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Abstract

While we can say that there is a global market for crude oil, we cannot say the

same cannot for natural gas. There is a strand of literature that argues that, in the

last decades, gas markets have become less regional and more global. We use wavelets

to test this hypothesis and conclude otherwise: although the European and Japanese

gas markets are signi�cantly synchronized, they are much less than the oil markets,

which we take as the benchmark. We also show that the North American gas market

�uctuations are independent of the other gas markets. Finally, we show that the existing

synchronization between gas markets almost vanishes once one �lters out the e¤ect of

oil price variations, suggesting that it is the global oil market that connects the regional

gas markets.
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1 Introduction

This paper analyzes the North American, European, and Asian natural gas markets integra-

tion and its relation to oil markets. Although the literature on these topics is extensive, as

far as we know, nobody has looked at this problem from a time-frequency perspective. To

do that, we rely on multivariate wavelet analysis, which gives us a very natural framework

to estimate how these relationships behave at di¤erent frequencies and how they evolve. As

we will see, energy markets integration has changed, not only over time, but also across fre-

quencies. We reach some results that would be di¢ cult to disentangle with more traditional

time-series methods.

Until 2000, most authors would consider "crude oil as a world market while coal and

natural gas belonged to geographically segmented markets"; see Bachmeier and Gri¢ n (2006)

and references therein. From that point on, the literature has evolved from a yes or no answer

to a more nuanced view of market integration. In particular, some authors started to assess

the degree of market integration.

Because we work with prices, we must rely on prices�behavior to operationalize the concept

of integrated markets. If the markets are truly integrated, prices must be the same in the

di¤erent regions, by the law of one price. In a global market, shocks are felt globally. An

increase in the demand for gas in Russia should lead to a price increase everywhere. On

the other hand, if markets are entirely segmented, only the Russian prices would react. In

segmented markets, we expect prices to be independent. In that sense, we can use price

synchronization in di¤erent regions as a proxy for market integration. The stronger the

synchronization, the more integrated the markets are. In the context of the wavelet analysis

that we employ, as we explain later, that amounts to say that coherency between prices is

very high. We will take the oil market as the benchmark for a global market1 and show that

the coherency between West Texas Intermediate (WTI) and Dubai oil prices is consistently

close to one.

Several authors investigated the impact of decreasing transport costs of Lique�ed Natural

Gas (LNG). Neumann (2009) concluded that the increase in LNG trade had accelerated the

1See Plante and Strickler (2021) for the most recent evidence that we can indeed treat the oil markets as
one.
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integration of previously segmented markets in North America, Europe, and Asia. At about

the same time, Aune et al. (2009) argued that gas markets integration would keep increasing,

thanks to the LNG e¤ect. This prediction was later con�rmed by some authors, like Barnes

and Bosworth (2015). However, Chiappini et al. (2019) concluded that, despite the increasing

interdependence between European and American prices, gas markets were still not global.

Oglend et al. (2020) provided one possible explanation. They argued that time commitments

associated with inter-continental Lique�ed Natural Gas trade increase other types of costs,

weakening the ties between global natural gas markets.

Although not as many, some authors also investigated the impact of the shale gas revo-

lution. It seems that the main contribution of shale gas was to separate the markets, not to

integrate them. For example, Wakamatsu and Aruga (2013) concluded that the U.S. market

had a one-side in�uence on the Japanese market before 2005, but, thanks to the shale gas

revolution, that in�uence disappeared afterward. Aruga (2016) also concluded that the U.S.

gas market became independent after the shale gas revolution. The price linkage between the

U.S. and international gas markets became weaker than before.

Overall, there is ample evidence that gas markets are regionally very integrated. We

can, therefore, treat them as a single market (e.g., Renou-Maissant 2012, Asche et al. 2013,

Yorucu and Bahramian 2015, Bastianin et al. 2019, and Gara¤a et al. 2019, regarding

European markets, and Park et al. 2008 and Avalos et al. 2016, for North American markets).

Nevertheless, they are not globally integrated. It is worth noting that most studies identi�ed

some degree of integration between the European and the Asian markets. It is the North

American market that is mostly independent. E.g., Li et al. (2014) concluded that there

is some convergence between European and Asian markets. However, they also pointed out

that this is probably the result of the contract structure that links gas prices to the oil

price. Siliverstovs (2005) had reached a similar conclusion earlier: high natural gas market

integration between the European and Japanese markets, but not with North America. Chai

et al. (2019) even concluded that "the price linkage relationship between the United States

and European natural gas markets had gradually declined in recent years."

Another strand of literature, which explains some of the described stylized facts, explores

the relationship between oil and natural gas markets. Because oil and gas are substitutes, and
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the oil market is global, oil prices tie the gas markets together (Brown and Yücel 2008) or, at

least, coordinate gas prices across di¤erent regions (Brown and Yücel 2009). With very few

exceptions, notably Batten et al. (2017), the consensus is that causality runs from oil to gas

markets (see, e.g., Erd½os 2012 or Geng, Ji, Fan 2017). Most studies also concluded that this

relation is more robust for Europe and Asia than North America (Geng et al. 2016, Zhang et

al. 2018 and Zhang and Ji, 2018). Lin and Li (2015) concluded that European and Japanese

gas prices are co-integrated with Brent oil prices, but the U.S. gas price is decoupled from oil

due to natural gas market liberalization and shale gas expansion. Additionally, they con�rmed

the results of other authors when they claimed that their results support the presence of price

spillover from crude oil markets to natural gas markets, but not the reverse.

One controversial issue in the oil gas relationship is its stability. For example, while Ji et

al. (2018) found a stable contemporaneous causal �ow from crude oil to natural gas, Brigida

(2014) only found a co-integration relationship once he allowed for shifts in the co-integrating

vector. Ramberg and Parsons (2012) also concluded that the co-integrating relationship is

not stable through time.

The paper proceeds as follows. Section 2 starts with a discussion showing why wavelet

analysis is particularly well-suited to study market synchronization and energy markets, fol-

lowed by a very brief description of the Continuous Wavelet Transform tools used in this

study. We leave the technical details about these tools to an appendix, and in, this section,

instead, we apply them to the oil markets, which will serve as a global market benchmark. In

Section 3, we present our data, and Section 4 delivers our �rst results regarding gas market

synchronization between North America, Asia, and Europe. In Section 5, we explore the

gas-oil relationship and describe how it helps to explain the results of Section 4. Surprisingly,

we uncover a long-run relationship between the regional gas markets. It started in the early

2000s and had not been revealed before, to the best of our knowledge. Section 6 concludes.
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2 Methodology and the de�nition of the oil market

benchmark

We use wavelet analysis to study market prices synchronization. We do not claim that

wavelet analysis is better than other more traditional methods. We only argue that this

technique is particularly appropriate to investigate this issue. It performs the estimation of

the spectral characteristics of a time-series as a function of time, revealing how its di¤erent

periodic components evolve, which is crucial, because market equilibria are a combination of

features operating on di¤erent frequencies. Moreover, relations may be di¤erent for di¤erent

frequencies, since di¤erent economic agents are concerned with di¤erent time-horizons. Some

agents focus on short-run (high frequencies) movements and co-movements, while other agents

are concerned with longer horizons (lower frequencies). It is entirely conceivable that, at high

frequencies, markets may be independent, but they are together at low frequencies. For

example, Nick and Thoenes (2014) found that, in the short-run, the German natural gas

market is a¤ected by local conditions, like temperature, storage, and supply shortfalls. In

the long-run, oil and coal are key determinants. With a global oil market, and assuming that

it impacts all gas markets, it is likely that regional gas markets synchronization looks very

di¤erent in the short- and long-run. Additionally, causality relations need not be the same at

di¤erent frequencies. It is possible that, at high frequencies, shocks in the gas markets have

impacts in the oil markets but that, in the long-run (at lower frequencies), causality runs

from oil to natural gas prices.

It is also a fact that energy price dynamics are �rmly non-stationary with unit roots,

volatility clustering, structural breaks, etc. Therefore, it is essential to use methods that do

not require stationarity. Moreover, Kyrtsou et al. (2009) showed that several energy markets

display consistent nonlinear dependencies. Thanks to its localized nature, wavelet analysis is

particularly well-suited to study data with all these characteristics.

There are mainly two ways to apply wavelets to data. One uses the discrete wavelet

transform (DWT) and the other the continuous wavelet transform (CWT), which is the

technique used in this paper. With DWT, one decomposes a time-series into a sum of time

series of di¤erent frequencies. It is similar to applying several bandpass �lters to isolate the

5



behavior of a variable for each band. Yogo (2008) showed that multi-resolution with wavelet

analysis (very quickly performed with DWT) allows for the decomposition of a variable into

a trend, cycles of di¤erent periodicities, and noise, in a way very similar to bandpass �ltering.

Yang (2019) combined this technique with the connectedness measure proposed by Diebold

and Yilmaz (2009). Thanks to this combination, they were able to study the connectedness

between economic policy uncertainty and oil price shocks at di¤erent frequencies (also called

timescales). Their approach allowed them to conclude that the connectedness relationship is

robust across frequencies. However, it did not allow them to study how that connectedness

evolves across time. CWT provides an elegant and e¢ cient way to integrate both analyses,

as we will show.

Before us, other authors have relied on wavelets to analyze the energy markets or the

relationship between energy prices and other �nancial or macroeconomic variables. Aguiar-

Conraria and Soares (2011b), Naccache (2011), Jammazi (2012), Tiwari et al. (2013) have

already used wavelets to study the evolution of oil prices, and Aloui and Hkiri (2014) used

them to analyze stock market returns for the Gulf Cooperation Council Countries. Vacha

and Barunik (2012) looked to other energy commodities and found interesting dynamics of

correlations between crude and heating oil, gasoline, and natural gas. Vacha et al. (2013)

relied on wavelet coherencies to relate biofuels to several commodities. Other authors, such

as Rua and Nunes (2009), Flor and Klarl (2017), Aguiar-Conraria et al. (2018), or Verona

(2000), have applied wavelets to study co-movements in �nancial data.

In this section, we give a brief description of the continuous wavelet tools used in our

analysis. We refer the readers to Aguiar-Conraria and Soares (2014) and Aguiar-Conraria et

al. (2018) for more technical details. For a broader view of the digital signal processing and

spectral analysis, including the Continuous Wavelet Transforms, we suggest Alessio (2016).

2.1 Continuous Wavelet Transform and Wavelet Power

Researchers have used the Fourier transform and Fourier spectral analysis to determine

whether frequencies play predominant roles in explaining the overall variance of a time-series,

by decomposing the observed pattern over time into a spectrum of cycles of di¤erent lengths.
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Fourier analysis theory can be traced back to 1807, when Joseph Fourier showed that almost

any periodic function could be written as a weighted sum of sines and cosines of di¤erent

frequencies. Even if the function is not periodic, it still may be expressed as a combination of

sines and cosines under some conditions. The typical approach is to map the original variable,

say xt, into the frequency domain, employing the Fourier transform. The main limitation of

Fourier analysis is that the information about time is lost under the Fourier transform. There-

fore, we can identify which are the predominant cycles, but we cannot tell when they were

the most important.

Figure 1: Crude Oil prices and their Wavelet Power Spectra. The color spectrum depicts the
extent of variability, and evolves from low power (blue color) to high power (red color). The white

lines within the power spectra represent the local maxima. The black contour signi�es 5%
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signi�cant level while the gray contour represents the 10% signi�cant level. The cone of in�uence,
represented by the black conic line, indicates that the results are unreliable outside this line and

should be interpreted with special care.

The Continuous Wavelet Transform overcomes this problem by mapping xt into the time-

frequency domain, which is just a way to say that CWT is a function of two variables: time

and frequency. That is why while the Fourier Power Spectrum gives us information on which

cycles play predominant roles in explaining the variance of a time-series, the Wavelet Power

Spectrum (WPS) tells us which cycles play predominant roles and when.

In Figure 1, we display the WPS of the oil prices in three markets: Brent, West Texas

Intermediate (WTI), and Dubai. How should we interpret this picture?

We use colors to depict the power spectrum. It goes from low power (blue) to high power

(red). The higher the power, the higher the volatility. We can see that the wavelet power spec-

tra become statistically signi�cant around the year 2002 (the gray/black contour represents

10%/5% signi�cance) at low frequencies. Around the year 2006 and until 2014, integrating

the international �nancial crisis, we also observe high volatility at higher frequencies.

The white stripes within the power spectra represent the local maxima, giving us the best

estimate of the dominant cycle period. This means that a 6-year cycle is dominant, starting

in 2006 and going until the end of the sample. We also identify less predominant cycles at

higher frequencies, especially after 2007, coinciding with the international �nancial crisis.

2.2 Wavelet transform de-synchronization matrix

Aguiar-Conraria and Soares (2011a) introduced a procedure to measure the dissimilarity

between the wavelet transforms of two time-series; this technique was also used by Flor and

Karl (2017). To measure the dissimilarity between two markets x and y, we simply measure

the dissimilarity between their wavelet transforms, by using the referred technique.

Looking at Figure 1, it should be apparent that comparing the wavelet spectra of two

variables is similar to comparing two images. Direct comparison is not suitable, because

there is no guarantee that low power regions will not overshadow the comparison. In the

appendix, we explain how we use the Singular Value Decomposition to focus on the common

high power time-frequency regions and measure how far apart the wavelet spectra are.
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If the two wavelet spectra are very similar, the variables share the same high power regions,

and their phases are aligned. In turn, this means that their cycles are very synchronized: the

contribution of cycles at each frequency to the total variance is similar for both variables, and

they occur simultaneously.

Table 1: Oil markets de-synchronization matrix.

Table 1 displays our results. As we can see, the oil markets are very synchronized. Every

pair is synchronized at 1%, with Brent and Dubai being more synchronized with each other

than with WTI. As gas and oil are substitutes and it is common to compare both markets,

this table provides a useful benchmark.

2.3 Wavelet Coherency and Wavelet Phase-Di¤erence

While the wavelet power spectrum is useful for describing the spectral characteristics of a

single variable, here we are interested in studying the synchronization between two or more

variables. For that purpose, we will rely on two tools. The �rst is wavelet coherency, which

calculates the correlation between two variables in time. The pictures will be similar to

Figure 1, with warm colors representing high coherency regions and cold colors corresponding

to low coherencies.

Given that we use a complex-valued wavelet, we can compute the phase of the wavelet

transform of each series and, hence, compute the corresponding phase-di¤erence. The phase-

di¤erence, which is an angle, is another tool that we will use, in order to obtain information

about the possible delays in the two series�oscillations, as a function of time and frequency.

A phase-di¤erence of zero indicates that the time-series move together at the speci�ed time-

frequency value. If the phase di¤erence between x and y is between 0 and �
2
, then the series

move in phase with x leading ; if it is between ��
2
and 0, then it is y that is leading; a
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phase-di¤erence of � (or ��) indicates an anti-phase relation (negative correlation); if it is

between �
2
and �, then y is leading; series x leads if the angle is between �� and ��

2
.

We will also use the partial wavelet coherency and the partial wavelet phase-di¤erence,

which are simply the multivariate analogs of the wavelet coherency and the wavelet phase-

di¤erence. For three variables, e.g., x; y; z, the partial wavelet coherency of x and y, after

controlling for z; is the wavelet coherency between x and y, after removing the in�uence of z.

In Figure 2, we estimated the coherency and phase-di¤erence between prices of the di¤erent

oil markers. We can see that, in all the three cases, the color red dominates the picture.

Therefore coherency is very high, close to one, across the entire sample and for all frequencies.

On the right, we can observe that the phase-di¤erence is zero or very close to zero, meaning

that the markets co-move without anyone leading the other.
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Figure 2: on the left �the wavelet coherency between oil prices of two di¤erent markers. The
black/gray contour designates the 5%/10% signi�cance level. The color code for coherency ranges
from blue (low coherency �close to zero) to red (high coherency �close to one). On the right �

Corresponding phase-di¤erences for the frequency bands of 1:5 � 4 and 4 � 8 years.
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3 A �rst look at the gas data

We use monthly data from 1990M01 to 2019M12 for Natural Gas prices ($/MMBtu) in the

U.S., Europe, and Japan. For crude oil prices ($/bbl), we consider the Brent marker, which is

light and sweet. Brent is the reference for more than half of the oil traded around the world.

In the previous section, we used the Dubai marker, which is heavier and sour, and WTI,

which is somewhat similar to Brent, but slightly lighter. We retrieved all our data from the

World Bank Commodity Price Data (The Pink Sheet). In Figure 3, on the left, we display

our data for the three gas markets. On the right, we can see the wavelet power spectrum of

each variable. In the power spectra, the colors re�ect the degree of volatility, with cold colors

(blue) depicting low variability and warm colors, such as red, depicting high volatility. A

thick black/gray contour identi�es the regions of 5/10% signi�cance against the null of a �at

power spectrum. The white stripes identify local maxima and are, therefore, an estimation

of the period of the most relevant cycles.

The wavelet power spectra of the gas markets in Europe and Japan are quite similar (and

also similar to power spectra of the oil markets in Figure 1). In both cases, the power spectrum

becomes statistically signi�cant around the year 2000 (2005 in the case of the gas in Japan)

at low frequencies. The white stripes indicate that the period of the dominant frequency is

about six years. This 6-year cycle remains dominant until the end of the sample. Around the

year 2008 and until at least 2012, coinciding with the international �nancial crisis, we also

observe high volatility at higher frequencies, particularly in Europe.

The wavelet power spectrum of the gas prices in the U.S. displays a di¤erent behavior.

At higher frequencies, the power spectrum is statistically signi�cant from the mid-1990s to

mid-2010s, with a dominant 3-year cycle. Between 2005 and 2008, at even higher frequencies,

corresponding to 1.5-year cycles, we have another region of high volatility. Contrary to the

previous cases, volatility at low frequencies does not seem to play a dominant role, despite

being statistically signi�cant.
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Figure 3: Natural Gas prices and their Wavelet Power Spectra. The color spectrum depicts the
extent of variability, and evolves from low power (blue color) to high high power (red color). The
white lines within the power spectra represent the local maxima. The black contour signi�es 5%
signi�cant level while the gray contour represents the 10% signi�cant level. The cone of in�uence,
represented by the black conic line, indicates that the results are unreliable outside this line and

should be interpreted with special care.

In Table 2, we display the wavelet transform dissimilarity index developed by Aguiar-

Conraria and Soares (2011), also applied by Flor and Klarl (2017). As we have seen, a value

close to zero means that two markets have a similar wavelet transform, implying that the

two countries share the same high power regions and also that their phases are aligned. More

speci�cally, this means that the contribution of cycles at each frequency to the total variance

is similar between both markets, that this contribution happens at the same time, and, �nally,

that the peaks and troughs of each cycle coincide in both markets. To test for signi�cance,
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we rely on Monte-Carlo simulations, in which the null hypothesis is that the two series are

independent.

Table 2: Gas markets de-synchronization matrix.

One interesting result that we observe in Table 2 is that each gas market is closer to the

oil market than to any other gas market. It is also worth noting that the North American

gas market seems independent of the other markets. We do not reject the null of no syn-

chronization even at 10%. The other markets form a cluster, and we reject the null of being

independent. Note, however, that the dissimilarity between the European and the Japanese

markets (0.167) is between 2.5 and 6.4 times larger than the dissimilarities between the oil

markets (Table 1). In the next two sections, we explore these results in detail.
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4 Gas Markets Integration

In Figure 4, on the left, we estimate the pairwise wavelet coherency between the three di¤erent

gas markets. On the right, we have the phase-di¤erence. If the phase-di¤erence between

market A and market B is between 0 and �=2 (��=2 and 0), that means that the markets are

in-phase (positive correlation), with A (B) leading. If the phase-di¤erence is between �=2 and

� (�� and ��=2), then they are out-of-phase (negative correlation) with B (A) leading. The

interpretation of our econometric results proceeds along with the standard approach in related

literature. First, we check the time-frequency regions where the coherency is statistically

signi�cant. In those episodes, we may con�dently say that there has been a signi�cant co-

movement between the two series for cycles of the indicated period. For the statistically

signi�cant time-frequency locations, we analyze the phase-di¤erences to detect whether the

co-movement is positive or negative, and which variables are leading and lagging.

The picture on top gives us the relation between the American and European gas markets.

In the 1:5 � 4 year frequency band, we observe a large region of high coherency statistically

signi�cant at 10% (or to smaller regions if one focuses on 5% signi�cance). Loosely speaking,

it runs from the mid-1990s to mid-2010s. Apart from the beginning, the phase di¤erence

is consistently between 0 and �=2; indicating that it is the American market that leads the

European market. Towards the end of the sample, the coherency becomes signi�cant again at

very high frequencies, with the phase-di¤erence being almost zero, suggesting that cycles are

almost simultaneous. At lower frequencies, the regions of signi�cant coherencies are scarce.

There is one small region until 2000, with the U.S leading and, again, around 2014, with

Europe leading. However, these regions are so small that we do not attach any particular

meaning to them.

Regarding the U.S. and Japan, the regions of statistically signi�cant coherency are smaller.

The most surprising result, which contradicts part of the earlier literature, is that after 2005

there is a region of high and statistically signi�cant coherency at higher frequencies (1:5 � 4

year frequency band) with the phase-di¤erence indicating that the U.S. market is leading.

Therefore, and this applies both to Europe and Japan, we �nd no evidence that the shale

gas revolution has led to a decoupling of the American market. At most, we can say that the
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existing co-movement moved from lower to higher frequencies.

Figure 4: on the left �the wavelet coherency between Natural Gas prices in the three di¤erent
regional markets. The black/gray contour designates the 5%/10% signi�cance level. The color

code for coherency ranges from blue (low coherency �close to zero) to red (high coherency �close
to one). On the right � phase-di¤erences for the frequency bands of 1:5 � 4 and 4 � 8 years.
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The picture of Europe and Japan con�rms the result we had before: these two markets are

signi�cantly synchronized. The red (and statistically signi�cant) region is vast, and it covers

both high and low frequencies. Most of the time, the phase-di¤erence is slightly negative,

indicating that the European gas market slightly lags the Asian market.

However, it is noteworthy that towards the end of the sample, the regions of high coherency

diminish, suggesting that, in this last decade, these two markets are becoming less, not more,

synchronized.

Given these results, is the degree of synchronization such that we can consider that these

two markets are integrated and that we can treat them as one? The answer is no, at least

if we take the oil markets as the benchmark (see Figure 2). Therefore, we can discuss how

integrated the gas markets are, especially the European and Japanese markets, but we should

keep in mind that, no matter how synchronized, they are still far from a global market such

as the crude oil world market.
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5 The role of oil in connecting the gas markets

As we saw in the introduction, there is a considerable literature about the oil and gas market

relation and on the role of oil in connecting the gas markets. This kind of association is

expected given that, in many ways, these two forms of energy are substitutes, sometimes

even close substitutes. In Table 2, we materialized this relation under our framework: except

for the North American gas market, we can safely reject the hypothesis that the oil and gas

prices are not connected.

In the �rst subsection, we explore this connection, checking which market leads which,

when, and at what frequencies. Then, in the second subsection, we reanalyze the connected-

ness of the gas markets after removing the coordinating e¤ect of the oil prices.

5.1 Gas and oil markets integration

In Figure 5, we estimate the wavelet coherency and the phase di¤erence between the gas

prices in each market and the price of crude oil (Brent). Con�rming the results of several

other authors, we can see that the links between oil and gas in the U.S. are much weaker than

between oil and the other gas markets. Until 2000, at lower frequencies, the two markets were

tied (high coherency and zero phase-di¤erence). After that, the longer run link disappeared.

In the shorter run (1:5 � 4 years), there is a region of high coherency at the beginning of the

sample, but the phase-di¤erence is too erratic to be able to make sense of this result. After

2005, at higher frequencies, coherency becomes signi�cant again. The slightly negative phase

di¤erence suggests that the gas prices follow the oil prices. This is one possible explanation

for the result we found in the previous section linking the North American gas market to the

European one (and, to a lesser extent, also to the Japanese).

Regarding the connection between the European and Japanese gas markets with the oil

market, we can observe a much more stable relationship and, actually, stronger than the

relationship we found in the previous section between the two regional gas markets. One can

safely conclude that these two gas markets are more connected with the oil market than with

each other.
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Figure 5: on the left �the wavelet coherency between Natural Gas prices and crude oil (Brent).
The black/gray contour designates the 5%/10% signi�cance level. The color code for coherency
ranges from blue (low coherency �close to zero) to red (high coherency �close to one). On the

right � phase-di¤erences for the frequency bands of 1:5 � 4 and 4 � 8 years.

The red region is more extensive in the case of the Japanese gas market than in the case of

the European one, suggesting that the relation between oil and gas is more substantial in the

19



former case. Note that the phase-di¤erence is consistently negative, meaning that it is the

oil market that consistently leads the gas markets, con�rming the consensus in the literature

that that causality runs from oil to gas markets.

One possible take from these results is that it is not the European gas market that is

connected to the Asian market, as suggested by Figure 4, but it is the oil connection that is

the common factor.

This brings us (ou leads us) to next natural question, which is to know what would

happen to their relationship if we removed the oil e¤ect. We try to answer this question in

the following subsection.

5.2 Gas markets integration without the oil connection

To control for the oil market e¤ect, one must rely on multivariate analysis. That is what

we do in Figure 6. We estimate the partial wavelet coherency between each pair of gas

markets, after controlling for the oil market e¤ect. The results are staggering. Regions of

high coherency almost disappear, and the phase-di¤erences become quite erratic. This result,

not only reinforces previous conclusions that it is the global oil market that connects the

regional gas markets, but also suggests that once we remove this link, gas markets become

mostly independent.

There is one peculiar result, though, which is common to the three pictures. In 2005, at

the lowest frequencies, we observe a region of high coherency that dies o¤ by the end of the

sample. The phase-di¤erence between the U.S. and Japan �uctuates between � and ��. This

means that there is an almost instantaneous negative relationship between these two markets,

at these frequencies. Analyzing the U.S. and Europe, we observe an in-phase relation with the

U.S. leading and, naturally, between Japan and Europe, we observe an anti-phase relation,

with the Japanese prices leading.

Overall, the conclusion is that once one removes the oil coordinating e¤ects, the three

markets become primarily independent.
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Figure 6: on the left �the partial wavelet coherency between prices of di¤erent gas markets after
controlling for oil prices. The black/gray contour designates the 5%/10% signi�cance level. The
color code for coherency ranges from blue (low coherency �close to zero) to red (high coherency �
close to one). On the right � partial phase-di¤erences between for the frequency bands of 1:5 � 4

and 4 � 8 years.
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6 Conclusions

While we can say that there is a global market for crude oil, we cannot say the same about

natural gas. Still, there is a strand of literature that argues that, in the last decades, gas

markets have become less regional and more global. We applied the Continuous Wavelet

Transform tools to test the global integration of regional gas markets and its relation to the

oil market. This approach o¤ers the opportunity to look at this subject simultaneously from

a time and frequency perspective.

Among other results, we concluded that the Japanese and European markets are syn-

chronized (although their coordination is far smaller than what we observe in the global oil

market) at 1:5 � 6 years frequencies, with a slight lead from the Asian market. However, in

the last decade, coordination has been decreasing. The North American market is indepen-

dent; however, some evidence points to some coordination with the European market at high

frequencies.

We also looked at the relation between the gas and oil markets. Each gas market is more

synchronized with the oil market than with any other gas market. It is the oil market that

links the gas markets, mostly the Japanese and the European ones. Once we remove the oil

prices�arbitraging e¤ect, the gas markets become independent from each other.

Can we �nd economic reasons that explain the detachment of the North American gas

market? Natgas.info (2021) provides several clues: one possible explanation is the extensive

pipeline network present in the United States, with roughly equivalent gas speci�cations,

many buyers and many sellers, facilitating the existence of an independent market. Moreover,

regional gas supply and demand set gas prices, where gas competes with other gas (gas-on-

gas pricing). It is common in the other markets to have gas prices directly linked to oil

prices (Gara¤a et al., 2019). To be more precise, in Europe, gas prices are a function of

energy substitutes, which naturally include oil products. According to Natgas.info (2021)

and Agerton (2017), it is common to have pure oil-linked pricing in North Asia, especially

Japan, Korea, and Taiwan. This contract structure explains the results we found in Table 2

and Figures 5 and 6. Note that we concluded that the oil market is very connected with

the Asian gas market, and (less) with the European market, and even less with the North
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American market.

In this study, we analyzed gas markets synchronization. We considered the role of oil in

coordinating these markets. We did not consider other factors that may also be relevant.

For example, Nick and Thoenes (2014) show that, in the short-run, natural gas prices in

Germany su¤er shocks from several sources and that, in the long-run, not only oil but also

coal are vital determinants. In future work, we will study the role of coal in explaining the

dynamics that we found. Still, our results are of interest to several economic agents. It is still

not the time for industry strategists to think of regional gas markets as being one market.

That means that geographical diversi�cation reduces obviously local risks, like political risks,

and also reduces exposure to price shocks. The fact that our analysis is frequency varying

allows for portfolio managers to adjust their choices to their clients�time-horizons. Consider,

for example, the case of the Japanese and European gas markets. After 2013, coherency

between the two markets decreased at higher frequencies and increased at lower frequencies

(corresponding to cycles of a period above four years). If the clients� time-horizon is less

than four years, then portfolio investment in both markets will help risk diversi�cation. For

a more extended time-horizon, the investor should consider that markets are (imperfectly)

tied, and risk diversi�cation will be harder to achieve. It should also be clear that, at these

lower frequencies, any spillover e¤ects will run from oil to gas markets. All this information

helps portfolio managers to de�ne their risk strategies more adequately.

Our results reinforce the need to decouple gas pricing from oil prices in Europe and Japan

(especially in the latter case) for policymakers. Given the typical contract structure of gas

transactions, an increase in oil prices will increase gas prices. This may lead to overpriced

gas, which will hurt consumers. Moreover, because of environmental concerns, a policymaker

may prefer that gas consumption share increases. With both prices tied together, there is not

much incentive to substitute gas for oil when the latter increases.
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7 Appendix � The ContinuousWavelet Transform and

the de-synchronization matrix

7.1 Continuous Wavelet Transform and Wavelet Power

For all practical purposes, a wavelet is simply a small wave: a wave, in the sense that it

is a function  (t) whose graph oscillates up and down the t-axis (integrating to zero) and

small meaning that it rapidly decays as t ! �1. To obtain the phase information about

the various cycles in a time series, which will be essential to assess the lead/lag relationships

between two variables, it is necessary to work with a complex-valued wavelet. The wavelet we

used in our computations is the particular member of the so-called Morlet family, introduced

by Grossmann and Morlet (1984) and de�ned by  (t) = ��
1
4 ei6te�t

2=2, see Aguiar-Conraria

and Soares (2014) for a detailed discussion on the optimal characteristics of this particular

wavelet.

Given a function (time-series) x(t), its continuous wavelet transform (CWT) (with respect

to the wavelet  ) is a function of two-variables, Wx(t; s):

Wx (t; s) =
1p
jsj

Z 1

�1
x (t) 

�
t� t
s

�
dt; t; s 2 R; s 6= 0: (1)

In the above formula, and in what follows, the over-bar is used to denote complex conjugation.

The wavelet transform Wx is complex-valued and can be expressed in polar form as

Wx (t; s) = jWx (t; s)j ei�x(t;s), �x 2 (��; �]. The angle �x is referred to as the (wavelet)-

phase and the square of the modulus of Wx is called the (local) wavelet power spectrum and

is denoted by (WPS)x, i.e.

(WPS)x(t; s) = jWx (t; s)j2 : (2)

We can interpret the wavelet power spectrum as depicting the local variance of a time-

series in the time-scale (or time-frequency) plane.
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7.2 Wavelet Coherency and Wavelet Phase-Di¤erence

To deal with the time-frequency dependencies between two non-stationary time-series, we

use the wavelet coherency and wavelet phase-di¤erence, which naturally generalized the basic

wavelet analysis tools to the bivariate case.

Remark 1 As for the wavelet power spectrum, all the wavelet measures that we are going

to introduce are functions of the two variables, t and s. To simplify the notation, we will

describe these quantities for a speci�c value of the argument, (t; s) , which will be omitted in

the formulas.

Given two time-series, x(t) and y(t), their cross-wavelet transform, Wxy, is simply de�ned

as Wxy = WxWy; where Wx and Wy are the wavelet transforms of x and y. The complex

wavelet coherency %xy of series x and y is given by:

%xy =
S (Wxy)

(S (jWxj2)S (jWyj2))1=2
; (3)

where S denotes a smoothing operator in both time and scale; smoothing is necessary, because,

otherwise, coherency would have modulus one at all scales and times.

As with the wavelet transform, the complex wavelet coherency can be written in polar

form, as %xy =
��%xy�� ei�xy : The absolute value of the complex wavelet coherency is called the

wavelet coherency and is denoted by Rxy and the angle �xy of the complex coherency is called

the (wavelet) phase-di¤erence. The angle �xy is obtained form the real part <(%xy) and the

imaginary part =(%xy) of %xy by using the formula

�xy = arctan

�=(%xy)
<(%xy)

�
; �xy 2 (��; �]; (4)

together with the information on the signs of <(%xy) and =(%xy) to determine to which quad-

rant the angle belongs to.

A phase-di¤erence of zero indicates that the time-series move together at the speci�ed

time-frequency value; if �xy 2 (0; �2 ), then the series move in phase, but the time-series x

leads u; if �xy 2 (��
2
; 0), then it is y that is leading; a phase-di¤erence of � indicates an anti-

phase relation; if �xy 2 (�2 ; �), then y is leading; time-series x is leading if �xy 2 (��;�
�
2
).
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7.3 Partial Wavelet Coherency and Partial Wavelet Phase-Di¤erence

The partial wavelet coherency and the partial wavelet phase-di¤erence are simply the mul-

tivariate analogs of the the wavelet coherency and the wavelet phase-di¤erence. For three

variables, e.g. x; y; z, the complex partial wavelet coherency of x and y, after controlling for

z; is given by the formula

%xy :z =
%xy � %xz%yzq

(1�R2xz)(1�R2yz)
: (5)

The partial wavelet coherency, rxy :z; is the absolute value of %xy :z and the partial phase-

di¤erence of x over y, given z, is the angle of %xy :z. We can interpret rxy :z as the wavelet

coherency between x and y, after removing the in�uence of z:

7.4 Wavelet transform de-synchronization matrix

We will also use a measure of the dissimilarities between the wavelet transform of two time-

series proposed by Aguiar-Conraria and Soares (2011a), also applied by Flor and Klarl (2017).

To measure the dissimilarity between market x and y; we start by computing the Singular

Value Decomposition (SVD) of the matrix WxW
H
y , where W

H
y is the conjugate transpose

of Wy, to focus on the common high power time-frequency regions.2 Because this method

extracts the components that maximize covariances, the �rst extracted K components cor-

respond to the most important common patterns of the wavelet transforms.3 The wavelet

distance between the wavelet spectra of series x and y, denoted by dist(Wx;Wy), is computed

as:

dist (Wx;Wy) =

PK
k=1 �

2
k

�
d
�
lkx; l

k
y

�
+ d (uk;vk)

�PK
k=1 �

2
k

: (6)

In the above formula, uk and vk are the singular vectors and �k the singular values obtained in

the SVD and lkx and l
k
y are the so-called leading patterns, given by l

k
x = u

H
kWx and lky = v

H
kWy.

We compute the distance d(u;v) between two vectors u and v (leading vectors or leading

patterns) by measuring the angle between each pair of corresponding segments, de�ned by the

consecutive points of the two vectors, and take the mean of these values; see Aguiar-Conraria

2In practice, the CWT of a time-series is computed only for a �nite number of values of the time and scale
parameters, so the computed wavelet spectrum of a series ends up being simply a matrix.

3The value of K is, in general, an integer much smaller than the rank of the matrix WxWyH; in our case,
we considered K = 3.
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(2011) for more details.

The above distance is computed for each pair of markets and, with this information, we

can then �ll a de-synchronization matrix.
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