
• For the Oldroyd-B fluid the ML model that presents the best R2 (as well as the lowest
values of RMSE and MAPE) is the Random Forest model.

1.3. COMPARISON WITH CLOSURE DRAG MODEL AND SIMULATED DATA
• Relative errors were calculated between the values predicted by the ML models and

the actual values given by both a closure drag model [4] and numerical simulations
data.

• The first three lines of the table refer to data that were used in the training of the
algorithms (from the closure drag model), with a maximum error of 0.67%, and the
last two lines show the comparison with data from numerical simulations, with a
maximum error of 10.88%.

2. DEEP LEARNING MODELS FOR SHEAR-THINNING GIESEKUS FLUID
2.1. DNS RESULTS

• For the Giesekus fluid there is an additional constitutive parameter that must be
considered, the mobility parameter, with range 0 ≤ α ≤ 0.9.

• Compared to Oldroyd-B fluid, we generated data from numerical simulations instead
of using a closure drag model, because it does not yet exist for the Giesekus model.
The evolution of the drag correction ꭕ = CD (Wi, ζ, α)/(24/Re) have a different
behavior with the increase of Re at higher ζ, due to flow separation.
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CONCLUSIONS
• The ML models applied to predict the drag force on a sphere suspended in an

Oldroyd-B and Giesekus fluids showed good performance results, allowing us to
conclude that in this context, ML can be a valuable predictive tool for different
kinematic conditions.

• For the Oldroyd-B fluid, the ML model with the highest R2 was the Random Forest,
while for the Giesekus fluid it was the Deep Neural Network model. This may be due
to the size of the initial database, since for the Giesekus fluid we have less data to
train the model.
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INTRODUCTION
• Non-Newtonian fluid suspensions are widely used in several areas of our daily

life, from toothpastes to drilling muds to injection molding of filled polymers
melts.

• However, an efficient numerical solver capable of simulating such processes is
still missing in the scientific literature.

• For this purpose, a 3D CFD-DEM viscoelastic solver is developed in this work to
handle particle-laden viscoelastic flows using a new approach, based on
machine learning (ML) models, to compute a particulate-phase drag model valid
for a wide range of material parameters.

RF XGBoost DNN
R2 1.0 0.9993 0.9992

RMSE 0.0032 0.0177 0.019
MAPE 0.0343 0.5943 0.6958

RESULTS AND DISCUSSION

1. VALIDATION OF THE DEEP LEARNING METHODOLOGY WITH THE
CLOSURE DRAG MODEL FOR THE OLDROYD-B FLUID
1.1. DNS RESULTS

• The data obtained from the closure drag model existent for the Oldroyd-B fluid
[4] are represented for three different retardation ratio (ζ = 0.1, 0.5 and 0.9).

• The evolution of the dimensionless drag coefficient behavior is self similar, for
Re ≤ 1, suggesting the dependence on inertia can be factored out and we can
define drag correction parameters ꭕ.

RF XGBoost DNN
R2 0.9962 0.9943 0.9971

RMSE 0.0432 0.0529 0.0376
MAPE 1.7058 2.4887 1.8592

1.2. DATA DRIVEN MODELS
• The test values (green points), training values (blue points), as well as the

regression line and predicted values (points and gray line) for each ML model
are presented.

• The regression equation show remarkable accuracy between tested and
predicted values, as shown by the large R2.

ζ Re Wi ꭕ RF % Error XGBoost % Error DNN % Error

Tr
ai

ni
ng

0.1 1 3 1.0240 1.0240 0.0005 1.0254 0.1379 1.0303 0.6194

0.5 0.5 0.5 0.9979 0.9979 0.0004 0.9976 0.0314 0.9942 0.3663

0.9 0.1 1 0.9882 0.9885 0.0283 0.9942 0.6026 0.9949 0.6739

Va
lid

at
io

n

0.5 0.3 1.5 1.1154 1.0057 9.8347 1.0021 10.1554 0.9942 10.8765

0.5 0.3 2 1.1301 1.0198 9.7610 1.0154 10.1440 1.0160 10.0934

2.2. DATA DRIVEN MODELS
• For the Giesekus fluid the ML model that presents the best R2 (as well as the lowest

value of RMSE) is the Deep Neural Network model.

• To calculate the dimensionless viscoelastic drag correction factor, ꭕ (Wi), we
begin with 3D direct numerical simulations (DNS) of unconfined viscoelastic
flows (with the shear-thinning Giesekus fluid model) over a wide range of
parameters, specifically for Reynolds number Re ≤ 50, Weissenberg number
Wi ≤ 5 (λ is the relaxation time), retardation ratio 0 < ζ < 1, (η0 is the viscosity in
the limit of vanishing shear rate and ηP is the polymeric contribution to the
viscosity) and the mobility parameter 0 < α < 1.

• A total of approximately 3000 DNS were performed and the results obtained
enable the development and validation of machine learning models which relate
the input data (specifically Re, Wi, ζ and α) to the output (response) variable,
here the dimensionless viscoelastic drag correction factor on the particle, ꭕ (Wi).

• A number of different ML algorithms are considered, including the Random
Forest (RF) [1], Gradient Extreme Boosting (XGBoost) [2] and Deep Neural
Network (DNN) [3].

• The data set is divided into training and testing subsets to compare with the
predicted data, in percentage 80/20, respectively.

• To train and compare the performance of aforementioned models, the accuracy
is evaluated based on three common statistical indicators, R2 (R-squared),
RMSE (root mean squared error) and MAPE (mean absolute percentage error).

𝑅𝑅𝑅𝑅 = 2𝑅𝑅𝑅𝑅𝑎𝑎 =
2𝑎𝑎𝜌𝜌𝑈𝑈𝑖𝑖𝑖𝑖
η0

where 𝑦𝑦𝑖𝑖∗ are the observed values, �𝑦𝑦𝑖𝑖∗ is the mean of the observed values and 𝑦𝑦𝑖𝑖
are the predicted values. 

Uniform inlet plug flow 

Viscoelastic fluid

• Drag decreases with Wi at Re << 1.
• Drag increases with Re (even at

Wi ≈ 0).
• Weaker drag increase with Re when

Wi≠ 0.
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