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Plant diseases caused by fungal pathogens are responsible for major crop losses
worldwide, with a significant socio-economic impact on the life of millions of people
who depend on agriculture-exclusive economy. This is the case of the Witches’
Broom Disease (WBD) affecting cacao plant and fruit in South and Central America.
The severity and extent of this disease is prospected to impact the growing global
chocolate market in a few decades. WBD is caused by the basidiomycete fungus
Moniliophthora perniciosa. The methods used to contain the fungus mainly rely on
chemical fungicides, such as copper-based compounds or azoles. Not only are these
highly ineffective, but also their utilization is increasingly restricted by the cacao industry,
in part because it promotes fungal resistance, in part related to consumers’ health
concerns and environmental awareness. Therefore, the disease is being currently
tentatively controlled through phytosanitary pruning, although the full removal of infected
plant material is impossible and the fungus maintains persistent inoculum in the soil,
or using an endophytic fungal parasite of Moniliophthora perniciosa which production
is not sustainable. The growth of Moniliophthora perniciosa was reported as being
antagonized in vitro by some yeasts, which suggests that they could be used as
biological control agents, suppressing the fungus multiplication and containing its
spread. Concurrently, some yeast-based products are used in the protection of fruits
from postharvest fungal spoilage, and the extension of diverse food products shelf-life.
These successful applications suggest that yeasts can be regarded a serious alternative
also in the pre-harvest management of WBD and other fungal plant diseases. Yeasts’
GRAS (Generally Recognized as Safe) nature adds to their appropriateness for field
application, not raising major ecological concerns as do the present more aggressive
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approaches. Importantly, mitigating WBD, in a sustainable manner, would predictably
have a high socioeconomic impact, contributing to diminish poverty in the cacao-
producing rural communities severely affected by the disease. This review discusses
the importance/advantages and the challenges that such a strategy would have for
WBD containment, and presents the available information on the molecular and cellular
mechanisms underlying fungi antagonism by yeasts.

Keywords: Witches’ Broom Disease, Moniliophthora perniciosa, yeasts, biocide, antagonism, sustainability,
cacao, phytopathogen

INTRODUCTION

A great number of plant diseases are responsible for major crop
losses with huge socio-economic impact, causing each year a
worldwide estimated losses of 40 billion dollars (Syed Ab Rahman
et al., 2018). Particularly, the diseases caused by fungal pathogens
are increasingly recognized as a global threat to food production
and security. In fact, since 2000 the number of new fungal plant
pathogen alerts has increased by more than sevenfold (Fisher
et al., 2012). Presently, fungal-generated diseases constitute 64–
67% of the total crop diseases reported globally (Fisher et al.,
2012; Fisher et al., 2018), and account for 20% of the losses at the
level of production and a further 10% at postharvest level (Fisher
et al., 2018). These authors estimate that fungal diseases are
spreading northbound at a rate of almost 8 km/year. This could
derive from increasingly common agricultural practices, such as
the extensive monocultures and the use of a restricted number
of plant cultivars, as well as the increased global international
trade proportionating disease spreading over great distances
(Fisher et al., 2012). Climate change adds a burden to that
equation, potentiating the development of microbes and vectors
in unprecedented regions (Robert et al., 2015; Fisher et al., 2018).

To prevent plant diseases and protect crops from pests and
pathogens, widely spread methodologies mainly correspond to
applying chemical fungicides. The continued use of chemical
fungicides leads to the development of fungicide resistance in
the fungal pathogen (Syed Ab Rahman et al., 2018) and, in
the absence of other control measures, to the re-emergence of
virulence (Fisher et al., 2018). Therefore, in spite that the use
of pesticides brought clear improvements in crop quality and
quantity during more than half a century, their progressive
inefficacy to treat some of the most harmful plant diseases
requires the utilization of higher dosages each year (Medeiros
et al., 2010; Syed Ab Rahman et al., 2018). The use of fungicides
heavily impacts on the microflora of agrarian ecosystems,
destroying beneficial microbes, such as endophytic bacteria and
fungi, as well as animals important for the quality of the soils
(Syed Ab Rahman et al., 2018). Ultimately, the systemic use
of these drugs leads to the persistence of chemical residues
in the environment, proportionating low dosage toxicity and
contaminating species across trophic levels (Carvalho, 2006;
Dukare et al., 2018).

One of the fungal diseases with recognized high negative
socio-economic impact is the pathology of cacao plant and fruit
known as Witches’ Broom Disease (WBD). This is caused by
the basidiomycete fungus Moniliophthora perniciosa (Aime and

Phillips-Mora, 2005) (formerly designated Crinipellis perniciosa).
The severity and extent of its manifestation is endangering the
rapidly expanding and very quality-demanding chocolate market.
This review focuses on this disease, the methodologies presently
used for containment, and the innovative approaches that could
be explored (Figure 1).

WITCHES’ BROOM DISEASE OF CACAO

According to data from the International Cacao Organization1,
more than 4 million tons of cacao beans are produced annually
(Wickramasuriya and Dunwell, 2018). Cacao beans are the core
raw material for the chocolate industry, although other cacao-
derived products also have important world markets, such as
cacao butter or liquor (Pohlan and Pérez, 2010; Wickramasuriya
and Dunwell, 2018). The economic global market for chocolate
reached US$ 110 billion in 2015, and the world demand is
expected to grow exponentially in the next decade due to the
globalization of consumption styles in expanding economies such
as China and India (Squicciarini and Swinnen, 2016). Cacao is
produced in countries located approximately in the same latitude
interval of equatorial climate, forming the so-called Cacao Belt
(Pohlan and Pérez, 2010). The biggest producers are therefore
countries from Central and South America and Africa. The cacao
plant is affected by several diseases, the more threatening of
which is WBD (Purdy and Schmidt, 1996; Pereira, 1999; Griffith
et al., 2003; Aime and Phillips-Mora, 2005; Teixeira et al., 2015).
This has severely affected South and Central America countries,
where it has been responsible for major irreversible crop losses.
The highest economic and social consequences of WBD are
described to have occurred in Brazil. In the 10 years after the
onset of the disease in 1989, WBD reduced the cacao production
in more than 70% (Pereira et al., 1989; Santos Filho et al., 1998;
Trevizan and Marques, 2002; Meinhardt et al., 2008; Pires et al.,
2009; Teixeira et al., 2015), causing Brazil to shift from being
the 2nd world producer to becoming a net importer of cacao
beans (Bowers et al., 2001; Marelli et al., 2009; Teixeira et al.,
2015). During that period, the most affected region of Bahia
suffered losses around 90%, configuring a severe social crisis from
losing more than 200,000 farm jobs (Trevizan and Marques, 2002;
Teixeira et al., 2015).

The severity of WBD derives from several factors.
Moniliophthora perniciosa does not form specialized infection

1www.ICCO.org
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FIGURE 1 | Diagram presenting the challenges posed by WBD and the opportunities that natural antagonistic yeasts present for the containment of the
disease. Cacao plant figure adapted from Panhuys, L. von, Watercolours of Surinam (1811–1824) (source: (CC) BY-NC-ND http://plantillustrations.
org/illustration.php?id_illustration=190533).

structures such as appressoria like other fungal pathogens. Since
it is a hemibiotrophic fungus, the full infectious cycle unfolds
through two distinct phases: (i) biotrophic and (ii) saprotrophic.
(i) The initial infection occurs in young meristematic tissues and
susceptible actively growing tissues (e.g., buds, young leaves,
flower cushions, young fruits). The fungus penetrates through the
stomatal openings, the bases of damaged trichomes and the husk
of young fruits (Aime and Phillips-Mora, 2005). After the initial
infection, the fungus induces hypertrophy and hyperplasia,
causing the loss of apical dominance. This corresponds to a
disorganized proliferation of the infected vegetative meristems
of axillary shoots that results in the formation of a broom-
like structure of abnormal stems called a green broom (Aime
and Phillips-Mora, 2005; Meinhardt et al., 2008; Pires et al.,
2009). Shortly after the initial infection, the fungus starts
growing intercellularly, forming a monokaryotic and parasitic
mycelium without clamp connections, establishing a biotrophic
relationship with the host that corresponds to its life cycle
biotrophic phase. (ii) Usually 4–6 weeks after the development
of the green brooms, a concerted series of infected plant cells
death events occurs and the infected tissues become necrotic
forming a structure called dry broom. Necrotic or dead host cells
are then colonized by the fungus (Evans, 1980; Meinhardt et al.,
2008), which at this point, suffers major morphological changes
entering its saprotrophic phase (Lawrence et al., 1991; Meinhardt
et al., 2008). The hyphae become dikaryotic, clamp connections
are formed, and the fungus begins to grow intracellularly, as
well as between cells. The exact mechanisms and signaling
factors that trigger the switch from the biotrophic phase to a
saprotrophic phase, controlling the developmental alterations,
remain unknown (Meinhardt et al., 2008). After the fungus
proliferation and colonization of the dead host tissues, pink
colored basidiocarps (small mushrooms) are produced on any
infected necrotic tissue. Upon alternate wet and dry periods, each
basidiocarp can produce 2–3.5 million spores (basidiospores),
this way completing the fungus life cycle (Rocha and Wheeler,
1985; Almeida et al., 1997). The release of the spores occurs
mainly at night, and is related to a high level of humidity and

favorable temperature (20–30◦C). The spores are disseminated
locally by water and over long distances by wind, and can endure
latent in the soil or inside pruned branches of the plants for long
periods (Meinhardt et al., 2008; Pohlan and Pérez, 2010). The
ability of Moniliophthora perniciosa to infect the plant in all stages
of its life-cycle and the fact that virtually all the plant tissues can
be infected, underlie this pest exceptional virulence. This, allied
to the fungus high prevalence in the soil and plant dead material,
explains why once a single plant develops symptoms the whole
plantation can be compromised.

The resilience of Moniliophthora perniciosa relies essentially
on its capacity to colonize both alive and dead plant tissue, the
biotrophic and necrotrophic life cycle phases above mentioned.
The shift between the two phases involves a drastic morphological
and life style change. Alternative Oxidase (AOXp)-respiration
was associated with this transition (Thomazella et al., 2012).
Possibly, this type of respiration allows the fungal cell to
overcome the plant host defenses generated in the first stages of
the WBD, as observed with better studied model fungus Ustilago
maydis (Cárdenas-Monroy et al., 2017). The plant defenses
include the production of high amounts of NO, which affect
the fungal mitochondria, namely inhibiting respiration complex
IV, this way inducing the production of ROS (Thomazella
et al., 2012). AOXp is an alternative mitochondrial oxidase that
constitutes alone a bypass to respiratory chain complexes III
and IV, which function prevents collapse from drugs that target
these complexes like cyanide or Antimycin-A (Maxwell et al.,
1999; Ruy et al., 2006; Vanlerberghe et al., 2009). At the same
time, AOXp-respiration contributes to cope with the electron
flux overflow without phosphorylation, and therefore without
producing ATP (Van Aken et al., 2009) lowering the global
energy yield of metabolism. AOX-encoding gene sequences are
found in many organisms (including yeasts and fungi) (Elthon
and McIntosh, 1987; Joseph-Horne et al., 2001; Stenmark and
Nordlund, 2003; Chaudhuri et al., 2006; McDonald et al.,
2009), but their physiological role in microbes is still not very
well understood (Veiga et al., 2003; Rogov and Zvyagilskaya,
2015). In the case of Moniliophthora perniciosa, AOXp activity
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would prevent excessive ROS accumulation inside the fungal cell
induced by the host, while maintaining a low metabolism status
(Thomazella et al., 2012), which could explain how the fungal cell
stays alive while the plant weakens.

In spite of the few Moniliophthora perniciosa genome surveys
in the attempt to identify proteins/genes involved in this
fungus infectious behavior (e.g., Mondego et al., 2008; Rincones
et al., 2008), in fact little is known on this fungus molecular
biology, mostly because as all non-model organisms it lacks
the appropriate tools for genetic manipulation. Still, some
physiological traits apart from AOX-respiration were shown
in connection to this fungus pathosystem, like the increased
secretion by the host of malondialdehyde (MDA) (usually a
marker of oxidative stress; Del Rio et al., 2005) and glycerol
(Scarpari et al., 2005), as well as of a methanol oxidase (MOX)
(de Oliveira et al., 2012). Additionally, as for other fungal
infections, also in this case the levels of the plant growth hormone
ethylene are hypothesized to have a crucial role in the progression
of the WBD, in particular in the development of the broom
(Scarpari et al., 2005). The biological meaning of these findings
remains unknown.

WITCHES’ BROOM DISEASE
MANAGEMENT

The chemical fungicides generally used are either copper-
based compounds, such as cuprous oxide, or azole-containing
molecules, particularly tebuconazole (Oliveira and Luz, 2005;
Medeiros et al., 2010). These are usually used to control
the spread of other fungal plant diseases such as grapevine
downy mildew and olive peacock spot, but showed very low
efficiency against Moniliophthora perniciosa (Medeiros et al.,
2010). Copper is per se a non-specific anti-microbial agent
able to destroy naturally occurring microorganisms, including
fungi, that is for decades applied as foliar sprays (Yang
et al., 2011; Husak, 2015). The lethal action of copper-based
fungicides derives from their ability to free copper ions that
are massively internalized by the fungal cells. Intracellularly,
they bind various chemical groups (imidazoles, phosphates,
sulfhydryls, hydroxyls) namely in proteins, causing their
denaturation and loss of function (Husak, 2015; Mirković
et al., 2015). Ultimately, this leads to irreversible cell damage
and membrane leakage (Husak, 2015). Yet some fungi are
resistant to copper ions. The mechanisms underlying this
resistance are not well understood, although several studies
have suggested that they might exert a combined action: the
extracellular chelation and cell wall sequester of copper ions,
and their decreased intake and intracellular complexing by
metallothioneins or other proteins (Cervantes and Gutierrez-
Corona, 1994). This last case includes the over-expression of
the superoxide dismutase (SOD) that uses copper as inorganic
co-factor (Naiki, 1980). SOD has been described to display the
ability to buffer copper excess independently of its superoxide
scavenging function (Culotta et al., 1995). Additionally, the
copper-induced accumulation of glycerol was also described
to be involved in its extrusion (Gadd et al., 1984). Neither

of these mechanisms were ever described in association with
Moniliophthora perniciosa, although increased levels of SOD
would contribute the higher resistance to the above-mentioned
plant-generated ROS.

On the other hand, tebuconazole, as other azole-fungicides,
acts on the synthesis of ergosterol, altering the structure and
functionality of the fungal cell membrane (Price et al., 2015)
as well as vacuolar ion homeostasis through v-ATPase function
(Zhang V. Q. et al., 2010). In consequence of ergosterol synthesis
disruption, mitochondrial function is also affected in its ability to
form iron-sulfur clusters, which results in the deposit of insoluble
iron inside mitochondria and concomitant radical formation
and mitochondrial loss (Ward et al., 2018). CytC harbors a
heme group which availability for this enzyme proper assembly
and function would be affected by iron homeostasis disruption,
consequently affecting Complex IV function in respiration. This
would justify why fungi that can respire through the AOXp could
be resistant to azoles. Still, there is no reference to this possibility
in the literature. Rather, in Candida species, the resistance to
azole-fungicides implicates other types of mechanisms (Whaley
et al., 2017). Nevertheless, these are human commensals and
pathogens, having therefore specificities that are not common
with other yeasts or fungi.

Fungicides fail to control the spread of the WBD but
the mechanisms underlying the resistance of Moniliophthora
perniciosa to these drugs are not studied. The use of fungicides
is therefore not a routine practice in most cacao-producing
countries also due to their high cost, and the risks associated with
cacao chemical contamination which hinders commercialization.
The reasons underlying this include the increasingly considered
negative impact of fungicides on human health and the
environment. Public concerns regarding the prevalence of
agronomic pesticide residues in food, and their relation with the
increasing advent of pesticide resistant pathogens, not only in
plants but also in humans (Droby, 2006; Pal and McSpadden
Gardener, 2006; Marelli et al., 2009; Verweij et al., 2009;
Nunes, 2012) led to restrictions in Europe. Therefore, the most
commonly used methods to control the WBD are exclusively
agronomic, through phytosanitary pruning, removing as much as
possible the infected material, which is though often impossible,
due to hidden fungal inoculum in the soil and cut branches and
leaves2. Therefore, more effective and eco-friendly methods and
strategies are needed to satisfy the consumer demands.

A concept that has gained considerable prominence in the
agriculture sector in recent years is the use of nanoagroparticles,
which are nanoparticles designed to mitigate agriculture-related
problems, including plant pathologies (Parizi et al., 2014; Parisi
et al., 2015). These nanoagroparticles include silver, copper,
sulfur, zinc oxide and magnesium oxide nanoparticles (Baker
et al., 2017), and can act efficiently as fungicides, pesticides,
herbicides and also insecticides. They can easily enter into
the fungal cell wall. Once inside the cell, they act through
different modes, which include (i) causing the disruption of
metabolism, or of the cell membrane, with consequent loss of

2Available at: https://www.icco.org/about-cocoa/pest-a-diseases.html (accessed
February 18, 2019).
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cellular content (Baker et al., 2015, 2017), (ii) promoting the
release of toxic ions (Cd2+, Zn2+, and Ag+) that bind to sulfur-
containing proteins, (iii) targeting the pathogen DNA, this way
inducing cell death, (iv) interrupting electron transport, this
way causing the collapse of membrane potential, (v) promoting
the generation of ROS, or (vi) interfering with nutrient uptake
(Alghuthaymi et al., 2015). More than one of these mechanisms
can occur simultaneously, conferring the ability of nanoparticles
to be effective against different plant pathogens (Alghuthaymi
et al., 2015). Recently, nanoparticles were conjugated with some
biomolecules (including biocide/killer toxins), forming bionano-
hybrid agroparticles (Baker et al., 2017). The free utilization of
these promising phytopathology management tools still requires
not only cytotoxicology studies to evaluate potential harm to
human and animal health, but even more important, extensive
ecotoxicology and biodegradability studies to evaluate their
prevalence in the environment and food chains and their
effect on the long run in the microflora of plant, soil and
water. Presently few information on this regard is available
(Alghuthaymi et al., 2015). Nonetheless, the prospective of being
able to use such a nanotool to effectively deliver a toxin and kill
a phytopathogenic fungus is attractive, especially if carrying a
bio-derived killing agent.

YEASTS AS BIOCONTROL AGENTS

One possible approach to fungal diseases in plants might be the
use of biocides or biological control agents. In phytopathology,
this term designates the use of introduced or resident living
organisms to contain or suppress populations of pathogens (Pal
and McSpadden Gardener, 2006). There are a few of these
agents in the market, mostly used in the control of pests
at small scale. They correspond to dry biomass of bacterial
or filamentous fungal strains isolated from the endosphere or
the rhizosphere of plants (O’Brien, 2017) that are re-hydrated
and used as alive reproductive microorganisms. These include
a taxonomically and biologically diverse group of endophytic
fungi that are characterized by colonizing internally the plant
host tissues without causing any external disease symptoms
(Wilson, 1995; Rubini et al., 2005). These endophytes can prevent
pathogen infection and propagation directly by competition,
mycoparasitism or antibiosis, or indirectly by inducing resistance
responses in the plant (Bailey et al., 2006). Despite this, the
biocontrol agents that could be applied in phytopathology are not
restricted to these two groups of organisms.

Endophytic microorganisms also include Ascomycota and
Basidiomycota yeasts, found in many species of trees from
very diverse climates, but also in agricultural species (reviewed
by Doty, 2013). Ascomycota yeasts reproduce exclusively
by budding, as the most well-known yeast Saccharomyces
cerevisiae. Basidiomycota grow dimorphically, shifting from
a monokaryotic yeast-form to a dikaryotic filamentous form
(Choudhary and Johri, 2009). This is the case of Rhodotorula
and Cryptococcus sp. (Table 1). Generally, endophytic yeasts
apparently thrive symbiotically or mutualistically, virtually
colonizing diverse plant tissues (reviewed by Doty, 2013),

in which they may cause structural changes (Luna, 2017).
They consume sugars and assimilate amino acids generated
by the plant, and contribute to the plant wellbeing and stress
response in many different ways, including the production
of phytopheromones, catalase or siderophores (reviewed by
Joubert and Doty, 2018). Importantly, endophytic like epiphytic
yeasts can antagonize phytopathogenic filamentous fungi,
either by occupying their niche or by antagonizing them in
more complex ways.

The antagonistic interaction of yeasts with particular
phytopathogenic fungi has been described in the literature.
For example, Suzzi et al. (1995) observed that natural wine
yeast strains of Saccharomyces and Zygosaccharomyces inhibited
in vitro the growth of 10 species of soil-borne fungal plant
pathogens, namely Cladosporium variabile, Rhizoctonia
fragariae, Phomopsis longicolla, Colletotrichum acutatum,
Aspergillus niger, Sclerotinia sclerotiorum, Penicillium digitatum,
Macrophomina phaseolina, Trichoderma viride, and Botrytis
squamosa. Also, Walker et al. (1995) reported that strains of
Saccharomyces cerevisiae and Pichia anomala (know designated
Wickerhamomyces anomalus) inhibited in vitro the growth of
several wood decay basidiomycetes including Serpula lacrymans,
Postia placenta, Lentinus lepideus and Ophiostoma ulmi and
phytopathogenic fungi, such as Rhizoctonia solani, Fusarium
equiseti, Botrytis fabae, and Phytophthora infestans. Importantly,
Rosa-Magri et al. (2011) described the antagonism effect of the
yeast Torulaspora globosa against the phytopathogenic mold
Colletotrichum graminicola, the causal agent of anthracnose
disease in maize. All of these cases were reported as in vitro
studies, none were performed in planta or in field. Otherwise,
yeasts have often been proposed and used for the control of
microbial contaminations at the postharvest phase (Table 1).

The possibility of using yeasts as biocontrol agents of fungal
or bacterial proliferation associated with food spoilage has
been recognized since the early 1960s, when it was found
that Saccharomyces cerevisiae strains secreted toxins that killed
other yeast strains but are immune to their own toxin (Bevan
and Makower, 1963). Killer toxins (KTs) can be encoded
by cytoplasm-inherited double-stranded RNA viruses (Schmitt
and Breinig, 2002) or linear dsDNA plasmids (Schaffrath and
Meinhardt, 2005), but they can also be chromosomally encoded
(Suzuki, 2005). The killer phenomenon is well characterized and
studied in Saccharomyces cerevisiae. In this yeast species, KTs
have been grouped into four types, K1, K2, K28, and Klus, based
on their killing profiles and lack of cross-immunity (Schmitt
and Breinig, 2006; Rodríguez-Cousiño et al., 2011). Each strain
producing one specific toxin kills strains from the other groups
but has self-protective immunity (Schmitt and Breinig, 2006).

The modes of action of the Saccharomyces cerevisiae KTs
are well known, with the exception of the recently found
Klus toxin (Schmitt and Breinig, 2002). K1 and K2 toxins kill
sensitive yeast cells in a receptor-mediated two-step process.
The first step involves a fast, energy-independent binding to
a primary toxin receptor (R1), consisting of β-1,6-D-glucan
(Lukša et al., 2015). Though a second energy-dependent step,
the toxin is translocated from the cell wall to the plasma
membrane, where it interacts with a secondary membrane
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TABLE 1 | Success cases of using yeasts to antagonize the spoilage of fruits by filamentous fungi.

Yeast antagonist Host Fungal phytopathogen(s) References

Preharvest application1

Candida (Pichia) guilliermondii Cherry tomato Fruit decay agents Zhao et al., 2011

Candida sake Apple Penicillium expansum Teixidó et al., 1999

Postharvest application

Aureobasidium pullulans Pear Penicillium expansum Robiglio et al., 2011

Apple Botrytis cinerea, Colletotrichum
acutatum and Penicillium
expansum

Mari et al., 2012

Candida (Pichia) guilliermondii Chili Colletotrichum capsici Chanchaichaovivat et al., 2007

Tomato Rhizopus nigricans Zhao et al., 2008

Rhizopus stolonifer Celis et al., 2014

Kiwifruit Botrytis cinerea Sui and Liu, 2014

Papaya Colletotrichum gloeosporioides Lima et al., 2013

Candida oleophila Banana Colletotrichum musae,
Fusarium moniliforme and
Cephalosporium sp.

Lassois et al., 2008

Apple Penicillium expansum and
Botrytis cinerea

Liu et al., 2012

Candida pelliculosa Tomato Botrytis cinerea Dal Bello et al., 2008

Candida sake Apple Penicillium expansum Morales et al., 2008

Cryptococcus infirmominiatus Sweet cherry Monilinia fructicola Spotts et al., 2002

Cryptococcus laurentii Strawberry Botrytis cinerea Wei et al., 2014

Sweet cherry Fruit decay agents Tian et al., 2004

Debaryomyces hansenii Peach Rhizopus stolonifer Mandal et al., 2007

Mandarin, orange Penicillium digitatum Taqarort et al., 2008

Metschnikowia fructicola Apple Penicillium expansum Liu et al., 2011

Grapefruit Penicillium digitatum Hershkovitz et al., 2013

Meyerozyma caribbica Mango Colletotrichum gloeosporioides Bautista-Rosales et al., 2013

Pichia membranefaciens Apple Monilinia fructicola, Penicillium
expansum, and Rhizopus
stolonifer

Chan and Tian, 2005

Rhodosporidium paludigenum Cherry tomato Botrytis cinerea Wang et al., 2010

Rhodotorula mucilaginosa Pear Penicillium expansum Hu et al., 2015

Rhodotorula rubra Tomato Botrytis cinerea Dal Bello et al., 2008

Wickerhamomyces (Pichia) anomalus Banana Colletotrichum musae,
Fusarium moniliforme and
Cephalosporium sp.

Lassois et al., 2008

Orange Penicillium digitatum Aloui et al., 2015; Platania et al., 2012

Papaya Colletotrichum gloeosporioides Lima et al., 2013

Commercial yeast-biocontrol products2

Aureobasidium pullulans Pome Penicillium, Botrytis, Monilinia Boni Protect§, Bio-Ferm, AT

Candida oleophila Pome Penicillium, Botrytis Nexy§, Lesaffre, BE

Metschnikowia fructicola Pome, table grape, stone fruits,
strawberry, sweet potato

Penicillium, Botrytis, Rhizopus,
Aspergillus

Shemer§, Bayer/Koppert, NL

1Preharvest application to prevent postharvest spoilage. 2Wisniewski et al. (2016).

receptor (R2), identified in the case of K1 toxin as Kre1p,
an O-glycosylated protein of the yeast cell surface (Breinig
et al., 2002, 2004). After reaching the plasma membrane,
K1 and K2 toxins disrupt its function by forming cation-
selective channels, and promoting the release of ATP and
other metabolites, thus causing a lethal effect on the target
cell (Liu et al., 2015). The K28 KT mode of action is
very different, since it enters a sensitive target yeast cell by
endocytosis, in a cell wall receptor-mediated manner (Schmitt

and Breinig, 2006). The cell wall receptor for K28 toxin has
been identified as a mannoprotein with high molecular mass
(Liu et al., 2015). The K28 toxin is internalized through the
secretory pathway (via Golgi and ER), and after entering the
cytosol the β-subunit is ubiquitinated and degraded in the
proteasome. The subsequently free small α-subunit has been
suggested to enter the nucleus without the help of an active
nuclear import machinery, therefore by a so-called passive
diffusion (Schmitt and Breinig, 2006). Once inside the nucleus,
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the K28 toxin kills the host cell by irreversibly blocking the
DNA synthesis. The target cells arrest in early S phase of
the cell cycle, forming a medium-sized bud and a single,
pre-replicated nucleus in the mother cell, eventually dying
(Schmitt and Breinig, 2006).

The killer phenomenon, despite being best characterized in
Saccharomyces cerevisiae, is not confined to this yeast species,
rather it is often found in other yeast species and genera
(Magliani et al., 1997; Schmitt and Breinig, 2002). Some of
these were described to damage the plasma membrane, very
similarly to the Saccharomyces cerevisiae K1 toxin. This is the
case of the KTs produced by Pichia kluyveri (Ahmed et al.,
1999), Pichia membranifaciens (Santos and Marquina, 2004;
Santos et al., 2009), Pichia farinosa (Suzuki et al., 2001) and
Zygosaccharomyces bailii (Weiler and Schmitt, 2003). Other
killer mechanisms include the damage of the cell wall upon the
inhibition of the synthesis of β-glucans. Examples of this mode of
action are the toxins produced by Hansenula mrakii (previously
Williopsis mrakii) (Marquina et al., 2002), Wickerhamomyces
anomalus (formerly designated Pichia anomala or Hansenula
anomala) (Wang et al., 2007), Williopsis saturnus (Guyard
et al., 2002; Peng et al., 2010), and Kluyveromyces phaffii
(Comitini et al., 2009). Yet other yeast KTs act by blocking
the cell cycle, namely the one produced by Kluyveromyces
lactis (Klassen et al., 2004), and by triggering DNA damaging
and the induction of apoptosis, which is the case of the
toxins secreted by Pichia acaciae (Klassen and Meinhardt, 2005)
and Wingea robertsiae (Klassen and Meinhardt, 2002). The
blocking of calcium uptake was also described as killer mode
of action, namely in the case of Ustilago maydis (Gage et al.,
2001). Although there are plenty of reports in the literature
regarding the interaction of non-Saccharomyces killer yeasts
with a vast variety of sensitive targets, the actual mechanisms
involved remain mostly unknown or superficially studied at the
molecular level.

Several other mechanisms of yeast antagonism have been
proposed that do not involve the secretion of a peptide/protein
that may be classified as a KT. Other proteins that are
secreted by the yeast and antagonize filamentous fungi are
lytic enzymes that destroy the fungal cell wall (Spadaro and
Gullino, 2004). This kind of antagonism is considered a
form of mycoparasitism. An example is the manner in which
Pichia guilliermondii antagonizes Botrytis cinerea (Wisniewski
et al., 1991). The authors observed that the fungus cell
wall glucans and a yeast-secreted β-(1–3) glucanase form a
lectin-like interaction resulting in a strong attachment of the
antagonist to the fungal pathogen which culminates with the
lysis of fungal cells. Yeasts that antagonize other yeasts can
also produce several volatile compounds against filamentous
fungi, like low molecular weight lipophilic compounds that
inhibit the target growth (Mari et al., 2016). This is the case
of the yeast Aureobasidium pullulans that produces 2-methyl-
1-butanol, 3-methyl-1-butanol, 2-phenethyl alcohol and 2-
methyl-1-propanol, with inhibitory effect against Botrytis cinerea,
Colletotrichum acutatum, Penicillium expansum, Penicillium
digitatum, and Penicillium italicum (Di Francesco et al., 2015).
Interestingly, it appears that antagonizing yeasts may operate

in different ways also because in some cases they strongly
attach to the fungus hyphae. This was described in detail for
the case of the yeasts Pichia membranefaciens and Cryptococcus
albidus when challenged with three phytopathogenic fungi
causing the postharvest deterioration of nectarines and apples
(Monilinia fructicola, Penicillium expansum, and Rhizopus
stolonifer) (Chan and Tian, 2005).

Another effective mechanism of antagonism and possibly
the most common is competition. Microbes compete for
space, for oxygen and of course for nutrients, such as
carbohydrates, vitamins, minerals, and amino acids (Spadaro
and Droby, 2016). Yeasts grow much faster than filamentous
fungi, being thus able to quickly colonize the niches that
fungi can occupy, such as plant wounds or tissue lesions,
forming colonies or biofilms (Andrews et al., 1994). Increasingly
bigger yeast populations reduce the amount of nutrients
available for fungi and make them difficult to access (Zhang
D. et al., 2010). In the case of micronutrients, iron plays a
crucial role in the growth, development and virulence of the
fungal pathogens (Saravanakumar et al., 2008). To compete
with the pathogens for iron, yeasts secrete siderophores that
deplete iron from the growth medium such as pulcherrimin,
produced by Metschnikowia pulcherrima to compete with
Botrytis cinerea, Alternaria alternata, and Penicillium expansum
(Saravanakumar et al., 2008).

Ultimately, the efficiency of the antagonism is affected by
environmental constraints (Syed Ab Rahman et al., 2018), and
each mechanism of action depends on a specific interaction
between the pathogen and the antagonizing organism but
also between either and the host. It has been described
that antagonizing yeasts may help the host by alleviating
the production of ROS induced by the pathogen (Liu et al.,
2013). The production of ROS is actually not confined to
plants themselves, but also happens in fruits during postharvest
processes. This was observed to occur when yeasts such as
Cryptococcus laurentii and Rhodotorula glutinis, which exhibit
antagonistic activity against the postharvest pathogens Botrytis
cinerea and Penicillium expansum, were applied to fruit
surfaces and wounds (Castoria et al., 2003). Concurrently,
a biofilm of a Saccharomyces cerevisiae strain isolated from
wine prevented the spoilage of apples by Penicillium expansum
(Scherm et al., 2003). The potential of killer yeasts has
often been recognized, but their use seldom put to practice
for economically viable processes. In biotechnology, yeast-to-
yeast antagonism has been mostly successfully applied in the
control of wine and brewery processes, to avoid secondary
fermentations producing undesirable compounds (Hatoum et al.,
2012; Mehlomakulu et al., 2014; Oro et al., 2016). Another
example of successfully commercialized application of a killer
yeast is that of Debaryomyces hansenii, used in the prevention
of spoilage of dairy products, such as milk and yogurt (Liu
and Tsao, 2008), as well as in the extension of shelf-life of
dry-cured meats and dry-fermented sausages (Andrade et al.,
2014; Núñez et al., 2015). The spoilage prevention by yeasts
extends to the postharvest protection of fruits from fungal
spoilage, which acknowledges that yeasts can display significant
antimycotic activity (Table 1). The majority of these antagonistic
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yeasts are naturally present on fruit and vegetable surfaces
(Suzzi et al., 1995) but can be also obtained from other
sources such as the phyllosphere (Kalogiannis et al., 2006),
the rhizosphere (Long et al., 2005) or the soil (Zhao et al.,
2012). The advantages of using naturally occurring yeasts
strains are those of overcoming the negative effects of needed
adaptation to the biophysical and biochemical specificities of the
contaminated niches.

ADVANTAGES AND CHALLENGES OF
MICROBIAL WARFARE

The use of live antagonist microorganisms or their nano-
conjugated bio-derived toxins to manage phytopathogenic
diseases would offer a great number of advantages over
chemical fungicides or extensive pruning, including the safer
field application methods and the reduced costs of production
(Bonaterra et al., 2012), offering an environmentally friendly
and bio-sustainable alternative to manage fungal diseases,
provided the right microorganism is used. Any such option
has to be primarily challenged with tests in planta and in
field. Moreover, the solution, as mentioned above, has to be
proven unharmful to human or animal cells (Ocampo-Suarez
et al., 2017), as well as easily degradable so that its prevalence
in the agriculture ecosystems does not generate a potential
accumulation-derived harmful effect over time, and non-ecotoxic
allowing the ecosystem functions to prevail (Liu et al., 2013).
Finally, the commercial viability of any biocontrol agent needs
to be subsequently assessed in pilot, semi-commercial and large-
scale commercial studies, prior to regulatory licensing from
the respective regulatory agencies (Droby et al., 2009). The
final approval needs to be based on the actual disease control
efficacy and also the evaluation of the safety of the formulated
product (Dukare et al., 2018). For this reason, and despite
the recognition of the efficiency of microbial antagonisms and
the theoretical advantages of their use, only a limited number
of products based on biocontrol agents have been formulated
and commercialized over the past decades (Dukare et al.,
2018). These products are registered for using mainly against
some postharvest fungal phytopathogenic diseases of fruits and
vegetables (Sharma et al., 2009; Sundh and Melin, 2011; Dukare
et al., 2018). As an example, Nexy R© (Table 1) a formulation
of water dispersed granules of living biomass of the yeast
Candida oleophila, has been approved and commercialized in
the EU against postharvest spoilage of stored fruits, namely
against Penicillium expansum and Botrytis cinerea in apples,
Penicillium spp. in citrus fruits and Colletotrichum musae in
bananas (Ballet et al., 2016).

The microorganisms described to antagonize filamentous
fungi include endophytic fungi, which have been suggested
as biocontrol agents of several cacao plant diseases (Arnold
et al., 2003). These authors demonstrated that inoculating
cacao plant leaf tissues with fungal endophytes isolated from
naturally infected asymptomatic hosts, significantly decreased
the damage provoked by the foliar pathogen Phytophthora sp.
Fungal endophytes isolated from healthy cacao plant tissues

also displayed in vitro antagonism response against major
pathogens of cacao, including the WBD (Mejía et al., 2008).
The antagonism mode of action was reported as competition
for nutrients or antibiosis (Mejía et al., 2008). WBD fungus was
though not killed by any of the tested endophytic fungal strains.
In another study (Rubini et al., 2005), the endophytic fungus
Gliocladium catenulatum, isolated from healthy cacao plants,
was able to reduce the incidence of WBD in cacao seedlings
to 70% in greenhouse conditions. Again, Moniliophthora
perniciosa was not killed by Gliocladium catenulatum. Instead,
another endophytic isolate from Trichoderma stromaticum
parasites internally Moniliophthora perniciosa, preventing its
reproduction (Samuels et al., 2000; Pomella et al., 2007;
Medeiros et al., 2010). No information is presently available
as to the molecular basis of this antagonism or the death
process associated.

The Brazilian governmental organization CEPLAC (Executive
Committee of the Cocoa Farming Plan) has produced and
developed a semi-commercial product named Tricovab R©, that
is available to Brazilian farmers on a by request basis. This
biocontrol agent is multiplied in silos of rice grains, in which
surface the fungus multiplies. The local farmers receive the
packed dry rice grains and activate the product by making
a suspension in water that can be spread directly in the
plantation3. Despite being an alternative with relatively high
efficacy compared to the other methods, it is a very expensive
methodology. The high price derives from the very complex and
expensive Trichoderma stromaticum rice-dependent production
system, reason why this method is entirely subsidized by
the federal government and supplied as a service from the
Brazilian Ministry of Agriculture and developed at its R&D
unit CEPLAC4 (Silveira, 2013). Additionally, the waste of
large amounts of rice diverted from food resource, and the
unavailability of the product to local farmers located far from the
CEPLAC distribution centers contribute to the impracticability
of this solution, reinforcing the urgent need for strategies to
control the WBD that are more sustainable. The utilization
of antagonistic yeasts as biocontrol agents could be one such
case. The possibility of using yeasts for this purpose is very
attractive because, unlike filamentous fungi or bacteria, (i) they
are ubiquitously found in the phytobiome, displaying a degree
of biodiversity that allows the finding of natural and specific
antagonisms, (ii) they are GRAS (Generally Recognized as Safe)
for humans and animals and therefore safe to manipulate,
(iii) they generally promote the wellbeing of the plants, (iv)
they are environmental-friendly microorganisms, and (v) they
can be cheaply multiplied to very high amounts, particularly
in Brazil, in view of the long tradition of yeast-fermentation
industries (Figure 1). Two yeast strains were previously shown
to strongly antagonize Moniliophthora perniciosa in vitro,
a Candida sp. strain isolated from an organic farm soil
and a Dipodascus capitatus strain isolated from the jackfruit
(Cabral et al., 2009). These or other yeast strains were

3www.ceplac.gov.br
4Available at: https://www.servicos.gov.br/servico/comprar-biofungicida-
tricovab-para-a-vassoura-de-bruxa-do-cacaueiro (accessed February 18, 2019).
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not further explored in in field assays, neither was their mode
of action studied.

CONCLUDING REMARKS

The cacao producers from Central and South America, where
the WBD is a threat, are being encouraged to substitute their
plantations with more resistant cacao plant varieties5. This is
an expensive and drastic solution for plantations still operating,
implicating a production lag phase that not all producers
can afford. Moreover, more resistant varieties cannot avoid
the incoming of more virulent fungal strains, which appears
to be a world-wide trend (Fisher et al., 2012). The use of
natural microbial biocides, has in favor not only the health,
environment and economic arguments above stated, but also the
almost infinite microbial biodiversity available to continuously
feed the search for a suitable killer for each emerging or
evolving phytopathology. This review calls the attention to this
possibility, in particular using phytobiome-originating yeasts, as
a sustainable alternative strategy to manage the Witches’ Broom
Disease of cacao, contributing to ease the associated severe social
and economic implications to the life of millions of people.
5Available at: https://www.icco.org/about-cocoa/pest-a-diseases.html (accessed
February 18, 2019).

This is a research area with plenty to explore and a predictable
great importance in the field of plant pathology in the next years.
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