use of the same procedures as for that gas then leads for spin densities not too nearm = 1
to the following low-temperature specific temperature leading order term,

cV
L

=
kB π
3 v

(kBT ) . (87)

This is the result also reached by conformal field theory [45,46].
The specific-heat expression, Eq. (87), is valid at very low temperatures T ≪ 2µB(Hc − H)/kB for (Hc − H) > 0. On the

one hand, at H = 0 the low-temperature thermal excitations that contribute to the specific heat expression, Eq. (87), are
singlet excited states with n-strings of length n > 1. For zero spin density they refer to gapless branches. On the other hand,
for H > 0 such excited states become gapped. The thermal excitations that contribute to the low-temperature specific heat
are then replaced by singlet excited states. They belong to a gapless branch generated by n = 1 band low-energy and small-
momentum particle–hole processes around that band Fermi points. Such states have no n-strings of length n > 1. For H > 0
the specific heat, Eq. (87), can be expressed in terms of an effective massm∗

= kF↓/v as cV/L = [2kB m∗/3(1 − m)] (kBT ).
The specific-heat expression obtained for H > 0 leads in the H → 0 limit to the correct H = 0 expression. This is in

spite of the H > 0 and H = 0 expressions having contributions from the above two different types of gapless excited-state
branches. In contrast, the specific-heat expression, Eq. (87), is not valid in the m → 1 limit. This is because it does not
describe properly the crossover to the specific heat exponential regime. Such a regime arises due to the gap 2µB(H − Hc) in
the excitation spectrum for H > Hc . Near H = Hc the minimum gap for excited energy eigenstates with n-strings of length
n > 1 reads ∆min

s = 3J . Hence for low temperatures, T < ∆min
s /kB = 3J/kB, the processes contributing to the specific heat

only involve n = 1 n-pseudoparticles and unpaired spins 1/2. At low temperatures the crossover regime involves both the
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above n = 1 band gapless singlet excited states and across-gap excited energy eigenstates generated by elementary triplet
processes.

The term triplet has been used here because the elementary processes under consideration lead to spin deviations
δS = 1 and δS = −1, respectively. Some authors thus associate such elementary processes with creation and annihilation,
respectively, of spin-1 magnons. This is mainly an issue of wording. Nonetheless, as mentioned in Section 3.1, within the
representation of the spin-1/2 XXX chain in terms of its L physical spins 1/2 the configurations of the excited states under
consideration lack the spin-1 magnons as defined for the model on for example the square lattice.

Specifically, within an elementary δS = 1 process a transition from the ground state to an excited state whose minimum
gap is 2µB(Hc − H) for H < Hc occurs. Within it, one singlet pair is broken. As a consequence a deviation δΠ = −1 occurs.
HereΠ is the number of singlet pairs, Eq. (64). That elementary process thus corresponds to the annihilation of one n = 1
n-pseudoparticle. It is thus also associated with a deviation δN1 = −1. The two physical spins 1/2 that emerge from the
broken singlet configuration join the excited statemultiplet configuration. Indeed, two initial-state paired physical spins 1/2
become two final-state unpaired physical spins 1/2. Consistently with the number of unpaired spins 1/2 reading M = 2S,
the emergence of the two unpaired spins 1/2 leads to a deviation δM = 2. It is behind the spin deviation δS = 1. There is a
related deviation, δNh

1 = 2, in the number of holes in the n = 1 band. Such two holes describe the translational degrees of
freedom of the two unpaired physical spins 1/2 that emerge from the singlet-pair breaking.

Similarly, within an elementary δS = −1 process a transition from the ground state to an excited state occurs. Its
minimum gap reads 2µB(H − Hc) for H > Hc . Two unpaired physical spins 1/2 are annihilated and one singlet pair is
created under it. This gives rise to the deviations δΠ = 1, δM = −2, and δS = −1. Within this inverse elementary process,
one n = 1 n-pseudoparticle is thus created, so that δN1 = 1. There is a related deviation δNh

1 = −2 in the number of holes
in the n = 1 band.

Such an analysis confirms that the two opposite elementary triplet processes do not correspond to creation and
annihilation of one spin-1 magnon, respectively, as defined for the spin-1/2 XXX model on for example the square lattice.
Rather, such processes involve the breaking and creation of one singlet pair. Under it two paired physical spins 1/2 are
transformed into two unpaired physical spins 1/2 and vice versa, respectively.

The effect of the temperature T smooths the transition to fully polarized ferromagnetism. Therefore, the spin density
m = 1 is only reached as H → ∞ instead of for H → Hc = J/µB at T = 0. Nevertheless, at low temperatures the
critical magnetic field Hc remains a useful reference parameter. To derive the specific heat in the close neighborhood of
Hc , one uses a thermal momentum distribution function deviation of the general form, Eq. (24). In the present case of
the spin-1/2 XXX chain, the ground-state distribution in it is N0(q) = N0

1 (q), Eq. (75). The n = 1 band energy dispersion
used in such a thermal momentum distribution function deviation is that suitable for spin density m → 1, which reads
ε(q) ≈ q2/(2m∗) − 2µB(Hc − H). The effective triplet mass m∗

= 1/J in its expression refers to the m → 1 limit of the
above general effective massm∗

= kF↓/v. The corresponding thermal excited n = 1 band momentum distribution function
controls the density of singlet pairs in the crossover critical regime. It reads,

Π

L
=

1
2π

∫ π

−π

dq N(q) =
1
2π

∫ π

−π

dq
1

1 + eε(q)/kBT
≈

√
2m∗ kBT
π

∫
∞

0
dx

1

ex
2−

2µB(Hc−H)
kBT + 1

. (88)

Up to first order in 2µB|Hc − H|/kBT ≪ 1 and yet low temperature, one does not need to account for the temperature
dependence of the massm∗ in the above energy dispersion.

One uses the thermal momentum distribution function deviation in the energy functional, Eq. (77). We then find that
before reaching itsmaximummagnitude at a field slightly larger thanHc = J/µB, the low-temperature specific heat behaves
in a small field window 2µB|H − Hc | ≪ kBT around Hc = J/µB as [62],

cV
L

= kB c0

√
m∗ kBT

2

(
c1 + c2

2µB(Hc − H)
kBT

)
for 2µB|H − Hc | ≪ kBT . (89)

Here,

c0 =
(
√
2 − 1)
4π

; c1 = 3
√
2Γ (3/2)ζ (3/2) ; c2 = Γ (1/2)ζ (1/2) . (90)

Γ (x) and ζ (x) are in this equation the usual gamma and Riemann zeta functions, respectively. The specific heat expression,
Eq. (89), cannot be derived within conformal-field theory. For larger fields, H ≫ Hc + kBT/(2µB), the specific heat vanishes
exponentially, cV/L ∝ e−2µB(H−Hc )/(kBT ).

In the crossover regime defined by Eq. (89), both the gapless and across-gap channels associated with singlet excitations
and excitations generated by elementary spin-triplet processes, respectively, are thermally active. That equation is only valid
for a very narrow region around Hc . In Appendix D it is shown that in the 2µB|H − Hc | ≪ kBT limit in which that equation
is valid it is exactly that obtained by expanding up to first order in 2µB|H − Hc |/(kBT ) the general scaling function of the
specific heat derived in Ref. [206].

Procedures that resemble those of a Fermi liquid allow as well the derivation of static quantities. For instance, in
Appendix E such a type of procedures is used to show that the spin susceptibility, χ = 2µB/(∂h(m)/∂m), is fully controlled
by the renormalized velocity v0. Similarly to Eqs. (17) and (18) for the Bose gas, vi = v +

1
2π

∑
ι=±

(ι)i f (kF↓, ιkF↓) = v (ξ i)2
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Fig. 6. (a) The inverse spin susceptibility χ−1 and (b) the spin stiffness D given in Eq. (91) as functions of the spin density.
Source: From Ref. [62].

and ξ i = 1 + Φ(kF↓, kF↓) + (−1)iΦ(kF↓,−kF↓) where i = 0, 1, v ≡ v1(kF↓), f ≡ f1 1, and Φ ≡ Φ1 1. The zero-temperature
spin stiffness D in the real part of the spin conductivity Drude peak, 2π D δ(ω), is in that Appendix shown to be controlled
by the renormalized velocity v1. D > 0 means physically the occurrence of spin ballistic transport.

The spin susceptibility and zero-temperature spin stiffness are in Appendix E found to read,

χ =
4µ2

B

π

1
v0

and D =
2v1
π
, (91)

respectively.
In the m → 0 limit the spin stiffness expression in Eq. (91) recovers the stiffness found in Ref. [177]. The inverse spin

susceptibility χ−1 in units of µB = 1 and J = 1 and spin stiffness D in units of J = 1 are plotted in Fig. 6(a) and (b),
respectively, as a function of the spin density form ∈ [0, 1] [62].

3.7. The spin-1/2 XXX chain longitudinal and transverse dynamical structure factors in the vicinity of their lower thresholds

The dynamical structure factors are controlled by matrix elements of spin operators between energy eigenstates. At zero
magnetic field this includes states described by groups of real and complex rapidities. Such states have more than two
holes in the n = 1 band. Within the conventional spinon representation they are often called multi-spinon states. An early
construction to study the zero-field dynamical structure factor is based on exact results for the simpler XYmodel, numerical
computations on small chains, and known sum rules [114]. It combines rather accurate reproduction of a number of features
with its simplicity. It leads to the exact square root singularity at the lower threshold of the spectrum. Such a construction
is commonly used in the interpretation of experimental data. However some of the expressions obtained within it are not
exact. An example is the functional form at the top of the two n = 1 band holes continuum, usually called two-spinon
continuum.

Mapping the infinite chain onto a relativistic quantum field theory is another successful important scheme [42,43,207].
The connection of the critical exponents of the system with its behavior in a finite volume is achieved by finite-size
scaling [45,46]. Conformal field theory [208,209] and bosonization allow the calculation of asymptotics of correlation
functions [210,211]. This includes known normalizations for the first few leading terms in the operator expansion
[212–214]. Many studies of the dynamical structure factors in the XXX chain refer to finite systems. Those rely on numerical
diagonalizations [215], evaluation of matrix elements between BA states [114,216,217], and the form-factor method [218].
The latter method specifically relies on determinant representations for matrix elements of local spin operators. They are
obtained by solving the quantum inverse problem [219–221]. The form-factor method applies to the spin-1/2 XXZ chain,
Eq. (50). It provides the dynamical structure factor over the whole Brillouin zone [196,198].

The isotropic ∆ = 1 model, Eq. (51), considered here poses the most challenging technical problems for theory. This is
because at zero magnetic field the contributions from states described by groups of real and complex rapidities with more
than two holes in the n = 1 band (multi-spinon states) must be accounted for. Indeed, at zero field the energy spectrum
of such states is gapless. As shown in Ref. [198], for anisotropy parameter ∆ ∈ [0, 0.8] in Eq. (50) and zero magnetic field
nearly the whole integrated spectral weight of the dynamical structure factor stems from excited states with two holes
in the n = 1 band. Those are usually designated by two-spinon BA excitations. Such states are technically simpler to
handle. However, as ∆ increases from 0.8 to 1.0, the excited states with four holes in the n = 1 band (often called four-
spinon excitations) contribute increasingly as ∆ → 1. This also increases the complexity of the quantum problem under
consideration. Specifically, in that limit the contributions to it from the S = 1 and Sz = 0 excited states with two holes in
the n = 1 band correspond to a relative integrated intensity of≈ 0.75 [193]. If in addition one accounts for the contributions
from S = 1 and Sz = 0 excited states with four holes in the n = 1 band, the total integrated intensity increases to ≈ 0.99.
Nonetheless, all the singularities in the dynamical structure factor are determined by contributions from excited states with
two holes in the n = 1 band.
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The spin dynamical structure factors have been extensively studied in the case of zero magnetic field [114,193–198]. For
instance, the square root singularity at the lower threshold exponent −1/2 can be shown from purely phenomenological
considerations to be fixed at zero field by the spin SU(2) symmetry invariance alone [197]. In the following we revisit
the longitudinal and transverse spin dynamical structure factors for the less studied case of finite magnetic field. The
investigations of Refs. [221,222] on the finite-field dynamical structure factors refer mostly to anisotropy parameter∆ < 1
in Eq. (50). The line shape in the vicinity of the dynamical structure factor thresholds was predicted in Ref. [222] to be
controlled by momentum dependent exponents. Those have been explicitly obtained for the spin-1/2 XXX chain in Ref. [62].

At finite magnetic field the longitudinal and transverse spin dynamical structure factors are different objects. Contribu-
tions to such dynamical factors from transitions from the ground state to excited states described by groups of real and
complex rapidities are gapped for finite magnetic field. Such states are populated by n-pseudoparticles for which n > 1.
Their energy gap is for the spin density values considered in the following larger than themaximum lower threshold energy.
Moreover, except for very small fields H , these excitations have nearly vanishing spectral weight. For instance, at m = 0.5
their contributions correspond to a relative intensity of about 3 × 10−7 for anisotropy parameter ∆ = 0.3 and 4 × 10−7

for∆ = 0.7 [221]. The estimated relative intensity obtained from the extrapolation of these results to∆ = 1 spin-1/2 XXX
chain is not larger than 10−6.

For simplicity, our study focuses mainly on the spin density m > 0.15 range. For it the contribution from excited states
populated by n-pseudoparticles with n > 1 is negligible. Their energy gap is actually larger than the maximum lower
threshold energy. Hence in the following we limit our analysis to finite-field subspaces spanned by energy eigenstates that
are not populated by n-pseudoparticles with n > 1. The studies of Ref. [223] reveal that for the spin densitym < 0.15 range,
not considered here, decreasing themagnetic field H increases the amount of the spectral weight in the dynamical structure
factor S+−(k, ω) considered below. Such a weight stems from transitions to excited states populated by both n = 1 and
n = 2 n-pseudoparticles.

As in the case of the 1D Lieb–Liniger Bose gas, the pseudoparticles can be transformed into pseudofermions. This is
achieved by means of a suitable shift of their discrete momentum values. The n-pseudofermions have exactly the same
internal degrees of freedom as the corresponding n-pseudoparticles. Indeed, they differ only in the discrete momentum
values q̄j and qj, respectively. Those are associated with their center of mass motion. In the following we use the
pseudofermion representation and corresponding PDT [62] to study the line shape of the longitudinal and transverse spin
dynamical structure factors in the vicinity of their lower thresholds. As in the case of the 1D Bose gas, such a representation
is particularly suitable to the study of high-energy dynamical correlation functions.

In the m ̸= 0 PSs considered in Section 3.6, the 1D Lieb–Liniger Bose gas rapidity expression, Eq. (32), is to be replaced
byΛ(qj) = Λ0(q̄j). All quantities and corresponding expressions given in Eqs. (33)–(37) for that model remain valid for the
spin-1/2 XXX chain. This holds true though provided that in such expressions the dressed phase shift 2πΦ(qj, qj′ ) is now the
pseudofermion phase shift 2πΦ(qj, qj′ ) ≡ 2πΦ1 1(qj, qj′ ), Eq. (80) for n = n′

= 1. Moreover, the energy dispersion ε(q̄j) in
Eq. (35) has exactly the same form as ε(qj) ≡ ε1(qj), Eq. (79) for n = 1, but with the momentum qj replaced by the
corresponding canonical momentum, q̄j = q̄(qj).

The longitudinal and transverse spin dynamical structure factors can be written as,

Saa(k, ω) =

∑
f

|⟨f |Ŝak |GS⟩|
2
δ(ω − ωτ (k)) . (92)

Here a = x, y, z and ωτ (k) = Eτf − EGS is the excitation energy. Thus Eτf refers to the energies of the excited states that
contribute to the longitudinal τ = l and transverse τ = t dynamical structure factors and EGS is the initial ground state
energy. Moreover, Ŝak are in Eq. (92) the Fourier transforms of the usual local a = x, y, z spin operators Ŝaj , respectively.

In the following we often use the classification of Ref. [114], according to which class (i) and class (ii) excitations are (i)
non-LWSs and non-HWSs such that |Sz | < S and (ii) LWSs or/and HWSs such that |Sz | = S, respectively.

In the case of the longitudinal dynamical structure factor Szz(k, ω), the exact line shape in the vicinity of its lower
thresholds is within the PDT determined by transitions to excited states that are generated from the H > 0 ground state
by high-energy one pseudofermion particle–hole elementary processes. Those conserve the number L−1/2 of spins 1/2 of
projection −1/2 [62]. The corresponding energy spectrum, ωl(k) = ωl(−k), is for spin densities in the interval m ∈ ]0, 1] in
which the subintervalm ∈ [0.15, 1] considered here is contained of the form,

ωl(k) = −ε(q1) + ε(q2) for k = q2 − q1 ∈ [0, π] . (93)

Here ε(q) is the energy dispersion, Eq. (79) for n = 1, q1 ∈ [−kF↓, kF↓], and q2 ∈ [kF↓, kF↑]. The longitudinal dynamical
structure factor line shape is determined within the PDT by a set of elementary pseudofermion particle–hole processes of
momentum k = ι (2π/L) and energy ω ≈ ι v k Such processes occur in the vicinity of the two ι = ± Fermi points and dress
the high-energy one-pseudofermion particle–hole processes.

For the transverse dynamical structure factor,

Sxx(k, ω) =
1
4

[
S+−(k, ω) + S−+(k, ω)

]
, (94)

one must consider the transitions to excited states that determine the line shape in the vicinity of the lower thresholds of
both the dynamical structure factors S+−(k, ω) and S−+(k, ω), respectively. Indeed, the corresponding transverse dynamical
structure factor spectrum ωt (k), is here expressed as the superposition of the spectra ω+−(k) and ω−+(k).
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The spectra ω±∓(k) refer to excited states that are generated from the H > 0 ground state by high-energy elementary
processes. Those conserve the number L−1/2 of spins 1/2 of projection −1/2. Such states are generated in addition by zero-
energy processes that involve a δL−1/2 = ±1 deviation. The latter processes lead as well to a related δNF

ι = ±1 deviation
at the ι = ± Fermi points and an overall band momentum shift δqj = ∓ιπ/L [62]. Here δNF

ι is the pseudoparticle number
deviation at the ι = ± Fermi points. The overall zero-energy processes under consideration are a net zero-momentum
process. The high-energy elementary processes associated with the spectra ω+−(k) and ω−+(k) are in terms of n = 1 band
occupancies, one two-hole elementary processes and one pseudofermion particle–hole elementary processes, respectively.

Hence for spin densitiesm ∈ ]0, 1] (and thusm ∈ [0.15, 1]) such spectra read,

ω+−(k) = −ε(q1) − ε(q2) for k = π − q1 − q2 ∈ [0, π] ;

ω−+(k) = ε(q2) − ε(q1) for k = π + q2 − q1 ∈ [0, π] . (95)

Here q1 ∈ [−kF↓, kF↓] for both spectra, q2 ∈ [−kF↑, kF↓] for the +− spectrum, and q2 ∈ [−kF↓,−kF↓] for the −+ spectrum.
The line shape of the transverse dynamical structure factor is within the PDT also determined by a set of elementary
pseudofermion particle–hole processes in the vicinity of the two ι = ± Fermi points. Such processes dress the above
mentioned high- and zero-energy elementary processes.

A particle (and hole) branch line is a spectral feature that within the PDT is generated by high-energy elementary
processes. One pseudofermion (and pseudofermion hole) is under them created outside the Fermi points. Such processes
are dressed by pseudofermion particle–hole processes in the vicinity of such points. If the transition to the excited states
involves creation or annihilation of other pseudofermions, in the case of a branch line it occurs at the ι = ± Fermi points.
For both spin densities m → 0 and m > 0.15, the lower threshold of ωl(k) (and ωt (k)) coincides with a hole branch line for
k ∈ [0, 2kF↓] (and k ∈ [π − 2kF↓, π]) and with a particle branch line for k ∈ [2kF↓, π] (and k ∈ [0, π − 2kF↓]).

The use of the PDT reveals that the lower threshold singularities of Sxx(k, ω) are those of S−+(k, ω) near the particle
branch line. Near the hole branch line they are those of S+−(k, ω). Accounting for ε(±kF↓) = 0, the longitudinal Szz(k, ω) and
transverse Sxx(k, ω) hole branch lines spectra can be expressed as,

ωτh (k) = −ε(q) for τ = l, t ,
k = kF↓ − q ∈ [0, 2kF↓] for τ = l ,

k = π − kF↓ − q ∈ [π − 2kF↓, π] for τ = t . (96)

Here q ∈ [−kF↓, kF↓]. The corresponding particle branch lines spectra read,

ωτp (k) = ε(q) for τ = l, t ,
k = kF↓ + q ∈ [2kF↓, π] for τ = l ,

k = π − kF↓ + q ∈ [0, π − 2kF↓] for τ = t , (97)

with q ∈ [kF↓, kF↑] and q ∈ [−kF↑,−kF↓] for the l and t particle branch lines, respectively.
In the present case of the longitudinal and transverse dynamical structure factors, the use of the PDT suitable to the

spin-1/2 XXX chain leads to the following high-energy line shape valid for small energy deviations (ω − ωτ (k)) > 0
[62],

Saa(k, ω) = Cτ (ω − ωτ (k))ξτ (k) for k ∈ [0, π] where ξτ (k) = −1 +

∑
ι=±

2∆ιτ (q) . (98)

In this equation, a = z for τ = l, a = x for τ = t , and Cτ is a coefficient whose value remains unchanged in the range of
small energy deviations (ω − ωτ (k)) > 0 for which the present expression is valid. The q ranges are related to those of the
physical momentum k as q = kF↓ − k and q = −kF↓ + k for the Szz(k, ω) hole and particle branch lines, respectively. For the
hole and particle branch line of Sxx(k, ω) one has that q = π − kF↓ − k and q = −π + kF↓ + k, respectively. Moreover, the
functionals 2∆ιτ (q) in Eq. (98) are the square of the pseudofermion ι = ± Fermi points deviations (δq̄ιF/(2π/L))

2, Eq. (37),
specific to the present excitations. Those are given by [62],

2∆ιl(q) =

(
(ξ 1)2 − ι c

2ξ 1
+ c Φ(ιkF↓, q)

)2

and 2∆ιt (q) =

(
ξ 1

2
+ c Φ(ιkF↓, q)

)2

, (99)

respectively. Here q ∈ [−kF↓, kF↓] for c = −1 and τ = l, t , q ∈ [kF↓, kF↑] for c = 1 and τ = l, and q ∈ [−kF↑,−kF↓] for
c = 1 and τ = t . The band momentum q is related to the physical excitation momentum k as given in Eqs. (96) and (97).

The longitudinal spectrumωl(k), Eq. (93), and the transverse spectrumωt (k) that results from combination of the spectra
ω+−(k) and ω−+(k), Eq. (95), along with the corresponding exponents ξ l(k) and ξ t (k), respectively, given in Eq. (98), are
plotted in Fig. 7 for spin densities (a)m = 0.16 and (b)m = 0.25. In Fig. 8 they are plotted for (a)m = 0.30 and (b)m = 0.50
and in Fig. 9 for (a)m = 0.75 and (b)m = 0.99. On the one hand, the exponent ξ l(k) is negative for k > 0 at anym value. On
the other hand, the exponent ξ t (k) is negative for am-dependent range k ∈ [kt , π]. Here kt increases from kt = 0 form → 0
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Fig. 7. Two upper panels of each sub-figure (a) and (b): The spectra ωl(k) and ωt (k) for spin densities (a) m = 0.16 and (b) m = 0.25. Lower panels: The
exponents ξ l(k) and ξ t (k), Eq. (98), that control the singularities in the vicinity of the lower thresholds of the spectra also plotted here as a function of
k ∈ [0, π].
Source: From Ref. [62].

Fig. 8. The same quantities as in Fig. 7 for spin densities (a)m = 0.30 and (b)m = 0.50.
Source: From Ref. [62].

to,

kt = −2 arctan
(
1
2
tan

(
π
√
2

))
≈ 0.37π , (100)

form → 1. The latter limit refers to Fig. 9(b).
In them → 0 limit, the spectra ωl(k), Eq. (93), and ω+−(k), Eq. (95), plotted in Figs. 7–9 reduce to their lower thresholds.

At finite m, the thresholds of these two spectra correspond to different (k, ω)-plane lines. As m → 0 they become the same
(k, ω)-plane line. For finitem values the lower threshold of the spectrum ω+−(k), Eq. (95), coincides with that of ω−+(k) for
k ∈ [π − 2kF↓, π]. For k ∈ [0, π − 2kF↓] it does not exist. In the m → 0 limit the lower threshold of the spectrum ω+−(k)
extends to the whole k ∈ [0, π] range. In that limit it coincides with those of ωl(k) and ω−+(k). However, in contrast to the
latter spectra, ω+−(k) does not reduce in that limit to its lower threshold. The spectrum of the class (ii) two-hole excitations
described by groups of real and complex rapidities is gapped for m > 0. However, in the m → 0 limit it becomes gapless
and degenerate with that of ω−+(k).

For the ranges of the momentum k for which the exponent ξτ (k) is negative, there are lower threshold singularity cusps
in Saa(k, ω), Eq. (98). Those are detectable as large intensity peaks in experiments. Hence analysis of Figs. 7–9 provides
valuable information on the k ranges for which there are singularities in the lower thresholds of the dynamical structure
factors Szz(k, ω) and Sxx(k, ω) = Syy(k, ω).

In the m → 0 limit, both the τ = l, t lower thresholds ωτL (k) coincide with the hole branch line for all k values. In that
limit the corresponding exponents ξτ (k) are given by ξτ (k) = −1/2 for all k values, i.e.,

Szz(k, ω) = Sxx(k, ω) = C0 (ω − ω0(k))−1/2 , (101)

for m → 0 and k ∈ [0, π]. Here C0
= C l

= C t and the lower thresholds ωl(k) = ωt (k) = ω0(k) coincide with that of the
m = 0 two-hole spectrum. Consistently, ξτ (k) = −1/2 is also the value of the known exponent that controls the line shape
in the vicinity of the lower threshold of the latter spectrum [193–198].
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Fig. 9. The same quantities as in Figs. 7 and 8 for spin densities (a)m = 0.75 and (b)m = 0.99. Note that the spin densitym = 0.99 approaches them → 1
limit within which the spectra ωl(k) and ωt (k) become a single line.
Source: From Ref. [62].

In the opposite limit, m → 1, the lower thresholds ωτ (k) coincide with the particle branch line for all k values. The
corresponding τ = l, t exponents are given by,

ξ l(k) = 2Φ(0, k)[1 +Φ(0, k)] and ξ t (k) = −1/2 + 2Φ(0, k − π )[1 +Φ(0, k − π )] . (102)

Here the phase shift in units of 2π is a particular case of that given in Eq. (86). It reads,

Φ(0, q) = −
1
π

arctan
(
1
2
tan

( q
2

))
. (103)

In this limit, ξ l(k) = 0 and ξ t (k) = 1 for k → 0. The values decrease to ξ l(k) = −1/2 and ξ t (k) = −1/2 for k → π .
The corresponding m → 1 behaviors refer to a small but finite L−1/2/L ratio. Using the expression for the exponent ξ t (k) in
Eq. (102) leads straightforwardly to the value of the momentum kt shown in Eq. (100), which is reached in them → 1 limit.

Note though that Szz(k, ω) → 0 as H → Hc in the TL [62,114]. The two-component Sxx(k, ω) and Szz(k, ω) dynamical
structure factor is then dominated by Sxx(k, ω). At H = Hc , the expression given in Eq. (98) is replaced by a δ-function like
distribution,

Sxx(k, ω) =
π

2
δ (ω − J(1 + cos k)) for k ∈ [0, π] , (104)

for αα = xx and by Szz(k, ω) = 0 for αα = zz.
The exponent ξτ (k) given in Eq. (98) does not apply near theω = 0 lower threshold (k, ω)-plane softmodes. Examples are

(kτ0, 0) where kl0 = 2kF↓ and kt0 = π − 2kF↓. In this case the PDT reaches the same results as conformal-field theory [45,46].
Indeed, near them the two ι = ± functionals, Eq. (194), become the conformal dimensions of the ι = ± fields [181] given
by 2∆ιl = (ξ 1)2 and 2∆ιt = (±ι/(2ξ 1)− ξ 1)2. The PDT provides the corresponding low-energy Saa(k, ω) behavior [62,181]. It
is the same as that obtainable from conformal-field theory [45,46,176,224,225].

An experimental possibility is the potential observation of the theoretically predicted dynamical structure factors peaks
in inelastic neutron scattering experiments on actual spin-chain compounds. The dynamical structure factors Szz(k, ω) and
Sxx(k, ω) may be investigated separately in H > 0 experiments on spin-chain compounds by using a carefully oriented
crystal. If the crystal is missoriented, or if a micro crystalline sample is used, the Szz(k, ω) and Sxx(k, ω) spectral features
should appear superimposed. Such superimposition changes the excitations lower thresholds. It leads in addition to the
broadening of the singularities, Eq. (98). However, this does not occur at H = 0, since Szz(k, ω) = Sxx(k, ω).

These two different situations are clearly seen in the magnetic scattering intensity measured at zero- and finite-field
inelastic neutron scattering experiments of Ref. [136], respectively, on Cu(C4H4N2)(NO3)2. On the one hand, in Figs. 2(a)–(c)
of that reference the theoretically predicted sharp cusps at zero-field, Eq. (101), are clearly seen at different k values. On the
other hand, the Szz(k, ω) ̸= Sxx(k, ω) spectral features appear superimposed in the finite-field Figs. 2(d)–(f) of that reference.
Therefore, only at k ≈ π is the theoretically predicted sharp cusp clearly visible.

More demanding H > 0 experiments with a carefully oriented crystal to be carried out on Cu(C4H4N2)(NO3)2 and other
spin-chain compounds should yielding separately Szz(k, ω) and Sxx(k, ω). The corresponding magnetic scattering intensities
are expected to display the cusp singularities found theoretically reported here.

3.8. Outlook of the relation between the model physical spins-1/2 and the n pseudoparticles/n pseudofermions and corresponding
n-band holes

The spin-1/2 XXX chain non-Abelian global spin SU(2) symmetry has direct effects on its degrees of freedom. It gives rise
to a type of solutions of the BA equation, Eq. (58), in terms of groups of both real and complex rapidities. The latter do not
exist for the simpler U(1) symmetry 1D Lieb–Liniger Bose gas.



34 J.M.P. Carmelo, P.D. Sacramento / Physics Reports 749 (2018) 1–90

For each energy and momentum eigenstate, out of the model physical L spins 1/2, there are M = 2S unpaired spins that
contribute to itsmultiplet configuration. There are in addition 2Π = L−2S paired spins that are boundwithinΠ ≡ (L−2S)/2
singlet pairs. The degrees of freedom of such singlet pairs are distributed over a set {Nn} of n-pairs configurations. Here
Nn denotes the number of n-pairs configurations within which n = 1, . . . ,∞ singlet pairs are bound. The n = 1 pair
configurations contain a single singlet pair that remains unbound.

As in the case of the 1D Lieb–Liniger Bose gas, the problem is non-perturbative. Indeed, a spin-flip decays into a collective
excitation that involves all pseudoparticles/pseudofermions. This follows from the boundary conditions, Eqs. (55) and (60).
In contrast to the pseudoparticles of that Bose gas, for the spin-chain all n-pseudoparticles have internal degrees of freedom.
Those are associated with such composite pseudoparticles n-pairs configurations and the corresponding n = 1, . . . ,∞
singlet pairs that for n > 1 are boundwithin them. The n-pseudofermions have exactly the same internal degrees of freedom
as the n-pseudoparticles. They differ from them in the discretemomentumvalues q̄j and qj, respectively. Those are associated
with the translational degrees of freedom center of mass motion.

On the one hand, the Π = (L − 2S)/2 singlet pairs that contain the 2Π = L − 2S physical paired spins 1/2 are bound
within the N =

∑
nNn pseudoparticles/pseudofermions. This is consistent with the sum rule Π =

∑
n2nNn. On the other

hand, the translational degrees of freedom of the M = 2S physical unpaired spins are on average described by 2S holes out
of the Nh

n = 2S + Nh,0
n holes in each n-band for which Nn > 0. The additional Nh,0

n holes occurring in states described by
groups of real and complex rapidities have a specific goal. It is to ensure that the number of TBA energy and momentum
eigenstates that span each fixed-S subspace, Eq. (C.2) of Appendix C, exactly equals the corresponding number of spin SU(2)
state representations, Eq. (C.1) of that Appendix. The relation of the usual spinon representation for the model in well-
defined subspaces to the more general n-bands hole representation for the spin-1/2 XXX chain in its full Hilbert space has
been discussed and clarified.

Within the n-pseudoparticle/n-pseudofermion representations the spin-chain physics simplifies. Within them both the
static and dynamical properties are controlled by pseudofermion scattering and corresponding phase shifts. A further
simplification occurs for the model in m ̸= 0 PSs for which there is an energy gap ∆s between the m ̸= 0 ground state
and its excited states described by groups of real and complex rapidities. For excitation energy below this gap, the physics
is that of a U(1) symmetry quantum problem. Its states are described only by groups of real rapidities, as in the case of the
1D Lieb–Liniger Bose gas. Specifically, it is a quantum liquid of n = 1 pair composite pseudoparticles, which play the same
role as the pseudoparticles of that simpler gas.

4. The 1D Hubbard model: emergent fractionalized particles from rotated electrons

The 1DHubbardmodel is an integrablemany-body problem that in spite of beingmore complex than the 1D Lieb–Liniger
Bose gas and spin-1/2 XXX chain has some common properties with both such systems. In this section, an introductory
short summary of the 1D Hubbard model development since its coordinate BA solution by Lieb and Wu in 1968 [69,70] is
presented. In addition, a uniquely defined unitary operator that transforms electrons into rotated electrons for u = U/4t > 0
is considered. Such rotated electrons have the same charge and spin 1/2 as the electrons. Only their lattice occupancy
configurations and corresponding lattice degrees of freedom differ from those of the electrons. Three basic fractionalized
particles are introduced. They naturally emerge from the rotated electrons degrees of freedom separation. The relation of
the model fractionalized particles and related exotic composite particles to the electrons is clarified.

4.1. The 1D Hubbard model: a short summary of its development

Upon the 1DHubbardmodel solution in 1968 by the coordinate BA [69,70], its ground state energywas derived.Moreover,
the pioneering study reported in Ref. [69] revealed that the model undergoes a Mott metal–insulator transition at density
ne = Ne/L = 1 whose corresponding critical onsite interaction is U = 0. Following that solution, the ground state
properties [226–228] and the excitation spectrum [71,74,118,119,229–231] were studied by several authors. This applies
as well to the preliminary version of the model pseudoparticle representation of the BA solution reviewed here [89–102].

In 1972 the TBA and corresponding ideal strings have been proposed in Ref. [73] for the 1D Hubbard model. This has
allowed the study of the model thermodynamic properties [232,233]. The energy spectra of its elementary excitations can
be obtained from the TBA equations in the zero temperature limit [132]. As in the case of the spin-1/2 XXX chain, the use of
the TBA has in the TL extended the number of pseudoparticle branches from two to infinite. This ensures that their occupancy
configurations generate all the model 4L energy and momentum eigenstates [99,103–105].

An important property of the 1D Hubbard model is that its spectrum becomes conformally invariant in the low-energy
limit. The corresponding finite-size corrections were obtained in Refs. [234,235]. The relation between the finite-size
spectrum and the asymptotic behavior of correlation functions was used to calculate the critical exponents of the model
general two-point correlation functions [224,225]. The corresponding conformal dimensions have been expressed in terms
of dressed phase shifts associated with the pseudoparticle representation [90,91].

The conformal approach is not applicable to the zero-temperature model Mott insulating phase at half filling. In the
small-U and scaling limits, dynamical correlation functions at low energies [236–239] can though be computed relying
on methods of integrable quantum field theory [240–242]. Moreover, at half-filling and zero spin density the 1D Hubbard
model TBA dressed phase shifts and corresponding S-matrices have been associated with particles called holon, antiholon,
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and spinon. The holon and antiholon have zero spin and charge +e and −e, respectively. The spinon has been inherently
constructed to have no charge and to have spin 1/2 [66,67]. The model SO(4) symmetry group state representations were
identified with occupancy configurations of such particles.

More recently it was found in Ref. [147] that for u ̸= 0 the 1D Hubbard model global symmetry is actually larger than
SO(4) and given by [SO(4)⊗U(1)]/Z2. (This applies aswell to themodel on any bipartite lattice.) As further discussed below, in
the case of the model full Hilbert space all energy eigenstates can be generated by pseudoparticle occupancy configurations.
Those refer to the state representations of the model [SO(4) ⊗ U(1)]/Z2 symmetry group.

Thewave functions of the energy eigenstates can be extracted from the coordinate BA solution. An explicit representation
for the wave functions was given in Ref. [118]. The corresponding energy and momentum eigenstates are either LWSs or
HWSs [243,244] with respect to the model Hamiltonian SO(4) symmetry in [SO(4)⊗U(1)]/Z2 [143–146]. The non-LWSs can
be generated from the LWSs, which confirmed the quantum problem completeness [245].

The first steps to obtain the BA solution of the 1D Hubbard model by the quantum inverse scattering method were made
in Refs. [120–122]. The model Hamiltonian was mapped under a Jordan–Wigner transformation into a spin Hamiltonian.
It commutes with the transfer matrix of a related covering vertex model [120]. The R-matrix of the spin model was also
derived [121,122]. Alternative derivations were carried out by several authors [123–125]. The R-matrix was later shown to
satisfy the Yang–Baxter equation [126].

An algebraic BA having as starting point the results of Refs. [120–122] was afterwards constructed in Refs. [127,128]
for the 1D Hubbard model. Consistently with the model [SO(4) ⊗ U(1)]/Z2 symmetry, the corresponding spin and charge
monodromymatrices were found to have different ABCD and ABCDF forms, respectively. Those are associated with the spin
SU(2) and chargeU(2) = SU(2)⊗U(1) symmetries, respectively [128]. The lattermatrix is larger than the former and involves
more fields [128]. If the model global symmetry was only SO(4) = [SU(2) ⊗ SU(2)]/Z2, the charge and spin monodromy
matrices would have the same traditional ABCD form, which is that of the spin-1/2 XXX chain [78]. The expressions for the
eigenvalues of the transfer matrix of the two-dimensional statistical covering model were obtained. That problem was also
addressed in Ref. [129].

The algebraic BA introduced in Refs. [127,128] allowed the quantum transfer matrix approach to the thermodynamics of
the 1DHubbardmodel [246].Within it, the thermodynamic quantities and correlation lengths can be calculated numerically
for finite temperatures [247,248]. The 1D Hubbard model Hamiltonian was found in the TL to be invariant under the direct
sum of two Y (sl(2)) Yangians [249]. The relation of these Yangians to the above R-matrix and the implications of one of these
Yangians for the structure of the bare excitations was later clarified [250,251].

In the u → ∞ limit the dynamical correlation functions can be computed at zero temperature for all energy scales
relying on the simplified form that the BA equations acquire. This was achieved by a combination of analytical and numerical
techniques for the whole range of electronic densities [150–158,160,161]. In the case of the one-electron spectral function
studies of Refs. [156–158], the method relies on the spinless-fermion phase shifts imposed by XXX chain physical spins
1/2. Such elementary objects naturally arise from the zero spin density and u → ∞ electron wave-function factorization
[118,119,150]. A related PDT [13,51,58,59,63,64] relying on a representation of the model BA solution in terms of the
pseudofermions generated by a unitary transformation from the corresponding pseudoparticles considered in Ref. [105]
was introduced in Ref. [51]. It is an extension of the u → ∞ method of Refs. [156–158] to the whole u > 0 range of the 1D
Hubbard model.

After the PDT of the 1D Hubbard model was introduced, the MQIM methods have been developed to also tackle the
high-energy physics of both integrable and non-integrable 1D correlated quantum problems, beyond the low-energy TLL
limit [52,53,56,57]. In the case of the 1D Hubbard model, the MQIM reaches the same results as the PDT. For instance, the
momentum, electronic density, and on-site repulsion u > 0 dependence of the exponents that control the line shape of the
one-electron spectral function of the model at zero magnetic field calculated in Refs. [54,55], in the framework of the MQIM
using input from the BA solution, is exactly the same as that obtained previously by the use of the PDT.

4.2. The Hubbard model and the infinite choices of rotated electrons

The Hubbard model in a chemical potential µ and magnetic field H under periodic boundary conditions on a 1D lattice
with an even number L → ∞ of sites is given by,

Ĥ = t T̂ + U V̂D + 2µ Ŝzη + 2µBH Ŝzs . (105)

Here,

T̂ = −

∑
σ=↑,↓

L∑
j=1

(
c†
j,σ cj+1,σ + c†

j+1,σ cj,σ
)

and V̂D =

L∑
j=1

ρ̂j,↑ρ̂j,↓ with ρ̂j,σ = c†
j,σ cj,σ − 1/2 , (106)

are the kinetic-energy operator in units of t and the electron onsite repulsion operator in units of U , respectively, and

Ŝzη = −
1
2
(L − N̂e) and Ŝzs = −

1
2
(N̂e↑ − N̂e↓) , (107)
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are the diagonal generators of the global η-spin and spin SU(2) symmetry algebras, respectively. Moreover, in Eqs. (105) and
(106) the operator c†

j,σ (and cj,σ ) creates (and annihilates) a spin-projection σ =↑,↓ electron at lattice site j = 1, . . . , L. The
electron number operators read N̂e =

∑
σ=↑,↓ N̂eσ and N̂eσ =

∑L
j=1N̂e,j,σ .

The σ electronic momentum distribution operator is given by N̂eσ (k) = c†
k,σ ck,σ where c†

k,σ (and ck,σ ) creates (and
annihilates) a σ electron of momentum k. Its z-component η-spin/charge current operator in units of electronic charge e
(α = η) and z-component spin current operator in units of spin 1/2 (α = s) read,

Ĵzα = −i 2t
∑
σ

L∑
j=1

(σ )δα,s
(
c†
j,σ cj+1,σ − c†

j+1,σ cj,σ
)

where α = η, s . (108)

It is here considered in (σ )δα,s that σ = +1 and σ = −1 for ↑ and ↓, respectively. These η-spin/charge and spin current
operators are sometimes called in this paper α = η and α = s current operators, respectively.

The 4L energy and momentum eigenstates of the 1D Hubbard model for u > 0 can be generated by the independent
occupancy configurations of three basic fractionalized particles. They are associated with the two SU(2) symmetries and the
c-lattice U(1) symmetry, respectively, in the model global [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 symmetry mentioned in Sections 1
and 4.1.

The origin of the u > 0 global [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2
2 symmetry is a local gauge SU(2) ⊗ SU(2) ⊗ U(1) symmetry of

the U > 0 Hamiltonian t = 0 term first identified in Ref. [252]. At U = 0 and t ̸= 0 that local gauge symmetry is unrelated
to the model global SO(4) ⊗ Z2 symmetry. The 1/Z2

2 factor in the u > 0 model global symmetry refers to the number 4L

of its independent representations being four times smaller than the dimension 4L+1 of the group SU(2) ⊗ SU(2) ⊗ U(1).
In contrast, the factor Z2 in the U = 0 model global SO(4) ⊗ Z2 symmetry corresponds to a discretely generated symmetry
associated with a well-known transformation that exchanges spin and η-spin. It is an exact symmetry of the U = 0 and
t ̸= 0 Hamiltonian. However, it changes the sign of U when U ̸= 0.

The c-lattice U(1) symmetry beyond SO(4) found in Ref. [147], which does not exist at U = 0, emerges at any arbitrarily
small finite-U value. The related U > 0 and t = 0 local gauge SU(2) ⊗ SU(2) ⊗ U(1) symmetry becomes for finite U and t
a group of permissible unitary transformations. The corresponding local U(1) canonical transformation is not the ordinary
gauge U(1) subgroup of electromagnetism. It is rather a ‘‘nonlinear’’ transformation [252]. The c-lattice U(1) symmetry has
direct effects on the u > 0 model BA solution structure. Its state representations are generated by occupancy configurations
of a specific BA quantum-number branch.

For finite values of chemical-potential µ and magnetic field H the corresponding operator terms in the Hamiltonian,
Eq. (105), lower the model global symmetry. However, such terms commute with that Hamiltonian. Therefore, for finite u
and all values of the electronic density ne and spin densitym, the quantum-numbers occupancy configurations that generate
all themodel energy eigenstates from the electron or hole vacuum are in one-to-one correspondence to a set of independent
state representations of theµ = H = 0model Hamiltonian global symmetry algebra. Hence, for all electronic density ne and
spin density m values, that global symmetry algebra fully determines the finite-u energy eigenstates spectrum structure.
Furthermore, the number of the model non-Abelian global symmetry independent state representations exactly equals the
Hilbert-space dimension, 4L [147].

The LWSs and HWSs of the η-spin and spin SU(2) symmetry algebras have numbers Sα = −Szα and Sα = Szα , respectively,
where α = η and α = s, respectively. As in the case of the spin-1/2 XXX chain, in this review the LWS formulation of 1D
Hubbardmodel BA solution is used. Here Sη is the states η-spin, Ss their spin, and Szη = −(L−Ne)/2 and Szs = −(Ne↑ −Ne↓)/2
are the corresponding projections, respectively. The latter are the eigenvalues of the two SU(2) algebras diagonal generators,
Eq. (107). The LWSs of such algebras considered in our studies are energy and momentum eigenstates. Hence, as in the case
of the spin-1/2 XXX chain, they are here called LWSs. Such LWSs have electronic densities ne and spin densities m in the
ranges ne ∈ [0, 1] and m ∈ [0, ne], respectively.

Let {|lr, lηs, u⟩} be the complete set of 4L energy and momentum eigenstates of the Hamiltonian Ĥ , Eq. (105), associated
with the BA solution for u > 0. The LWSs of both SU(2) symmetry algebras are here denoted by |lr, l0ηs, u⟩. The u-independent
label lηs in them is a short notation for the set of quantum numbers,

lηs = Sη, Ss, nη, ns where nα = Sα + Szα = 0, 1, . . . , 2Sα and α = η, s . (109)

Furthermore, the label lr refers to the set of all remaining u-independent quantum numbers needed to uniquely specify an
energy eigenstate |lr, lηs, u⟩.

As for the spin-1/2 XXX chain, the sets of (2Sη + 1) × (2Ss + 1) − 1 finite-u energy eigenstates that are generated from
each LWS are called here non-LWSs. For the present model this applies to energy and momentum eigenstates that are LWSs
of only one of such algebras. Indeed, such states are not LWSs as defined above. For a LWS one then has that nη = ns = 0 in
Eq. (109). Hence l0ηs stands for Sη, Ss, 0, 0. The non-LWSs |lr, lηs, u⟩ can be generated from the corresponding LWSs |lr, l0ηs, u⟩
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as [243–245],

|lr, lηs, u⟩ =

∏
α=η,s

(
1

√
Cα

(Ŝ+

α )
nα

)
|lr, l0ηs, u⟩ where Cα = (nα!)

nα∏
j=1

( 2Sα + 1 − j ) ,

nα = 1, . . . , 2Sα where α = η, s ,

Ŝ+

η =

(
Ŝ−

η

)†
=

L∑
j=1

(−1)j c†
j,↓ c†

j,↑ and Ŝ+

s =

(
Ŝ−

s

)†
=

L∑
j=1

c†
j,↓ cj,↑ . (110)

The model in its full Hilbert space can be described either directly within the BA solution [118,253] or by application onto
the LWSs of the η-spin and spin SU(2) symmetry algebras off-diagonal generators [243], as given in Eq. (110).

There are infinite unitary transformations such that,

Ĥ → V̂ †ĤV̂ = e−Ŝ ĤeŜ where V̂ = eŜ . (111)

Within the physical problem studied in Refs. [254–259], the unitary operators V̂ = eŜ transform theHamiltonian Ĥ , Eq. (105),
into a rotated Hamiltonian V̂ †ĤV̂ other than Ĥ . For it electron double and single occupancy are good quantum numbers for
finite u values. For large and intermediate u values, the operator Ŝ can be expanded as Ŝ = −

∑
∞

i=0

( t
U

)iŜ(i). However, it is
well-defined for the whole u > 0 range. The infinite possible choices of operators Ŝ is an issue discussed in Ref. [254]. (The
Ŝ expansion Ŝ = −

∑
∞

i=0

( t
U

)iŜ(i) is minus that in Eq. (57) of that reference.)
Nonetheless, exactly the same mathematical transformation, Eq. (111), can refer to the different physical problem

discussed in this review. For the latter problem, V̂ †ĤV̂ is for u > 0 the 1D Hubbard model written in the rotated electron
representation. The creation and annihilation operators V̂ † c†

j,σ V̂ and V̂ † cj,σ V̂ refer thus to rotated electrons rather than
to electrons. Rotated-electron single and double occupancies are then good quantum numbers for the finite-u 1D Hubbard
model. In the u → ∞ limit rotated-electron single and double occupancies become electron single and double occupancies,
respectively. The global c-lattice U(1) symmetry algebra generator beyond SO(4) symmetry is the operator that counts the
number of rotated-electron singly occupied sites for u > 0. (It can also be chosen to be the operator that counts the number
of rotated-electron unoccupied plus doubly occupied sites for u > 0.)

The kinetic-energy operator T̂ , Eq. (106), can be written as T̂ = T̂0 + T̂+1 + T̂−1. The operator T̂0 conserves the
number of rotated-electron doubly occupied sites. The operators T̂+1 and T̂−1 enhance and lessen it by one, respectively. The
infinite electron–rotated-electron unitary transformations share an important property. It is that although the u dependent
expression of the operator Ŝ in the unitary operator V̂ = eŜ , Eq. (111), is different for each such a transformation, for u > 0 it
always involves only the three kinetic operators T̂0, T̂+1, and T̂−1. Another property common to all electron–rotated-electron
unitary transformations is that to leading order in t/U , the operator Ŝ, Eq. (111), has the universal form, Ŝ = −

t
U (T̂+1 − T̂−1).

From a straightforward yet cumbersome algebra, one then finds that the momentum operator P̂ and the six generators of
the η-spin and spin SU(2) symmetry algebras commute with the three kinetic operators T̂0, T̂+1, and T̂−1. This ensures that
such operators commute with the electron–rotated-electron unitary operators V̂ = eŜ and corresponding operators Ŝ.

4.3. The Hubbard model BA uniquely defined rotated electrons and corresponding c pseudoparticle, rotated spin, and rotated
η-spin operators

The pseudoparticle representation and related pseudofermion representation of the 1D Hubbardmodel refer to a specific
choice of the electron–rotated-electron unitary operator V̂ . The corresponding rotated-electron creation and annihilation
operators and the number of rotated electrons at lattice site jwith spin projection σ operator read,

c̃†
j,σ = V̂ † c†

j,σ V̂ , c̃j,σ = V̂ † cj,σ V̂ and ñj,σ = c̃†
j,σ c̃j,σ , (112)

respectively. Such rotated electrons are generated from the electrons by a unitary transformation defined and performed by
the BA. The corresponding electron–rotated-electron unitary operator V̂ in Eq. (112) is uniquely defined in Ref. [64] by its
matrix elements between the model 4L energy and momentum eigenstates.

In the u → ∞ limit (and thus u−1
→ 0 limit) all spin configurations and all η-spin configurations with the same

number of doubly occupied sites are degenerated. Hence there are in that limit infinite choices of complete sets of 4L energy
and momentum eigenstates for which electron single and double occupancies are good quantum numbers. The unitary
transformation uniquely defined in Ref. [64] refers to a specific set of 4L energy andmomentumeigenstates. It is that obtained
from the set of 4L finite-u energy eigenstates |lr, lηs, u⟩, Eq. (110), upon turning off adiabatically u−1. The finite-u energy
eigenstates |lr, lηs, u⟩ = V̂ †

|lr, lηs,∞⟩ generated from each such u → ∞ energy eigenstates |lr, lηs,∞⟩ have for u > 0
exactly the same values for all u-independent quantum numbers. This includes the quantum numbers lηs given in Eq. (109)
and all remaining u-independent quantum numbers lr (provided below in Eq. (137)) needed to uniquely specify an energy
eigenstate |lr, lηs, u⟩. A V (u)-set of states is our designation for such continuum set of u > 0 energy eigenstates.

Important physical information can be reached from analysis of the relation between (i) the BA quantum numbers
and (ii) the rotated-electron occupancy configurations, respectively, that generate the finite-u exact energy eigenstates
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|lr, lηs, u⟩ = V̂ †
|lr, lηs,∞⟩ of any V (u)-set. The rotated-electron spatial occupancy configurations that generate from the

electron (and rotated-electron) vacuum the finite-u energy eigenstates |lr, lηs, u⟩ = V̂ †
|lr, lηs,∞⟩ of any V (u)-set of states

are exactly the same as the electron spatial occupancy configurations that generate from it the corresponding u → ∞

energy and momentum eigenstate |lr, lηs,∞⟩. Hence for u > 0 the number NR
s,±1/2 of spin-projection ±1/2 rotated-electron

singly occupied sites, NR
η,+1/2 of rotated-electron unoccupied sites, and NR

η,−1/2 of rotated-electron doubly occupied sites are
conserved.

Such numbers obey the sum rules NR
s,+1/2 + NR

η,−1/2 = Ne↑, NR
s,−1/2 + NR

η,−1/2 = Ne↓, NR
s + 2NR

η,−1/2 = Ne, and
NR

s + NR
η = L. The rotated-electron numbers equal those of the electrons. Therefore, here Ne↑ and Ne↓ denotes both the

number of electrons and rotated electrons of spin projection +1/2 and −1/2, respectively. However, for finite u values the
numbers NR

s = NR
s,+1/2 + NR

s,−1/2 of rotated-electron singly occupied sites and NR
η = NR

η,+1/2 + NR
η,−1/2 of rotated-electron

doubly occupied plus unoccupied sites are only conserved for rotated electrons.
For any operator Ô there is a corresponding operator Õ = V̂ † Ô V̂ whose expression in terms of rotated-electron creation

and annihilation operators is the same as that of Ô in terms of electron creation and annihilation operators, respectively. The
l = z,± local rotated spins operators (α = s) and local rotated η-spin operators (α = η),

S̃ lj,α = V̂ † Ŝ lj,α V̂ where l = z,± and α = η, s ,

S̃±

j,α = S̃xj,α ± i S̃yj,α where α = η, s , (113)

play a major role in the 1D Hubbard model pseudoparticle representation revisited below in Sections 5 and 6.
Here Ŝ lj,s and Ŝ lj,η are the usual unrotated local spin η-spin operators, respectively. The rotated local operators S̃ lj,α ,

Eq. (113), have in terms of creation and annihilation rotated-electron operators, Eq. (112), exactly the same expressions
as the corresponding unrotated local operators Ŝ lj,α in terms of creation and annihilation electron operators. Specifically, the
spin operators S̃ lj,s, which act onto sites singly occupied by rotated electrons, read S̃−

j,s = (S̃+

j,s)
†

= c̃†
j,↑c̃j,↓ and S̃zj,s = (ñj,↓−1/2).

Similarly, the η-spin operators S̃ lj,η , which act onto sites unoccupied by rotated electrons and sites doubly occupied by rotated
electrons, are given by S̃−

j,η = (S̃+

j,η)
†

= (−1)j c̃j,↑c̃j,↓ and S̃zj,η = (ñj,↓ − 1/2).
For u > 0 a non-perturbative three degrees of freedom spin–η-spin–c-lattice separation occurs at all energy scales [64].

It naturally emerges from the independent state representations of the two SU(2) symmetries and c-lattice U(1) symmetry,
respectively, in the model global symmetry. The c-lattice–η-spin degrees of freedom separation may be considered as a
separation of the charge degrees of freedom. At zero temperature and energy scales lower than 2|µ| relative to the ground
state, one has that NR

η,−1/2 = 0 (and NR
η,+1/2 = 0) for ne ∈ [0, 1[ (and ne ∈ ]1, 2]). Hence for such energy ranges the η-spin

degrees of freedom remain hidden. The three degrees of freedom non-perturbative c-lattice–η-spin–spin separation is then
seen as the usual two degrees of freedom charge–spin separation.

Under the three general degrees of freedom separation of the rotated-electron occupancy configurations, their operators,
Eq. (112), are of the form,

c̃†
j,↑ =

(
1
2

− S̃zj,s − S̃zj,η

)
f †
j,c + (−1)j

(
1
2

+ S̃zj,s + S̃zj,η

)
fj,c and c̃j,↑ = (c̃†

j,↑)
†,

c̃†
j,↓ = (S̃+

j,s + S̃+

j,η)(f
†
j,c + (−1)j fj,c) and c̃j,↓ = (c̃†

j,↓)
† . (114)

Here the operators f †
j,c and fj,c defined below create and annihilate one c pseudoparticle at the c effective lattice site

j = 1, . . . , L. That lattice is identical to the electron and rotated-electron original lattice. Their (i) occupied and (ii) unoccupied
sites are those (i) singly occupied and (ii) unoccupied and doubly occupied by the rotated electrons, respectively. Hence the
c pseudoparticle local density operator ñj,c ≡ f †

j,c fj,c and the corresponding operator (1− ñj,c) are the natural projectors onto
the subset of N s

R = Nc original-lattice sites singly occupied by rotated electrons and onto the subset of NηR = Nh
c = L − Nc

original-lattice sites unoccupied and doubly occupied by rotated electrons, respectively. It then follows that the local
operators S̃ lj,α , Eq. (113), can be written as,

S̃ lj,s = ñj,c q̃lj and S̃ lj,η = (1 − ñj,c) q̃lj where l = z,± , (115)

respectively. Here the l = z,± local ηs quasi-spin operators,

q̃lj = S̃ lj,s + S̃ lj,η where l = ±, z , (116)

such that q̃±

j = q̃xj ± i q̃yj , have the following expression in terms of rotated-electron creation and annihilation operators,

q̃−

j = (q̃+

j )
†

= (c̃†
j,↑ + (−1)j c̃j,↑) c̃j,↓ and q̃zj = (ñj,↓ − 1/2) . (117)

The local c pseudoparticle operators f †
j,c and fj,c in Eq. (114) are uniquely defined for u > 0 in terms of rotated-electron

creation and annihilation operators, Eq. (112). This is achieved by combining the inversion of the relations, Eq. (114), with
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the expressions of the local operators S̃ lj,s and S̃ lj,η provided in Eqs. (115)–(117). This gives,

f †
j,c = (fj,c)† = c̃†

j,↑ (1 − ñj,↓) + (−1)j c̃j,↑ ñj,↓ and ñj,c = f †
j,c fj,c for j = 1, . . . , L . (118)

The operator ñj,σ in this equation is the σ rotated-electron local density operator given in Eq. (112). (In the u → ∞ limit,
the ηs quasi-spins associated with the operators, Eq. (117), and the c pseudoparticle holes associated with operators fj,c ,
Eq. (118), become the quasispins and quasicharges, respectively, of Ref. [260].)

On the one hand, the rotated spins 1/2 of projection ±1/2 are the spin-1/2 fractionalized particles associated with the
l = z,± spin operators S̃ lj,s in Eq. (115). They refer to the Ls,±1/2 = NR

s,±1/2 spins 1/2 of the rotated electrons with such a
spin projection that singly occupy sites. On the other hand, the rotated η-spins 1/2 of projection ±1/2 are the η-spin-1/2
fractionalized particles associated with the l = z,± η-spin operators S̃ lj,η in Eq. (115). They refer to the η-spin degrees of
freedom of the Lη,±1/2 = NR

η,±1/2 sites unoccupied (+1/2) and doubly occupied (−1/2) by rotated electrons.
The charge and spin of the electrons remain invariant under the electron–rotated-electron unitary transformation.

Indeed, it only changes their spatial original lattice occupancy distributions. Therefore, the rotated spins 1/2 and rotated
η-spins 1/2 are physical particles with a well-defined relation to the rotated electrons and corresponding electrons. There
is a rotated spin 1/2 and rotated η-spin 1/2 quantum problem for the 1D Hubbard model in each fixed-Nc subspace where
Nc = NR

s ∈ [0, L]. The reason is that only in such subspaces are the numbers Ls = NR
s = Nc of rotated spins 1/2 and

Lη = NR
η = L − Nc of rotated η-spins 1/2, respectively, fixed. The rotated spin 1/2 and rotated η-spin 1/2 representation is

well defined in such subspaces.
For simplicity, in the remaining of this review the rotated spins 1/2 and rotated η-spins 1/2 are called spins 1/2 and η-spins

1/2, respectively. The spins 1/2 are though only those carried by the rotated electrons that singly occupy original lattice sites.
Those within the rotated electrons doubly occupied original lattice sites rather refer to the η-spin SU(2) symmetry algebra.
Indeed, such doubly occupied original lattice sites η-spin degrees of freedom correspond to the η-spins of η-spin projection
−1/2. (The unoccupied original lattice sites η-spin degrees of freedom refer to the η-spins of η-spin projection +1/2.)

Within the above general separation, the (i) global c-lattice U(1) symmetry, (ii) global η-spin SU(2) symmetry, and
(iii) global spin SU(2) symmetry state representations are, in each subspace with a fixed number NR

s of rotated-electron
singly occupied sites, generated by three sets of independent occupancy configurations. Those involve: (i) The Nc = NR

s
c pseudoparticles without internal degrees of freedom and corresponding Nh

c = NR
η c pseudoparticle holes; (ii) The

Ls,±1/2 = NR
s,±1/2 spins 1/2 of projection ±1/2; (iii) The Lη,±1/2 = NR

η,+1/2 η-spins 1/2 of projection ±1/2. It then follows
that their numbers are such that,

Ls = Ls,+1/2 + Ls,−1/2 = Nc ,

Lη = Lη,+1/2 + Lη,−1/2 = L − Nc = Nh
c ,

Ls,+1/2 − Ls,−1/2 = −2Szs = Ne↑ − Ne↓ ,

Lη,+1/2 − Lη,−1/2 = −2Szη = L − Ne . (119)

Here Ls denotes the number of spins and Lη that of η-spins. Those equal the numbersNc of c pseudoparticles andNh
c = L−Nc

of c pseudoparticle holes, respectively.
The numbers Nc of c pseudoparticles, Lη,±1/2 of η-spins of projection ±1/2, and Ls,±1/2 of spins of projection ±1/2 are

fully controlled by those of rotated electrons as follows,

Nc = N s
R , Nh

c = NηR and Nc + Nh
c = N s

R + NηR = L ,
Lα,±1/2 = NαR,±1/2 and Lα = Lα,+1/2 + Lα,−1/2 = NαR where α = η, s . (120)

This is consistent with such fractionalized particles stemming from the rotated-electron occupancy configurations degrees
of freedom separation.

The global three degrees of freedom rotated-electron separation leads locally in what the onsite rotated-electron
occupancies is concerned to two degrees of freedom separation. On the one hand, the degrees of freedom of each rotated-
electron occupied site decouple into one spin-less c pseudoparticle without internal degrees of freedom and one spin 1/2
that carries its spin. On the other hand, the degrees of freedom of each rotated-electron unoccupied and doubly occupied
site decouple into one c pseudoparticle hole and one η-spin 1/2 of projection +1/2 and −1/2, respectively. Hence the local
two degrees of freedom separation corresponds to those of the c-lattice U(1) symmetry and one of the two global SU(2)
symmetries, respectively.

The unitarity of the electron–rotated-electron transformation implies that the rotated-electron operators c̃†
j,σ and c̃j,σ ,

Eqs. (112) and (114), have the same anti-commutation relations as the corresponding electron operators c†
j,σ and cj,σ ,

respectively. Straightforward manipulations based on Eqs. (113)–(118) then lead to the following algebra for the local c
pseudoparticle creation and annihilation operators,

{f †
j,c , fj′,c} = δj,j′ and {f †

j,c , f
†
j′,c} = {fj,c , fj′,c} = 0 . (121)
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Furthermore, the local c pseudoparticle operators and the local rotated quasi-spin operators q̃lj, Eq. (117), commute with
each other. From the use of Eqs. (113)–(117) one confirms that the SU(2) algebra obeyed by the local quasi-spin operators
q̃lj is the usual one,

[q̃+

j , q̃
−

j′ ] = δj,j′ 2 q̃zj and [q̃±

j , q̃
z
j′ ] = ∓δj,j′ q̃±

j . (122)

The same applies to the SU(2) algebras of the corresponding (rotated) η-spin and spin operators s̃lj,η and s̃lj,s, respectively.
Moreover, [q̃lj, q̃

l
j′ ] = 0 and [s̃lj,α, s̃

l
j′,α′ ] = 0. The c pseudoparticle and ηs quasi-spin operator algebras refer to the whole

Hilbert space. In contrast, those of the (rotated) η-spin and spin operators correspond to fixed-Nc subspaces.
The degrees of freedom separation, Eq. (114), is such that the c pseudoparticle operators, Eq. (118), (rotated) spin

1/2 and η-spin 1/2 operators, Eq. (115), and the related ηs quasi-spin operators, Eqs. (116) and (117), emerge from the
rotated-electron operators by an exact local transformation that does not introduce constraints. The expressions of the
c pseudoparticle, spin 1/2, and η-spin 1/2 operators in terms of rotated-electron creation and annihilation operators are
valid for u > 0. The latter operators are related to the original electron creation and annihilation operators through the
transformation, Eq. (112). The unitary operator in that transformation is uniquely defined in Ref. [64] by its 4L matrix
elements. Combination of all such equations thus uniquely defines for u > 0 the c pseudoparticle, spin 1/2, and η-spin
1/2 operators in terms of electron creation and annihilation operators.

In the case of the spin-1/2 XXX chain, the number L of sites singly occupied by spins 1/2 is a good quantum number. The
emergence within the u > 0 1D Hubbard model rotated-electron representation of Ls = N s

R spins 1/2 that singly occupy
Ls = Nc original-lattice sites renders the problem much similar to that of such a chain. Also the Lη = NηR η-spins 1/2 singly
occupy Lη = Nh

c = L − Nc original-lattice sites. As justified in Appendix F, the present rotated-electron representation spin-
1/2 and η-spin-1/2 occupancy configurations that generate the two SU(2) symmetries degrees of freedom of the energy
and momentum eigenstates of the 1D Hubbard model for u > 0 are actually exactly the same as those that generate the
energy and momentum eigenstates of a spin-1/2 and η-spin-1/2 XXX chain with Ls = Nc and Lη = Nh

c = L − Nc sites,
respectively. The relation to the 1D Lieb–Liniger Bose gas is brought about by the independent occupancy configurations
of the c pseudoparticles, which have no internal structure. And as the pseudoparticles of that gas, they are associated with
a U(1) symmetry. Indeed, they generate the c-lattice U(1) symmetry degrees of freedom of the energy and momentum
eigenstates of the 1D Hubbard model for u > 0.

As mentioned above, the c pseudoparticles live on a c effective lattice similar to the original lattice. In contrast, the (i)
spins 1/2 and (ii) η-spins 1/2 only ‘‘see’’ the sites (i) singly occupied and (ii) unoccupied and doubly occupied, respectively,
by rotated electrons. Hence for themodel in fixed-Nc subspaces one can definewithin the TL a squeezed spin effective lattice
with Ls = NR

s = Nc sites on which the spins 1/2 live. One can define as well a corresponding squeezed η-spin effective lattice
with Lη = NR

η = L − Nc sites for the η-spins 1/2. The numbers of sites of such squeezed η-spin and spin effective lattices are
thus given by,

Lη = Nh
c = L − Nc and Ls = Nc , (123)

respectively. The squeezed η-spin and spin effective lattices remain the same for the (2Sη + 1) × (2Ss + 1) − 1 non-
LWSs |lr, lηs, u⟩ generated from the LWSs, Eq. (110). Their configurations in such lattices are those of the non-LWSs of the
corresponding η-spin-1/2 and spin-1/2 XXX chains with Lη and Ls sites, respectively.

Squeezed spaces are actually well known from studies of the 1D Hubbard model in the u → ∞ limit [119,150,156–
158,261]. Such studies have used the u → ∞ energy andmomentum eigenstates |lr, lηs,∞⟩ associated with the BA solution
considered in this paper. In Appendix F some of the u → ∞ properties in terms of electron occupancy configurations that
generate the states |lr, lηs,∞⟩ are extended to the u > 0 range in terms of rotated electrons.

The c effective lattice, η-spin effective lattice, and spin effective lattice occupancy configurations are independent. The
role of the representations of the c-lattice U(1) symmetry generated by the c pseudoparticle occupancy configurations is
indeed to store the information on the positions in the original lattice of the N s

R = Nc sites singly occupied by rotated
electrons (c pseudoparticles) relative to the NηR = Nh

c sites doubly occupied and unoccupied by rotated electrons (c band
holes). This ensures that the spin effective lattice occupancies of the Ls = N s

R = Nc spins 1/2 and η-spin effective lattice
occupancies of the Lη = NηR = Nc

c η-spins 1/2 associated with the spin and η-spin SU(2) symmetries, respectively, are
independent.

It follows from such an independence that within the TL the spin (α = s) and η-spin (α = η) effective lattice sites
locations can be associated with their fixed-Nc subspace average locations at x = aα jwhere j = 1, . . . , Lα . The spin effective
lattice spacing as and η-spin effective lattice spacing aη thus correspond to the average spacing between the c effective lattice
occupied sites and between such a lattice unoccupied sites, respectively, in the corresponding Nc-fixed subspace. This gives,

aα =
L
Lα

=
L
Lα

a where α = η, s . (124)

This spacing ensures that the η-spin (α = η) and spin (α = s) effective lattices have exactly the same length as the original
lattice. The effective lattice spacings, Eq. (124), are in general larger than that of the original lattice. The exception refers to
subspaces for which nc → 1 and nh

c → 1. For them these sites numbers read Ls = L ; Lη = 0 and Ls = 0 ; Lη = L, respectively.
Hence in these two density limits the spin and η-spin effective lattice becomes the original lattice and the η-spin and spin
effective lattice does not exist, respectively.
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4.4. Unpaired and paired spins and η-spins

The energy eigenstates that span a fixed-Nc subspace are a superposition of c effective lattice, spin effective lattice, and
η-spin effective lattice occupancy configurations. As discussed in Appendix C, the two degrees of freedom separation of
the rotated-electron occupancies of each of the L original lattice sites is behind the two sum rules given in Eq. (C.3) of that
Appendix.

For the energy eigenstates of spin (α = s) or η-spin (α = η) Sα ≤ Lα/2 in a fixed-Nc subspace, the corresponding spin
or η-spin effective lattice occupancy configurations have a number 2Sα of sites occupied by a set of Mα = 2Sα spins 1/2
(α = s) or η-spins 1/2 (α = η) that participate in the (spin or η-spin) multiplet configuration. They have in addition a
complementary set of even number Lα−2Sα spin or η-spin effective lattice sites. Those are singly occupied by Lα−2Sα spins
1/2 or η-spins 1/2, respectively, whose configuration forms a tensor product of (spin or η-spin) singlet states. Such results
are those expected from the direct relation to the η-spin-1/2 and spin-1/2 XXX chains with Lη and Ls sites, respectively.

Such an analysis applies as well in terms of the spin and η-spin degrees of freedom of the original lattice sites rotated-
electron occupancy configurations. Indeed, the spin 1/2 occupancy configuration order in the spin effective lattice is exactly
the same as that of the spins of the rotated electrons that singly occupy sites in the original lattice. This is independent of
the positions in it of the sites unoccupied and doubly occupied by rotated electrons. Similarly, the η-spin 1/2 occupancy
configuration order in the η-spin effective lattice is exactly the same as that of the rotated-electron doubly and unoccupied
sites in the original lattice. Again, this is independent of the positions in it of the sites singly occupied by rotated electrons.
Consistently, the spin-1/2 XXX chain distribution of the squeezed spinwave function φs

SU(2)(x
s↓, . . .) in Eq. (F.1) of Appendix F

does not change if the chain of rotated-electron singly occupied sites is ‘‘diluted’’ by rotated-electron unoccupied and doubly
occupied sites. The same applies to the η-spin-1/2 XXX chain distribution of the squeezed η-spinwave functionφηSU(2)(x

d, . . .)
in that equation if the chain of rotated-electron unoccupied and doubly occupied sites is ‘‘diluted’’ by rotated-electron singly
occupied sites.

All the energy and momentum eigenstates with the same Sα have the same spin (α = s) or η-spin (α = η) ˆ⃗S
2

α eigenvalue.
Therefore, the energy andmomentum eigenstates are superpositions of the corresponding above two types of configuration
terms. Each term in them is characterized by a different partition of Lα spins 1/2 (α = s) or η-spins 1/2 (α = η) into two
types of configurations.Mα = 2Sα such spins or η-spins, respectively, participate in a 2Sα + 1 (spin or η-spin) multiplet. The
remaining even number Lα − 2Sα of spins 1/2 or η-spins 1/2 participate in a product of (spin or η-spin) singlets. The latter
are associated with a corresponding number,

Πα =
1
2
(Lα − 2Sα) where α = s, η , (125)

of spin (α = s) or η-spin (α = η) singlet pairs. In the following they are often generally called α-singlet pairs.
The unpaired spins and paired spins (α = s) and unpaired η-spins and paired η-spins (α = η) are the members of such two

sets ofMα = 2Sα and 2Πα = Lα − 2Sα , respectively, spins 1/2 and η-spins 1/2. For a spin and η-spin LWS, all unpaired spins
1/2 and unpaired η-spins 1/2, respectively, have projection +1/2.

The number of pairsΠα is directly related to the spin SU(2) symmetry (α = s) and η-spin SU(2) symmetry (α = η) in the
[SO(4)⊗ U(1)]/Z2 = [SU(2)⊗ SU(2)⊗ U(1)]/Z2

2 global symmetry of the u > 0 1D Hubbard model Hamiltonian. Indeed, the
expression, Eq. (C.4) of Appendix C, of the numberNsinglet(Sα, Lα) of that model independent spin (α = s) and η-spin (α = η)
α-singlet state representations in a fixed-Nc and fixed-Sα subspace is a function of only the number of pairs Πα and of the
number of spins 1/2 (α = s) and η-spins 1/2 (α = η) Lα .

For general u > 0 LWSs and their non-LWSs one finds that the numberMs,±1/2 of unpaired spins of projection ±1/2 and
Mη,±1/2 of unpaired η-spins of projection ±1/2 are good quantum numbers. They read,

Mα,±1/2 = (Sα ∓ Szα) and Mα = Mα,−1/2 + Mα,+1/2 = 2Sα where α = η, s . (126)

The set of an energy and momentum eigenstateΠη η-spin-singlet pairs andΠs spin-singlet pairs contains an equal number
of η-spins 1/2 and spins 1/2, respectively, of opposite projection. Hence the total number Lα,±1/2 of η-spins of projection
±1/2 (α = η) and spins of projection ±1/2 (α = s) is given by,

Lα,±1/2 = Πα + Mα,±1/2 =
1
2
(Lα ∓ 2Szα) where α = η, s . (127)

The η-spin and spin SU(2) symmetry algebras diagonal generators Ŝzη and Ŝzs , Eq. (107), and off-diagonal generators Ŝ+
η ,

Ŝη = (Ŝ+
η )

† and Ŝ+
s , Ŝs = (Ŝ+

s )†, Eq. (110), commute with the electron–rotated-electron unitary operator V̂ , Eq. (112). Hence
such operators have the same expressions in terms of electron and rotated-electron operators. The Mα = 2Sα unpaired
spins (α = s) and unpaired η-spins (α = η) multiplet configurations are as given in Eq. (110) generated by application
of the α = η, s operators Ŝ+

α onto the LWSs. Therefore, the corresponding non-LWSs original lattice spatial occupancy
configurations of the unpaired spins and unpaired η-spins generated from the LWSs are for thewhole u > 0 range exactly the
same in terms of rotated electrons and electrons, respectively. Indeed, for u > 0 such local configurations remain invariant
under the electron–rotated-electron unitary transformation. Hence the unpaired spins (α = s) and unpaired η-spins (α = η)
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are for u > 0 not rotated. They thus refer to electron unpaired physical spins 1/2 and to the η-spin degrees of freedom of
physical onsite spin-singlet electron pairs, respectively.

The α-singlet configurations of the 2Πα = Lα − 2Sα paired spins 1/2 (α = s) and paired η-spins 1/2 (α = η)
left over are though also physical spins 1/2 and physical η-spins 1/2 in what their spin and η-spin degrees of freedom,
respectively, is concerned. Only their original lattice spatial occupancies are changed under the electron–rotated-electron
unitary transformation.

5. The 1D Hubbard model c and αn pseudoparticle representation

The relation of the different types of the 1D Hubbard model pseudoparticles and band holes to its physical particles, the
electrons, is much more involved than for the 1D Lieb–Liniger Bose gas and spin-1/2 XXX chain. Nonetheless, the relation of
the latter model physical spins 1/2 to its n-pseudoparticles and holes plays a valuable role in the study of the corresponding
more complex problem of the 1D Hubbard model.

Here the functional representation of the 1D Hubbard model TBA solution is related to the three basic fractionalized
particles that naturally arise from the rotated electrons degrees of freedom separation. The composite αn pseudoparticles
emerge from such a relation. The charge and spin current carriers and the general c-band and αn-bands hole representation
is an issue also discussed in this section.

5.1. The functional representation of the 1D Hubbard model TBA solution

Some of the 1D Hubbard model TBA solution quantities and equations introduced in Ref. [73] needed for our analysis
are provided here within a suitable distribution functional representation. The model TBA equations are within such a
representation given by,

qj = kc(qj) +
2
L

∞∑
n=1

Lsn∑
j′=1

Nsn(qj′ ) arctan
(
sin kc(qj) −Λsn(qj′ )

nu

)

+
2
L

∞∑
n=1

Lηn∑
j′=1

Nηn(qj′ ) arctan
(
sin kc(qj) −Ληn(qj′ )

nu

)
for j = 1, . . ., L , (128)

and

qj = δα,η
∑
ι=±1

arcsin(Λαn(qj) − i ι nu) +
2 (−1)δα,η

L

Lc∑
j′=1

Nc(qj′ ) arctan
(
Λαn(qj) − sin kc(qj′ )

nu

)

−
1
L

∞∑
n′=1

Lαn′∑
j′=1

Nαn′ (qj′ )Θn n′

(
Λαn(qj) −Λαn

′

(qj′ )
u

)
for j = 1, . . . , Lαn ,

where α = η, s and n = 1, . . . ,∞ . (129)

The BA β = c, αn branches numbers Lβ appearing in these equations read,

Lc = Nc + Nh
c = NR

s + NR
η = L where Nh

c = L − Nc ,

Lαn = Nαn + Nh
αn where Nh

αn = 2Sα +

∞∑
n′=n+1

2(n′
− n)Nαn′ ,

Nβ =

Lβ∑
j=1

Nβ (qj) where β = c, ηn, sn and n = 1, . . . ,∞ . (130)

The functionΘn n′ (x) in Eqs. (128) and (129) is given in Eq. (B.1) of Appendix B and the β-branch discrete quantum numbers
qj read,

qj =
2π
L

Iβj for j = 1, . . . , Lβ where β = c, ηn, sn and n = 1, . . . ,∞ . (131)

Here {Iβj } are the β-branch j = 1, . . . , Lβ quantum numbers {qj} in units of 2π/L. Those are either integers or half-odd
integers according to the following boundary conditions [73],

Iβj = 0,±1,±2, . . . for Iβ even ,
= ±1/2,±3/2,±5/2, . . . for Iβ odd , (132)
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where,

Ic = NSU(2)
≡

∑
α=η,s

∞∑
n=1

Nαn and Iαn = Lαn − 1 for α = η, s and n = 1, . . . ,∞ . (133)

The β = c, αn branch successive set of discrete values qj, Eq. (131), have fixed separation, qj+1 − qj = 2π/L. In
addition, they have only occupancies zero and one. The β-branch distribution functions Nβ (qj) in Eqs. (128) and (129)
thus read Nβ (qj) = 1 and Nβ (qj) = 0 for occupied and unoccupied such discrete values, respectively. Each energy and
momentum eigenstate is described by different occupancy configurations of the distributions {Nβ (qj)} corresponding to all
BA β = c, ηn, sn branches where n = 1, . . . ,∞. The numbers Nβ and Nh

β defined in Eq. (130) are thus those of occupied and
unoccupied, respectively, β-branch discrete values qj, Eq. (131).

Solution of the coupled TBA equations, Eqs. (128) and (129), provides the real momentum rapidity function kc(qj) and
the set of n = 1, . . . ,∞ real rapidity functions Ληn(qj) and Λsn(qj) of each energy and momentum eigenstate. Quantities
such as the energy eigenvalues given in Eqs. (B.5)–(B.8) of Appendix B [69–71,73] and the charge and spin current operators
expectation values depend on the β-branches discrete values qj through the dependence on them of themomentum rapidity
function kc(qj) and the α = η, s and n = 1, . . . ,∞ rapidity functions Λαn(qj). The latter are the real part of TBA complex
rapidities of general form,

Λαn,l(qj) = Λαn(qj) + i (n + 1 − 2l) u where α = η, s , n = 1, . . . ,∞ and l = 1, . . . , n . (134)

For n = 1 this rapidity is real and otherwise its imaginary part is finite. A TBA αn-string is a group of l = 1, . . . , n rapidities,
Eq. (134), all with the same real part, Λαn(qj). For α = s and α = η those are the spin and charge, respectively,
αn-strings [132]. As for the spin-1/2 XXX chain [131], for a large finite system some of the 1D Hubbard model αn-strings
deviate from their TBA ideal form, Eq. (134). The effects of such string deviations [132] are in the TL though not important
for the properties considered in this paper.

As in the case of the simpler models also reviewed in it, the discrete quantum numbers qj in Eq. (131) play the role of
β = c, αn band momentum values. Consistently, the momentum eigenvalues are additive in qj and read,

P =

L∑
j=1

qj Nc(qj) +

∞∑
n=1

Lsn∑
j=1

qj Nsn(qj) +

∞∑
n=1

Lηn∑
j=1

(π − qj)Nηn(qj) + πLη,−1/2 . (135)

The momentum contribution πLη,−1/2 = π (Mη + Mη,−1/2) involves the number Lη,−1/2 of η-spins of projection −1/2,
Eq. (127) for α = η. Such a contribution follows from the paired and unpaired spins 1/2 and η-spins 1/2 of projection
±1/2 having an intrinsic momentum given by,

qs,±1/2 = qη,+1/2 = 0 and qη,−1/2 = π . (136)

The set j = 1, . . . , Lβ of β = c, αn bands discrete momentum values qj belong to well-defined domains, qj ∈ [q−

β , q
+

β ]. The
limiting momenta q±

β appearing here are given in Eq. (B.4) of Appendix B.
The momentum and energy spectra, Eq. (135) and Eq. (B.5) of Appendix B, apply to all 4L energy eigenstates {|lr, lηs, u⟩},

Eq. (110). Their label lr can now be defined. It corresponds to a short notation for the following set of TBA quantum numbers,

lr = {Iβj } such that Nβ (qj) = Nβ ([2π/L]I
β

j ) = 1 for j = 1, . . . , Lβ , β = c, ηn, sn and n = 1, . . . ,∞ . (137)

The TBA equations, Eqs. (128) and (129), refer explicitly to LWSs. However, they can be extended to non-LWSs,
Eq. (110) [118,119,253]. This can be achieved by formally setting some of the rapiditiesΛηn andΛsn in such equations equal
to infinity [118,119]. For example, Eqs. (3.23b) and (3.24b) of Ref. [118] describe a η-spin non-LWSwith numbers Sη = 1 and
Szη = 0. Moreover, Eqs. (3.23a) and (3.24a) of Ref. [118] describe a LWS with numbers Sη = Szη = 0, Eq. (110). Alternatively,
in Eq. (110) one has combined symmetry with the BA solution to generate the non-LWSs from the LWSs [243].

5.2. The composite αn pseudoparticles associated with the paired η-spins (α = η) and paired spins (α = s)

It was confirmed in Refs. [243–245] that the TBA quantum number configurations combined with the spin and η-spin
SU(2) multiplet configurations generate the 4L energy eigenstates that span the 1D Hubbard model Hilbert space. Beyond
the analysis of Refs. [243–245], the Hilbert-space dimension 4L also equals the number of independent state representations
of the 1D Hubbard model global [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 symmetry. (In 1991 and 1992 only the SO(4) symmetry in the
u > 0 model global [SO(4) ⊗ U(1)]/Z2 symmetry [147] was known [243–245].)

The proof involves the requirement addressed inAppendix C that in any spin (α = s) andη-spin (α = η) Sα-fixed subspace
the number of independent α-singlet configurationsNsinglet(Sα) is exactly the same when obtained from the counting of two
apparently different types of configurations. (This is similar to the spin configurations of the XXX chain.) The first type of
configurations refers to the two α = η, s SU(2) group states representations associated with the spins 1/2 (α = s) and
η-spins 1/2 (α = η) independent configurations with the same spin and η-spin, respectively, Sα , Eq. (C.4) of Appendix C. The
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second type of configurations corresponds to the independent n = 1, . . . ,∞ bands {qj} occupancy configurations of the sets
of Nαn αn-strings obeying the α = η, s TBA sum rules

∑
∞

n=1nNαn = (Lα − 2Sα)/2.
It follows that the set of αn-strings of an energy andmomentum eigenstate is directly related to the set ofΠα spin (α = s)

and η-spin (α = η) α-singlet pairs, Eq. (125). (This is as for the spin-singlet pairs of the spin-1/2 XXX chain.) Such pairs
involve the subset of 2Πα = Lα − 2Sα spins 1/2 and η-spins 1/2, respectively, that participate in α-singlet configurations.
Specifically, each αn-string refers to an αn-pairs configuration within which a number n > 1 of α-singlet pairs are bound.
For n > 1 such a binding is associated with the corresponding imaginary parts, i (n+ 1− 2l) u, of the l = 1, . . . , n rapidities,
Λαn,l(qj) = Λαn(qj) + i (n + 1 − 2l) u, Eq. (134), with the same real part, Λαn(qj). For n = 1 an αn-string involves a single
α-singlet pair.

The n > 1 α-singlet pairs that are bound within an αn-pairs configuration associated with a string of length n > 1 are
here called bound spin-singlet pairs (α = s) and bound η-spin-singlet pairs (α = η). For n = 1 the rapidityΛα1,1(qj) imaginary
part vanishes because a n = 1 αn-string reduces to a single α-singlet pair. The unbound spin-singlet pairs (α = s) and
unbound η-spin-singlet pairs (α = η) of an energy eigenstate are the Nα1 α-singlet pairs that refer to the Nα1 n = 1 αn-pairs
configurations.

The numbers Πα = (Lα − 2Sα)/2 of spin (α = s) and η-spin (α = η) α-singlet pairs classify the u > 0 energy and
momentum eigenstates associated with the BA solution in two different yet related and complementary ways. On the one
hand, since Lη = L − Nc and Ls = Nc , they are amid the quantum numbers of that solution. This follows from Nc , the spin Ss,
and the η-spin Sη being good quantum numbers that classify the corresponding u > 0 energy and momentum eigenstates.
On the other hand, each of the numbers l = 1, . . . , n and the number n that classify a TBA αn-string and corresponding set
of l = 1, . . . , n rapidities,Λαn,l(qj) = Λαn(qj) + i (n + 1 − 2l) u, Eq. (134), with the same real part,Λαn(qj), refer to one such
pairs and to their number, respectively.

The (above mentioned) following exact TBA sum rules hold for all u > 0 energy and momentum eigenstates,

Πα =

∞∑
n=1

nNαn =
1
2
(Lα − 2Sα) where α = s, η ,

Π SU(2)
≡

∑
α=η,s

Πα =

∑
α=η,s

∞∑
n=1

nNαn =
1
2
(L − 2Ss − 2Sη) . (138)

This is consistent with the relation of the set of
∑

∞

n=1nNαn TBA αn-strings of all lengths n = 1, . . . ,∞ of such a state to the
set ofΠα spin (α = s) and η-spin (α = η) α-singlet pairs.
Π SU(2) denotes in Eq. (138) the total number of both spins and η-spins singlet pairs and Nαn is the number of αn-pairs

configurations that equals that of αn-band discrete momentum values qj that are occupied. Below in Section 6.3 it is shown
that the configuration of the two spins within one such unbound spin-singlet pair and that of the two η-spins within one
unbound η-spin-singlet pair has a binding and anti-binding character, respectively. This applies to the internal structure of
allΠs spin-singlet pairs and allΠη η-spin-singlet pairs, respectively, of a u > 0 energy and momentum eigenstate.

There is a one-to-one correspondence between the Nαn αn-pairs configurations with the same number n of α-singlet
pairs of an energy eigenstate and the Nαn occupied momentum values qj of the corresponding αn-band distribution Nαn(qj),
respectively. Anαn-pairs configuration involves a set of 2n paired η-spins 1/2 (α = η) or paired spins 1/2 (α = s). They singly
occupy a set of 2n original-lattice sites. The use of the TBA equations given in the previous section reveals that their center
of mass moves with momentum qj. All the 2n paired spins 1/2 (α = s) or paired η-spins 1/2 (α = η) move coherently along
with it. This occurs through processes within which such 2n paired spins 1/2 or paired η-spins 1/2 interchange position with
the Mα = 2Sα unpaired spins 1/2 or unpaired η-spins 1/2, respectively. Between each such a elementary process, both the
latter and the 2n paired η-spins 1/2 (α = η) or paired spins 1/2 (α = s) singly occupy original-lattice sites.

We associate one αn pseudoparticle and one αn-band holewith each of the Nαn occupied and Nh
αn unoccupied momentum

values qj, respectively, of an u > 0 energy eigenstate αn-band. Such composite αn pseudoparticles arewell defined for u > 0
within the TL to which the TBA applies. The TL ensures that the problems concerning the αn pseudoparticle internal degrees
of freedom and translational degrees of freedom, respectively, separate.

On the one hand, the internal degrees of freedom of a composite αn pseudoparticle refer to an αn-pairs configuration.
Hence there is one αn pseudoparticle for each αn-pairs configuration and corresponding BA roots that involve a group of
l = 1, . . . , n rapidities with the same real part, Eq. (134). If n > 1 the composite αn pseudoparticle has n = 2, . . . ,∞
α-singlet pairs bound within it. If n = 1 its internal degrees of freedom correspond to a single unbound α-singlet pair.

On the other hand, the momentum qj, Eq. (131), of an αn pseudoparticle refers to its translational degrees of freedom. It
is associated with its center of mass motion. The set of Nα =

∑
∞

n=1Nαn αn pseudoparticles, each carrying a momentum qj, of
a given energy eigenstate determine such a state momentum eigenvalue, as given in Eq. (135). That the ηn pseudoparticles
contribution reads (π−qj) rather than qj, follows from the configuration of the two η-spins in each η-spin-singlet pair having
an anti-binding character, as confirmed below in Section 6.3.

The l = 1, . . . , n α-singlet pairs within each of the Nαn αn pseudoparticles that populate the n = 1, . . . ,∞ αn-bands
of an energy and momentum eigenstate have spin (α = s) and η-spin (α = η) zero. The corresponding composite αn
pseudoparticles are thus neutral particles. The c pseudoparticles have in turnno internal degrees of freedom. Their occupancy
configurations generate the state representations of the c latticeU(1) symmetry. It is independent from themodel two SU(2)



J.M.P. Carmelo, P.D. Sacramento / Physics Reports 749 (2018) 1–90 45

symmetries. Hence the energy eigenstates spin and spin projection (α = s) and η-spin and η-spin projection (α = η), Sα and
Szα , are determined solely by their numbers of unpaired spins 1/2 and unpaired η-spins 1/2 of projections ±1/2. Specifically,
Sα = (Mα,+1/2 + Mα,−1/2)/2 = Mα/2 and Szα = −(Mα,+1/2 − Mα,−1/2)/2, respectively.

As for the spin-1/2 XXX chain, there is a number of αn pseudoparticles sum rule. It is related to that of α-singlet pairs,
Eq. (138). The latter sum rule implies that Nα1 = Lα/2− Sα −

∑
∞

n=2nNαn. From the use of this relation in the overall number
of αn pseudoparticles expression, Nα =

∑
∞

n=1Nαn, one confirms that the following sum rules are obeyed,

Ns =

∞∑
n=1

Nsn =
1
2
(Nc − Nh

s1) and Nη =

∞∑
n=1

Nηn =
1
2
(Nh

c − Nh
η1) ,

NSU(2)
=

∑
α=η,s

Nα =

∑
α=η,s

∞∑
n=1

Nαn =
1
2
(L − Nh

s1 − Nh
η1) . (139)

Here Nh
α1 is the number of α1-band holes, Eq. (130) for α = η, s and n = 1. NSU(2)

=
∑

α=η,sNα is that in Eq. (133).
In contrast to the spin 1/2-XXX chain, the imaginary parts, i (n + 1 − 2l) u, of each set of l = 2, . . . , n rapidities with

the same real part depend on the interaction u = U/4t and thus vanish as u → 0. Such a set of l = 2, . . . , n rapidities
describes n > 1 α-singlet pairs bound within an αn-pairs configuration. The vanishing of such rapidities imaginary parts
thus gives rise to the unbinding of all α-singlet pairs. One finds that the two η-spins 1/2 (α = η) or spins 1/2 (α = s) of
each pair remain contributing to singlet configurations, yet each carries an independent virtual elementary charge or spin
current, respectively. This reveals that the corresponding composite αn pseudoparticles are only well defined for u > 0.
Such a unbinding marks for finite transfer integral t the qualitatively different physics of the U = 0 and U > 0 quantum
problems, respectively. It is associated with the rearrangement of the η-spin and spin degrees of freedom in terms of the
noninteracting electrons occupancy configurations that generate the finite-t and U = 0 energy andmomentum eigenstates.

In an extended Takahashi subspace as defined inAppendixG, the numbers of discretemomentumvalues Lαn in Eq. (130) of
allαn-bands forwhichNαn > 0 remain fixed. For the 1DHubbardmodel in such subspaces one associates each j = 1, . . . , Lαn
momentum values qj αn-band, Eq. (131), with a corresponding squeezed αn effective lattice with j = 1, . . . , Lαn sites
and length L. Provided that the ratio Lαn/L remains finite as L → ∞, in the TL such squeezed αn effective lattices can be
represented by 1D lattices. Their spacing corresponds to the extended Takahashi subspace average distance of their Lαn
sites,

aαn =
L
Lαn

=
L
Lαn

a =
Lα
Lαn

aα where α = η, s and n = 1, . . . ,∞ . (140)

Therefore, the αn effective lattice length equals that of the original lattice. The corresponding sites then have spatial
coordinates, aαn j, where j = 1, . . . , Lαn. Each composite αn pseudoparticle singly occupied site of the ηn (and sn) effective
lattice describes an η-spin-singlet (or spin-singlet) occupancy configuration. It involves a set of 2n paired η-spins 1/2 (or 2n
paired spins 1/2) on 2n = 2, . . . ,∞ sites of the original lattice.

For the PDT, only the c and s1 pseudoparticle and corresponding c and s1 pseudofermion operator algebras are explicitly
needed.Hence for simplicitywe limit our present analysis to theαn = s1pseudoparticle operator algebra. The corresponding
operator representation is valid for the 1D Hubbard model in fixed-Ls1 extended Takahashi subspaces. In such subspaces the
local s1 pseudoparticle operators obey a fermionic algebra,

{f †
j,s1 , fj′,s1} = δj,j′ and {f †

j,s1 , f
†
j′,s1} = {fj,s1 , fj′,s1} = 0 . (141)

This can be confirmed in terms of their statistical interactions [262]. Such a problem is addressed in Appendix G. (Con-
sistently, the TBA β = c, s1 band momentum value qj have only occupancies zero and one.) Each of the Ns1 occupied s1
effective lattice sites corresponds to a spin-singlet pair. It involves two original lattice sites occupied by two paired spins 1/2
of opposite spin projection.

The s1 pseudoparticle translational degrees of freedom center of mass motion are described by operators f †
j,s1 (and fj,s1).

They create (and annihilate) one s1 pseudoparticle at the s1 effective lattice site xj = as1 j. Here j = 1, . . . , Ls1 and Ls1 is given
in Eq. (130) for αn = s1. This is as for the local creation and annihilation c pseudoparticle operators, Eq. (121).

The β = c, s1 pseudoparticle operators labeled by the corresponding β = c, s1 bands j = 1, . . . , Lβ momentum values
qj defined in Eqs. (131) and (132) then read,

f †
qj,β

=
1

√
L

Lβ∑
j′=1

ei qj xj′ f †
j′,β and fqj,β = (f †

qj,β
)† where j = 1, . . . , Lβ and β = c, s1 . (142)

Such momentum values qj are the quantum numbers of the exact BA solution whose occupancy configurations generate the
u > 0 energy and momentum eigenstates,

Besides acting within fixed-Ls1 extended Takahashi subspaces, the s1 pseudoparticle operators labeled by momentum qj
also appear in the expressions of the shake-up effects generators. Such generators transform extended Takahashi subspaces
quantum number values into each other.
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5.3. Charge (and spin) current carriers and the general c, ηn bands (and sn bands) hole representation

The relation of the composite αn pseudoparticles to the paired spins 1/2 (α = s) and paired η-spins 1/2 (α = η) was the
problem revisited in Section 5.2. A related issue whose clarification is needed for the study of the charge and spin currents
and their carriers is addressed in this section. It refers to the relation of the set of holes in each αn-band populated by αn
pseudoparticles to the spins 1/2 (α = s) and η-spins 1/2 (α = η). There are Nh

αn = 2Sα +
∑

∞

n′=n+12(n
′
− n)Nαn′ such holes,

Eq. (130), in each αn-band.
The 1D Hubbard model in a uniform vector potential Φ/L whose Hamiltonian is given in Eq. (4) of Ref. [263] remains

solvable by the BA. Its coupling to the charge/η-spin and spin degrees of freedom the flux Φ reads Φ = Φ↑ = Φ↓ and
Φ = Φ↑ = −Φ↓, respectively [263,264]. The LWSs momentum eigenvalues, P(Φ↑,Φ↓), have the general form [264],

P(Φ/L) = P(Φ↑/L,Φ↓/L) = P(0) + (Nc −

∑
n

2nNsn)
Φ↑ −Φ↓

2L
− (Nh

c −

∑
n

2nNηn)
Φ↑ +Φ↓

2L

= P(0) + 2Ss
Φ↑ −Φ↓

2L
− 2Sη

Φ↑ +Φ↓

2L
. (143)

The LWSsΦ = 0 momentum eigenvalue P(0) appearing here is that in Eq. (135) for Lη,−1/2 = 0.
The TBA equations for themodel in a uniform vector potential are given in Eq. (9) of Ref. [263]. The only difference relative

to theΦ = 0 case, is that the c band, sn band, and ηn bandmomentum values qj are replaced by qj+Φ↑/L, qj−n(Φ↑ −Φ↓)/L,
and qj −n(Φ↑ +Φ↓)/L, respectively. Hence concerning the coupling to the (i) charge/η-spin and (ii) spin degrees of freedom,
this gives (i) qj +Φ/L, qj, and qj − 2nΦ/L and (ii) qj +Φ/L, qj − 2nΦ/L, and qj, respectively.

The α = η and α = s current operators expectation values of the Φ → 0 LWSs can then be derived from
the Φ/L dependence of the energy eigenvalues E(Φ/L). Specifically, ⟨Ĵzη⟩ = dE(Φ/L)/d(Φ/L)|Φ=Φ↑=Φ↓=0 and ⟨Ĵzs ⟩ =

dE(Φ/L)/d(Φ/L)|Φ=Φ↑=−Φ↓=0, respectively. Moreover, dP(Φ/L)/d(Φ/L)|Φ=Φ↑=Φ↓=0 gives the number of charge/η-spin
carriers and dP(Φ/L)/d(Φ/L)|Φ=Φ↑−Φ↓=0 that of spin carriers that couple to the vector potential Φ/L. The use of the exact
momentum eigenvalues, Eq. (143), then reveals that such carriers are the Mη = 2Sη unpaired η-spins 1/2 and Ms = 2Ss
unpaired spins 1/2, respectively. (This is as for the unpaired spins of the spin-1/2 chain XXX chain.)

It is thus useful to consider the unpaired η-spins 1/2 (α = η) and unpaired spins 1/2 (α = s) densities mSα ≡ 2Sα/L =

Mα/L. The energy and momentum eigenstates that span the subspaces with fixed values for the α = η, s numbers Lα , Eq.
(123), have Sα values in the range Sα ∈ [0, Lα/2]. Hence, for the corresponding unpaired η-spins 1/2 and unpaired spins
densities this givesmSη ∈ [0, nh

c/2] and mSs ∈ [0, nc/2], respectively.
In the u → ∞ limit, one explicitly confirms that up to first order in Φ/L the dependence of the energy eigenvalues

E(Φ/L) on Φ/L can be expressed in terms of a dependence on (mSαΦ)/L. It refers to (mSηΦ)/L for Φ = Φ↑ = Φ↓ [103] and
(mSsΦ)/L for Φ = Φ↑ = −Φ↓. This ensures that for all LWSs |lr, l0ηs,∞⟩ the above α = η, s currents ⟨Ĵzα⟩ have an overall
factor mSα = 2Sα/L. (In Ref. [103] it was considered that in the α = η case the corresponding total exact flux 2SηΦ was
shared by the Nh

c holes in the c band whose number equals that of η-spins 1/2, Lη = Nh
c . This gives 2SηΦ = Nh

c Φ
eff and thus

Φeff
= [2Sη/Nh

c ]Φ .)
Combination of these u → ∞ properties with the invariance under the electron–rotated-electron unitary transformation

of theMη = 2Sη unpaired η-spins 1/2 andMs = 2Ss unpaired spins 1/2 provides useful physical information. That invariance
implies that for u > 0 the unpaired η-spins 1/2 and unpaired spins 1/2 that populate the states |lr, l0ηs, u⟩ = V̂ †

|lr, l0ηs,∞⟩

have properties similar to those that in the u → ∞ limit populate the corresponding states |lr, lηs,∞⟩ belonging the same
V (u)-set of states. This reveals that in the case of coupling to charge/η-spin (α = η) and spin (α = s) the energy eigenvalues
E(Φ/L) dependence on Φ/L is up to first order in Φ/L of the general form Cu (mSαΦ)/L for u > 0. Here Cu is some u, ne, and
m dependent coefficient independent of Φ/L. Hence the corresponding α current has the general form ⟨Ĵzη⟩ = Cu mSα for all
LWSs |lr, l0ηs, u⟩ = V̂ †

|lr, l0ηs,∞⟩.
For simplicity, we denote the LWSs α = η, s currents by ⟨Ĵzα,LWS(lr, Sα)⟩ = ⟨lr, Sα,−Szα|Ĵ

z
α|lr, Sα,−Szα⟩. Here we have

implicitly incorporated in lr the spin Ss when α = η and the η-spin Sη when α = s. From the use of procedures similar
to those leading to the spin-1/2 XXX spin currents, Eq. (69), one finds that the α = η, s currents carried by the non-LWSs
have the following exact relation to that of the corresponding LWS [264],

⟨Ĵzα(lr,Mα,+1/2,Mα,−1/2)⟩ =
(Mα,+1/2 − Mα,−1/2)

2Sα
⟨Ĵzα,LWS(lr, Sα)⟩ where α = η, s . (144)

The arguments already used in the case of the spin-1/2 XXX chain, concerning the LWS currents quantum associated with
α current changes generated by α-flip processes, apply. One then finds that the elementary current carried by a unpaired
η-spin 1/2 (α = η) of projection ±1/2 and unpaired spin 1/2 of projection ±1/2 is given by,

jα,±1/2 = ±
⟨Ĵzα,LWS(lr, Sα)⟩

2Sα
where α = η, s . (145)

This is similar to Eq. (70) for that chain.
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Here we do not address the issue of the spin currents in terms of the sn-bands hole representation and corresponding
spinon representation. Indeed, it is similar to that reported in Section 3.4 for the spin-1/2XXX chain. Concerning the charge/η-
spin currents, the translational degrees of freedom of the 2Sη unpaired η-spins that couple to the vector potential are now
described by an average number of 2Sη holes both in the c band and ηn bands for which Nηn > 0 [264]. The total number
of holes in such bands can be written as Nh

c = 2Sη +
∑

∞

n=12nNηn and Nh
ηn = 2Sη +

∑
∞

n′=n+12(n
′
− n)Nηn′ , respectively. All

processes associated with the ηn bands and η-spins 1/2 are similar to those described in Section 3.4 involving spin n bands
and spins 1/2.

Some of the holon representations associate each of the Nh
c = 2Sη +

∑
∞

n=12nNηn c-band holes with a η-spin
1/2 holon [66,67]. Both the range of validity of that representation and its relation to the extended c-band hole and
ηn-band holes more general representation show basic similarities to the same problems for the spinon representation
and extended n-bands hole representation revisited in Section 3.4 for the spin-1/2 XXX chain. In the case of charge currents,
this applies for instance to the description of the translational degrees of freedom of the Mη = 2Sη unpaired η-spins 1/2 of
u > 0 energy eigenstates [264]. Such degrees of freedom are described by an average number of 2Sη holes out of both the
Nh

c = 2Sη+
∑

∞

n=12nNηn c-band holes andNh
ηn = 2Sη+

∑
∞

n′=n+12(n
′
−n)Nηn′ holes of ηn bands for whichNηn > 0. However,

their internal η-spin degrees of freedom cannot be associated with such c- and ηn-bands holes. This is similar to the spinon
representation of the spin-1/2 XXX chain. For the additional information on the role of the c band holes in charge transport
see Ref. [264].

6. The 1D Hubbard model pseudoparticles quantum liquid

In this section the use of the β = c, αn pseudoparticle representation of the 1DHubbardmodel to describe its low-energy
physics is revisited. As in the case of the simpler models reviewed here, the β = c, αn pseudoparticle energy functional
resembles that of the low-energy Fermi liquid. The 1D Hubbard model describes interacting electrons on a lattice. It is a
non-perturbative quantum problem for which there are no quasiparticles, as defined in a Fermi liquid: The β = c, αn
pseudoparticles do not become electrons upon turning off adiabatically the interaction U . The one-electron physics is
thus qualitatively different from that of a Fermi liquid. However, the two-electron physics resembles that of such a liquid
[89–93,104,105].

Our goal here is to apply the general β = c, αn pseudoparticle energy functional introduced below in Section 6.1 to the
description of the model low-energy physics in Section 6.2. However, that functional is valid at all energy scales. There is
though a restriction to its applicability reported below in Section 6.1. (It basically is the same as that of the spin-1/2 XXX
chain spin pseudoparticle quantum liquid.)

There are several advantages in using the β = c, αn pseudoparticle representation in the study of the low-energy
properties. First, since it applies to all energy scales, its use reveals that the usual low-energy spin–charge separation results
from a more general separation of the spin and charge degrees of freedom. It occurs at all energy scales and is associated
with the spin SU(2) and chargeU(2) = SU(2)⊗U(1) symmetries, respectively, in themodel [SU(2)⊗SU(2)⊗U(1)]/Z2

2 global
symmetry. Second, all low-energy two-particle quantities are controlled by simple β pseudoparticles zero-momentum
forward-scattering interactions. As in a Fermi liquid, those are associated with f function terms in the theory energy
functional. Hence all such quantities can be computed by the familiarmethods of a Fermi liquid. This simplifies their physical
understanding. Third, the form of the α1 pseudoparticle energy dispersions provides valuable information on the type of
pairing of the two η-spins 1/2 (α = η) and spins 1/2 (α = s) within each α-singlet pair. A set of Πα =

∑
∞

n=1nNαn =

(Lα − 2Sα)/2 such pairs populates each u > 0 energy and momentum eigenstate. Furthermore, under a suitable unitary
transformation that shifts the β pseudoparticle momentum values qj, those are mapped onto β pseudofermions in terms of
which the study of the model finite-energy dynamical properties simplifies.

6.1. The c and αn pseudoparticle quantum liquid I: The general energy functional and its energy scales

As in the case of the simpler models discussed in Sections 2 and 3, there is a PS for each ground state with electronic
density ne and spin density m arbitrary values. In this section we consider PSs whose ground states refer to electronic
densitiesne ∈ [0, 1] and spin densitiesm ∈ [0, ne]. They are thus LWSs. Theirβ-bandpseudoparticlemomentumdistribution
functions are given by,

N0
c (qj) = θ (qj − q−

Fc) θ (q
+

Fc − qj) , N0
s1(qj) = θ (qj − q−

Fs1) θ (q
+

Fs1 − qj) and N0
αn(qj) = 0 for αn ̸= s1 . (146)

The c and s1 bands Fermi momentum values q±

Fβ appearing here are given in Eqs. (C.4)–(C.11) of Ref. [105]. Ignoring O(1/L)
corrections within the TL simplifies the β = c, s1 distributions, Eq. (146), to N0

β (qj) = θ (qFβ − |qj|). Here the β = c, s1 Fermi
momentum qFβ reads,

qFc = 2kF = π ne and qFs1 = kF↓ = π ne↓ . (147)

Hence the ground states under consideration are neither populated by composite sn pseudoparticles with n > 1 spin-singlet
pairs nor by composite ηn pseudoparticles with any number n = 1, . . . ,∞ of η-spin-singlet pairs. Since they are LWSs, they
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have no unpaired spins of projection −1/2 and no unpaired η-spins of projection −1/2. Their Mη = 2Sη = −2Szη = L − Ne
unpaired η-spins andMs = 2Ss = −2Szs = Ne↑ − Ne↓ unpaired spins have all projection +1/2 .

The PS excited states β-bands distribution functions are of the general form Nβ (qj) = N0
β (qj) + δNβ (qj). Here β = c, αn,

α = η, s, and n = 1, . . . ,∞. In the specific case of the β = c, s1 bands, one can classify in the TL the deviations,

δNβ (qj) = Nβ (qj) − N0
β (qj) for j = 1, . . . , Lβ , (148)

as δNF
β (qj) and δNNF

β (qj), respectively. On the one hand, for the deviations δNF
β (qj) the band momentum qj is such that

limL→∞(|qj|−qFβ ) = 0. On the other hand, in the case of δNNF
β (qj) themomentumdifference limL→∞(|qj|−qFβ ) remains finite

in the TL. For the excited states belonging to a PS, one as that
∑

β=c,s1
∑Lβ

j=1|δN
NF
β (qj)|/L → 0,

∑
∞

n=1
∑Lηn

j=1|δNηn(qj)|/L → 0,∑
∞

n=2
∑Lsn

j=1|δNsn(qj)|/L → 0, δSs/L → 0, and δSη/L → 0 as L → ∞. For a PS there are though no restrictions on the value of
the excitation energy and excitation momentum.

It is often convenient within the TL to replace the β = c, αn band discrete momentum values qj, Eq. (131), such that
qj+1 − qj = 2π/L, by a corresponding continuous momentum variable, q. It belongs to a domain q ∈ [q−

β , q
+

β ] whose limiting
momentum values q±

β are given in Eq. (B.4) of Appendix B. Ignoring again O(1/L) corrections, one finds that q±

β ≈ ±qβ . For
the present PSs whose ground states are LWSs the limiting momenta qβ then read,

qc = π , qs1 = kF↑ , qsn = (kF↑ − kF↓) = π m and qηn = (π − 2kF ) = π (1 − ne) . (149)

Within the continuum momentum q representation, the deviation values δNβ (qj) = −1 and δNβ (qj) = +1 in Eq. (148)
become δNβ (q) = −(2π/L)δ(q − qj) and δNβ (q) = +(2π/L)δ(q − qj), respectively. According to Eqs. (131) and (132),
under a transition to an excited state, the β band discrete momentum values qj = (2π/L) Iβj may undergo a collective
shift, (2π/L)Φ0

β = ±π/L. HereΦ0
β reads,

Φ0
c = 0 for δNSU(2) even and Φ0

c = ±
1
2

for δNSU(2) odd ;

Φ0
αn = 0 for δNc + δNαn even and Φ0

αn = ±
1
2

for δNc + δNαn odd , (150)

where α = η, s and n = 1, . . . ,∞. δNSU(2) is in this equation the deviation in the number NSU(2) in Eq. (133). For q at
the β = c, s1 and ι = ± Fermi points, ι qFβ , such a shake-up effect is captured within the continuum representation by
additional deviations, ±(π/L)δ(q − ι qFβ ). For transitions to an excited state for which δLαn ̸= 0, the removal or addition of
BA αn band discrete momentum values occurs in the vicinity of the band edges q−

αn = −q+
αn, Eq. (B.4) of Appendix B. Those

are zero-momentum and zero-energy processes.
The PS energy functionals are derived from the use of the TBA equations, Eqs. (128)–(129), and general energy spectra,

Eq. (B.5) of Appendix B. Specifically, one uses in them β-bands momentum distribution functions of form Nβ (qj) = N0
β (qj)+

δNβ (qj). Their deviations, Eq. (148), play an important role. The combined and consistent solution of those equations and
spectra up to second order in such deviations then leads to [92,99],

δE =

∑
β

Lβ∑
j=1

εβ (qj)δNβ (qj) +
1
L

∑
β

∑
β ′

Lβ∑
j=1

Lβ′∑
j′=1

1
2
fβ β ′ (qj, qj′ ) δNβ (qj)δNβ ′ (qj′ ) +

∑
α=η,s

εα,−1/2 Mα,−1/2 . (151)

The β = c, αn band energy dispersions εβ (qj) appearing here are given by,

εβ (qj) = Eβ (qj) + εcβ (qj) and εcβ (qj) =
t
π

∫ Q

−Q
dk 2πΦ̄c β

(
sin k
u
,
Λ
β

0 (qj)
u

)
sin k for j = 1, . . ., Lβ . (152)

Eβ (qj) is in this equation for β = c, ηn, sn the energy spectrum, Eq. (B.7) of Appendix B, with the rapidity functions those of
the ground state,Λv0(qj) = sin kc0(qj)/u andΛαn0 (qj). The latter are the solutions of Eqs. (128) and (129) for the corresponding
distribution function distributions, Eq. (146). The parameter Q in Eq. (152) and related parameters B, r0c , and r s0 read,

Q ≡ k0c (2kF ) , B ≡ Λs1
0 (kF↓) , r0c =

sinQ
u

and r0s =
B
u
. (153)

The dressed rapidity phase shifts 2πΦ̄c β (r, r ′) in Eq. (152) are a particular case of the general dressed rapidity phase shifts
2πΦ̄β β ′ (r, r ′). Those are defined by the integral equations given in Appendix H [99]. Such phase shifts are associated with
the following corresponding dressed phase shifts expressed in terms of the β-band momentum qj and β ′-band momentum
qj′ ,

2πΦβ β ′ (qj, qj′ ) = 2πΦ̄β β ′

(
r, r ′

)
where r = Λ

β

0 (qj)/u and r ′
= Λ

β ′

0 (qj′ )/u . (154)

Within the continuum q representation, the β band group velocities are given by,

vβ (qj) =
dεβ (q)
dq

|q=qj , vc ≡ vc(qFc) = vc(2kF ) and vs1 ≡ vc(qFs1) = vs1(kF↓) , (155)
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where β = c, ηn, sn and n = 1, . . . ,∞. They appear in the expression of the f functions in the second-order terms of the
energy functional, Eq. (151), which reads [92,93],

fβ β ′ (qj, qj′ ) = vβ (qj) 2π Φβ β ′ (qj, qj′ ) + vβ ′ (qj′ ) 2π Φβ ′ β (qj′ , qj)

+
1
2π

∑
β ′′=c,s1

∑
ι=±

vβ ′′ 2πΦβ ′′ β (ιqFβ ′′ , qj) 2πΦβ ′′ β ′ (ιqFβ ′′ , qj′ ) . (156)

The dressed momentum phase shift 2πΦβ β ′ (qj, qj′ ) appearing here is given in Eq. (154).
The only restriction to the applicability of the β = c, αn pseudoparticle energy functional, Eq. (151), is that associated

with a PS definition. It is such that within the TL the deviations δNNF
c (qj), δNNF

s1 (qj), δNsn(qj) for n = 2, . . . ,∞, and δNηn(qj)
for n = 1, . . . ,∞ involve a finite number of β = c, αn pseudoparticles. Hence such a restriction can be expressed as,

lim
L→∞

(∑
β=c,s1

∑Lβ
j=1|δN

NF
β (qj)| +

∑
∞

n=1
∑Lηn

j=1|δNηn(qj)| +
∑

∞

n=2
∑Lsn

j=1|δNsn(qj)|
)

L
→ 0 . (157)

The general energy spectrum, Eq. (B.5) of Appendix B, gives the energy eigenvalues. That in Eq. (151) rather provides the
excited-state energy eigenvaluesminus the ground state energy. The energy dispersion term εcβ (qj) in Eq. (152) as well as the
f -function terms in Eq. (151) are absent from Eq. (B.5) of Appendix B. Indeed, they stem from such energies differences. This
is why the expressions of the energy dispersion term εcβ (qj) and f -function involve dressed phase shifts. Those emerge under
the transitions from the ground state to excited states. The one- and two-electron excited states spectra can be expressed in
terms of the β = c, αn energy dispersions, Eq. (152) [89].

In the particular case of themagnetic-field energy 2µB H = 2µB H(m) and chemical potentialµ = µ(ne) on the right-hand
side of Eq. (151) and related energy scales, we consider extended ranges of the densities ne and m. Such important energy
scales appear in the following relations between energy dispersions with different yet useful zero energy levels,

ε0c (qj) = εc(qj) − µη + µs and ε0αn(qj) = εαn(qj) − n 2µα , (158)

where α = η, s and n = 1, . . . ,∞. They are uniquely determined by the energy dispersions ε0c (qj) and ε0s1(qj) at the
corresponding Fermi points as follows [89],

2µB H = −sgn{m}ε0s1(qFs1) ,

µ = −sgn{(1 − ne)}
(
ε0c (qFc) +

1
2
ε0s1(qFs1)

)
for ne ̸= 1 and µ ∈ [−µ0, µ0

] for ne = 1 . (159)

Note that due to the terms in the expressions in Eq. (158) involving the α = η, s energy scales 2µα , Eq. (B.6) of Appendix B,
the dispersions ε0c (qj) and ε

0
αn(qj) are actually independent of such energy scales. This can be confirmed by inspection of the

form of the energy dispersion term Eβ (qj), Eq. (B.7) of Appendix B for β = c, αn, appearing in Eq. (152). The zero energy level
of the β = c, αn energy dispersions εβ (qj) is that of the ground state. In contrast, that of the β = c, αn energy dispersions
ε0β (qj) refers to the BA absolute zero energy level. For the αn bands, the latter zero energy level is such that ε0αn(q

±
αn) = 0.

The finite-u Mott–Hubbard gap 2µ0, Eq. (B.8) of Appendix B, finiteness implies that the chemical potential curve
µ = µ(ne) has a discontinuity at ne = 1. The corresponding chemical-potential dependence on the hole concentration,
x = (1 − ne), is such that µ(x) = −µ(−x) with µ ∈ [µ0, µ1

] for x ≥ 0. Here the energy scale 2µ1 associated with
µ1

= ∓limx→±1µ(x) reads 2µ1
= U + 4t . For u ≫ 1 and m = 0 the chemical-potential curve µ = µ(x) behaves

as 2µ(x) = sgn{x}(U − 4t cos(πx)) for both x ∈ [−1, 0] and x ∈ [0, 1] and 2µ(0) ∈ [−(U − 4t), (U − 4t)] at x = 0.
Furthermore, the magnetic energy scale 2µB H dependence on the spin density m is such that 2µB H(m) = −2µB H(−m)
with 2µB |H(m)| ∈ [0, 2µB Hc] for m ∈ [−(1 − |x|), (1 − |x|)]. Here 2µB H(0) = 0 and 2µB Hc = ±limm→±[1−|x|]2µB H(m).
A closed-form expression for the dependence on U , t , and density ne of the energy scale 2µB Hc where Hc is the critical
magnetic field for the onset of fully polarized ferromagnetism is given below.

The intrinsic energies εη,±1/2 and εs,±1/2 relative to the zero-energy ground-state level of a unpaired η-spin 1/2 and a
unpaired spin 1/2, respectively, of projection±1/2 are directly related to the energy scales 2µ and 2µB H , respectively. Such
intrinsic energies are useful reference scales for the analysis presented below in Section 6.3 of the anti-binding or binding
character of the paired spins 1/2 and paired η-spins 1/2 configuration within each pair. Straightforward calculations relying
on the algebra of the η-spin and spin SU(2) symmetry off-diagonal generators lead to,

εη,±1/2 = 2|µ| and εη,∓1/2 = 0 for sgn{(1 − ne)}1 = ∓1 and ne ̸= 1 ,
= (µ0

± µ) for ne = 1 and µ ∈ [−µ0, µ0
] ,

εs,±1/2 = 2µB |H| and εs,∓1/2 = 0 for sgn{m}1 = ∓1 . (160)

Hence a Sα = 1; Szα = 0 α-multiplet configuration of two unpaired η-spins or two unpaired spins has an intrinsic energy
given by,

εα+1/2 + εα,−1/2 = 2µα where α = η, s . (161)
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Fig. 10. The c band energy dispersion εc (q), Eq. (152) for β = c , plotted as a function of the momentum in units of t for a set of U/t values (in units of t),
electronic density ne = 0.59, and spin density (a)m = 0 and (b)m → ne = 0.59. (As in Ref. [104], in the figures the electronic density ne is denoted by n.)
Source: The figures plots were produced using the same data as in Fig. 6 of Ref. [104] for other densities.

Fig. 11. The s1 band energy dispersion ε0s1(q), Eq. (158) for αn = s1, which for m = 0 equals the related s1 band energy dispersion εs1(q), Eqs. (152) for
β = s1, plotted as a function of themomentum in units of t for the sameU/t and ne values as Fig. 10 and (a)m = 0 and (b)m → ne = 0.59. (As in Ref. [104],
in the figures the electronic density ne is denoted by n.)
Source: The figures plots were produced using the same data as in Fig. 7 of Ref. [104] for other densities.

Fig. 12. The s2 band energy dispersion ε0s2(q), Eq. (158) for β = s2, plotted as a function of the momentum in units of t for the same U/t and ne values as
Fig. 10 andm → ne = 0.59. (As in Ref. [104], in the figure the electronic density ne is denoted by n.)
Source: The figure plots were produced using data from Ref. [104].

The energy scales 2µα such that 2µη = 2|µ| and 2µs = 2µB |H| and the Mott–Hubbard gap 2µ0 associated with the energy
scale µ0 are those considered above. They are given in Eqs. (B.6) and (B.8) of Appendix B.

The energy dispersions εc(q), ε0s1(q), ε
0
s2(q), ε

0
η1(q), and ε

0
η2(q) are plotted as a function of the momentum q in Figs. 10–14,

respectively, for several U/t values, electronic density ne = 0.59, and spin densities m = 0 and/or m → ne = 0.59. (The
electronic density ne = 0.59 is that used in Refs. [13,15,16,58] for the stacks of TCNQ molecules in TTF–TCNQ.) Analysis of
the figures energy-dispersions slopes reveals that the velocity vβ (q), Eq. (155), vanishes at q = 0 for all β = c, αn branches.
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Fig. 13. The η1 band energy dispersion ε0η1(qj), Eq. (158) for β = η1, plotted in units of t for the same U/t and ne values as Fig. 10 and (a) m = 0 and
(b)m → ne = 0.59. (As in Ref. [104], in the figures the electronic density ne is denoted by n.)
Source: The figures plots were produced using the same data as in Figs. 8(a) and 9(a) of Ref. [104] for other densities.

Fig. 14. The η2 band energy dispersion ε0η2(qj), Eq. (158) for β = η2, plotted in units of t for the same U and n values (denoted in the figures by n) as Fig. 10
and (a)m = 0 and (b) m → ne = 0.59. (As in Ref. [104], in the figures the electronic density ne is denoted by n.)
Source: The figures plots were produced using the same data as in Figs. 8(b) and 9(b) of Ref. [104] for other densities.

Provided that u > 0, it also vanishes at the limiting momentum values q = ±qβ for the β ̸= s1 branches. The energy
bandwidths of the s1 band, s2 band, η1 band, and η2 band, plotted in Figs. 11–14, respectively, vanish in the u → ∞ limit.
(In them → 0 limit, the momentum and energy bandwidths of the s2 band energy dispersion vanish for all u values, so that
it is not plotted in Fig. 12 form = 0.) This u → 0 behavior results from the degenerescence of all spin configurations and of
all η-spin configurations with the same electron double occupancy reached in that limit. For the u → 0 and u ≫ 1 limiting
behaviors of the β energy dispersions, Eqs. (152) and (158), see Ref. [104].

6.2. The c and αn pseudoparticle quantum liquid II: Applications to the low-energy physics

The 1D Hubbard model in general PSs is a quantum liquid of c pseudoparticles and n = 1, . . . ,∞ branches of composite
ηn-pseudoparticles and sn-pseudoparticles. In the following we consider again that model in its metallic-phase PSs whose
ground states are LWSs with densities ne ∈ [0, 1[ and m ∈ [0, ne] for which (µ − µ0) > 0 and H > 0. In the
case of that quantum problem, there emerge gaps ∆η and ∆s between such ground states and their PS excited energy
eigenstates populated by ηn pseudoparticles and n > 1 sn pseudoparticles, respectively. Such gaps minimum values are
∆min
η = εη1(q±

η1) = 2|µ| and∆min
s = εs2(0) = 4µB |H| − |ε0s2(0)|. For excitation energy below these gaps, the physics is that

of two U(1) symmetry quantum problems. The corresponding energy and momentum eigenstates are described by only
groups of real rapidities. (This is as in the case of the 1D Lieb–Liniger Bose gas.) The η1 pseudoparticle energy spectrum is
gapped, in spite of corresponding to real rapidities. This results from creation of one η1 pseudoparticle involving creation
of one rotated-electron doubly occupied site. (In the attractive U < 0 1D Hubbard model the situation is the opposite, with
the s1 pseudoparticle energy spectrum gaining a gap and the η1 pseudoparticle spectrum being gapless.)

In the present case of chemical-potential values (µ − µ0) > 0 and magnetic fields H > 0, the model static and low-
temperature properties are determined by excitations associated with energy and momentum eigenstates with finite c and
s1 pseudoparticle occupancy Nc = Ne and Ns1 = Ne↓ = (Ne − 2Ss)/2 only in the c and s1 bands, respectively. This applies
as well to the finite-energy dynamical correlation functions leading order contributions. Hence for such states Nηn = 0
for all n = 1, . . . ,∞ and Nsn = 0 for n > 1. On the one hand, due to the ne = 1 Mott–Hubbard gap, the physics of the
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model Mott–Hubbard insulator phase is qualitatively different from that of its ne ̸= 1metallic phase. On the other hand, the
physical quantities have the same values both at H = 0 and in the H → 0 limit, respectively.

For the quantum problem under consideration here, the following parameters involving the dressed phases shift
2πΦβ β ′ (qj, qj′ ), Eq. (154), in units of 2π and with the two momentum values qj and qj′ at the β, β ′

= c, s1 Fermi points
play an important role in the static and low-temperature properties [89,90,92,93],

ξ
j
β β ′ = δβ,β ′ +

∑
ι=±

(ι)jΦβ β ′

(
qFβ , ιqFβ ′

)
where β, β ′

= c, s1 and j = 0, 1 . (162)

(For β = β ′ and ι = 1 in Eq. (162), the present TL notation assumes that the two β = c, s1 Fermi momenta in the argument
ofΦβ,β

(
qFβ , qFβ

)
, differ by 2π/L, whereas that phase shift vanishes for identical momentum values.)

The dressed phase-shift related anti-symmetrical parameters ξ 1
β β ′ and symmetrical parameters ξ 0

β β ′ turn out to be
the entries of the conformal-field theory 2 × 2 dressed-charge matrix and of the transposition of its inverse ma-
trix [90,92,176,181,224],

Z1
=

[
ξ 1c c ξ 1c s1
ξ 1s1 c ξ 1s1 s1

]
; Z0

=

[
ξ 0c c ξ 0c s1
ξ 0s1 c ξ 0s1 s1

]
; lim

m→0
Z1

=

[
ξ0 ξ0/2
0 1/

√
2

]
; lim

m→0
Z0

=

[
1/ξ0 0

−1/
√
2

√
2

]
, (163)

respectively, where Z0
= ((Z1)−1)T . (The dressed-charge matrix definition of Ref. [176] has been used here, which is the

transposition of that of Ref. [224].) The m → 0 phase-shift parameter ξ0 in Eq. (163) is given by ξ0 = ξ0(r0c ). The function
ξ0(r) is the unique solution of the integral equation, Eq. (74) of Ref [92] for x = r . That parameter has limiting values ξ0 =

√
2

for u → 0 and ξ0 = 1 for u → ∞.
At low energy the present quantumproblem can be described by a two-component TLL [2–4,44,47,48]. The corresponding

g matrix [4] can be expressed in terms of the dressed phase-shift parameters, Eq. (162). A low-energy physical quantity that
is fully controlled by the above phase-shift related parameters in Eq. (163) is the exponent in the low-energy ω power-law
dependence of the electronic density of states suppression, ∝ |ω|

α0 . In the m → 0 limit its following expression involves
only the parameter ξ0 in that equation,

α0 =
(2 − ξ 20 )

2

8ξ 20
∈ [0, 1/8] . (164)

The exponent, Eq. (164), has limiting values α0 = 0 for u → 0 and α0 = 1/8 for u → ∞, respectively.
By use of the methods reported for the 1D Lieb–Liniger Bose gas and spin-1/2 XXX chain, one finds that for (i) electronic

densities ne and (ii) spin densities m not too near (i) 0 and 1 (ii) and ne, respectively, the low-temperature specific heat
reads [89],

cV
L

=
kB π
3

(
1
vc

+
1
vs1

)
(kBT ) , (165)

where vc and vs1 are the β = c, s1 band Fermi velocities in Eq. (155).
On the one hand, for electronic densities ne ∈ ]0, 1[ not too close to ne = 0 and ne = 1 the low-temperature thermal

excitations that contribute to the first term of the specific heat expression, Eq. (165), refer to awell-defined branch of gapless
excited energy and momentum eigenstates. Their charge degrees of freedom are generated from the ground state by low-
energy and small-momentum particle–hole processes around the c band Fermi points.

On the other hand, as for the spin-1/2 XXX chain, at zero magnetic field H = 0 the spin degrees of freedom of such
gapless branch of states that contribute to the second term of the specific heat expression, Eq. (165), refer to sn-strings of
lengths n > 1. For finite magnetic field these n > 1 sn-strings excitations become gapped. The thermal excitations that
contribute to the low-temperature specific heat become gapless excited energy and momentum eigenstates whose charge
degrees of freedom remain being generated by low-energy and small-momentumparticle–hole processes around the c band
Fermi points. Their spin degrees of freedom correspond to spin real rapidities. Those are generated from the ground state by
low-energy and small-momentum particle–hole processes around the s1 band Fermi points.

The specific-heat expression obtained for H > 0 leads in the H → 0 limit to the correct H = 0 expression. On the
contrary, the specific heat expression, Eq. (165), is not valid in them → ne limit. This is because it does not describe properly
the crossover to the specific heat exponential regime. The latter arises due to the gap 2µB(H−Hc) in the excitation spectrum
forH > Hc . More generally, the validity of that specific heat expression refers to very low temperatures T ≪ 2µB(Hc −H)/kB
for (Hc −H) > 0, T ≪ 2(µ−µ0)/kB for (µ−µ0) > 0, and T ≪ 2(µ1 −µ)/kB for (µ1 −µ) > 0. In the close neighborhood of
µ = µ1 = U/2+2t , the problem is trivial. The specific heat is then given by its noninteracting value. Following the technical
similarities of the crossover critical regimes associated with the 2µB|H − Hc | ≪ kBT and 2|µ− µ0| ≪ kBT limits [89], here
we shortly discuss the former regime for electronic densities ne ∈ ]0, 1[ not too close to ne = 0 and ne = 1.

Near H = Hc the minimum gap for energy eigenstates with spin sn-strings of length n > 1 associated with complex
rapidities is given by,

∆min
s = 4µB Hc − Ws2 . (166)
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The dependence on U , t , and ne of the energy scale 4µB Hc appearing here is given in the following. Ws2 ≡ |ε0s2(0)| is in
Eq. (166) the energy scale in Eq. (B.10) of Appendix B for n = 2. Its limiting behaviors for u → 0 and u ≫ 1 are,

∆min
s = 2µB Hc = 4tsin2

(πne

2

)
for u → 0

= 3µB Hc =
12 ne t2

U

(
1 −

sin(2πne)
2πne

)
for u ≫ 1 , (167)

respectively.
We consider low temperatures T < ∆min

s /kB within the critical regime of the crossover to ferromagnetism for which
2µB|H − Hc | ≪ kBT . For such temperatures the energy and momentum eigenstates that contribute to the specific heat
have spin degrees of freedom described only by spin sn-strings of length n = 1. They are thus only populated by s1
pseudoparticles and unpaired spins 1/2. At low temperatures the crossover regime involves both the above s1 band gapless
spin-singlet excited states and across-gap excited energy eigenstates. The latter states spin degrees of freedom are generated
by elementary spin-triplet δSs = ±1 processes. (They are similar to those considered for the spin-1/2 XXX chain in
Section 3.6.)

The s1 band energy dispersion valid for spin densitym → ne reads [89],

εs1(qj) ≈
q2j

2m∗

s1
− 2µB(Hc − H) for ne ∈ ]0, 1[ and m → ne . (168)

Here the critical magnetic energy 2µBHc is that associated with the zero-temperature critical magnetic field Hc for the onset
of fully polarized ferromagnetism. That energy scale and the effective spin-triplet massm∗

s1 in Eq. (168) are given by [89],

2µBHc =

√
(4t)2 + U2 1

π
arctan

(√
(4t)2 + U2

U
tan(πne)

)
− U ne − 4t cos(πne)

1
π

arctan
(
4t sin(πne)

U

)
for ne ∈ ]0, 1[ and m → ne , (169)

and

m∗

s1 =
U
4t2

√
(4t)2+U2

U
1
π
arctan

(√
(4t)2+U2

U tan(πne)
)

1 −

√
(4t)2+U2

U
1

1+
(
4t sin(πne)

U

)2 sin(2πne)

2 arctan

(√
(4t)2+U2

U tan(πne)

) for ne ∈ ]0, 1[ and m → ne , (170)

respectively. Their limiting behaviors for u → 0 and u ≫ 1 read,

m∗

s1 =
1
2t

and 2µBHc = 4tsin2
(πne

2

)
for u → 0

m∗

s1 =
U
4t2

ne(
1 −

sin(2πne)
2πne

) and 2µBHc =
8 ne t2

U

(
1 −

sin(2πne)
2πne

)
for u ≫ 1 , (171)

respectively. The criticalmagnetic fieldHc in Eq. (169) and the inverse effective spin-tripletmass 1/m∗

s1, Eq. (170), are plotted
in Fig. 15 as a function of the electronic density ne and of U/t for various values of U/t and ne, respectively.

For the crossover critical regime under consideration, the scaling function of the specific heat is found to be given by,

cV
L

=
kB π
3vc

kBT +

√
2m∗

s1 kBT
π

(
−

3
8
f s3/2 +

1
2

(
2µB(Hc − H)

kBT

)
f s1/2 −

1
2

(
2µB(Hc − H)

kBT

)2

f s
−1/2

)
,

where vc = 2t sin(πne) , f sl = Lil

(
−e

2µB(Hc−H)
kBT

)
and Lil(x) =

∞∑
j=1

xj

jl
. (172)

Expanding this scaling function up to first order in 2µB(Hc − H)/kBT , one finds that the low-temperature specific heat
behaves in a small field window 2µB|H − Hc | ≪ kBT around Hc as [89],

cV
L

=
kB π
3vc

kBT + kB c0

√
m∗

s1 kBT
2

(
c1 + c2

2µB(Hc − H)
kBT

)
where 2µB|H − Hc | ≪ kBT . (173)

The term emerging here from the spin degrees of freedom has the same form as that provided in Eq. (89) and the coefficients
c0, c1, and c2 are thus also those given in Eq. (90). (Also the calculations to reach Eq. (173) are similar to those presented in
Appendix D for the corresponding specific heat scaling function of the spin-1/2 XXX chain [206].)
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Fig. 15. The critical magnetic field Hc for the onset of fully polarized ferromagnetism in Eq. (169) and the inverse effective spin-triplet mass 1/m∗

s1 ,
Eq. (170), versus the electronic density ne for U/t = 0, U/t = 2, and U/t = 10 and versus U/t for ne = 0.4, ne = 0.7, and ne = 1.0. Notice that at
ne = 1, 1/m∗

s1 → t as U/t → 0. This singular behavior is due to the Mott–Hubbard insulator transition. (As in Ref. [89], in the figures the electronic density
ne and effective spin-triplet massm∗

s1 are denoted by n and m∗
t , respectively.)

Source: From Ref. [89].

In the crossover critical regime defined by Eq. (173) both the gapless and across-gap channels associatedwith spin-singlet
excitations and excitations generated by elementary spin-triplet processes, respectively, are thermally active. That equation
is only valid for a very narrow region around Hc .

The charge response function or compressibility α = η and spin response function α = s,

χη|y = −
1
n2
e

1
∂µ(ne)/∂ne|y

where y = H,m and χs|z = −
2µB

∂H(m)/∂m|z
where z = µ, ne , (174)

are controlled by the dressed phase-shift parameters, Eq. (162). Such functions involve partial derivatives of the chemical
potential and magnetic field, Eq. (159).

By use of techniques similar to those of a Fermi liquid, which account for the β = c, s1 and β ′
= c, s1 pseudoparticle

zero-momentum forward-scattering interactions associated with the f functions, Eq. (156), the studies of Ref. [92] have
found,

χη|H =
1
πn2

e

∑
β=c,s1

(ξ 1β c)
2

vβ
and χη|m =

1
πn2

e

1∑
β=c,s1 vβ (ξ

0
β c + ξ 0β s1/2)2

,

χs|µ =
µ2

B

π

∑
β=c,s1

(ξ 1β c − 2ξ 1β s1)
2

vβ
and χs|ne =

µ2
B

π

1∑
β=c,s1 vβ (ξ

0
β s1/2)2

. (175)

The derivation in Ref. [92] of the charge and spin response functions, Eq. (174), expressions provided in Eq. (175) uses
the general procedures reported in Appendix E to obtain the corresponding expression of the spin response function of the
spin-1/2 XXX chain. Such two-electron response functions expressions can be understood as being controlled by parameters
that play the same role as the Landau parameters in a Fermi liquid. For the present c and s1 pseudoparticle quantum liquid,
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the Landau parameters can have a i = 0 symmetrical or i = 1 anti-symmetrical character. They read,

g i
β β = 1 +

1
2πvβ

∑
ι=±1

(ι)ifβ β (qFβ , ι qFβ )

=
1
vβ

(
vc (ξ ic β )

2
+ vs1 (ξ is1β )

2) for β = c, s1 and i = 0, 1 ,

g i
β β ′ =

1
2πvβ

∑
ι=±1

(ι)ifβ β ′ (qFβ , ι qFβ ′ )

=
1
vβ

(
vc ξ

i
c cξ

i
c s1 + vs1 ξ

i
s1 s1ξ

i
s1 c

)
for β ̸= β ′

= c, s1 and i = 0, 1 . (176)

Such parameters expressions contain the c and s1 bands velocities at a Fermi point defined in Eq. (155). They also contain two
f functions, Eq. (156), with the two momenta at Fermi points pointing in the same and in opposite directions, respectively.
The i = 0 symmetrical and i = 1 anti-symmetrical pseudoparticle Landau parameters involve the sum and difference of
these two f functions, respectively.

As given in Eq. (176), the pseudoparticle Landau parameters can be expressed in terms of the β = c, s1 velocities at a
Fermi point and of the dressed phase-shift related i = 1 anti-symmetrical and i = 0 symmetrical parameters ξ i

β β ′ . Those
are the entries of the conformal-field theory dressed charge matrix Z1 and of the matrix Z0

= ((Z1)−1)T , respectively,
Eq. (163). Such entries naturally emerge within the expressions of the i = 0, 1 and β = c, s1 renormalized velocities
viβ β ≡ vβ g i

β β = vβ +
1
2π

∑
ι=±1(ι)

ifβ β (qFβ , ι qFβ ) and viβ β ′ ≡ vβ g i
β β ′ =

1
2π

∑
ι=±1(ι)

ifβ β ′ (qFβ , ι qFβ ′ ) where β ̸= β ′. The
pseudoparticle representation goes though beyond conformal-field theory. Indeed, the group velocities and f functions in
these expressions are also well defined for arbitrary β-band momentum values, vβ (qj) and fβ β ′ (qj, qj′ ) for both β = β ′ and
β ̸= β ′. Beyond that theory, they also exist within the pseudoparticle representation for all c , ηn, and sn branches where
n = 1, . . . ,∞.

The charge and spin response functions expressions, Eqs. (174) and (175), can be expressed in terms of the Fermi-point
c and s1 group velocities and the i = 0 symmetrical pseudoparticle Landau parameters as follows,

χη|H =
1

πn2
evc

1(
g0
c c −

g0c s g
0
s1 c

g0s1 s1

) and χη|m =
1

πn2
evc

1(
g0
c c +

vs1
4vc

g0
s1 s1 + g0

c s1

) ,

χs|µ =
µ2

B

πvs1

(
g0
s1 s1 +

4vc
vs1

g0
c c + 4g0

s1 c

)
(
vc
vs1

g0
s1 s1 g0

c c − (g0
s1 c)2

) and χs|ne =
4µ2

B

πvs1

1
g0
s1 s1

. (177)

For two-electron quantities such as the charge and spin response functions, this renormalization is qualitatively similar
to that of a Fermi liquid. Indeed, that liquid Landau parameters, which control the effects of the electronic interactions onto
the low-energy quantities, are expressed in terms of the f functions associated with the low-energy quasiparticles residual
interactions. Similarly, here the residual pseudoparticle interactions associated with the f functions in the parameters
expressions, Eq. (176), play exactly the same role.

In the limit of zero magnetic field and thus of zero spin density, the residual pseudoparticle interactions occur only
through the parameter ξ0. In that limit they read,

χη|H = χη|m =
ξ 20

πn2
evc

and χs|µ = χs|ne =
2µ2

B

πvs1
. (178)

It then follows that limu→0χη|H = 2/(πn2
evc) where vc = 2t sin

(
π
2 ne
)
and limu→∞χη|H = 1/(πn2

evc) where vc =

2t sin(πne). Moreover, limu→∞χs|µ = limu→∞χs|ne → ∞ because vs1 → 0 in that limit.
In the spin densitym → ne limit of the fully polarized ferromagnetism, one finds,

χη|H =
1
πn2

e

(
1
vc

+
η20

vs1

)
→ ∞ and χη|m =

4
πn2

e

1(
vc (2 − η0)2 + vs1

) →
1

πn2
evc

1
(1 − η0/2)2

,

χs|µ =
µ2

B

πvc

(
1 +

4vc
vs1

(1 − η0/2)2
)

→ ∞ and χs|ne =
4µ2

B

π

1
vs1 + vc η

2
0

→
4µ2

B

πvc

1
η20
. (179)

Here η0 =
2
π
arctan

( sin(πne)
u

)
, vc = 2t sin(πne), and vs1 → 0. The inverse of the compressibility χη|H and the inverse of the

spin response function χs|µ, Eqs. (174), (175), and (177), and the spin densitym are plotted in Fig. 16 as a function of U/t at
electronic density ne = 0.7 and various values of the magnetic field H in suitable units and as a function of ne for H = 0.1
and various values of U/t .

The 1DHubbardmodel quantumphase transitions driven by a change in the chemical potentialµ or themagnetic fieldH ,
Eq. (159), are marked by the leading divergences of the ground-state onsite entanglement entropy E derivatives, ∂E/∂µ and
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Fig. 16. The inverse of the compressibility χη|H and the inverse of the spin response function χs|µ , Eqs. (174), (175), and (177), and the spin density m
versus U/t at electronic density ne = 0.7 and values of the magnetic field H = 0.3 (solid line), H = 0.6 (dashed line), and H = 0.9 (dashed–dotted
line) in suitable units in the left panels and versus the electronic density ne for H = 0.1 and values of the on-site repulsion U/t = 0 (dashed line) and
U/t = 10 (solid line) in the right panels. The discontinuities occur at U/t or ne values at which according to Eq. (169) the magnetic field value H under
consideration becomes Hc and thus the system becomes ferromagnetic. Note the different behavior at U/t = 0 and U/t = 10 of χη|H around ne = 1 due
to the Mott–Hubbard insulator transition. (The spin density m of Ref. [92] is half of that considered in this paper so that in the figures the fully polarized
ferromagnetism is reached in the limit ofm → ne/2, which corresponds tom → ne in this review. As in that reference, in the figures the electronic density
ne and compressibility χη are denoted by n and χc , respectively.)
Source: From [92].



J.M.P. Carmelo, P.D. Sacramento / Physics Reports 749 (2018) 1–90 57

∂E/∂H , respectively [265]. For ne ̸= 1, they can alternatively be signed by the related derivatives, ∂E/∂ne = −n2
eχη ∂E/∂µ

and ∂E/∂m = −[χs/2µB] ∂E/∂H [266]. (χη diverges at ne = 1.)
Also charge (α = η) and spin (α = s) stiffnesses Dα in the corresponding α conductivity real part σα(ω) = 2π Dα δ(ω) +

σ reg
α (ω) are at zero temperature fully controlled by the dressed phase-shift parameters, Eq. (162). As for the spin-1/2 XXX

chain, those are important physical quantities. A finite charge and/or spin stiffness implies the occurrence of charge and/or
spin ballistic transport, respectively. Such ballistic transport occurs in 1D correlated even at finite temperatures [103,264].
Recently, a general formalism of hydrodynamics for the 1D Hubbard model was introduced in Ref. [267]. By linearizing
hydrodynamic equations, the exact closed-form stiffnesses expressions valid on the hydrodynamic scale are accessed.

For simplicity, here we focus our analysis on the zero-temperature charge and spin stiffnesses. Specifically, relying on
charge and spin conservation laws to derive the elementary currents that contribute to such α = η, s stiffnesses, the studies
of Ref. [93] found that they read,

2π Dη = jηc and 2π Ds = jsc − 2jss1 . (180)

The elementary currents in these expressions involve the β = c, s1 band Fermi velocities, Eq. (155), and β, β ′
= c, s1

anti-symmetrical dressed phase-shift parameters ξ 1
β,β ′ , Eq. (162). They are given by,

jηβ = vc ξ
1
c c ξ

1
c,β + vs1 ξ

1
s1 c ξ

1
s1,β where β = c, s1 ,

jsβ = vc (ξ 1c c − 2ξ 1c s1) ξ
1
c,β + vs1 (ξ 1s1 c − 2ξ 1s1 s1) ξ

1
s1,β where β = c, s1 . (181)

Theβ = c, s1 elementary currents jηβ and jsβ , Eq. (181), contribute both to expectation values of the charge and spin current
operators, respectively, of low-energy excited energy eigenstates and to off-diagonal matrix elements of such operators
between the ground state and excited states of vanishing energy. The derivation in Ref. [93] of these elementary currents
and charge and spin stiffnesses, Eq. (180), relies on the general procedures similar to those reported in Appendix E to obtain
the corresponding expression of the zero-temperature spin stiffness of the spin-1/2 XXX chain.

The β = c, s1 and α = η, s elementary currents jαβ expressions, Eq. (181), can again be understood as being controlled
by pseudoparticle parameters that play the same role as the Landau parameters in a Fermi liquid. On the one hand, the
two-electron static quantities are expressed in terms of the i = 0 symmetrical pseudoparticle Landau parameters in
Eq. (176). On the other hand, the elementary charge and spin currents rather involve the i = 1 anti-symmetrical
pseudoparticle Landau parameters also given in that equation. The residual pseudoparticle interactions associated with the
f functions in that expression control the effects of the electronic interactions onto such two-electron quantities associated
with charge and spin ballistic transport.

Specifically, the expression of the elementary currents, Eq. (181), in terms of the β = c, s1 bands group velocities at a
Fermi point and i = 1 anti-symmetrical pseudoparticle Landau parameters read,

jηc = vc g1
c c and jηs1 = vs1 g1

s1 c ,

jsc = vc (g1
c c − 2g1

c s1) and jss1 = −vs1 (2g1
s1 s1 − g1

s1 c) . (182)

In the m → 0 and m → ne spin-density limits and for electronic density in the range ne ∈ [0, 1], these elementary
currents have the following limiting behaviors,

jηc = vc ξ
2
0 , jηs1 = vc

ξ 20

2
, jsc = 0 and jss1 = −vs1 for m → 0 ,

jηc = vc , jηs1 = 0 , jsc = vc and jss1 = 0 for m → ne . (183)

By combining the stiffnesses expressions, Eq. (180), with the elementary-current limiting behaviors, Eq. (183), one finds
that Dη = vc ξ

2
0 /(2π ) at m = 0. For ne < 1 and m = 0, the charge stiffness Dη changes from Dη = (2t/π ) sin(πn/2) as

u → 0 to Dη = (t/π ) sin(πne) for u ≫ 1. For m → ne the result is Dη = (t/π ) sin(πne). At ne = 1 and m = 0 one finds
Dη = 2t/π at u = 0 and Dη = 0 for u > 0. This behavior stems from the c-band Fermi velocity vc , Eq. (155) for β = c ,
being at ne = 1 finite at u = 0 and vanishing for u > 0. At T = 0 the spin stiffness Ds changes from Ds = (2t/π ) sin(πne/2)
for u → 0 to Ds = (t2/U)(1 − sin(2πne)/(2πne)) for u ≫ 1. For m → ne one finds the expected result, Ds = Dη = (t/π )
sin(πne).

The charge stiffness Dη and the spin stiffness Ds, Eq. (180), are plotted in Fig. 17 as a function of U/t at electronic density
ne = 0.7 and various values of themagnetic fieldH in suitable units and as a function of ne for various values of themagnetic
fieldH andU/t . Such quantities are also plotted in Fig. 18 as a function ofU/t formagnetic fieldH → 0 and electronic density
ne = 0.7. In the right panel, the charge stiffness Dη curves refer to several ne values.

Below in Section 7 it is shown that both the static properties and the 1D Hubbard model dynamical properties are
controlled by the dressed phase shifts associated with the scattering events of the β = c, s1 pseudofermions revisited
in Section 7.1.
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Fig. 17. The zero-temperature charge stiffness Dη and the spin stiffness Ds , Eq. (180), versus U/t at electronic density ne = 0.7 and values of the magnetic
field H = 0.3 (solid line), H = 0.6 (dashed line), and H = 0.9 (dashed–dotted line) in suitable units in the left panels, versus the electronic density ne
for U/t = 10 and values of the magnetic field H = 0.1 (solid line), H = 0.2 (dashed line), and H = 0.3 (dashed–dotted line) in the middle panels, and
versus the electronic density ne for H = 0.1 and values of the on-site repulsion U/t = 0 (dashed line) and U/t = 10 (solid line) in the right panels. The
discontinuities occur at U/t or ne values at which according to Eq. (169) the magnetic field value H under consideration becomes Hc and thus the system
becomes ferromagnetic. Due to the Mott–Hubbard insulator transition, Dη is finite at ne = 1 when U/t = 0 but vanishes when U/t > 0. (As in Ref. [93], in
the figures the charge stiffness Dη , spin stiffness Ds , and electronic density ne are denoted by D(ρ) , D(σz ) , and n, respectively.)
Source: From Ref. [93].

Fig. 18. The zero-temperature charge stiffnessDη (left and right panels) and the spin stiffnessDs (left panel), Eq. (180), versusU/t formagnetic fieldH → 0.
The left and right panels figures are for electronic density ne = 0.7 and various ne values, respectively. Although Dη has its maximum value for ne → 1, at
ne = 1 it vanishes when U/t > 0, yet is finite at U/t = 0. This strong effect of the Mott–Hubbard insulator transition is also present for 0 < H < Hc . (As
in Ref. [93], in the figures the charge stiffness Dη , spin stiffness Ds , and electronic density ne are denoted by D(ρ) , D(σz ) , and n, respectively.)
Source: From Ref. [93].

6.3. Binding and anti-binding character of the spin-singlet pairs (α = s) and η-spin-singlet pairs (α = η)

From the use of the second expression in Eq. (158), the composite αn pseudoparticle energy dispersion, Eq. (152) for
β = αn, may be written as εαn(qj) = n 2µα + ε0αn(qj) where α = η, s and n = 1, . . . ,∞. The term n 2µα in this energy
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dispersion is merely additive in the intrinsic energy 2µα = εα,−1/2 + εα,+1/2, Eq. (161), of two unpaired η-spins 1/2 (α = η)
or two unpaired spins 1/2 (α = s) of opposite η-spin and spin projection, respectively.

Our aim is clarifying the anti-binding or binding character of the η-spin (α = η) and spin (α = s) α-singlet configuration
of two paired η-spins 1/2 and two paired spins 1/2, respectively. We first consider one single-pair α1 pseudoparticle for
which εαn(qj) = 2µα + ε0α1(qj). The first energy term 2µα gives the intrinsic energy of its two η-spins 1/2 (α = η) or spins
1/2 (α = s) of opposite projection if those were unpaired and in a α-triplet Sα = 1 and Szα = 0 configuration. The second
energy term ε0α1(qj) is thus a pairing energy. It refers to a binding or anti-binding character if ε0α1(qj) < 0 or ε0α1(qj) > 0,
respectively. Analysis of the form of the α1 pseudoparticle energy dispersion, Eq. (152) for β = α1, then reveals that the
spin-singlet s1-pair configuration has a binding character. Indeed, it is such that ε0s1(qj) < 0 for |qj| < qs1, as confirmed
by inspection of Fig. 11. As demonstrated by Fig. 13, the η-spin-singlet η1-pair configuration is found in turn to have an
anti-binding character. For it, ε0η1(qj) > 0 for |qj| < qη1. At the α = s, η limiting momenta qj = ±qα1 one has though
that ε0α1(±qα1) = 0. This means that for qj → q±

α1 = ±qα1 the α-singlet pair of a α1 pseudoparticle looses its binding or
anti-binding character as its pairing energy vanishes.

Next we consider αn-pairs configuration with n > 1 pairs bound within it. One finds as well that ε0sn(qj) < 0 for |qj| < qsn
and ε0ηn(qj) > 0 for |qj| < qηn and εαn(±qαn) = 0 for α = η, s. (See Fig. 12 for ε0s2(qj) and Fig. 14 for ε0η2(qj).) Irrespective
of its binding or anti-binding character, the energy absolute value |ε0αn(qj)| is here called αn pseudoparticle pairing energy.
The strength of the α-singlet pairs binding or anti-binding can be measured by the maximum reachable value of the αn
pseudoparticle pairing energy upon creation of one αn pseudoparticle onto the ground state. Such a maximum value is
reached at qj = ±qFs1 for the s1 pseudoparticles and at qj = 0 for all other αn ̸= s1 pseudoparticles,

W pair
s1 = |ε0s1(qFs1)| = W h

s1 = 2µBH and W pair
αn = |ε0αn(0)| = Wαn for αn ̸= s1 . (184)

Here W h
s1 = 2µBH is the ground-state energy bandwidth of the s1 band hole unoccupied part and Wαn is the energy

bandwidth of αn ̸= s1 momentum bands.
The maximum pairing energy W pair

sn vanishes at H = 0. This is because then W h
s1 = 2µBH = 0 and the energy dispersion

ε0sn(qj) and its momentum bandwidth vanish at H = 0 for n > 1. Similarly, the maximum pairing energy W pair
ηn vanishes at

electronic density ne = 1. Indeed, the energy dispersion ε0ηn(qj) and its momentum bandwidth vanish at ne = 1. The latter
maximum ηn pseudoparticle pairing energy is given in Eq. (B.9) of Appendix B in the u → 0 and u ≫ 1 limits for electronic
densities ne ∈ ]0, 1[ and spin densitym = 0. For the electronic density interval ne ∈ ]0, 1[ and spin densitym → ne, one has
that qFs1 → 0. The maximum pairing energies W pair

sn = Wsn = |ε0sn(0)| and W pair
ηn = Wηn = |ε0ηn(0)| have for these densities

analytical expressions that are functions of ne and U/t . They are given in Eqs. (B.10) and (B.11) of Appendix B. In the u → 0
and u ≫ 1 limits these expressions simplify, as given in Eqs. (B.12) and (B.13) of that Appendix.

Actually, the suitable energy scale to measure the strength of the binding or anti-binding pairing is the maximum value
of the αn pseudoparticle pairing energy per pair, πpair

αn ≡ W pair
αn /n. Consistently with the values and expressions given in

Eqs. (B.9)–(B.13) of Appendix B, one finds that the energy per pair πpair
αn is for n > 1 always smaller than πpair

α1 . For densities
ne ∈ ]0, 1[ andm ∈ [0, ne] it has the limiting behaviors,

πpair
αn = π

pair
α1 /n for u → 0 and πpair

αn = π
pair
α1 /n

2 for u ≫ 1 . (185)

It obeys the inequality πpair
α1 /n

2
≤ π

pair
αn ≤ π

pair
α1 /n for the whole u > 0 range. Hence the energy per pair πpair

αn decreases
upon increasing n. This effect is stronger upon increasing u. This reveals that the overall binding of the n > 1 pairs within an
αn-pairs configuration tends to suppress the binding (α = s) and anti-binding (α = η) energy within each such pairs. This
suppression is an increasing function of both the number of pairs n and of u.

In Appendix I the relation of the maximum pairing energyW pair
αn and the αn pseudoparticle effective massm∗

αn in Eq. (I.1)
of that Appendix to η-spin (α = η) and spin (α = s) δSα = ±n multiplet excitations is discussed. This refers to electronic
densities in the interval ne ∈ ]0, 1[, spin densitym → ne, and the whole u > 0 range. The quantitiesW pair

αn andm∗
αn are found

to be related yet different quantities.

7. Dynamical correlation functions in the pseudofermion representation

Here we revisit the β pseudofermion representation and shortly consider the corresponding PDT. This includes its
applications to the 1D Hubbard model in a magnetic field. In addition, the relation between the PDT and the MQIM [52,53]
is clarified.

7.1. The pseudofermion representation

One finds from the use of the TBA equations, Eqs. (128) and (129), that for PS excited states the β = c, αn rapidity
functionalsΛβ (qj) can be written in terms of the corresponding ground-state rapidity functionsΛβ0 (qj) as follows,

Λc(qj) = Λc
0

(
q̄(qj)

)
= sin kc0

(
q̄(qj)

)
for j = 1, . . ., L and Λαn(qj) = Λαn0

(
q̄(qj)

)
for j = 1, . . ., Lαn . (186)
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Fig. 19. One-electron removal (ω < 0) and addition (ω > 0) spectral functions over the whole (k, ω) plane for u ≫ 1, ne = 0.5, andm = 0.
Source: From Ref. [157].

Here q̄j = q̄(qj) where j = 1, . . . , Lβ are the following discrete canonical momentum values,

q̄j = q̄(qj) = qj +
2πΦβ (qj)

L
=

2π
L

Iβj +
2πΦβ (qj)

L
for j = 1, . . . , Lβ and β = c, αn . (187)

(The excited-states rapidity expression, Eq. (186), is similar to that of the simpler models considered in Sections 2 and 3.)
The functional 2πΦβ (qj) in Eq. (187) reads [51,268],

2πΦβ (qj) =

∑
β ′

Lβ′∑
j′=1

2πΦβ β ′ (qj, qj′ ) δNβ ′ (qj′ ) . (188)

Here the deviation δNβ ′ (qj′ ) and the dressed phase shift 2πΦβ β ′ (qj, qj′ ) are those in Eq. (148) and Eq. (154), respectively. The
discrete canonical momentum values q̄j = q̄(qj) have spacing q̄j+1 − q̄j = 2π/L + h.o.. (h.o. stands here for terms of second
order in 1/L.)

We associate one β pseudofermion with each of the Nβ occupied β-band discrete canonical momentum values q̄j
[13,51,58,59,63,64]. We associate one β pseudofermion hole with each of the remaining Nh

β unoccupied β-band discrete
canonical momentum values q̄j of a PS excited state. There is a pseudofermion representation for each ground state and
its PS. This holds for u > 0 and all electronic and spin densities. The chosen initial ground state plays the role of vacuum
of the pseudofermion representation. For it one has that q̄j = qj in Eq. (187). This also occurs for the αn ̸= s1 bands of the
PS excited states of a Sα = 0 ground state. For the latter state the number of αn ̸= s1 band discrete momentum values Lαn,
Eq. (130), vanishes, Lαn = 0. For it the functional, Eq. (188), also vanishes, 2πΦαn(qj) = 0. It follows that q̄j = qj for the
αn ̸= s1 bands of its PS excited states.

In Sections 4.3 and 5.2, β = c, s1 pseudoparticle creation and annihilation operators f †
qj,β

and fqj,β , respectively, have been
introduced. The corresponding β = c, s1 pseudofermions play a major role in the PDT. Their operators read,

f †
q̄j,β

= f †
qj+2πΦβ (qj)/L,β

=

(
ŜΦβ
)†

f †
qj,β

ŜΦβ for fq̄j,β = (f †
q̄j,β

)† for β = c, s1 . (189)
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Here ŜΦβ denotes the β pseudoparticle–β pseudofermion unitary operator, ŜΦβ = e
∑Lβ

j=1f
†
qj+(2π/L)Φβ (qj),β

fqj,β . It is such that(
ŜΦβ
)†

= e
∑Lβ

j=1f
†
qj−(2π/L)Φβ (qj),β

fqj,β .
The functional 2πΦβ (qj), Eq. (188), has an important physicalmeaning: It is the overall scattering phase shift acquired by a

β pseudofermion or β pseudofermion hole of initial-state canonical momentum qj upon scattering off all β ′ pseudofermions
and/or β ′ pseudofermion holes created under a transition from the ground state to one of its PS excited states. As confirmed
below in Section 7.2, that scattering phase shift controls the spectral weights of dynamical correlation functions.

It then follows from the form of the functional expression in Eq. (188) that within the pseudofermion scattering
theory [268], the function 2πΦβ β ′ (qj, qj′ ), Eq. (154), (and −2πΦβ β ′ (qj, qj′ )) has a well-defined physical meaning. It is
the phase shift acquired by a β pseudofermion or β pseudofermion hole of initial-state canonical momentum q̄j = qj
upon scattering off a β ′ pseudofermion (and a β ′ pseudofermion hole) created at the canonical momentum q̄j′ = q̄(qj′ )
corresponding to the initial ground-state momentum qj′ under a transition from that state to one of its PS excited states.
This reveals that all physical quantities whose expression was shown in Section 6 to depend on the phase-shift parameters,
Eq. (162), are controlled by pseudofermion scattering events.

Upon expressing the PS energy functional, Eq. (151), in terms of the discrete canonical momentum values q̄j = q̄(qj),
Eq. (187), it reads δE =

∑
β

∑Lβ
j=1εβ (q̄j) δNβ (q̄j) +

∑
α=η,sεα,−1/2 Mα,−1/2 up to O(1/L) order. (This is as in the case of the 1D

Lieb–Liniger Bose gas, Eq. (35).) The β pseudofermion energy dispersions εβ (q̄j) in that functional expression have exactly
the same form as those given in Eq. (152) with the momentum qj replaced by the corresponding canonical momentum,
q̄j = q̄(qj). The energy functional applying to the pseudofermions thus has no energy interaction terms of second-order
in the deviations δNβ (q̄j). This is in contrast to the equivalent energy functional, Eq. (151). Indeed, up to O(1/L) order the
β pseudofermions have no such interactions. Such a property allows the dynamical correlation functions to be expressed
as a convolution of c and s1 pseudofermion spectral functions. Such functions spectral weights can be expressed as Slater
determinants written in terms of anticommutators of pseudofermion operators.

That within the present representation the β pseudofermion scattering phase shifts 2πΦβ (qj) are incorporated in the
canonical momentum, Eq. (187), has though consequences on the form of such Slater determinants. Those involve the type
of β pseudofermion operators anticommutators given in Eq. (J.1) of Appendix J. The unitarity of the β pseudoparticle — β

pseudofermion transformation preserves the pseudoparticle operator algebra provided that the canonicalmomentumvalues
q̄j and q̄j′ belong to the β band of the same energy and momentum eigenstate. The exotic form of the anticommutator, Eq.
(J.1) of Appendix J, follows from shake-up effects stemming from q̄j and q̄j′ corresponding in it to the excited-state and
ground-state β band, respectively. Such an exotic β pseudofermion operator algebra plays an important role in the one- and
two-electron high-energy spectral weight distributions [59,181] of the PDT reviewed in the ensuing section.

7.2. The pseudofermion dynamical theory

The goal of this section is revisiting the PDT and thus to illustrate how the microscopic mechanisms that control the
dynamical and spectral properties are much simpler to describe in terms of pseudofermion processes than of the underlying
many-particle interactions.

It has been difficult to apply the BA to the derivation of high-energy dynamical correlation functions. For the 1D Hubbard
model, themethod employed in Refs. [156–158] has been the first breakthrough to address that problem in the u → ∞ limit.
In such references the one-electron spectral functions have been derived for the whole (k, ω) plane by accounting for the
phase shifts imposed on the spinless-fermions by the XXX chain spins. (See Fig. 19). Such fractionalized particles naturally
arise from the u → ∞ Ne-electron wave-function factorization [119,150]. The related PDT relies on the corresponding
factorization of the finite-u Ne-rotated-electron wave function. This issue is addressed in Appendix F. The PDT involves an
extension of the u → ∞ method of Refs. [156–158] to the whole finite-u range. This theory has been the first breakthrough
for the derivation of analytical expressions of the 1D Hubbardmodel high-energy spectral functions for that extended onsite
repulsion range [13,16,51,58,59,63,64,181].

In the following we consider the β = c, αn pseudofermions of the 1D Hubbard model. We indicate as well the small
differences relative to the simplified PDT suitable to the other models under review. The aim of the theory is the evaluation
of finite-ω one- and two-particle dynamical correlation functions of general form,

B(k, ω) =

∑
f

|⟨f | Ô(k)|GS⟩|
2
δ

(
ω − (Ef − EGS)

)
for ω > 0 . (190)

Here Ô(k) is a one- or two-particle operator, |GS⟩ a ground state, and |f ⟩ its excited states contained in Ô(k)|GS⟩.
The elementary processes that generate PS excited states contained in Ô(k)|GS⟩ from the ground state can be classified

into the following three (A)–(C) classes [13,16,51,58,59,63,181]: (A) High-energy and finite-momentum processes that
besides creation or annihilation of c and s1 pseudofermions may involve the creation of αn ̸= s1 pseudofermions and/or
unpaired η-spins of projection−1/2, (B) zero-energy and finite-momentumprocesses that conserve the number ofβ = c, s1
pseudofermions yet change their number at the ι = +1 right and ι = −1 left β = c, s1 Fermi points, and (C) low-energy
and small-momentum elementary β = c, s1 pseudofermion particle–hole processes in the vicinity of the right (ι = +1) and
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left (ι = +1) β = c, s1 Fermi points onto the momentum occupancy configurations generated by the elementary processes
(A) and (B).

For a momentum k and a given small energy range around ω, the excitation Ô(k)|GS⟩ can be written as a sum of terms,∑
iÔ

⊙

i (k)|GS⟩. Here i = 0, 1, 2, . . . refers to a suitable index. Its value for each specific operator Ô(k) can be uniquely defined
in terms of the increasing number of pseudofermions created and annihilated by processes (A) and (B) under the transitions
to the excited states. Ô⊙

i (k) is the corresponding generator onto the ground state of such processes of momentum k and
energy ω. (Further information about the expansions

∑
iÔ

⊙

i (k)|GS⟩ of specific physical operators Ô(k) and the choice of the
corresponding leading-order operators Ô⊙(k) can be found in Section 3.1 of Ref. [63] for two-particle spin operators and in
Section 3.2 of Ref. [64] for one-electron operators.)

For a well-defined small energy range around each low- or high-energy ω, one approximates the dynamical correlation
function, Eq. (190), by a corresponding leading-order term [13,16,51,58,59,63,64,181],

B(k, ω) ≈ B⊙(k, ω) =

∑
f

|⟨f | Ô⊙(k)|GS⟩|
2
δ

(
ω − (Ef − EGS)

)
=

∑
f

Θ

(
Ω − δωf

)
Θ

(
δωf

)
Θ
(
|vf | − vβ̄

)
B̆⊙

f (δωf , vf ) for ω > 0 . (191)

Here

B̆⊙

f (δωf , vf ) =
sgn(vf )
2π

∫ δωf

0
dω′

∫
+sgn(vf )δωf /vβ

−sgn(vf )δωf /vβ

dk′ BQβ̄ (δωf /vf − k′, δωf − ω′) BQβ (k
′, ω′) , (192)

and

BQβ (k
′, ω′) =

L
2π

∑
mβ,+1;mβ,−1

A(0,0)
β aβ (mβ,+1, mβ,−1)

× δ

(
ω′

−
2π
L
vβ
∑
ι=±1

(mβ,ι +∆ιβ )
)
δ

(
k′

−
2π
L

∑
ι=±1

ι (mβ,ι +∆ιβ )
)

where β = c, s1 . (193)

The quantities in these equations are defined below.
In the function B⊙(k, ω) initial general expression, the generator onto the particle vacuum of the ground state |GS⟩ is

written in terms of β pseudofermion creation operators. Their β band discrete canonical momentum values, which equal
the corresponding momentum values qj, Eqs. (131) and (132), are those of that ground state. Both the generator onto the
electron vacuum of the PS excited states |f ⟩ and the operator Ô⊙(k) are written in terms of β pseudofermion operators. Their
β band discrete canonical momentum values q̄j, Eq. (187), are those of the excited states.

The summation
∑

f in Eq. (191) runs over PS excited states generated by processes (A), (B), and (C) at fixed values of k and
ω. The capital-Θ distribution Θ(x) in that equation is given here and in the following by Θ(x) = 1 for x ≥ 0 and Θ(x) = 0
for x < 0. Such states have excitation energy and momentum in the ranges δE⊙

f ∈ [ω − Ω, ω] and δP⊙

f ∈ [k − Ω/vf , k],
respectively, where Ω stands for the processes (C) energy range. Moreover, in Eqs. (191) and (192) the fixed excitation
energy ω and momentum k read ω = δE⊙

f + δωf and k = δP⊙

f + δkf , respectively. Here δωf = (ω− δE⊙

f ) = (ω− E⊙

f + EGS),
δkf = k − δP⊙

f , vf = δωf /δkf , vβ̄ = min{vc, vs1}, vβ = max{vc, vs1}, and vc and vs1 are the β = c, s1 band Fermi velocities,
Eq. (155). The above processes (C) energy rangeΩ is self-consistently determined as that for which the velocity vf remains
nearly unchanged.

The lack of c and s1 pseudofermion energy interactions in their PS u > 0 spectrum is behind the function B̆⊙

f (δωf , vf ) in
Eq. (191) being expressed in Eq. (192) as a convolution of c and s1 pseudofermion spectral functions [51,181]. Such functions
expression, Eq. (193), involves sums that run over the processes (C) numbers mβ,ι = 1, 2, 3, . . . [13,59,181]. In it ∆ιβ refers
to the four dimensions functionals 2∆ιβ = (δq̄ιFβ/[2π/L])

2. Those are the four β = c, s1 and ι = ± relative weights, Eq. (J.5)
of Appendix J. They correspond to the smallest finite processes (C) numbers,mβ,ι = 1, and can be written as,

2∆ιβ =

⎛⎝ ∑
β ′=c,s1

⎛⎝ι ξ 0β β ′

δNF
β ′

2
+ ξ 1β β ′ δJFβ ′ +

Lβ′∑
j=1

Φβ β ′ (ιqFβ , qj)δNNF
β ′ (qj)

⎞⎠+

∑
αn̸=s1

Lαn∑
j=1

Φβ αn(ιqFβ , qj)δNαn(qj)

⎞⎠2

. (194)

Here β = c, s1, δNF
β ′ = δNF

β ′,+
+δNF

β ′,−
, and 2JF

β ′ = δNF
β ′,+

−δNF
β ′,−

for β ′
= c, s1. Moreover, the β = c, s1 lowest peak weight

A(0,0)
β in Eq. (193) is associated with transitions from the ground state to PS excited states generated by processes (A) and (B).

The β = c, s1 relative weight aβ = aβ (mβ,+1, mβ,−1) is generated by additional processes (C). The former weight refers to
a Slater determinant that involves the β = c, s1 pseudofermion anticommutators, Eq. (J.1) of Appendix J. The lowest peak
weight A(0,0)

β and the relative weight aβ are given in Eq. (J.2) and Eqs. (J.3)–(J.5) of that Appendix, respectively.
The PDT has a simplified form suitable to the 1D Lieb–Liniger Bose gas [61], spin-1/2 XXX chain [62], and spin–spin

dynamical correlation functions of the 1D half-filled Hubbard model [63]. Such functions involve spin excitations for which
Nh

c = 0. For that simplified dynamical theory there is no convolution, as given in Eq. (192). For it the function, Eq. (191),
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rather reads [61–63] B⊙(k, ω) =
∑

fΘ
(
|vf | − v

)
BQ (δωf , vf ) for δωf ∈ [0,Ω]. Here v = v(qF ) is the model-dependent

ground-state single branch Fermi velocity and BQ (k′, ω′) is a pseudofermion spectral function. It has exactly the expression,
Eq. (193), if one omits the index β . Such an omission procedure also applies to all other PDT quantities in the equations given
in the following and in Appendix J [61–63].

The expression, Eq. (J.10) of Appendix J, of the β = c, s1 pseudofermion spectral function, Eq. (193), is valid in the TL.
Its use in the general convolution expression, Eq. (192), of the function B̆⊙

f (δωf , vf ) followed by the use of the obtained
expression for such a function in the second expression of the function B⊙(k, ω) in Eq. (191), enables performing the
summations in the latter equation for the (k, ω)-plane vicinity of some singular spectral features. For the one-electron
spectral function, these turn out to be the most important spectral features.

The summation
∑

f in Eq. (191) runs over PS excited states with the specific k and ω values that appear in the argument
of the corresponding function B⊙(k, ω). At such fixed values, the two corresponding β = c, s1 lowest peak weights A(0,0)

β ,
Eq. (J.2) of Appendix J, have nearly the samemagnitude for all such states. In the vicinity of the β = c, s1 branch lines whose
spectrum is defined in the following, the state summations can then be partially performed. One then finds that near them
the spectral function behaves as [13,16,51,58,59,63,64,181],

B(k, ω) ∝

(
cB ω − ωβ (k)

)ζβ (k)
for (cB ω − ωβ (k)) ≥ 0 ,

ζβ (k) = −1 +

∑
β ′=c,s1

∑
ι=±

2∆ιβ ′ (qj)|qj=c0 (k−k0) where β = c, s1 . (195)

Here cB = 1 and cB = −1 for ω ≥ 0 and ω ≤ 0 excitation energy, respectively. Except for the one-electron removal spectral
function, for which cB = −1, the general convention is that cB = 1 and thus ω ≥ 0. (That in Eq. (195) the β = c, s1 branch
line spectrum ωβ (k) is not multiplied by cB is justified by it being according to Eq. (196) always such that ωβ (k) ≥ 0.)

A β = c, s1 branch line in the vicinity of which the expression, Eq. (195), applies results from transitions to excited states
generated by creation (c0 = +1) or annihilation (c0 = −1) of one β = c, s1 pseudofermion. Its canonical momentum
q̄j = q̄(qj) is associated with a uniquely defined β = c, s1 band momentum value qj. A c0 = +1 and c0 = −1 branch line
corresponds to the range |qj| ∈ [qFβ , qβ ] and qj ∈ [−qFβ , qFβ ], respectively. All remaining β = c, s1 pseudofermions are
created or annihilated at the β = c, s1 Fermi points ±qFβ , Eq. (147). The β = αn ̸= s1 pseudofermions (if any) are created
at the β = αn ̸= s1 band limiting values, q±

αn = ±qαn, Eq. (149). This gives a (k, ω)-plane β = c, s1 branch line shape whose
energy spectrum ωβ (k) appearing in expression, Eq. (195), reads [51],

ωβ (k) = ω0 + c0 εβ (qj) and k = k0 + c0 qj where β = c, s1 and c0 = ±1 . (196)

εβ (qj) is here the β = c, s1 band energy dispersion, Eq. (152), and,

ω0 =

∑
α=η,s

2µα (Lα,−1/2 − δα,s Ns1) and k0 = π Lη,−1/2 + (π − 2kF )2Jηn +

∑
β=c,s1

2qFβ 2JFβ . (197)

2Jηn = Nηn,+ − Nηn,− where Nηn,ι is in this equation the number of ηn pseudofermions created at the ηn band limiting
momentum values ιqηn = ι(π − 2kF ), Eq. (149). For instance, (Nη1,ι + Mη,−1/2) = 0 and (Nηn,1,ι + Mη,−1/2) = 1 for a one-
electron addition β = c, s1 branch line in the lower and upper Hubbard bands, respectively, defined below in Section 7.3.

The spectral function expression, Eq. (195), is exact for β = c, s1 branch lines that coincide with the lower thresholds
(cB = 1) or upper thresholds (cB = −1) of (k, ω)-plane finite spectral-weight regions. For the particular case of the one-
electron spectral function, Eq. (195) is a good approximation for the β = c, s1 branch lines that have a small amount of
spectral weight above (cB = 1) or below (cB = −1) them. For integrable correlated problems with a single pseudofermion
branch, the exponent in Eq. (195) is rather given by −1 +

∑
ι=±

2∆ι. This is as in Eqs. (46) and (98) for the 1D Lieb–Liniger
Bose gas and spin-1/2 XXX chain, respectively [61–63].

The above dynamical correlation functions line shapes are beyond the reach of the techniques used within the usual low-
energy TLL studies. In the limit of low-energy the PDT describes the well-known behaviors obtained by such techniques.
This refers specifically to the vicinity of (k, ω)-plane points (k0, 0) of which (k0, ω0), Eq. (197), is a generalization for ω0 > 0.
Near them the spectral-function behavior is [51,63,64,181],

B(k, ω) ∝

(
cB ω − ω0

)ζ
for (cB ω − ω0) ≥ 0 ,

ζ = −2 +

∑
β ′=c,s1

∑
ι=±

2∆ιβ ′ for (cB ω − ω0) ̸= ±vβ (k − k0) where β = c, s1 ,

B(k, ω) ∝

(
cB ω − ω0 ∓ vβ (k − k0)

)ζ±

for (cB ω − ω0 ∓ vβ (k − k0)) ≥ 0 ,

ζ±
= −1 − 2∆∓

β +

∑
β ′=c,s1

∑
ι=±

2∆ιβ ′ for (cB ω − ω0) ≈ ±vβ (k − k0) where β = c, s1 . (198)

The expressions given here apply to the finite-weight region above (cB = 1) or below (cB = −1) the (k, ω)-plane point.
Examples of exponents ζ controlling the line shape near (k, ω)-plane points (k0, 0) are given in Ref. [100]. In Ref. [181] it is
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Fig. 20. Experimental peak dispersions obtained by ARPES on TTF–TCNQ along the easy-transport axis as given in Fig. 7 of Ref. [15] andmatching theoretical
branch and border lines, within the 1D Hubbard model PDT. The line shape in the vicinity of the branch lines is for that model of power-law type, with
exponents that depend on the momentum, interaction strength, and densities. (The Z-point corresponds in the figure to the momentum k = π .)
Source: From Ref. [13].

confirmed that in the limit of low excitation energy the expressions, Eq. (198), recover those providedwithin the TLL limit by
conformal-field theory [176,224]. For low-energy excited eigenstates of Sη > 0 and Ss ≥ 0 ground states the four functionals
2∆±1

c and 2∆±1
s1 , Eq. (194) with δNNF

β ′ (qj) = 0 and δNαn(qj) = 0, are in that reference found to be the conformal dimensions of
the c,± and s,± primary fields, respectively. The corresponding dressed charge matrix is in Eqs. (162) and (163) expressed
in terms of pseudofermion phase-shift parameters.

In the particular case of the one-electron spectral function, there is a third type of high-energy spectral feature in the
vicinity of which the PDT provides an analytical expression. It is generated by processes where a c pseudofermion hole is
annihilated (electron addition) or created (electron removal) and a s1 pseudofermion hole is created at related momentum
values qj and qj′ , respectively. Their relation follows from the group velocities, Eq. (155), obeying the equality vc(qj) = vs1(qj′ ).
The one-electron spectral feature under consideration is called a c − s1 border line. Its (k, ω)-plane shape is of the general
form [13,51,63,64],

ωc−s1(k) =
(
ω0 + |ϵc(qj)| + |ϵs1(qj′ )|

)
δvc (qj), vs1(qj′ ) and k = k0 + c0 qj − qj′ where c0 = ±1 . (199)

Near a c − s1 border line the spectral function has the following behavior,

B(k, ω) ∝

(
cB ω − ωc−s1(k)

)−1/2
for (cB ω − ωc−s1(k)) ≥ 0 . (200)

Applications of the 1D Hubbard model PDT to the study of the ARPES spectral features of actual quasi-1D materials are
reported in Refs. [13,15,16]. The experimental peak dispersions obtained by ARPES on the quasi-1D organic conductor TTF–
TCNQ along the easy-transport axis [15] together with the prediction of the PDT for the 1D Hubbard model are shown in
Fig. 20. The shape of the c , c ′, and c ′′ spectral lines and s and s′′ spectral lines in the ARPES spectrum plotted in such a
figure is that of the β = c and β = s1 bands energy dispersions εβ (qj), Eq. (195), respectively, in the branch-line spectrum,
Eq. (196). The indices s and s′′ readwithin our notation s1 and s1′, respectively. The c , c ′, and s1 branch lines refer to electronic
densities in the range ne ∈ [0, 1] suitable to the stacks of TCNQmolecules related spectral features. Their spectra expressions
in terms of the energy dispersions εc(qj) and εs1(qj) and PDT momentum dependent exponents are given in Eqs. (J.11) and
(J.12) of Appendix J, respectively. Such dispersions are seen in actual experiments on quasi-1D conductors.

The figure theoretical c ′′ and s′′ branch lines and c − s border line, Eq. (199), refer to the TTF stack of molecules spectral
features derived within the 1D Hubbard model PDT for electronic density ne = 1.41 and U/t = 5.61. The c , s, and c ′ branch
lines correspond to the TCNQ stack of molecules dispersions evaluated for electronic density ne = 0.59 and U/t = 4.90.
A corresponding approximate spectral-weight distribution in the vicinity of such branch lines obtained by combining the
theory analytical expressions with numerical approximations is shown in Fig. 21.

The one-electron spectral function exponent plotted in Fig. 22 refers for k ∈ [0, kF ] to a line shape of form, Eq. (195).
Above it there is no one-electron removal spectral weight (cB = −1). Hence it is exact for the present model. It corresponds
to the theoretical TCNQ line called s in Fig. 20. The one-electron addition exponent plotted in Fig. 22 for k ∈ [kF , 3kF ] and
electronic density ne = 0.59 equals the corresponding one-electron removal exponent for density n′

e = 2 − ne = 1.41. The
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Fig. 21. PDT one-electron removal spectral-weight distribution in the vicinity of the TTF (ne = 1.41 andU/t = 5.61) and TCNQ (ne = 0.59 andU/t = 4.90)
stack of molecules spectral features in Fig. 20.
Source: From Ref. [13].

Fig. 22. Momentum dependence of a one-electron spectral function s1 branch-line exponent, Eq. (195), called ζs in the figure, for densities ne = 0.59 and
m = 0 and several U/t values. (As in Ref. [16], ne is here denoted by n.)
Source: From Ref. [16].

latter is that appropriate for the theoretical TTF s′′ branch line plotted in Fig. 20 for the small range of momentum values
k > kF for which that exponent is negative.

The experimental peak dispersions shown in Fig. 20 show significant discrepancies from the conventional band-structure
predictions. Fig. 7 of Ref. [15] represents the experimental spectral features in that figure in comparisonwith the conduction
band dispersions obtained by density functional theory. In contrast to the line shapes obtained within the 1D Hubbard
model by the PDT, those predicted by density functional theory do not agree with the experimental ARPES features. The
corresponding non-perturbative many-electron physics justifies why standard density functional theory fails to describe
such unusual ARPES spectral-line shapes. The theoretical description of the microscopic mechanisms behind the spectral
properties of 1D systems and quasi-1D metals can be further improved by the use of a renormalized PDT [26]. It accounts
for the effects of electron finite-range interactions beyond the conventional 1D Hubbard model.

The results discussed in this section and in Section 6 illustrate how the 1D Hubbard model physics is fully controlled by
the scattering events of the pseudofermions. The model one-particle spectral functions has also been studied by numerical
methods. The authors of Ref. [269] found that the 1D Hubbard model one-electron removal spectral function s1 branch line
exact exponent plotted in Fig. 22 for the momentum range k ∈ [0, kF ] fully agrees with that exponent values obtained by
the density matrix renormalization group (DMRG). The PDT exponent for the line shape near the c branch line in Fig. 20 is
not exact. Indeed, there is some small amount of spectral weight above that line. It is though a very good approximation.
Consistently, the authors of Ref. [269] have found small minor quantitative deviations from the DMRG values of that
exponent.

The numerical results derived by theMQIM in Section VIII of Ref. [54] for themomentum dependence of the one-electron
removal spectral-function s1 branch line exponent of Fig. 22 are in full quantitative agreement with those obtained by use
of the PDT [13,16,58] for electronic density ne = 0.59, interaction values U/t = 1.00, 4.90, 10.00. This applies to the whole
range of that figure momentum values k ∈ [0, kF ] associated with electron removal. Moreover, the same exponent was also
calculated in the framework of the MQIM in Ref. [55], using input from the BA solution. It has been plotted in that reference
as a function of the momentum for densities ne = 0.17, 0.25, and U/t = 2.00, 5.00, 10.00, 20.00. Again, such results are in
accord with those of the PDT.
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Fig. 23. The half-filled 1D Hubbard model longitudinal spin spectrum ωl(k) corresponding to that plotted in Figs. 7–9 for the spin-1/2 XXX chain for (a)
m = 0.25 and u = 0.5, (b)m = 0.75 and u = 0.5, (c)m = 0.25 and u = 10.0, and (d)m = 0.75 and u = 10.0. The main effect of the onsite repulsion is on
the spectrum energy bandwidth. At fixed spin densitym its form remains nearly the same for the whole u > 0 range.
Source: From Ref. [63].

7.3. PDT applications to the high-energy spectral properties of the 1D Hubbard model in a magnetic field

The longitudinal and transverse dynamical structure factors studied in Section 3.7 for the spin-1/2 XXX chain and the one-
electron spectral functions have been investigated within the framework of the 1D Hubbard model in a magnetic field PDT
in Refs. [63] and [64], respectively. The results for the XXX chain correspond to those obtained for the large-u half-filled 1D
Hubbard model up to t2/U order. Previous studies of the factors Szz(k, ω) and Sxx(k, ω) = Syy(k, ω) within the half-filled 1D
Hubbard focusedmainly ontomagnetic fieldsH = 0 for which Szz(k, ω) = Sxx(k, ω) = Syy(k, ω) [270,271]. That model lower
thresholds spectra ωl(k) and ωt (k) of the longitudinal and transverse, respectively, dynamical structure factors are plotted
in Figs. 23 and 24, respectively. Interestingly, analysis of these figures reveals that the main effect of u on these spectra is
merely on their energy bandwidth. It increases upon decreasing u. Otherwise, their shape remains nearly unchanged.

The exact behavior near the longitudinal and transverse dynamical structure factors lower thresholds refers to the
PDT general expression, Eq. (195). The corresponding singularities in the vicinity of the thresholds of the longitudinal
spin spectrum ωl(k) in Fig. 23 and transverse spin spectrum ωt (k) in Fig. 24 are controlled by exponents ξ l(k) and ξ t (k),
respectively. Such exponents are plotted for the half-filled 1D Hubbard model as a function of the momentum k ∈ ]0, π [ for
several values of u and spin densitym in Figs. 25 and 26, respectively.

On the one hand, the longitudinal dynamical structure factor exponent ξ l(k) is negative for k > 0 at any u and m values.
On the other hand, the transverse dynamical structure factor exponent ξ t (k) is negative for a u and m-dependent range
k ∈ [kt , π]where themomentum kt is for u > 0 an increasing function ofm. Furthermore, analysis of Fig. 25 reveals that the
negative exponent ξ l(k) is an increasing and decreasing function of u for the momentum ranges k ∈ [0, kl] and k ∈ [kl, π],
respectively. Here kl is a spin density dependent momentum at which the exponent ξ l(k) has similar value for the whole
u > 0 range.

For the intervals of the momentum k for which the exponent ξτ (k) is negative, there are lower threshold singularity
cusps in the dynamical structure factors. Hence analysis of Figs. 25 and 26 provides valuable information on the k ranges for
which there are singularities in the lower thresholds of the dynamical structure factors Szz(k, ω) and Sxx(k, ω) = Syy(k, ω).
An interesting issue discussed in Section 3.7 for the spin-1/2 XXX chain is the potential observation of the theoretically
predicted dynamical structure factors peaks in inelastic neutron scattering experiments. Analysis of Figs. 24–26 reveals that
the effect of lessening the u value is enhancing the (k, ω)-plane energy bandwidths of the spectra edgeswhere such peaks are
located.

An interesting issue refers to the effects of varying the electronic density ne, spin density m, and interaction u on the
momentumdependence of the exponents that control the (k, ω)-plane singular features of theσ =↑,↓ one-electron spectral
functions Bσ ,γ (k, ω) of the 1D Hubbard model [64]. Here γ = −1 (and γ = +1) for one-electron removal (and addition).
Such functions read,

Bσ ,−1(k, ω) =

∑
ν−

|⟨ν−
| ck,σ |GS⟩|

2
δ

(
ω + (ENσ−1

ν−
− ENσ

GS )
)

for ω ≤ 0 ,
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Fig. 24. The half-filled 1D Hubbard model transverse spin spectrum ωt (k) corresponding to that plotted in Figs. 7–9 for the spin-1/2 XXX chain for (a)
m = 0.25 and u = 0.5, (b) m = 0.75 and u = 0.5, (c) m = 0.25 and u = 10.0, and (d) m = 0.75 and u = 10.0. As in the case of the longitudinal spin
spectrum plotted in Fig. 23, the main effect of the onsite repulsion is on the spectrum energy bandwidth.
Source: From Ref. [63].

Fig. 25. The half-filled 1DHubbardmodel exponent ξ l(k) corresponding to that plotted in Figs. 7–9 for the spin-1/2 XXX chain that controls the singularities
in the vicinity of the lower thresholds of the longitudinal spin spectrum ωl(k) plotted in Fig. 23 as a function of k ∈ ]0, π [ for several values of u and spin
densities (a)m = 0.25, (b) m = 0.50, (c) m = 0.75, and (d) m = 0.99.
Source: From Ref. [63].

Bσ ,+1(k, ω) =

∑
ν+

|⟨ν+
| c†

k,σ |GS⟩|
2
δ

(
ω − (ENσ+1

ν+
− ENσ

GS )
)

for ω ≥ 0 . (201)

The operators ck,σ and c†
k,σ in this equation annihilate and create electrons, respectively, of momentum k and |GS⟩ denotes

the initial Nσ -electron ground state of energy ENσ
GS . The ν

− and ν+ summations run over the Nσ − 1 and Nσ + 1-electron
excited energy eigenstates, respectively, and ENσ−1

ν−
and ENσ+1

ν+
are the corresponding energies.

The one-electron lower Hubbard band and upper Hubbard band can be defined for all densities and finite repulsive onsite
interaction values in terms of the rotated electrons associated with the model BA solution [64]. As discussed in Section 4.3,
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Fig. 26. The half-filled 1DHubbardmodel exponent ξ t (k) corresponding to that plotted in Figs. 7–9 for the spin-1/2 XXX chain that controls the singularities
in the vicinity of the lower thresholds of the transverse spin spectrum ωt (k) plotted in Fig. 24 as a function of k ∈ ]0, π [ for several values of u and spin
densities (a)m = 0.25, (b)m = 0.50, (c) m = 0.75, and (d) m = 0.99.
Source: From Ref. [63].

the 1D Hubbard model BA quantum numbers are directly related to the numbers of sites singly occupied, doubly occupied,
and unoccupied by σ rotated electrons. From the use of that relation it is found that for instance for electronic densities
ne ∈ [0, 1[ and spin densities m ∈ [0, ne] the model ground states have zero rotated-electron double occupancy. The σ
one-electron LHB addition spectral function BLHB

σ ,+1(k, ω) and UHB addition spectral function BUHB
σ ,+1(k, ω) are then uniquely

defined for u > 0 as Bσ ,+1(k, ω) = BLHB
σ ,+1(k, ω)+BUHB

σ ,+1(k, ω) where BLHB
σ ,+1(k, ω) =

∑
ν+0

|⟨ν+

0 | c†
k,σ |GS⟩|

2
δ(ω−(ENσ+1

ν+0
−ENσ

GS ))

for ω ≥ 0 and BUHB
σ ,+1(k, ω) =

∑
ν+D

|⟨ν+

D | c†
k,σ |GS⟩|

2
δ(ω− (ENσ+1

ν+D
− ENσ

GS )) for ω ≥ 0. Here the ν+

0 and ν+

D summations run over
the Nσ + 1-electron excited energy eigenstates with zero and D > 0, respectively, rotated-electron double occupancy and
ENσ−1
ν+0

and ENσ+1
ν+D

are the corresponding energies.
The momentum dependent exponents that control the line shape of the σ =↑,↓ one-electron spectral functions

Bσ ,γ (k, ω), Eq. (201), near the main c and s1 branch lines are in Ref. [64] plotted as a function of k for a large range of
different u, ne, and m values. For simplicity, here we plot some of the momentum dependent exponents of the down-spin-
one-electron removal and LHB addition spectral function, Eq. (201) for σ =↓ and γ = −1. Such a spectral function c± branch
lines and s1 branch line are generated by processes that correspond to particular cases of those generated by the leading-
order operators considered in Ref. [64]. These branch lines energy spectra are defined in that reference. The corresponding
momentum dependent exponents ξ↓

c+ (k) = ξ
↓

c− (−k) and ξ↓

s1(k) that control the spectral-function singularities in the vicinity
of the c+ and s1 branch lines are plotted in Figs. 27 and 28, respectively. The effects of varying u on these one-electron
exponents are stronger than in the case of the exponents of the spin dynamical structure factors plotted in Figs. 25 and 26.

7.4. Relation between the pseudofermion dynamical theory and the mobile quantum impurity model

For simplicity, here we use the PDT expressions for the dynamical correlation functions of the 1D Lieb–Liniger Bose
gas discussed in Section 2.2 to clarify the relation between the PDT and the MQIM [52,53]. The basic relation found in the
following is qualitatively similar to that of the more complex models also reviewed in this paper.

Within the MQIM, the pseudoparticles in the vicinity of the ι = ± Fermi points are called particles. The MQIM relies on
an effective Hamiltonian of general form [52,53],

Ĥ = Ĥ0 + Ĥd + Ĥint where Ĥ0 =
v

2π

∫
dx
(
K0(∇θ (x))2 +

1
K0

(∇φ(x))2
)
,

Ĥd =

∫
dx d†(x)

(
ε1(k) − i

∂ε1(k)
∂k

∂

∂x

)
d(x) ,

Ĥint =

∫
dx
(
VR∇

θ (x) − φ(x)
2π

− VL∇
θ (x) + φ(x)

2π

)
d†(x)d(x) . (202)
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Fig. 27. The exponent ξ↓

c+ (k) = ξ
↓

c− (−k) that controls the singularities in the vicinity of the c+ branch line of the σ =↓ one-electron removal and LHB
addition spectral function, Eq. (201) for σ =↓ and γ = −1, as defined in Ref. [64], as a function of the momentum k/π ∈ ] − 1, 1[ for several u values,
electronic density ne = 0.7, and spin densities (a) m = 0.65, (b) m = 0.45, (c) m = 0.25, and (d) m = 0.05, and for electronic density ne = 0.3 and spin
densities (e)m = 0.25 and (f)m = 0.05.
Source: From Ref. [64].

Here Ĥ0 in whose expression v is the particles Fermi velocity describes their kinetic energy near the BA Fermi points. The
mobile impuritymotion is described by Ĥd. Furthermore, Ĥint contains the density–density interactions between the impurity
and the particles in the vicinity of the Fermi points.

The operator d† creates the mobile impurity with momentum near k and energy near ε1(k). This is the excitation energy
ωτ = cτ ε(qF − k), Eq. (44). Its velocity is ∂ε1(k)

∂k
∂
∂x . The quantities θ (x) and φ(x) in Eq. (202) are conventional bosonic fields.

They satisfy the canonical commutation relation,

[φ(x),∇θ (x′)] = iπδ(x − x′) . (203)

The particles annihilation operator reads ΨB(x, t) ≈ eiθ (x,t). Moreover, ∇
θ (x)−φ(x)

2π and −∇
θ (x)+φ(x)

2π are in the effective
Hamiltonian Ĥint expression the densities of right and left movers, respectively. The interactions described by that effective
Hamiltonian lead to the formation of low-energy particle–hole pairs. Those are crucial for the line shape of the dynamical
correlation functions.

A key step of theMQIMmethod is that the interaction Hamiltonian term Ĥint can be removed by a unitary transformation,
Û†(Ĥ0 + Ĥd + Ĥint)Û , where [52,53],

Û†
= ei

∫
dx
{
δ+
2π [θ̃ (x)−φ̃(x)]− δ−

2π [θ̃ (x)+φ̃(x)]
}
d†(x) d(x) where δ± = 2πFB(±Q |k0(qF − k)) . (204)
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Fig. 28. The exponent ξ↓

s1(k) that controls the singularities in the vicinity of the s1 branch line of the σ =↓ one-electron removal and LHB addition spectral
function, Eq. (201) for σ =↓ and γ = −1, as defined in Ref. [64], as a function of the momentum k/π ∈ ]0, 1[ for the same values of u, electronic density
ne , and spin densitym as in Fig. 27. (For k/π ∈ ] − 1, 0[ the exponent ξ↓

s1(k) is given by ξ↓

s1(k) = ξ
↓

s1(−k) with −k/π ∈ ]0, 1[ as plotted here.)
Source: From Ref. [64].

Here δ± is a function defined in Eq. (15) of Ref. [57]. It is a particular case of theMQIM shift function FB(k|k′) defined in Eqs. (7)
and (8) of that reference. (As in Section 2.2, the MQIM shift-function FB(ν|µ) variables ν and µ of Ref. [57] are here denoted
by k and k′, respectively, and the corresponding limiting values ±q by ±Q , Eq. (11).)

We start by discussing the technical equivalence of the line shapes near the branch lines, as defined within the PDT and
the MQIM. The relation between PDT and MQIM is addressed afterwards, from the point of view of the physical processes
under consideration. A first issue to be clarified is the relation of the PDT τ = B, A,D exponents, Eq. (46), to those derived
by the MQIM in Ref. [57]. In Appendix A it is rigorously shown that the following equalities exactly hold for the momentum
range k ∈ [0, 2πnb] considered in that reference,

ξB(k) = −µ̄−(k) , ξA(k) = −µ
+
(k) and ξD(k) = −µ2(k) . (205)

Such exact relations hold in spite of the apparent different expressions given in Eqs. (16)–(18) of Ref. [57] for the edge
exponents on the right-hand side of the three equations in Eq. (205). The PDT exponent expressions,

ξτ (0) =
(2bτ − 1)

ξ 1

(
1 +

(2bτ − 1)
2ξ 1

)
and ξτ (2πn) = −2ξ 1 + 2(ξ 1)2 +

(2bτ − 1)
ξ 1

(
1 +

(2bτ − 1)
2ξ 1

)
, (206)
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refer to the limiting momenta k → 0 and k → 2πn, respectively. It follows from the equalities in Eq. (205) that they are
fully equivalent to those provided for µ̄−(k) = −ξB(k), µ

+
(k) = −ξA(k), and µ2(k) = −ξD(k) in Eqs. (19), (22), and (23) of

Ref. [57] for k → 0 and Eqs. (20), (24), and (25) of such a reference for k → 2πn.
On the one hand, the dynamical correlation functions exponents are within the PDT controlled by the pseudofermion

phase shifts 2πΦ(qj, qj′ ) = 2πΦ̄(k0(q̄j), k0(q̄j′ )), Eq. (12). They are thus also controlled by the related momentum rapidity
phase shifts 2πΦ̄(k, k′), Eq. (13). Specifically, the edge singularities exponents are fully controlled by the pseudofermion
phase shifts 2πΦ(±qF , q′) = 2πΦ̄(±Q , k0(q′)).

On the other hand, within the MQIM used in Ref. [57] to derive the same exponents, those are determined by the MQIM
shift function FB(k|k′). The two MQIM ι = ± shift functions FB(±Q |k′) play the major role, since they fully control the edge
singularities exponents.

That the exact equalities in Eq. (205) hold for k ∈ [0, 2πnb] is an issue addressed in Appendix A. It is shown to result
from the MQIM shift function FB(k|k′) of Ref. [57] being exactly related to the momentum rapidity phase shift Φ̄(k, k′) in
units of 2π , Eq. (13), as given in Eq. (A.8) of that Appendix. Hence the MQIM ι = ± shift functions FB(±Q |k′) = δ±/2π
that in Ref. [57] control the edge singularities exponents are simply related to the ι = ± pseudofermion phase shifts
Φ(ιqF , q′) = Φ̄(ιQ , k0(q′)) in units of 2π as follows,

FB(ιQ |k′) =
δι

2π
=
ξ 1

2
− Φ̄(ιQ , k′) =

√
K0

2
− Φ̄(ιQ , k′) for ι = ± . (207)

Within the PDT, the ι = ± pseudofermion phase shifts 2πΦ(ιqF , q′) = 2πΦ̄(ιQ , k0(q′)) control the important
exponent functional, Eq. (37). In addition, they determine the parameter ξ 1 = 1 + Φ(qF , qF ) − Φ(qF ,−qF ), Eq. (18),
that also appears in that exponent functional expression. This thus also applies the TLL parameter, K0 = (ξ 1)2 = (1 +

Φ(qF , qF ) −Φ(qF ,−qF ))2. The exact relation between the MIM shift functions FB(ιQ |k′) and the pseudofermion phase shifts
2πΦ(ιqF , q′) = 2πΦ̄(ιQ , k0(q′)) given in Eq. (207) clarifies the basic relation between the PDT and theMIM. (It plays the key
role in the rigorous proof presented in Appendix A.)

The physical processes described by the MQIM are fully equivalent to those of the PDT that control the line shape of the
dynamical correlation functions near the branch lines, Eqs. (196)–(195). Specifically:

(I) The unitary transformation, Eq. (204), that removes the interaction Hamiltonian term Ĥint is equivalent to the
pseudoparticle–pseudofermionunitary transformation, qj → qj+2πΦ(qj)/L. Such a transformation removes the pseudopar-
ticle energy spectrum interactions and introduces shake-up effects. Those result from the discrete canonical momentum
value shifts 2πΦ(qj)/L, Eq. (33), under the transitions to the excited states. Such shake-up effects are behind a large number
of small-momentum and low-energy pseudofermion–pseudofermion–hole processes (C). They occur in the linear part of
the pseudofermion energy dispersions and lead to finite spectral-weight contributions. Similarly, in the case of the MQIM
the interactions described by the effective Hamiltonian Ĥint lead to the formation of low-energy particle–hole pairs that are
crucial for the line shape of the dynamical correlation functions.

(II) The mobile quantum impurity described by the effective Hamiltonian Ĥd in Eq. (202) corresponds to the pseud-
ofermion or pseudofermion hole with canonical momentum away from the Fermi points. It is created within the PDT by
processes (A). They occur under the transitions to excited states associated with the corresponding pseudofermion branch
line.

(III) The effective Hamiltonian Ĥ0 in Eq. (202) describes the same processes near the Fermi points as the PDT processes
of classes (B) and (C).

Hence although relying on apparently different physical starting points, the MQIM describes exactly the same processes
as the PDT. This applies in the particular case of line shapes near the branch lines, as defined within the latter dynamical
theory.

8. General Outlook and future developments

The static properties of the 1D Lieb–Liniger Bose gas, spin-1/2 isotropic Heisenberg chain, and 1D Hubbard model have
been revisited in this review in terms of quantum liquids of pseudoparticles. The static quantities of these integrable systems
are controlled by Landau parameters associated with the pseudoparticles residual interactions f functions. The similarities
to and differences from the usual Fermi liquid have been discussed.

The high-energy dynamical correlation functions of these integrable systems have been studied in the suitable and related
pseudofermion representation of the BA solutions. The line shape in the vicinity of the high-energy one-particle spectral
functions of the 1D Lieb–Liniger Bose gas and 1D Hubbard model is controlled by momentum dependent exponents. Such
exponents have simple expressions in terms of the pseudofermions scattering phase shifts. For all models under review, the
same applies to the line shape near the spectra edges of the two-particle dynamical correlation functions.

One of the goals of this review is to contribute to the further understanding of the fractionalized particles microscopic
mechanisms that control the low- and high-energy properties of 1D correlated systems. In the case of the spin-1/2 XXX chain,
an exact expression of the spin currents of non-LWSs, Eq. (71),was used to study the elementary currents jh1(qj) in Eq. (72) that
are conventionally associated with spinons. It has been found that the latter elementary currents describe the translational
degrees of freedom of the model unpaired physical spins 1/2 whose occupancies generate the energy eigenstates multiplet
configurations. Our study includes an analysis of the exact elementary spin currents j±1/2 in Eq. (72) carried by such physical
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spins 1/2. It is found from it that one cannot associate the internal spin degrees of freedom of physical spins 1/2 with the BA
quantumnumbers qj in the argument of the elementary current spectrum jh1(qj). Hence such internal spin degrees of freedom
can neither be associated with the corresponding conventional spinons.

This reveals that spinons, as definedwithin integrablemodels, are not spin-1/2 particles. They do not contain the internal
spin degrees of the physical spins whose translational degrees of freedom they describe. This clarification is important,
because spinons are conventional fractionalized particles widely used in the description of the spin degrees of freedom
of integrable systems. It applies to all integrable models with SU(2) symmetries associated for instance with spin or η-spin
degrees of freedom. However, conventional spinons describe correctly the translational degrees of freedom of themultiplets
physical spins 1/2. They thus can be successfully used in the description of some of the properties of 1D spin chains and
electronic correlated models.

Moreover, the results under review confirm that the non-perturbative relation of the pseudoparticles to the models
physical particles (bosons, spins 1/2, and electrons) is more involved for models with more types of degrees of freedom and
thus of increasing complexity. Specifically, it becomesmore involved as one goes from the Abelian global U(1) symmetry 1D
Lieb–Liniger Bose gas, to the non-Abelian global SU(2) symmetry spin-1/2 XXX chain, and further to themuchmore involved
non-Abelian global [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 symmetry 1D Hubbard model. The discussion of the increase in complexity
and of the role played in it by the interplay of the BA pseudoparticleswith the global symmetries representations, has unified
the results being reviewed. It thus contributed to the further understanding of their physical meaning.

Concerning future studies in this field, an interesting future development would be to extend the computations of the
PDT high-energy dynamical correlation functions beyond the vicinity of the one- and two-particle spectra edges and one-
particle singular branch and border lines at finite u. The derivation of accurate finite-u line shapes over the whole (k, ω)
plane, as those obtained in Refs. [156–158] for the u → ∞ limit, would require more demanding numerical computations
than those employed in these references. Future developments and improvements in numerical techniques may allow such
computations of the finite-u one- and two-electron spectral-weight distributions.

A development that also deserves future studies, refers to the need of accounting for electron finite-range and long-range
interactions beyond the 1D Hubbard model in the description of the microscopic mechanisms behind the ARPES in 1D and
quasi-1Dmetallic states of actual physical systems. Indeed, within that integrablemodel the parameter ξ0 and related charge
TLL parameter K 0

ρ ≡ ξ 20 /2 [3,4,272] can vary in the intervals ξ0 ∈ [1,
√
2] and K 0

ρ ∈ [1/2, 1], respectively. (The m → 0
parameter ξ0 is related to phase shifts, as given Eq. (H.13) of Appendix H.) Through Eq. (164), such intervals correspond to a
suppression of density of states exponent range α0 ∈ [0, 1/8].

In contrast, the density of states suppression exponent α experimentally measured for instance in 1D metallic states of
Bi/InSb(001) [25], 1D line defects in transition dichalcogenides such as MoSe2 [26], and quasi-1D conductors [272] belongs
typically to the interval α ∈ [0.50, 0.80]. This implies that for such systems the charge TLL parameter Kρ and the related
parameter ξ0 =

√
2Kρ have values Kρ < 1/2 and ξ̃0 < 1, respectively. As discussed in Ref. [3], such values result from

electron interactions beyond onsite, i.e. finite-range interactions (of at least one lattice spacing) or long-range interactions
that must be accounted for. (Here Kρ and ξ̃0 is our notation for the parameters corresponding to the 1D Hubbard model
parametersK 0

ρ ∈ [1/2, 1] and ξ0 ∈ [1,
√
2] in the general case ofmodelswith electron finite-range or long-range interactions

for which they have values within the extended intervals Kρ ∈ [1/8, 1] and ξ̃0 ∈ [1/2,
√
2], respectively.)

The electron finite-range renormalized theory introduced in Ref. [26] involves the transformation of the 1D Hubbard
model into non-integrable models. The c pseudofermions are not well defined in such models except at and near the c band
Fermi points. The transformation involves gently turning on the finite-range part of electronic potentials Vel(r). This leads
to a renormalized effective potential between the c pseudofermions at and near the c band Fermi points and the c-band
hole created in that band under one-electron removal excitations. Within the MQIM, that c-band hole refers to the mobile
quantum impurity. The corresponding interaction between such c pseudofermions and the emerging c band hole associated
with their renormalized potential has an effective range equal or larger than one lattice spacing. The effective range plays
an important role for instance in scattering of atoms [273].

The renormalized theory of Ref. [26] is applied in that reference to the metallic 1D line defects in MoSe2 for which
the effects of the c pseudofermions and c band-hole effective range are small. Specifically, the effects of such an effective
range give rise to small changes in the spectral-function momentum dependent exponents that control the spectral peaks
distribution that lay within the ARPES experimental uncertainty. Therefore, they have been neglected in the studies of
Ref. [26]. An interesting development is to account for such interaction effective-range effects within the c pseudofermions
phase-shift renormalization. Indeed, this is needed in the case of the description of larger finite-range or long-range
microscopic mechanisms behind the ARPES of other 1D metallic states as those in 1D Bi/InSb(001) [25] and quasi-1D
conductors [13–16,272].

Another interesting future developmentwould involve further advances in the use of ultra-cold atoms in optical lattices to
simulate the 1D correlatedmodels under review here and relatedmodels [28,30,33–38]. This would provide complementary
information on both the spectral-functions line shapes over thewhole (k, ω) plane and the exotic fractionalized particles and
related composite particles reviewed in this paper.

Furthermore, spectral signatures of fractionalized particles have been clearly seen in quantum wires [39]. This makes
them potential candidates for technological applications in quantum computers. As mentioned in Section 1, the further
understanding the properties of the fractionalized particles may be important for such quantum technologies. It may as well
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as helping to develop more complete theories of superconductivity and conduction in low-dimensional condensed-matter
systems.

Whether fractionalized particles and their composite particles also emerge in two-dimensional correlated problems is
an open problem of high scientific interest. The global [SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 symmetry found in Ref. [147] applies
to the Hubbard model on any bipartite lattice. Hence rotated-electron representations associated with the model energy
eigenstates, as those reviewed in Section 4.3 for the 1D lattice, apply as well to the model on the square and other bipartite
lattices.Whether the rotated-electrondegrees of freedomseparation reported in this paper partially survives for theHubbard
model on the square lattice or other low-dimensional bipartite lattices is a problem of physical interest that deserves further
investigations.

A possible scenario is that for the Hubbard model on the square lattice fractionalized particles and/or their composite
particles emerge from a rotated-electron degrees of freedom separation. However, their interactions would not be of the
simple zero-momentum forward-scattering type. This is a property specific to the pseudofermions of integrable 1Dmodels.
It results from the occurrence of an infinite number of conservation laws [250,251,274], which is associated with their
integrability. The Hubbard model on the square lattice is not integrable. Nonetheless, a scenario within which there are
energy and momentum exchanges among the charge-like and spin-like fractionalized particles and/or their composite
particles is a possible interesting future development.

The interactions of such elementary fractionalized particles and their possible composite particles could be a simpler
problem to handle than that of the underlying many-electron interactions. This research direction could be of interest for
developing a further understanding of the over 30 years old unsolved problem of the microscopic mechanisms behind the
cuprates superconductivity [275–279] and its relation to the properties of the undoped Mott–Hubbard insulators parent
compounds [280,281].
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Appendix A. Equality of the Bose gas edge singularities exponents as derived by the PDT and MIM

The goals of this Appendix are to obtain the 1D Bose gas pseudofermion phase shift relation to the MQIM shift function
Φ(ιqF , qj′ ) =

ξ1

2 −FB(ιk0(qF ), k0(qj′ )) used to derive expression, Eq. (39), and to provide a rigorous proof of the equalities given
in Eq. (205). As a first step to reach such goals, the relation provided in Eq. (207) is derived. As in Sections 2.2 and 7.4, herewe
denote the MQIM shift function FB(ν|µ) variables ν and µ of Ref. [57] by k and k′, respectively. The corresponding limiting
values ±q are denoted by ±Q , Eq. (11). Moreover, as elsewhere in this paper the Tomonaga–Luttinger liquid parameter is
denoted by K0. (In Ref. [57] it is denoted by K .)

The MQIM shift function FB(k|k′) has been defined in Ref. [57] as the solution of the integral equation,

FB(k|k′) =
1
2

−
1
π

arctan
(
k − k′

c

)
+

1
πc

∫ Q

−Q
dk′′

FB(k|k′)

1 +
( k−k′′

c

)2 . (A.1)

The momentum rapidity phase shift Φ̄(k, k′) in units of 2π and the MQIM shift function FB(k|k′) obey integral equations,
Eqs. (13) and (A.1), respectively, with the same kernel. Hence their sum Φ̄(k, k′) + FB(k|k′) obeys an integral equation with
such a kernel and whose free term is merely the sum of those of Eqs. (13) and (A.1). This gives,

Φ̄(k, k′) + FB(k|k′) =
1
2

+
1
πc

∫ Q

−Q
dk′′

Φ̄(k, k′) + FB(k|k′)

1 +
( k−k′′

c

)2 . (A.2)
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Next we show that the function Φ̄(k, k′) + FB(k|k′) does not depend on k′. Indeed, one finds from the use of Eq. (A.2) that
the derivative ∂(Φ̄(k, k′) + FB(k|k′))/∂k′ obeys the equation,

∂(Φ̄(k, k′) + FB(k|k′))
∂k′

=
1
πc

∫ Q

−Q
dk′′

∂(Φ̄(k,k′)+FB(k|k′))
∂k′

1 +
( k−k′′

c

)2 . (A.3)

Since the free term of this equation vanishes, it follows from known properties of this type of integral equations that
its unique solution is ∂(Φ̄(k, k′) + FB(k|k′))/∂k′

= 0. This confirms that α(k) ≡ Φ̄(k, k′) + FB(k|k′) is an even function,
α(k) = α(−k), of only the variable k. As given in Eq. (A.2), it obeys the integral equation,

α(k) =
1
2

+
1
πc

∫ Q

−Q
dk′

α(k′)

1 +
( k−k′

c

)2 . (A.4)

One finds from simple manipulations of the integral equation, Eq. (13), obeyed by the momentum rapidity phase shift
Φ̄(k, k′) in units of 2π that the function,

ξ 1(k) = 1 + Φ̄(k,Q ) − Φ̄(k,−Q ) , (A.5)

is the unique solution of the integral equation,

ξ 1(k) = 1 +
1
πc

∫ Q

−Q
dk′

ξ 1(k′)

1 +
( k−k′

c

)2 . (A.6)

Since it is an even function, ξ 1(k) = ξ 1(−k), one finds that ξ 1 =
√
K0 = ξ 1(ιQ ) where ξ 1 = 1 + Φ(qF , qF ) − Φ(qF ,−qF ) is

the phase-shift parameter, Eq. (18). It is related to the TLL parameter as K0 = (ξ 1)2 = (1 +Φ(qF , qF ) −Φ(qF ,−qF ))2.
The functions α(k) and ξ 1(k) obey again integral equations, Eqs. (A.4) and (A.6), respectively, with the same kernel. Hence

the difference function ξ 1(k) − α(k) obeys an integral equation with that kernel and whose free term is the difference of
those of Eqs. (A.6) and (A.4). The latter free term reads 1/2. It follows that the difference function ξ 1(k) − α(k) obeys the
same integral equation, Eq. (A.4), as the function α(k). Since the solution of that integral equation is unique, one arrives to
the exact relations,

α(k) =
ξ 1(k)
2

and α(ιQ ) =
ξ 1

2
. (A.7)

By combining these relations with the expressions α(k) ≡ Φ̄(k, k′) + FB(k|k′) and α(ιQ ) ≡ Φ̄(ιQ , k′) + FB(ιQ |k′), one
readily finds that,

FB(k|k′) =
1
2
[1 + Φ̄(k,Q ) − Φ̄(k,−Q )] − Φ̄(k, k′) , (A.8)

and thus FB(ιQ |k′) = ξ 1/2 − Φ̄(ιQ , k′). By accounting for the ξ 1(k) expression, Eq. (A.5), the latter is indeed the expression,
Eq. (207).

The important PDT ι = ± c pseudofermion Fermi points fluctuations functionals, Eq. (37), can be expressed in terms of the
MQIM shift function FB(k|k′) as given in Eq. (39). To reach that expression, one uses the relation FB(ιQ |k′) = ξ 1/2− Φ̄(ιQ , k′)
that can be written as Φ̄(ιQ , k′) = ξ 1/2 − FB(ιQ |k′) so that,

Φ(ιqF , qj′ ) =
ξ 1

2
− FB(ιk0(qF )|k0(qj′ )) . (A.9)

Here k0(qj′ ) is the ground-statemomentum rapidity function. The use of this relation in Eq. (37) readily leads to the functional
dimensions expression, Eq. (39).

It follows from Eq. (207) that the τ = B, A,D exponents in Eq. (46) can be expressed in terms of the ι = ± shift functions
FB(ιQ |k′) as follows,

ξτ (k) = −1 +

∑
ι=±

(
ξ 1

2
+ ι

bτ
ξ 1

− Φ̄(ιQ , k0(qF − k))
)2

= −1 +

∑
ι=±

(
FB(ιQ |k0(qF − k)) + ι

bτ
ξ 1

)2

. (A.10)

The function k0(qF − k) in this expression is the ground-state momentum rapidity function k0(q) at q = qF − k. (Such a
function is the solution of the ground-state BA equation.)

It is useful to express the second expression in Eq. (A.10) in terms of the functions δ± in Eq. (204), defined in Eq. (15) of
Ref. [57]. This gives,

ξτ (k) = −1 +

(
δ+

2π
+

bτ
ξ 1

)2

+

(
δ−

2π
−

bτ
ξ 1

)2

= −1 +
δ2
+

+ δ2
−

(2π )2
+

bτ (δ+ − δ−)
2πξ 1

+
2b2τ
(ξ 1)2

= −1 +
δ2
+

+ δ2
−

(2π )2
+

bτ (δ+ − δ−)
2π

√
K0

+
2b2τ
K0

. (A.11)
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Or specifically for each of the three dynamical correlation functions under consideration,

ξB(k) = −1 +
δ2
+

+ δ2
−

(2π )2
and ξA(k) = −1 +

δ2
+

+ δ2
−

(2π )2
+
δ+ − δ−

2π
√
K0

+
2
K0
,

ξD(k) = −1 +
δ2
+

+ δ2
−

(2π )2
+
δ+ − δ−

4π
√
K0

+
1

2K0
, (A.12)

where we used that bB = 0, bA = 1, and bD = 1/2.
The exponents −µ̄−, −µ

+
, and −µ2 in Eq. (205) were found in Ref. [57] to read,

− µ̄− = −1 +
1
2

(
δ+ − δ−

2π

)2

+
1
2

(
δ+ + δ−

2π

)2

,

− µ
+

= −1 +
1
2

(
2

√
K0

+
δ+ − δ−

2π

)2

+
1
2

(
δ+ + δ−

2π

)2

,

− µ2 = −1 +
1
2

(
1

√
K0

+
δ+ − δ−

2π

)2

+
1
2

(
δ+ + δ−

2π

)2

, (A.13)

as given in Eqs. (16)–(18) of that reference. It is a simple exercise to show that these expressions can be rewritten as,

− µ̄− = −1 +
δ2
+

+ δ2
−

(2π )2
; −µ

+
= −1 +

δ2
+

+ δ2
−

(2π )2
+
δ+ − δ−

2π
√
K0

+
2
K0
,

− µ2 = −1 +
δ2
+

+ δ2
−

(2π )2
+
δ+ − δ−

4π
√
K0

+
1

2K0
, (A.14)

respectively.
Finally, comparison of the expressions provided in Eqs. (A.12) and (A.14) confirms the validity of the equalities given in

Eq. (205).

Appendix B. Some additional results on the spin-1/2 XXX chain and 1D Hubbard model TBA solutions

The functionΘn n′ (x) appearing in Eq. (58) for the spin-1/2 XXX chain and in Eq. (129) for the 1D Hubbard model is given
by,

Θn n′ (x) = δn,n′

{
2 arctan

( x
2n

)
+

n−1∑
l=1

4 arctan
( x
2l

)}

+ (1 − δn,n′ )
{
2 arctan

( x
| n − n′|

)
+ 2 arctan

( x
n + n′

)
+

n+n′−| n−n′ |
2 −1∑
l=1

4 arctan
( x

| n − n′| + 2l

)}
, (B.1)

where n, n′
= 1, . . . ,∞ and δn,n′ is the usual Kronecker symbol. Its derivative reads,

Θ
[1]
n n′ (x) =

dΘn,n′ (x)
dx

= δn,n′

{ 1
n (1 + ( x

2n )
2)

+

n−1∑
l=1

2
l(1 + ( x

2l )
2)

}
+ (1 − δn,n′ )

{ 2
|n − n′|(1 + ( x

|n−n′|
)2)

+

n+n′−|n−n′ |−2
2∑

l=1

4
(|n − n′| + 2l)(1 + ( x

|n−n′|+2l )
2)

+
2

(n + n′)(1 + ( x
n+n′ )2)

}
. (B.2)

The BA momentum bands have often exotic limiting values, in some cases dependent on the densities. In the case of
the spin-1/2 XXX chain, each n-band, such that qj+1 − qj = 2π/L, has a momentum range qj ∈ [q−

n , q
+
n ] whose limiting

momentum values q±
n are given in Eq. (59). Within the TL they read,

q±

n = ±
π

L
(Ln − 1) ≈ ±π mn where mn = nn + nh

n = Ln/L and nh
n = Nh

n/L . (B.3)

The 1D Hubbard model set j = 1, . . . , Lβ of β = c, αn bands discrete momentum values qj belong to well-defined
domains, qj ∈ [q−

β , q
+

β ], where

q±

c = ±
π

L
(L − 1) ≈ ±π for NSU(2) odd ; q±

c = ±
π

L
(L − 1 ± 1) ≈ ±π for NSU(2) even ,

q±

αn = ±
π

L
(Lαn − 1) , (B.4)

and the number NSU(2) is given in Eq. (133).
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Finally, the 1D Hubbardmodel energy eigenvalues and related energy scales are provided. The former have the following
general functional form when expressed in terms of the β = c, αn band momentum distribution functions Nβ (qj) and
numberMα,−1/2 of unpaired spins (α = s) and unpaired η-spins (α = η) of projection −1/2,

E =

L∑
j=1

(
Nc(qj) Ec(qj) + U/4 − µη

)
+

∑
α=η,s

∞∑
n=1

Lαn∑
j=1

Nαn(qj) Eαn(qj) +

∑
α=η,s

2µα Mα,−1/2 . (B.5)

Here,

2µs = 2µB |H| ; 2µη = 2|µ| for ne ̸= 1 ; 2µη = 2µ0 for ne = 1 , (B.6)

and

Ec(qj) = −2t cos kc(qj) − U/2 + µη − µs ,

Eαn(qj) = 2nµα + δα,η

(
2t
∑
ι=±1

√
1 − (Ληn(qj) − i ι nu)2 − nU

)
where α = η, s and n = 1, . . . ,∞ . (B.7)

For each u > 0 energy and momentum eigenstate, the momentum rapidity function kc(qj), related c-band rapidityΛc(qj) =

[sin kc(qj)]/u, and the n = 1, . . . ,∞ rapidity functionsΛηn(qj) are the solutions of the TBA equations, Eqs. (128) and (129).
The energy scale 2µ0 in Eq. (B.6) is the ne = 1 half-filling Mott–Hubbard gap [69–71]. For u > 0 it is an even function of

the spin density m that remains finite for the whole interval, m ∈ [−1, 1]. For instance, at spin densities m = 0 [69,70] and
m = −1, 1 it reads,

2µ0
= U − 4t + 8t

∫
∞

0
dω

J1(ω)
ω (1 + e2ωu)

=
16 t2

U

∫
∞

1
dω

√
ω2 − 1

sinh
( 2π tω

U

) for m = 0 ,

=

√
(4t)2 + U2 − 4t for m = −1, 1 , (B.8)

respectively. Its u ≪ 1 limiting behaviors [71] are 2µ0
≈ (8/π )

√
t U e−2π( t

U ) at m = 0 and 2µ0
≈ U2/8t for m = ±1. Its

u ≫ 1 behavior is 2µ0
≈ (U − 4t) for the wholem ∈ [−1, 1] range.

For electronic densities ne ∈ ]0, 1[, spin density m = 0, and the whole u > 0 range the maximum sn pseudoparticle
pairing energy in Eq. (184) vanishes. The maximum ηn pseudoparticle pairing energy in that equation has for such densities
and limiting interaction values u → 0 and u ≫ 1 the following limiting behaviors,

W pair
ηn = |ε0ηn(0)| = 4t cos

(π
2
ne

)
= 2|µ| for u → 0 ,

=
8(1 − ne) t2

nU

(
1 −

sin(2π (1 − ne))
2π (1 − ne)

)
for u ≫ 1 , (B.9)

respectively.
For the electronic density interval ne ∈ ]0, 1[ and spin density m → ne, the maximum sn and ηn pseudoparticle pairing

energies in Eq. (184) have the following analytical expressions valid for the whole u > 0 range,

W pair
sn = |ε0sn(0)| =

√
(4t)2 + (nU)2

1
π

arctan

(√
(4t)2 + (nU)2

(nU)
tan(πne)

)

− nU ne −
4t
π

cos(πne) arctan
(
4t sin(πne)

nU

)
for ne ∈ ]0, 1[ and m → ne , (B.10)

and

W pair
ηn = |ε0ηn(0)| =

√
(4t)2 + (nU)2

1
π

arctan

(√
(4t)2 + (nU)2

(nU)
tan(π (1 − ne))

)

− nU (1 − ne) −
4t
π

cos(π (1 − ne)) arctan
(
4t sin(π (1 − ne))

nU

)
for ne ∈ ]0, 1[ and m → ne , (B.11)

respectively. For u → 0 and u ≫ 1 these expressions simplify to,

W pair
sn = |ε0sn(0)| = 4tsin2

(πne

2

)
= 2µB Hc for u → 0 ,

=
8ne t2

nU

(
1 −

sin(2πne)
2πne

)
=

1
n
2µB Hc for u ≫ 1 , (B.12)

and

W pair
ηn = |ε0ηn(0)| = 4tsin2

(
π (1 − ne)

2

)
= 2|µ| for u → 0 ,
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=
8(1 − ne) t2

nU

(
1 −

sin(2π (1 − ne))
2π (1 − ne)

)
for u ≫ 1 , (B.13)

respectively.

Appendix C. Number of state representations of the spin-1/2 XXX chain and 1D Hubbard model symmetries

The spin-1/2 XXX chain has a global spin SU(2) symmetry whose number of independent state representations is 2L. Out
of such

∑L
2S=0 (integers) N (S) = 2L state representations, there is for a given spin S a number N (S) = (2S + 1)Nsinglet(S) of

representations. Those correspond to (2S + 1) multiplet configurations and a number,

Nsinglet(S) =

(
L

L/2 − S

)
−

(
L

L/2 − S − 1

)
, (C.1)

of singlet configurations. In Appendix A of Ref. [72] it is shown that for LWSs the dimension, Eq. (C.1), can alternatively be
written for each S-fixed subspace as,

Nsinglet(S) =

∑
{Nn}

∞∏
n=1

(
Ln
Nn

)
. (C.2)

As justified in Section 3.3, this expression also applies to the non-LWSs belonging to the same SU(2) tower as the LWS it
refers to. Here

∑
{Nn}

is a summation over all sets of the numbers {Nn} corresponding to the same number of spin-singlet
pairs,Π =

∑
∞

n=1nNn = (L − 2S)/2, Eq. (64). The equality of the dimensions in Eqs. (C.1) and (C.2) confirms that the Hilbert
space of the spin-1/2 XXX chain, Eq. (51), is spanned by a number 2L of energy eigenstates. It equals that of its symmetry
independent state representations.

As reported in Section 5.2, the 1D Hubbard model Hilbert-space dimension 4L equals the number of independent state
representations of its global [SU(2)⊗SU(2)⊗U(1)]/Z2

2 symmetry. This is the second issue addressed in this Appendix. Such a
model c pseudoparticles, spins 1/2, and η-spins 1/2 configurations that generate an energy eigenstate are a superposition of
local original lattice occupancy configurations. The rotated-electron occupancies of a number Lη = L − Nc of original lattice
sites separate into two degrees of freedom: Those of the c lattice U(1) symmetry associated with Nh

c = Lη c band holes and
the η-spin SU(2) symmetry degrees of freedom associatedwith Lη = L−Nc η-spins 1/2, respectively. The degrees of freedom
of rotated-electron occupancies of the remaining Ls = Nc original lattice sites also separate into two degrees of freedom:
Those of the c lattice U(1) symmetry associated with Nc = Ls c pseudoparticles and the spin SU(2) symmetry degrees of
freedom associated with Ls = Nc spins 1/2, respectively.

On the one hand, each αn-pairs configuration occupies a number 2n of original lattice sites. The set of such configurations
of an energy eigenstate thus occupy a number 2Πα =

∑
∞

n=12nNαn of original lattice sites. On the other hand, each of the
Mα = 2Sα unpaired spins 1/2 (α = s) and unpaired η-spins 1/2 (α = η) singly occupies an original lattice site. Similarly, each
of theNc c pseudoparticles singly occupies an original lattice site. The remainingNh

c = L−Nc sites remain unoccupied inwhat
their c lattice U(1) symmetry degrees of freedom is concerned. Therefore, for an energy eigenstate with fixed Nc ∈ [0, L],
spin Ss, and η-spin Sη values, the following number of original lattice sites sum rules are fulfilled,

L =

∑
α=η,s

(Mα + 2Πα) =

∑
α=η,s

(
2Sα +

∞∑
n=1

2nNαn

)
and L = Nh

c + Nc . (C.3)

They refer to the two SU(2) symmetries degrees of freedom of the L original lattice sites occupancies and their c lattice U(1)
symmetry degrees of freedom, respectively.

As for the spin-1/2 XXX chain, there is a strong requirement for each αn-string referring to an αn-pairs configuration.
Such a configuration involves a number 2n of spins 1/2 (α = s) and η-spins 1/2 (α = η) within l = 1, . . . , n α-singlet
pairs. The requirement under consideration is that in the dimension of any Sα-fixed subspaceN (Sα) = (2Sα + 1)Nsinglet(Sα),
the number of independent α-singlet configurationsNsinglet(Sα) is exactly the same when obtained from the counting of the
following two types of apparently different configurations: (i) Two α = η, s SU(2) group state representations associated
with the spins 1/2 (α = s) and η-spins 1/2 (α = η) independent configurations with the same spin and η-spin, respectively,
Sα; (ii) The independent n = 1, . . . ,∞ bands {qj} occupancy configurations of the sets of Nαn TBA αn-strings that obey the
sum rule

∑
∞

n=1nNαn = (Lα − 2Sα)/2, Eq. (138). (The factor (2Sα + 1) in the dimension N (Sα) = (2Sα + 1)Nsinglet(Sα) refers
to the number of multiplet configurations of the Mα = 2Sα unpaired spins 1/2 (α = s) and unpaired η-spins 1/2 (α = η)
that are not paired within αn-pairs configurations α-singlet pairs.)

On the one hand, it follows directly from the SU(2) symmetry algebra that number of independent spin (α = s) and
η-spin (α = η) SU(2) symmetry state representations of the 1D Hubbard model in a fixed-Nc and fixed-Sα subspace is given
by N (Sα, Lα) = (2Sα + 1)Nsinglet(Sα, Lα). Here,

Nsinglet(Sα, Lα) =

(
Lα
Πα

)
−

(
Lα

Πα − 1

)
for α = η, s , (C.4)

is the corresponding number of independent spin (α = s) and η-spin (α = η) α-singlet state representations.
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On the other hand, as for the spin-1/2 XXX chain, the value of the numberNh
αn = Lαn−Nαn of αn-band holes that naturally

emerges from the TBA, Eq. (130), ensures that for each Sα-fixed subspace the α-singlet dimension Nsinglet(Sα) given in
Eq. (C.4) can indeed alternatively be written as,

Nsinglet(Sα,Nc) =

∑
{Nαn}

∞∏
n=1

(
Lαn
Nαn

)
for α = η, s . (C.5)

The summation
∑

{Nαn}
runs here over all sets of αn-strings numbers {Nαn} corresponding to the same fixed spin (α = s) and

η-spin (α = η) Sα = Lα/2 −
∑

∞

n=1nNαn. This is imposed by the exact sum rule, Eq. (138).
The demonstration in Appendix A of Ref. [72] for spin LWSs of the spin-1/2 XXX chain of the equality of the dimensions

given in Eqs. (C.4) and (C.5), respectively, also applies to the 1D Hubbard model. Specifically, it applies to that model spin
LWSs (α = s) and η-spins LWSs (α = η). This also holds for the multiplet towers of non-LWSs generated from Sα > 0 LWSs.
All 2Sα + 1 states of such a tower have indeed exactly the same α-singlet configurations as the corresponding Sα > 0 LWS.

In each subspace with fixed values for Ls = Nc , Lη = Nh
c = L−Nc , Ss, and Sη , there areN (Sη, Lη)×N (Ss, Ls)× dc(Nc) state

representations of the SU(2) ⊗ SU(2) ⊗ U(1) symmetry in the model two SU(2) ⊗ SU(2) ⊗ U(1)]/Z2
2 symmetry. Here,

dc =

(
L
Nc

)
=

(
L
Nh
c

)
, (C.6)

gives the number of independent c pseudoparticles occupancy configurations. It equals that of state representations of the
c lattice U(1) symmetry in the subspace under consideration.

The following completeness sum rule has been obtained in Refs. [243–245] by use of the α = η, s dimensions
Nsinglet(Sα,Nc) and c dimension dc , Eqs. (C.5) and (C.6), respectively,

4L
=

L∑
Nc=0

(integers)

Lη=L−Nc∑
2Sη=0

(integers)

Ls=Nc∑
2Ss=0

(integers)

C(Nc, Sη, Ss)N (Sη, Lη) × N (Ss, Ls) × dc(Nc) ,

C(Nc, Sη, Ss) =

⏐⏐⏐cos(π
2
(2Sη + Nc)

)
cos

(π
2
(2Ss + Nc)

)⏐⏐⏐ = 0, 1 . (C.7)

The role of the phase factor, C(Nc, Sη, Ss) = 0, 1, is to select the allowed independent representations of themodel two SU(2)
symmetries.

The main issue under consideration here is the equality of the dimensions given in Eqs. (C.4) and (C.5). Beyond the
results of Refs. [243–245], it shows that the number of independent state representations of the 1D Hubbard model global
[SU(2) ⊗ SU(2) ⊗ U(1)]/Z2

2 symmetry exactly equals its Hilbert-space dimension 4L.

Appendix D. Spin-1/2 XXX chain specific heat in the critical regime

Here it is shown that in the 2µB|H −Hc | ≪ kBT limit where the expression, Eq. (89), is valid it is exactly the same as that
obtained from the scaling function of the specific heat in the critical regime considered in Ref. [206]. The latter is denoted
here by cV/L. In the units used in that reference it reads,

cV
L

=

√
T
π J

(
−

3
8
f s3/2 +

1
2
∆

T
f s1/2 −

1
2

(
∆

T

)2

f s
−1/2

)
, (D.1)

where f sn = Lin
(
−e

∆
T

)
,∆ = 4J − h, and Lin(x) =

∑
∞

l=1x
l/ln.

Up to the first order in ∆/T ≪ 1 that the expression, Eq. (89), refers to, only the first two terms in Eq. (D.1) contribute
through the following expansions,

f s3/2 ≈ Li3/2(−1 −∆/T ) ≈ Li3/2(−1) −
∆

T
∂Li3/2(x)
∂x

|x=−1 = −

∞∑
l=1

(−1)l−1

l3/2
−
∆

T

∞∑
l=1

(−1)l−1

l1/2

= −
1

√
2
(
√
2 − 1) ζ (3/2) +

∆

T
(
√
2 − 1) ζ (1/2) ,

f s1/2 ≈ Li1/2(−1) = −

∞∑
l=1

(−1)l−1

l1/2
= (

√
2 − 1) ζ (1/2) . (D.2)

On the one hand, the use of these expansions in the expression, Eq. (D.1), leads to the following specific heat expansion
up to first order in∆/T ≪ 1,

cV
L

=

√
T
π J

(
3

8
√
2
(
√
2 − 1) ζ (3/2) +

1
8
∆

T
(
√
2 − 1) ζ (1/2)

)
. (D.3)
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On the other hand, the use in Eq. (89) of the coefficient expressions in Eq. (90) accounting for that Γ (1/2) =
√
π and

Γ (3/2) =
√
π/2 leads to,

cV
L

= kB

√
2kBT
π J

(
3

8
√
2
(
√
2 − 1) ζ (3/2) +

1
8

2µB(Hc − H)
T

(
√
2 − 1) ζ (1/2)

)
. (D.4)

The studies of Ref. [206] and those of this review use different units. From analysis of the corresponding Hamiltonian
expressions, one finds that the parameters kB, J , and 2µB used in this review correspond in the units of Ref. [206] to 1, 2J ,
and 1, respectively. Hence Hc = J/µB becomes 4J . Finally, under the corresponding units transformations kB → 1, J → 2J ,
2µB → 1, and Hc → 4J , the expansion, Eq. (D.4), becomes exactly that given in Eq. (D.3).

Appendix E. Spin-1/2 XXX chain current expression, susceptibility, and zero-temperature stiffness

The spin-1/2 XXX chain spin susceptibility χ and zero-temperature spin stiffness D expressions in Eq. (91) are derived
in this Appendix by means of procedures that resemble those of a Fermi liquid. The latter stiffness is related to the current
operator expectation values. We start by confirming that in the TL their usual expression obtained from the BA for LWSs can
be written in the n-bands holes representation, as given in Eq. (67).

Such LWSs current operator expectation values can be derived from the Φ/L dependence of the energy eigenvalues
E(Φ/L) of the spin-1/2 XXX chain in a uniform vector potential Φ/L, Eq. (A2) of Ref. [87]. The spin currents are then given
by ⟨Ĵz⟩ = dE(Φ/L)/d(Φ/L)|Φ=0. This straightforwardly leads to [87,88] ⟨ĴzLWS(lr, S)⟩ =

∑
∞

n=1
∑Ln

j=1 Nn(qj) jn(qj). Here jn(qj) is
given by jn(qj) = −jhn(qj), Eq. (68).

In order to confirm the equality within the TL of this ⟨ĴzLWS(lr, S)⟩ expression and that in Eq. (67), it is useful to replace
the set of n-bands discrete momentum values {qj} by a continuum momentum variable q ∈ [q−

n , q
+
n ]. The elementary

currents jhn(qj) in Eq. (68) can then be exactly written as jhn(qj) = −2J d cos kn(q)/dq for q ∈ [q−
n , q

+
n ]. It was used here

that dkn(q)/dq = 1/[2πσ n(kn(q))]. The equality under consideration requires that
∑

∞

n=1
∑Ln

j=1 j
h
n(qj) = 0. This quantity can

be written as,

−
L
2π

∞∑
n=1

∫ q+
n

q−
n

2J
d
dq

cos kn(q) = −
L
2π

∞∑
n=1

∑
ι=±

(ι) 2J cos kn(qιn) = 0 . (E.1)

It indeed vanishes. Here the relation q−
n = −q+

n was used.
The spin susceptibility is controlled by transitions between ground states referring to different canonical ensembles. As

given in Eq. (75), those are not populated by n-pseudoparticles with n > 1 pairs. Hence here we consider the spin chain in
the subspace spanned by energy eigenstates that are not populated by such pseudoparticles. In that subspace the general
energy functional, Eq. (77), simplifies to,

δE =

L1∑
j=1

ε(qj)δN(qj) +
1
L

L1∑
j=1

L1∑
j′=1

1
2
f (qj, qj′ ) δN(qj)δN(qj′ )

=
L
2π

∫ kF↑

−kF↑

dqε(q)δN(q) +
L

4π2

∫ kF↑

−kF↑

dq
∫ kF↑

−kF↑

dq′
1
2
f (q, q′) δN(q)δN(q′) . (E.2)

Here δN(qj) ≡ δN1(qj), ε(qj) ≡ ε1(qj), f (qj, qj′ ) ≡ f1 1(qj, qj′ ). Within the TL, we have again replaced in the second expression
the discrete momentum values such that qj+1 − qj = 2π/L by continuummomentum variables.

As in a Fermi liquid, the energy contributions of second order in the n = 1 band momentum distribution deviations in
Eq. (E.2) lead to corrections in the n = 1 energy dispersion ε0(q) ≡ ε01(q), Eq. (79) for n = 1. Up to first order in these
deviations one finds,

ε̆0(q) = ε0(q) +
1
2π

∫ kF↑

−kF↑

dq′ f (q, q′) δN(q′) . (E.3)

The derivation of the spin susceptibility involves small deviations δqF = δkF↓ in the n = 1 band Fermi momentum
associated with transitions to ground states. For them that band momentum distribution in Eq. (75) reads,

N(q) = θ (kF↓ + δkF↓ − |q|) . (E.4)

Expanding this distribution around that of the initial ground state, leads to N(q) = θ (kF↓ − |q|)+ δN(q) where the deviation
δN(q) is given by,

δN(q) = δ(kF↓ − |q|) δkF↓ . (E.5)

Here δ(x) is the usual delta function.
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Inserting the deviations, Eq. (E.5), in the energy dispersion, Eq. (E.3), and replacing the obtained expressions in Eq. (82),
which defines the magnetization curve, leads to,

∂h(m)
∂m

= −
1

2µB

(
v +

1
2π

∑
ι=±

f (kF↓, ιkF↓)

)
δkF↓

δm
= −

v (ξ 0)2

2µB

δkF↓

δm
= −

v0

2µB

δkF↓

δm
. (E.6)

Here v0 = v +
1
2π

∑
ι=±

f (kF↓, ιkF↓) = v (ξ 0)2 and ξ 0 = 1 + Φ(kF↓, kF↓) + Φ(kF↓,−kF↓) where i = 0, 1, v ≡ v1(kF↓) and
Φ ≡ Φ1 1.

From the use of the relation δkF↓ = −πδm one finds δkF↓/δm = −π . The use of Eq. (E.6) with δkF↓/δm = −π in the spin
susceptibility expression χ = 2µB/(∂h(m)/∂m) readily leads to χ = 4µ2

B/(π v0). This is the expression given in Eq. (91).
The derivation of the zero-temperature spin stiffness D involves again the spin-1/2 XXX chain in the subspace spanned

by energy eigenstates that are not populated by pseudoparticles with n > 1 spin-singlet pairs. For simplicity, the n = 1
n-pseudoparticles are here called pseudoparticles. We consider low-frequency excitations involving a small density of
pseudoparticles withmomentum q in the vicinity of the n = 1 band Fermi points±kF↓. As in a Fermi liquid, such excitations
are described by deviations δN(q; x, t). They depend explicitly on both position x and time t . The corresponding momentum
distribution functions reads,

N(q) = θ (kF↓ − |q|) + δN(q; x, t) . (E.7)

These distribution functions describe true low-frequency excitations of the spin chain. The particular form of the inho-
mogeneous time-dependent pseudoparticle deviations that describe these excitations can be obtained by solving kinetic
equations. Those are introduced below.

Now the energy dispersion ε(qj) ≡ ε1(qj) in Eq. (79) for n = 1 becomes a local function of the pseudoparticle deviations
δN(q; x, t). To first order in these deviations it is given by,

ε̆(q; x, t) = ε(q) +
1
2π

∫ kF↑

−kF↑

dq′ f (q, q′) δN(q′
; x, t) . (E.8)

To compute the flowof pseudoparticles through each side of a small volume element (1D segment), one considers the balance
of the flow inward and outward. This leads to the following kinetic equation,

∂N(q; x, t)
∂t

+
∂N(q; x, t)

∂x
∂ε̆(q; x, t)

∂q
−
∂N(q; x, t)

∂q
∂ε̆(q; x, t)

∂x
= 0 . (E.9)

It is useful to introduce a weak inhomogeneous magnetic-field probe 1
2h(x, t). It is associated with the system conserved

spin projection Sz . This requires an additional term on the left-hand side of Eq. (E.9). It is given by ∂N(q;x,t)
∂q F(q; x, t). Here

F(q; x, t) = −
∂ 1
2 h(x,t)
∂x is the force felt by the pseudoparticles due to the applied magnetic-field probe, 1

2h(x, t).
The expression in Eq. (E.8) is only valid for excitations involving a small density of pseudoparticles. From the use of

Eq. (E.7) in the kinetic equation, Eq. (E.9), keeping contributions up to first order in the deviations and introducing the term
associated with the coupling to the external probe, we obtain,

∂ δN(q; x, t)
∂t

+ v(q)
∂ δN(q; x, t)

∂x
−
∂N0(q)
∂q

(
1
2π

∫ kF↑

−kF↑

dq′ f (q, q′)
∂ δN(q′

; x, t)
∂x

+
∂ 1

2h(x, t)
∂x

)
= 0 . (E.10)

Here N0(q) = θ (kF↓ − |q|).
We now consider excitations that are periodic in space and time with wave vector k and angular frequency ω. They are

characterized by the distribution function,

δN(q; x, t) = δN(q; k, ω) ei(kx−ωt) + c.c. . (E.11)

The magnetic-field probe h(x, t)/2 is also assumed to be periodic in space and time, h(x, t)/2 = [h(k, ω)/2] ei(kx−ωt) + c.c..
The real part of the spin conductivity can be written for ω → 0 as [177],

Re σ (ω) = Re

(
lim
k→0

i
(
1
2

)2
ω

k2
χ (k, ω)

)
. (E.12)

χ (k, ω) is here the response function to the magnetic-field probe, χ (k, ω) = δ⟨Sz(k, ω)⟩/[h(k, ω)/2], for small k and low ω.
To derive this response function one uses the distribution, Eq. (E.11), and the above appliedmagnetic-field probe h(x, t)/2 in
the kinetic equation, Eq. (E.10). The solution of the obtained equation leads after some manipulations to the following form
for the response function χ (k, ω) that is valid for small k and low ω,

χ (k, ω) = −
1
π

(4k)2 v1

v2k2 − (ω + iδ)
. (E.13)

Here v1 = v +
1
2π

∑
ι=±

(ι)f (kF↓, ιkF↓) = v (ξ 1)2.
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Finally, from the use of this expression on the right-hand side of Eq. (E.12), one arrives after some straightforward
algebra to Re σ (ω) = 4v1 δ(ω). From the equality 2π D δ(ω) = 4v1 δ(ω) where D is the spin stiffness, one finds that at
zero temperature it reads D = 2v1/π . This is the expression given in Eq. (91).

Appendix F. The 1D Hubbard model three fractionalized effective lattices

In this Appendix the 1D Hubbard model c effective lattice and the squeezed spin and η-spin spin effective lattices
considered in Section 4.3 for u > 0 are shown to naturally emerge from the u → ∞ model properties. Such properties
refer to the electron occupancy configurations that generate the states |lr, lηs,∞⟩. Such properties apply for u > 0 to the
rotated electrons that populate the corresponding states |lr, lηs, u⟩ = V̂ †

|lr, lηs,∞⟩ of the same V (u)-set.
In the u → ∞ limit the rotated electrons become electrons and the rotated-electron numbers apply as well to electron

occupancies. The corresponding electron spatial coordinates are used in Eq. (2.23) of Ref. [119] for the wave functions of the
LWSs |lr, l0ηs,∞⟩. Here it is denoted by Ψlr,l0ηs,∞

(xs, . . . ; xd, . . . ; xs↓, . . .) = ⟨xs, . . . ; xd, . . . ; xs↓, . . . |lr, l0ηs,∞⟩. In their argu-

ment, xs, . . . ; xd, . . . ; xs↓, . . . is a shorten notation for the spatial coordinates xs, . . . , xs
Ns,0
R

; xd, . . . , xd
Nη,0R,−1/2

; xs↓, . . . , xs↓
Ns,0
R,−1/2

of the N s,0
R singly occupied sites, Nη,0R,−1/2 doubly occupied sites, and N s,0

R,−1/2 spin-down singly occupied sites, respectively.
One straightforwardly finds that, given two arbitrary operators M̃ = V̂ † M̂ V̂ and Ñ = V̂ † N̂e V̂ , the matrix–element

relations ⟨lr, lηs, u|M̃Ñ|0elec⟩ = ⟨lr, lηs,∞|M̂N̂e|0elec⟩ and ⟨lr, lηs, u|M̃Ñ|l′r, l
′
ηs, u⟩ = ⟨lr, lηs,∞|M̂N̂e|l′r, l

′
ηs,∞⟩ hold. Here the

electron vacuum invariance V̂ |0elec⟩ = |0elec⟩ and the V (u)-set of states transformation |lr, lηs, u⟩ = V̂ †
|lr, lηs,∞⟩ were

used. These matrix–element relations reveal that finite-u correlators of two operators, M̃ and Ñ , exactly equal those of the
corresponding two unrotated operators, M̂ and N̂e, in the u → ∞ limit.

We denote byΨlr,l0ηs,rt
(xs, . . . ; xd, . . . ; xs↓, . . .) = ⟨xs, . . . ; xd, . . . ; xs↓, . . . |lr, l0ηs, u⟩ theNe-rotated-electronwave function

of a finite-u LWS |lr, l0ηs, u⟩ = V̂ †
|lr, l0ηs,∞⟩. It is a function of corresponding rotated-electron spatial coordinates. From the

use of the above matrix–element relations one finds thatΨlr,l0ηs,rt
(xs, . . . ; xd, . . . ; xs↓, . . .) = Ψlr,l0ηs,∞

(xs, . . . ; xd, . . . ; xs↓, . . .)
for the whole finite-u range.

Combining the equalities Ψlr,lηs,rt = Ψlr,l0ηs,rt
for finite u and Ψlr,l0ηs,rt

= Ψlr,l0ηs,∞
with the expression given in Eq. (2.23) of

Ref. [119] for Ψlr,l0ηs,∞
leads to,

Ψlr,lηs,rt (x
s, . . . ; xd, . . . ; xs↓) =

1
√
Crt

(
φc
U(1)(x

s, . . .) × φ
η

SU(2)(x
d, . . .) × φs

SU(2)(x
s↓, . . .)

)
. (F.1)

Here φc
U(1)(x

s, . . .) = (−1)Q det
(
eik

∞
Pj x

s
Qj
)
is a c pseudofermion Slater determinant. The c pseudofermions occupy exactly

the same sites as the c pseudoparticles. Moreover, φηSU(2)(x
d, . . .) = (−1)(N

0
−2Sc )/2 φ1(xd, . . .) refers to the η-spins 1/2,

φs
SU(2)(x

s↓, . . .) = φ2(xs↓, . . .) corresponds to the spins 1/2, and Crt is a normalization constant. Since such wave functions
refer to rotated electrons, the BA rapidities onwhich they depend are u independent. They are actually those of the electrons
in the u → ∞ limit.

For a LWS the spatial coordinates of the wave functions φc
U(1)(x

s, . . .), φηSU(2)(x
d, . . .), and φs

SU(2)(x
s↓, . . .) refer in the TL

to well-defined lattice sites subsets of the c effective lattice, squeezed η-spin effective lattice, and squeezed spin effective,
respectively. The c effective lattice is identical to the original lattice. On the contrary, the numbers of sites Lη and Ls of the
squeezed η-spin and spin effective lattices, respectively, are in general smaller than L, as given in Eq. (123).

The subset of the c effective lattice Nc sites of spatial coordinates xs, . . . in the argument of φc
U(1)(x

s, . . .) refers to those
occupied. The remainingNh

c = L−Nc sites whose spatial coordinates are uniquely defined are unoccupied. The Lη = Nh
c sites

of the squeezed η-spin effective lattice correspond to those of the original lattice that have the same spatial coordinates as
the c effective lattice unoccupied sites. The subset of Nη,0R,−1/2 sites of spatial coordinates xd, . . . in φηSU(2)(x

d, . . .) corresponds
to those occupied by η-spins of projection −1/2. The remaining Nη,0R,+1/2 = Lη − Nη,0R,−1/2 sites whose spatial coordinates are
those left over are occupied by η-spins of projection +1/2.

Similarly, the Ls = Nc sites of the squeezed spin effective lattice refer to those of the original lattice that have the
same spatial coordinates as the c effective lattice occupied sites. The subset of N s,0

R,−1/2 sites of spatial coordinates xs↓, . . .
in φs

SU(2)(x
s↓, . . .) corresponds to those occupied by spins of projection −1/2. The remaining N s,0

R,+1/2 = Ls − Nη,0s,−1/2 sites
whose spatial coordinates are uniquely defined are occupied by spins of projection +1/2. Within the present TL, the spin
effective lattice (and η-spin effective lattice) has j = 1, . . . , Ls sites located at x = as j. (and j = 1, . . . , Lη sites located at
x = aη jwhere j = 1, . . . , Lη .) The spacings as and aη are given in Eq. (124).

Appendix G. The 1D Hubbard model s1 pseudoparticle operator representation

The s1 pseudoparticle operator representation considered in Section 5.2 for the 1DHubbardmodel is valid in the extended
Takahashi subspaces. A related Takahashi subspace is spanned by all LWSswith the same fixed values for the set of numbersNc
and {Nαn} for α = η, s and n = 1, . . . ,∞. The corresponding extended Takahashi subspace is spanned by such LWSs and the
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(2Sη + 1)× (2Ss + 1)− 1 non-LWSs generated from each of them as given in Eq. (110). A general αn pseudoparticle operator
representation can be introduced for the 1D Hubbard model in an extended Takahashi subspace. For the results reviewed in
this paper only the s1 pseudoparticle operator representation is though needed.

That in fixed-Ls1 extended Takahashi subspaces the local s1 pseudoparticle operators obey a fermionic algebra, can be
confirmed in terms of their statistical interactions [262]. The local s1 pseudoparticle creation and annihilation operators
may be written as,

f †
j,s1 = eiφj,s1 g†

j,s1 and fj,s1 = (f †
j,s1)

† for j = 1, . . . , Ls1 . (G.1)

Here φj,s1 =
∑

j′ ̸=jf
†
j′,s1 and the operator g†

j,s1 obeys a hard-core bosonic algebra. This algebra is justified by the corresponding
statistical interaction vanishing for the model in fixed-Ls1 extended Takahashi subspaces. The s1 effective lattice has been
constructed inherently to that algebra being of hard-core type for the operators g†

j,s1 and gj,s1. Therefore, through a Jordan–
Wigner transformation, f †

j,s1 = eiφj,s1 g†
j,s1 (see for instance Ref. [282]), the operators f †

j,s1 and fj,s1 = (f †
j,s1)

† in Eq. (G.1) obey
indeed a Fermionic algebra, Eq. (141).

Appendix H. Integral equations that define the 1D Hubbard model pseudofermion rapidity phase shifts

The rapidity phase shifts, Eq. (154), are in units of 2π uniquely defined by the following integral equations [99],

Φ̄s1 c
(
r, r ′

)
= −

1
π

arctan(r − r ′) +

∫ r0s

−r0s

dr ′′ G(r, r ′′) Φ̄s1 c
(
r ′′, r ′

)
, (H.1)

Φ̄s1 ηn
(
r, r ′

)
= −

1
π2

∫ r0c

−r0c

dr ′′

arctan
(

r ′′−r ′
n

)
1 + (r − r ′′)2

+

∫ r0s

−r0s

dr ′′ G(r, r ′′) Φ̄s1 ηn
(
r ′′, r ′

)
, (H.2)

Φ̄s1 sn
(
r, r ′

)
=
δ1,n

π
arctan

( r − r ′

2

)
+

(1 − δ1,n)
π

(
arctan

( r − r ′

n − 1

)
+ arctan

( r − r ′

n + 1

))
−

1
π2

∫ r0c

−r0c

dr ′′

arctan
(

r ′′−r ′
n

)
1 + (r − r ′′)2

+

∫ r0s

−r0s

dr ′′ G(r, r ′′) Φ̄s1 s1
(
r ′′, r ′

)
, (H.3)

Φ̄c c
(
r, r ′

)
=

1
π

∫ r0s

−r0s

dr ′′
Φ̄s1 c

(
r ′′, r ′

)
1 + (r − r ′′)2

, (H.4)

Φ̄c αn
(
r, r ′

)
= −

1
π

arctan
( r − r ′

n

)
+

1
π

∫ r0s

−r0s

dr ′′
Φ̄s1αn

(
r ′′, r ′

)
1 + (r − r ′′)2

, where α = η, s , (H.5)

Φ̄ηn c
(
r, r ′

)
=

1
π

arctan
( r − r ′

n

)
−

1
π

∫
+r0c

−r0c

dr ′′
Φ̄c c

(
r ′′, r ′

)
n[1 + ( r−r ′′

n )2]
, (H.6)

Φ̄ηn ηn′

(
r, r ′

)
=

1
2π

Θn,n′ (r − r ′) −
1
π

∫
+r0c

−r0c

dr ′′
Φ̄c ηn′

(
r ′′, r ′

)
n[1 + ( r−r ′′

n )2]
, (H.7)

Φ̄ηn sn′

(
r, r ′

)
= −

1
π

∫
+r0c

−r0c

dr ′′
Φ̄c sn′

(
r ′′, r ′

)
n[1 + ( r−r ′′

n )2]
, (H.8)

Φ̄sn c
(
r, r ′

)
= −

1
π

arctan
( r − r ′

n

)
+

1
π

∫ r0c

−r0c

dr ′′
Φ̄c,c

(
r ′′, r ′

)
n[1 + ( r−r ′′

n )2]
−

∫ r0s

−r0s

dr ′′Φ̄s1 c
(
r ′′, r ′

) Θ [1]
n,1(r − r ′′)

2π
for n > 1 ,

(H.9)

Φ̄sn ηn′

(
r, r ′

)
=

1
π

∫ r0c

−r0c

dr ′′
Φ̄c,ηn′

(
r ′′, r ′

)
n[1 + ( r−r ′′

n )2]
−

∫ r0s

−r0s

dr ′′Φ̄s1 ηn′

(
r ′′, r ′

) Θ [1]
n,1(r − r ′′)

2π
for n > 1 , (H.10)

Φ̄sn sn′

(
r, r ′

)
=

1
2π

Θn,n′ (r − r ′) +
1
π

∫ r0c

−r0c

dr ′′
Φ̄c sn′

(
r ′′, r ′

)
n[1 + ( r−r ′′

n )2]
−

∫ r0s

−r0s

dr ′′Φ̄s1 sn′

(
r ′′, r ′

) Θ [1]
n,1(r − r ′′)

2π
. (H.11)
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In the above equations, the parameters r0c and r0s are given in Eq. (153), the functionsΘn,n′ (x) andΘ [1]
n,n′ (x) are defined in

Eqs. (B.1) and (B.2) of Appendix B, respectively, and the kernel G(r, r ′) reads [92],

G(r, r ′) = −
1
2π

[
1

1 + ((r − r ′)/2)2

]
×

(
1 −

1
2π

∑
ι=±1

(ι)
(
arctan(r + ι r0c ) + arctan(r ′

+ ι r0c ) +
1

(r − r ′)
ln

1 + (r + ι r0c )
2

1 + (r ′ + ι r0c )2

))
. (H.12)

The relation of the m → 0 parameter ξ0 in Eq. (163) to phase shifts is obtained by combining such equation with
Eq. (162). This gives,

lim
m→0

Z1
=

[
ξ0 ξ0/2
0 1/

√
2

]
=

[
1 0
0 1

]
+

∑
ι=±

[
Φc c(ι2kF , 2kF ) Φc s1(ι2kF , kF )
Φs1 c(ιkF , 2kF ) Φs1 s1(ιkF , kF )

]
,

lim
m→0

Z0
=

[
1/ξ0 0

−ξ0/2
√
2

]
=

[
1 0
0 1

]
+

∑
ι=±

(ι)
[
Φc,c(ι2kF 2kF ) Φc s1(ι2kF , kF )
Φs1,c(ιkF 2kF ) Φs1 s1(ιkF , kF )

]
. (H.13)

Here Z0
= ((Z1)−1)T . In the above equations we have accounted for that the c and s1 band Fermi points in Eq. (147) read

qFc = 2kF and qFs1 = kF , respectively, in them → 0 limit
Conversely, in the m → 0 limit the c and s1 pseudofermion phase shifts with both momenta at the Fermi points can be

expressed in terms of only the parameter ξ0 as follows,

2πΦc c(ι 2kF , 2kF ) = ι 2πΦc,c(2kF , ι 2kF ) =
π (ξ0 − 1)2

ξ0
for ι = + ,

=
π (ξ 20 − 1)

ξ0
for ι = − ,

2πΦc s1(ι 2kF , kF , ) = ι 2πΦc s1(2kF , ι kF , ) =
π

2
ξ0 for ι = ± . (H.14)

Appendix I. δSα = ∓n α-multiplet elementary processes associated with creation and annihilation of one αn
pseudoparticle in the spin densitym → ne limit

For electronic densities in the interval ne ∈ ]0, 1[, spin densitym → ne, and thewhole u > 0 range the energy dispersions
ε0αn(qj) and εαn(qj) are for small momentum qj (α = s) and small momentum deviations (qj ∓ qηn) (α = η) given by,

ε0sn(qj) ≈
q2j

2m∗
sn

− Wsn =
q2j

2m∗
sn

− W pair
sn for qj ≈ 0 and εsn(qj) = ε0sn(qj) + n 2µBH ,

ε0ηn(qj) ≈
(qj ∓ qηn)2

2m∗
ηn

for (qj ∓ qηn) ≈ 0 and εηn(qj) = ε0ηn(qj) + n 2µ . (I.1)

HereWsn = W pair
sn is given in Eq. (B.10) of Appendix B.

The effective masses m∗
sn and m∗

ηn in these expressions have the following analytical expressions that are functions of ne
and U/t ,

m∗

sn =
nU
4t2

√
(4t)2+nU2

nU
1
π
arctan

(√
(4t)2+(nU)2

nU tan(πne)
)

1 −

√
(4t)2+(nU)2

nU
1

1+
(
4t sin(πne)

nU

)2 sin(2πne)

2 arctan

(√
(4t)2+(nU)2

nU tan(πne)

) for ne ∈ ]0, 1[ and m → ne , (I.2)

and

m∗

ηn =
nU
4t2

√
(4t)2+nU2

nU
1
π
arctan

(√
(4t)2+(nU)2

nU tan(π (1 − ne))
)

1 −

√
(4t)2+(nU)2

nU
1

1+
(
4t sin(π (1−ne))

nU

)2 sin(2π (1−ne))

2 arctan

(√
(4t)2+(nU)2

nU tan(π (1−ne))

) for ne ∈ ]0, 1[ and m → ne , (I.3)

respectively. In the u → 0 and u ≫ 1 limits these expressions read,

m∗

sn =
1
2t

for u → 0
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m∗

sn =
nU
4t2

ne(
1 −

sin(2πne)
2πne

) for u ≫ 1 , (I.4)

and

m∗

ηn =
1
2t

for u → 0

m∗

ηn =
nU
4t2

(1 − ne)(
1 −

sin(2π (1−ne))
2π (1−ne)

) for u ≫ 1 , (I.5)

respectively. In the case of the s1 band, the energy dispersion, Eq. (I.1) for αn = s1, is that given in Eq. (168). The
corresponding effective triplet mass is provided in Eq. (170).

For h ≈ Hc and electronic densities ne ∈ ]0, 1[ not too close to 0 and 1, the elementary process associated with
creation of one sn pseudoparticle or one ηn pseudoparticle onto the ground state leads to a spin or η-spin deviation
δSs = −n = −1, . . . ,−Ls/2 or δSη = −n = −1, . . . ,−Lη/2, respectively. Under such an elementary process, a number
2n = 2, 4, . . . , Ls or 2n = 2, 4, . . . , Lη of initial-state unpaired spins 1/2 or unpaired η-spins 1/2, respectively, become
paired within the final-state pseudoparticle spin-singlet sn-pairs configuration or η-spin-singlet ηn-pairs configuration,
respectively.

The opposite elementary process associated with the annihilation of one sn pseudoparticle (α = s) or one ηn
pseudoparticle (α = η) to return to the initial state, involves the breaking of all its n α-singlet pairs. This gives rise to the
emergence of 2n unpaired spins 1/2 or unpaired η-spins 1/2, respectively, in the new final state. Such an opposite elementary
process leads to a spin or η-spin deviation δSs = n = 1, . . . , Ls/2 or δSη = n = 1, . . . , Lη/2, respectively.

Each above mentioned δSα = −n elementary process has a minimum excitation energy given by ∆min
sn = εsn(0) =

n 2µBH − W pair
sn for α = s or ∆min

ηn = εηn(±qηn) = n 2µ for α = η. For n > 1 the gap ∆min
sn increases from ∆min

sn =

(n − 1) 2µBH + 2µB(H − Hc) ≈ (n − 1) 2µBH for u → 0 to∆min
sn = (n − 1/n) 2µBH + 2µB(H − Hc)/n ≈ (n − 1/n) 2µBH for

u ≫ 1 and∆min
ηn reads∆min

ηn = n (U + 4t cos(πne)) + n 2µB(H − Hc) ≈ n (U + 4t cos(πne)).
Hence within the low-temperature crossover critical regime considered in Section 6.2, for which 2µB|H − Hc | ≪ kBT ,

only the spin-triplet channel associated with elementary δSs = ±1 spin-triplet processes with δSs = −1 is available. Its
excitation energy reads ∆min

s1 = 2µB(H − Hc). The next two minimum gaps read ∆min
s2 = εs2(0) = 4µBh − W pair

s2 for a spin
δSs = −2 elementary process, which is the minimum gap ∆min

s , Eqs. (166) and (167), and ∆min
η1 = (U + 4t cos(πne)) for an

η-spin-triplet δSη = −1 elementary process. Those refer though to high-energy processes such that ∆min
s2 ≫ 2µB(H − Hc)

and∆min
η1 ≫ 2µB(H − Hc).

Finally, one finds thatW pair
αn andm∗

αn are related yet different quantities whose interplay partially controls the δSα = ±n
elementary processes under consideration. This is achieved from inspection for electronic densities ne ∈ ]0, 1[ and spin
densitym → ne of the form of both the energy dispersions in Eq. (I.1), maximum pairing energiesW pair

αn in Eq. (184) and Eqs.
(B.10)–(B.13) of Appendix B, and effective massesm∗

αn in Eqs. (170) and (171) and Eqs. (I.2)–(I.5).
This applies to the spin-triplet Ss = ±1 elementary processes. Those contribute to the low-temperature specific heat

expressions, Eqs. (172) and (173), in the crossover critical regime. It refers to a small field window 2µB|H − Hc | ≪ kBT
around Hc . In this case, the spin-triplet effective mass m∗

s1, Eqs. (170) and (171), and the maximum pairing energy W pair
s1 =

Ws1 = 2µBHc , Eq. (169), associated with the spin-singlet configuration binding of the two paired spins 1/2 within the s1
pseudoparticle are different yet related quantities. They are given by m∗

s1 =
∂2ε0s1(q)
∂q2

|q=0 and Ws1 = (ε0s1(qs1) − ε0s1(0)) =

−ε0s1(0) = 2µBHc , respectively. Here qs1 = 2kF = πne for m → ne.

Appendix J. Derivation of the β = c, s1 pseudofermion spectral function within the TL and example of momentum-
dependent exponents

The 1D Hubbard model β = c, s1 pseudofermion spectral function general expression, Eq. (193), involves the β = c, s1
lowest peak weight A(0,0)

β and relative weight aβ = aβ (mβ,+1, mβ,−1). After a suitable algebra similar to that reported in
Ref. [158] for the u → ∞ spin-less fermion spectral function, one finds that the former weight refers to a Slater determinant
of β = c, s1 pseudofermion operators. It involves β = c, s1 pseudofermion anticommutators associated with two β
pseudofermions of canonical momentum q̄j and q̄j′ , respectively. Here q̄j and q̄j′ = qj′ correspond to a PS excited state and
the corresponding ground-state β band, respectively. One then finds the anticommutators [51],

{f †
q̄j,β
, fq̄j′ ,β} =

1
Lβ

e−i(q̄j−q̄j′ )/2 ei 2πΦ
T
β
(qj)/2

sin
(
2πΦT

β (qj)/2
)

sin([q̄j − q̄j′ ]/2)
and 2πΦT

β (qj) = 2πΦ0
β + 2πΦβ (qj) , (J.1)

and {f †
q̄j,β
, f †

q̄j′ ,β
} = {fq̄j,β , fq̄j′ ,β} = 0. Here 2πΦ0

β , Eq. (150), is the non-scattering part of the overall β pseudofermion phase
shift denoted by 2πΦT

β (qj) in this equation.
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The use of the Slater determinant of β = c, s1 pseudofermion operators that involves such anticommutators leads after
some algebra to the following general expression for the β = c, s1 lowest peak weight A(0,0)

β [51,63,64],

A(0,0)
β =

(1
L

)2N⊙

β

Lβ∏
j=1

sin2
(π
2

(
1 − (1 − 2ΦT

β (qj))N
⊙

β (qj)
)) Lβ−1∏

j=1

(
sin
(π j

L

))2(Lβ−j)

×

Lβ∏
i=1

Lβ∏
j=1

θ (j − i) sin2

(
π

2

(
1 −

(
1 −

(2(j − i) + 2ΦT
β (qj) − 2ΦT

β (qi))

L

)
N⊙

β (qj)N⊙

β (qi)

))

×

Lβ∏
i=1

Lβ∏
j=1

1

sin2
(
π
2

(
1 −

(
1 −

2(j−i)+2ΦT
β
(qj)

L

)
N⊙

β (qi)N⊙

β (qj)
)) where β = c, s1 . (J.2)

The numbers of β = c, s1 band discrete momentum values, Lβ , β = c, s1 pseudofermions, N⊙

β =
∑Lβ

j=1N
⊙

β (qj), and the
correspondingβ bandmomentumdistribution function,N⊙

β (qj), are in this expression those of the PS excited state generated
by the processes (A) and (B) as defined in Section 7.2. Moreover, ΦT

β (qj) is the phase-shift functional in Eq. (J.1) in units of
2π .

The general expression of the relative weights aβ = aβ (mβ,+1, mβ,−1) in Eq. (193), reads [51,63,64],

aβ (mβ,+1,mβ,−1) =

(∏
ι=±

aβ,ι(mβ,ι)
)(

1 + O
(
ln L/L

))
where β = c, s1 , (J.3)

where,

aβ,ι(mβ,ι) =

mβ,ι∏
j=1

(2∆ιβ + j − 1)

j
=

Γ (mβ,ι + 2∆ιβ )

Γ (mβ,ι + 1)Γ (2∆ιβ )
where β = c, s1 and ι = ± , (J.4)

and Γ (x) is the usual gamma function. The relative weights, Eq. (J.3), are associated with the tower of excited energy
eigenstates generated by the processes (C) as defined in Section 7.2.

Formβ,ι = 1, Eq. (J.4) leads to,

aβ,ι(1) = 2∆ιβ =

(
δq̄ιFβ

(2π/L)

)2

where β = c, s1 and ι = ± . (J.5)

Here aβ,ι(1) is the relative weight of the α, ι pseudofermion spectral function mβ,ι = 1 peaks. It can be written as given in
Eq. (194). Moreover, δq̄ιFβ/(2π/L) = ι δNF

β,ι + Φβ (ιqFβ ) is the excited-state canonical momentum β = c, s1; ι = ± Fermi-
point deviation. The β = c, s1 weights aβ,ι(1) correspond to the particular cases aβ (1, 0) = 2∆+1

β and aβ (0, 1) = 2∆−1
β of

the general relative weights, Eq. (J.3),
The δ-functions in the pseudofermion spectral function expression, Eq. (193), impose the important equality ((L/4π vβ )

(ω′
+ ι vβ k′) − ∆ιβ ) = mβ,ι. Hence ((L/4π vβ )(ω′

+ ι vβ k′) − ∆ιβ ) is proportional to L. This implies that for any arbitrarily
small k′ and ω′ values for which 0 < (ω′

+ ι v k′)/(4πv) ≪ 1 the corresponding values of the ι = ± integer numbers,

mι =
L

4π vβ

(
ω′

+ ι vβ k′) −∆ιβ
)
, (J.6)

are in the TL such that mβ,ι ≫ 1. Hence in the TL the β, ι relative weight, Eq. (J.4), has the following asymptotic
behavior [51,63,64],

aβ,ι(mβ,ι) ≈
1

Γ (2∆ιβ )

(
mβ,ι +∆ιβ

)2∆ι
β
−1

for 2∆ιβ ̸= 0 where β = c, s1 and ι = ± . (J.7)

Furthermore, in the TL the β = c, s1 lowest peak weight A(0,0)
β , Eq. (J.2), can be written as,

A(0,0)
β =

F (0,0)
β

(L Sβ )
−1+2∆+1

β
+2∆−1

β

where β = c, s1 . (J.8)

Here F (0,0)
β and Sβ are in the TL independent of L and 2∆+1

c , 2∆−1
c , 2∆+1

s1 , and 2∆−1
s1 are the four functionals, Eq. (J.5).

In the general case inwhich the values of such four functionals are finite, one finds from the use of Eq. (J.7) in the β = c, s1
pseudofermion spectral function expression, Eq. (193), that in the TL it can be written as,

BQβ (k
′, ω′) =

L
4πvβ

A(0,0)
β

∏
ι=±

aβ,ι
(ω′

+ ι vβ k′

4πvβ/L

)
where β = c, s1 . (J.9)
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Further use in this expression of Eqs. (J.7) and (J.8) leads finally to the following expression for the β = c, s1 pseudofermion
spectral function, Eq. (193), valid in the TL,

BQβ (k
′, ω′) =

F (0,0)
β

4π vβ Sβ

∏
ι=±

Θ(ω′
+ ι vβ k′)

Γ (2∆ιβ )

(ω′
+ ι vβ k′

4π vβ Sβ

)−1+2∆ι
β

where β = c, s1 . (J.10)

Here F (0,0)
β and Sβ are the L independent quantities in the A(0,0)

β expression, Eq. (J.8). (The product Sc × Ss1 reads 1 both in the
u → 0 and u → ∞ limits.)

In applications of the 1DHubbardmodel PDT to the description of the ARPES of 1Dmetallic states in physical systems, the
one-electron removal spectral function at zero spin density is that of interest. For electronic densities in the range ne ∈ [0, 1],
that spectral function has three main branch lines called c , c ′, and s1 branch line. Their energy spectra have the following
simple expressions in terms of the β = c and β = s1 bands energy dispersions εβ (qj) defined in Eq. (152),

ωc(k) = εc(|k| + kF ) ≤ 0
k = −sgn{k}kF − q ∈ [−kF , kF ]

ωc′ (k) = εc(|k| − kF ) ≤ 0
k = sgn{k}kF − q ∈ [−3kF , 3kF ] .

ωs1(k) = εs1(k) = εs1(k) ≤ 0

k = −q ∈ [−kF , kF ] . (J.11)

Here k is the one-electron excitation momentum.
The corresponding PDT momentum dependent exponents in Eq. (195) that control the line shape of the one-electron

removal spectral function near the c , c ′, and s1 branch lines are given by,

ζc(k) = −
1
2

+

∑
ι=±1

(
ξ0

4
−Φc c(ι2kF , q)

)2

k = ∈ [−kF , kF ] ,
q = −sgn{k}kF − k ∈ [−2kF ,−kF ] and ∈ [kF , 2kF ] ,

ζc′ (k) = −
1
2

+

∑
ι=±1

(
ξ0

4
−Φc c(ι2kF , q)

)2

k = ∈ [−3kF , 3kF ] ,
q = sgn{k}kF − k ∈ [−2kF , kF ] and ∈ [−kF , 2kF ] .

ζs1(k) = −1 +

∑
ι=±1

(
ι

2ξ0
+Φc s1(ι2kF , q′)

)2

k ∈ [−kF , kF ] and q′
= −k ∈ [−kF , kF ] . (J.12)

The parameter ξ0 appearing here is given by ξ0 = ξ0(r0c ) where the function ξ0(r) is the unique solution of the integral
equation, Eq. (74) of Ref [92] with x = r . It has limiting values ξ0 =

√
2 for u → 0 and ξ0 = 1 for u → ∞. The c

pseudofermion phase shifts Φc c(±2kF , q) and Φc s1(±2kF , q′) also appearing in the exponents expressions provided in Eq.
(J.12) are through the general relationΦβ β ′ (qj, qj′ ) = Φ̄β β ′

(
r, r ′

)
, Eq. (154), defined in terms of corresponding rapidity phase

shifts Φ̄c c
(
±r0c , r

)
and Φ̄c s1

(
±r0c , r

′
)
, respectively. The latter are defined by the integral equations given in Appendix H.
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