

Available online at www.sciencedirect.com

Nuclear Physics B 961 (2020) 115233

www.elsevier.com/locate/nuclphysb

Corrigendum to "Pseudofermion dynamical theory for the spin dynamical correlation functions of the half-filled 1D Hubbard model" [Nucl. Phys. B 904 (2016) 39]

Corrigendum

J.M.P. Carmelo^{a,b,*}, T. Čadež^c

^a Center of Physics of University of Minho and University of Porto, P-4169-007 Oporto, Portugal
^b Department of Physics, University of Minho, Campus Gualtar, P-4710-057 Braga, Portugal
^c Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Republic of

Korea

Received 27 October 2020; accepted 29 October 2020 Available online 3 November 2020 Editor: Hubert Saleur

We wish to report the following corrections to the article [1]. A minor misprint is the lack in the first expression given in Eq. (34) of the positive integer number *n* that should multiply $2\mu_B |h|$, the correct expression being $\varepsilon_{sn}(q_j) = \varepsilon_{sn}^0(q_j) + 2n \mu_B |h|$.

Although the first three expressions given in Eq. (44) for the quantity under consideration in that equation are correct, there is a misprint in its fourth and last expression, as the term 4t in it should be given by U, so that it reads $\sqrt{(4t)^2 + U^2} - U$. This misprint was not detected and propagated to some discussions: The first paragraph after Eq. (44) should be removed and in the paragraph above Eq. (126) the sentence part starting as "Due to the charge-spin recombination..." and ending as "... $\sqrt{(4t)^2 + U^2} - 4t$, the PDT..." should be replaced by "At $h = h_c$ the PDT...".

In the second expression given in Eq. (124) there is a sign error: $\xi_{s_1,s_1}^1/2$ should read $-\xi_{s_1,s_1}^1/2$, which gives $2\Delta_t^t(q) = (-\xi_{s_1,s_1}^1/2 + c_0 \Phi_{s_1,s_1}(\iota k_{F\downarrow}, q))^2$. In spite of the expression of the exponent $\xi^t(k)$, Eq. (123) for $\tau = t$, being correct, the deviation $\delta J_{s_1}^F$ in it reading -1/2 rather than 1/2 is behind its negativity for k > 0 at any spin density *m* value. In the corresponding range $k \in [k_t, \pi]$ considered in the article, one thus finds that $k_t = 0$, so that the lower thresh-

Corresponding author.

https://doi.org/10.1016/j.nuclphysb.2020.115233

DOI of original article: https://doi.org/10.1016/j.nuclphysb.2016.01.009.

E-mail address: carmelo@fisica.uminho.pt (J.M.P. Carmelo).

^{0550-3213/© 2016} The Author(s). Published by Elsevier B.V. All rights reserved.

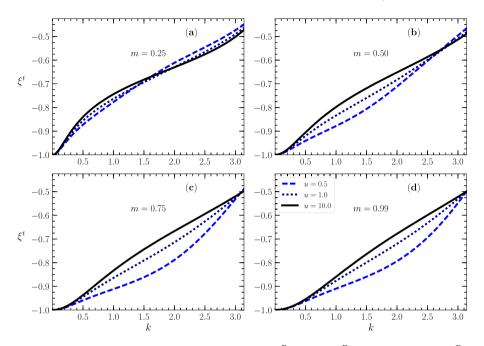


Fig. 1. The k dependence of the exponent $\xi^{t}(k)$, Eq. (123) with $\delta N_{s1}^{F} = 0$ and $\delta J_{s1}^{F} = -1/2$ (rather than $\delta J_{s1}^{F} = 1/2$), that controls the singularities in the vicinity of the lower thresholds of the transverse spin spectrum $\omega^{t}(k)$ plotted in Fig. 3 as a function of $k \in]0, \pi[$ for several values of u and spin densities (a) m = 0.25, (b) m = 0.50, (c) m = 0.75, and (d) m = 0.99.

old singularity cusps in the transverse spin dynamical structure factor exist for $k \in [0, \pi]$. The exponent ξ^i 's plots shown here in Fig. 1 correct those in Fig. 5.

The present corrections do not affect the results presented in the article [1] other than those mentioned here.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] J.M.P. Carmelo, T. Čadež, Nucl. Phys. B 904 (2016) 39.