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Abstract: Impaired skin wound healing due to severe injury often leads to dysfunctional scar
tissue formation as a result of excessive and persistent myofibroblast activation, characterised
by the increased expression of α-smooth muscle actin (αSMA) and extracellular matrix (ECM)
proteins. Yet, despite extensive research on impaired wound healing and the advancement in tissue-
engineered skin substitutes, scar formation remains a significant clinical challenge. This study aimed
to first investigate the effect of methacrylate gelatin (GelMA) biomaterial stiffness on human dermal
fibroblast behaviour in order to then design a range of 3D-printed GelMA scaffolds with tuneable
structural and mechanical properties and understand whether the introduction of pores and porosity
would support fibroblast activity, while inhibiting myofibroblast-related gene and protein expression.
Results demonstrated that increasing GelMA stiffness promotes myofibroblast activation through
increased fibrosis-related gene and protein expression. However, the introduction of a porous
architecture by 3D printing facilitated healthy fibroblast activity, while inhibiting myofibroblast
activation. A significant reduction was observed in the gene and protein production of αSMA and
the expression of ECM-related proteins, including fibronectin I and collagen III, across the range of
porous 3D-printed GelMA scaffolds. These results show that the 3D-printed GelMA scaffolds have
the potential to improve dermal skin healing, whilst inhibiting fibrosis and scar formation, therefore
potentially offering a new treatment for skin repair.

Keywords: biomaterial stiffness; porosity; wound healing; GelMA; 3D printing; fibroblast;
fibrosis inhibition

1. Introduction

The skin is the largest organ of the human body, which forms an effective barrier
against the external environment and protects the body from dehydration and environ-
mental insults [1,2]. Upon injury, the skin wound-healing process begins immediately
via a dynamic series of physiological events to repair and restore structural integrity and
function to the damaged site. However, in extreme cases, such as severe burns, this repair
process is disrupted and can result in fibrotic scar formation, characterised by the abnormal
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deposition of highly dysfunctional tissue [3]. In such cases, skin autografts are required,
but this treatment option is often limited due to unavailability of healthy donor tissue.
Furthermore, the use of skin grafts often results in excessive scarring and the challenges
associated with scarring, such as loss of tissue function, contracture, limited mobility and
pain [1].

The extracellular matrix (ECM) is actively involved in both cellular and extracellular
events that lead to scar formation. The dermis layer of the skin is composed of the ECM,
separated from the epidermis by the basement membrane [4]. Dermal fibroblasts play a
key role in the wound-healing process by synthesising and remodelling the ECM through
the production of a number of proteins, including collagens and fibronectin. During this
process, fibroblasts transition to myofibroblasts, which contract and close the wound.
However, excessive and persistent myofibroblast activation can impede regeneration to a
level comparable to the original tissue [5,6]. Fibroblast-to-myofibroblast differentiation is
mediated by a variety of inflammatory factors and mechanical stimuli [7,8]. Myofibrob-
lasts are characterised by their elongated morphology; expression of α-smooth muscle
actin (αSMA); enhanced contractility and increased production of ECM proteins, such
as fibronectin I (FN); and collagen I (Col I) and collagen III (Col III) when compared to
normal fibroblasts [9,10]. Extensive research has led to an in-depth knowledge of the
mechanism of impaired wound healing, which leads to fibrosis and scarring [11], and the
field of tissue-engineered skin substitutes has progressed over a number of years [12]. Yet,
despite these advances, preventing scar formation and contracture in skin wound healing
remains a significant challenge [13,14]. As such, there is a real clinical need for alternative
approaches to skin wound healing that induce regeneration upon injury, while preventing
scar formation. Targeting the activity of dermal fibroblasts during wound repair through
optimised scaffold design may provide a new means of achieving this.

Biomimetic-tissue-engineering-based approaches have shown some potential in this
field, yet a number of technological limitations have impeded their success. A significant
challenge is the development of biomaterials that can withstand the elasticity, flexibility
and stretching that native skin is subjected to while supporting the multiple distinct layers
found in the tissue [15]. Furthermore, controlling pore size and interconnectivity, thick-
ness and layer positioning is often difficult to achieve [16]. As such, wound contraction
remains a major issue in scaffold-driven dermal regeneration, and the prevention of scar
formation has yet to be achieved. 3D printing has recently emerged as a potential method
of addressing these challenges as it allows for the development of high-definition scaffolds
with controlled mechanical and structural properties, for improved cell and tissue integra-
tion, to enhance skin regeneration [17,18]. Furthermore, the rate of production possible
with 3D printing allows for more rapid and efficient treatments [19]. More recently, 3D
freeform printing systems have successfully omnidirectionally 3D-printed nanocomposite
hydrogel scaffolds. This technique has improved conventional layer-by-layer 3D printing
by allowing the production of complex biomimetic designs [20].

Collagen is the main structural protein in skin, and its biocompatibility and low
immunogenicity make it an ideal biomaterial for skin tissue applications. However, its
use in 3D printing is challenging due to the processing required for printing and its low
handling and mechanical properties [21]. A common alternative to collagen is the use
of gelatin, a derivative from the degradation of collagen, which has desirable gelling
properties, biocompatibility and biodegradability [22]. Although gelatin-based hydrogels
are easily 3D-printed, their usage in vitro is limited by poor thermal stability. This limitation
can be overcome by applying chemical or physical cross-linking. One such example is
methacrylate gelatin (GelMA), an engineered gelatin-based material that has been proven to
be versatile for a number of biomedical applications due to its suitable biological properties
and tuneable physical characteristics [23,24]. Its application in 3D printing makes it possible
to create on-demand high-resolution scaffolds with controlled pore size and architecture as
well as defined interconnectivity between the pores, suitable for skin tissue engineering [25].
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With this in mind, this study investigated the effect of GelMA stiffness and porosity
on fibroblast behaviour, with the specific aim of designing and characterising a range of
3D-printed GelMA scaffolds with different pore sizes and porosity to promote dermal
fibroblast activity, while reducing myofibroblast activation.

2. Materials and Methods
2.1. Materials

Unless stated otherwise, all reagents were purchased from Sigma-Aldrich, Ireland. Ala-
marBlue and Pico Green were purchased from Biosciences, Cambridge, UK. The live/dead
assay kit was purchased from Invitrogen, Oxford, UK. Monoclonal antibodies were pur-
chased from Abcam, Cambridge, UK. Methacrylate gelatin (GelMA) was purchased from
CellSystems, Troisdorf, Germany. 30G needles were purchased from ATS Adhesives Lim-
ited, Dublin, Ireland, and 24-well-plate cell inserts were purchased from VWR, Dublin,
Ireland. The RNeasy extraction kit and Qiagen Quantitec primers were purchased form
Qiagen, Manchester, UK. Adult human dermal fibroblasts (HdFs) (Detroit 551—ATCC®

CCL-110™) were purchased from ATCC, Manassas, Virginia, USA. Transforming growth
factor β1 (TGF-β1) was purchased from PeproTβech, London, UK.

2.2. The Effect of GelMA Mechanical Stiffness on Myofibroblast Activation and Differentiation
2.2.1. GelMA Hydrogel Fabrication and Mechanical Characterisation

A range of GelMA hydrogels of 1%, 1.5%, 2%, 3%, 8% and 10% (w/v) were prepared
by dissolving the corresponding amount of GelMA into 0.5% (w/v) lithium phenyl-2,4,6-
trimethylbenzoylphosphinate (LAP) in PBS solution at 60 ◦C and maintained at 37 ◦C
until fully dissolved [26]. The final solution was poured into 24-well-plate cell inserts. The
well plates were kept at 4 ◦C for 30 min and then UV (405 nm) was applied for 3 min
for cross-linking. The range of GelMA hydrogels was mechanically tested in unconfined
compression using a standard testing machine with a 5N load cell (Zwick Roell Z005, Zwick
Roell, Ulm, Germany). Briefly, the hydrogels were kept hydrated through immersion in a
PBS bath maintained at room temperature. A preload of 0.01 N was applied to ensure that
the hydrogel surface was in direct contact with the impermeable loading platens, with 10%
strain. Hydrogels with mechanical stiffness in the range of soft (<5 kPa), medium (~10 kPa)
and stiff (>20 kPa) were chosen for further cell studies, as stiff environments are known to
induce myofibroblast activation.

2.2.2. Assessing Fibroblast Morphology and Phenotype on GelMA Hydrogels

Human dermal fibroblasts (HdFs) were cultured in T175 culture flasks using low-
glucose DMEM optimised with 10% FBS and 5% P/S. Before seeding, cells were detached
using trypsin and suspended at a concentration of 107 cells/mL. The hydrogels were seeded
with 2 × 104 and 1 × 104 HdFs per hydrogel for gene expression and immunohistochemistry
assays, respectively. The 24-well plates were then placed in an incubator for 3 h to allow
initial cellular attachment. After the incubation period, 1 mL of 2% FBS and 1% P/S
low-glucose DMEM were added to each well and the plates were returned to the incubator.
As a positive control, 15 ng/mL of transforming growth factor β1 (TGF-β1), which has
been shown to induce myofibroblast activation [27], 2% FBS and 1% P/S low-glucose
DMEM were used. Both culture flasks and seeded scaffolds were cultured under standard
conditions (37 ◦C, 5% CO2). The media were changed every 2 days.

After 7 days, samples were collected for gene expression analysis. Total RNA was iso-
lated using an RNeasy extraction kit according to the manufacturer’s instructions. Samples
cultured with soft gel and without TGF-β1 were used as controls. Target mRNAs analysed
were COL1A1, COL3A1, FN1, αSMA and CTGF, with GAPDH used as a housekeeping
gene. The list of primers that were used for the amplification of these genes is listed in
Table 1.
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Table 1. List of gene transcripts analysed by qRT-PCR; Qiagen Quantitect-validated primers were
used to analyse gene expression levels of target proteins.

Target Proteins Target Gene Reference Catalogue Ref.

Collagen I (COL1A1) Hs_COL1A1_1_SG QT00037793

Collagen III (COL3A1) Hs_COL3A1_1_SG QT00095431

Fibronectin I (FN1) Hs_FN1_1_SG QT00038024

Connective tissue growth factor (CTGF) Hs_CTGF_1_SG QT00052899

Alpha smooth muscle actin (αSMA) Hs_ACTA2_1_SG QT00088102

GAPDH Hs_GAPDH_1_SG QT00079247

To assess αSMA protein expression, scaffolds were fixed in 10% formalin for 15 min
at room temperature and then transferred into PBS at 4 ◦C. To identify the HdF actin
cytoskeleton on the hydrogel scaffolds, the antigen was identified with Tritc-phalloidin
(1:500). The samples were also stained for αSMA with monoclonal (1:100) and goat anti-
rabbit IgG H&L Alexa Fluor 564 (1:250) antibodies. Cell nuclei were stained with DAPI
(dilution 1:1000). Imaging and quantification were carried out using Zeiss 710 NLO, (ZEISS,
Jena, Germany) and Image J, respectively. To evaluate cell morphology, the cell spread
area and circularity were measured using Image J measuring tools. The circularity was
calculated following Equation (1), in which the value 1.0 indicates a perfect circle.

Equation (1): Circularity

4 × π

(
Area

Perimeter2

)
(1)

2.3. Development of 3D-Printed GelMA Scaffolds for Dermal Regeneration
2.3.1. Fabrication of 3D-Printed Scaffolds

To create porous GelMA scaffolds, an Allevi II (Allevi, Philadelphia, PA, USA) 3D printer
was used to print GelMA, coupled with a 10 mL syringe and a 30 G needle. Then, 10% (w/v)
GelMA was dissolved in 0.5% (w/v) lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP)
in PBS at 60 ◦C and maintained at 37 ◦C until fully dissolved [26]. The solution was then
poured into a 10 mL syringe and stored at 4 ◦C until ready for use. To 3D-print GelMA,
a code containing all the toolpaths for the prints (G-code), including printing speed and
GelMA deposition, inter-filament distance, structure perimeter, cross-linking time and
cross-linking intensity to have exact control of the 3D printing process, was developed
using Python, a high-level and general-purpose programming language. Four designs were
then developed, based on inter-filament spacings, in order to create different pore sizes.
From designs 1 to 4, the inter-filament spacings were 2, 1, 0.75 and 0.6 mm, respectively.
The 3D printing parameters are presented in Table 2. Pressure between 10 and 20 PSI was
applied at a temperature of 25–26 ◦C. Photo-cross-linking was carried out by exposing the
GelMA bioink to blue light (405 nm) for 3 min after printing. All designs were kept within
a closed 24-well plate at 4 ◦C until further use.

Table 2. 3D printing parameters used to produce all designs.

Needle
Gauge

Number of
Layers

Layer
Height
(µm)

Perimeter
(mm)

Printing
Velocity

(mm·mm−1)

Cross-
linking

Time (min)

Cross-Linking
Intensity (MV/cm2)

All designs 30 12 150 10 340 3 10
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2.3.2. Characterisation of 3D-Printed GelMA Scaffolds

A number of methods were used to characterise the 3D-printed designs developed.
Pore and filament analyses were conducted using a microscope (Nikon 90i) and Image J
software. The degree of swelling (DS) was calculated according to Equation (2) using the
weights of the samples in dry and wet conditions for 0.5, 1, 3, 5 and 24 h in PBS at 37 ◦C.

Equation (2): Degree of swelling equation (DS). Ws corresponds to the swollen weight
and Wd to the dry weight.

DS (%) =
Ws − Wd

Ws
× 100 (2)

The overall porosity percentage of the samples was also calculated according to the
following equation (Equation (3)). Scaffold density was calculated based on solid density.

Equation (3): Percentage porosity

Porosity (%) = 1 − Sca f f old density
Solid density

× 100 (3)

Scaffolds were mechanically tested in unconfined compression using a standard testing
machine with a 5N load cell (Zwick Roell Z005). Briefly, scaffolds were kept hydrated
through immersion in a PBS bath maintained at room temperature. A preload of 0.01 N
was applied to ensure that the scaffold surface was in direct contact with the impermeable
loading platens. Five cycles of unconfined uniaxial compression relaxation tests were
performed with 10% strain.

2.3.3. Fibroblast Behaviour on 3D-Printed GelMA Scaffolds

The 3D-printed scaffolds were sterilised with 70% ethanol and UV exposure, followed
by PBS washes to remove traces of ethanol. The scaffolds were placed in 24-well plates,
one scaffold per well, and seeded with 33.4 µL of the cell suspension with 5 × 105 HdFs.
The 6-well plates were then placed in an incubator for 3 h to allow initial cell attachment.
After the incubation period, 1 mL of supplemented medium (low-glucose DMEM with 10%
FBS) was added to each well and the plates were returned to the incubator. Both culture
flasks and seeded scaffolds were cultured under standard conditions (37 ◦C, 5% CO2).

Cell metabolic activity was assessed at 1, 3 and 7 days post-seeding using Alamar-
Blue solution according to the manufacturer’s instructions. In short, 10% AlamarBlue
solution was made in standard culture media. Fluorescence was read at 560/590 nm
(excitation/emission).

To assess cell proliferation, DNA content within the scaffolds was evaluated at 1, 3 and
7 days post-seeding using a Quant-iTTM Pico-Green dsDNA kit. Scaffolds were placed in
Eppendorf containing 1 mL of lysis buffer. The samples then underwent three freeze/thaw
cycles at −80 ◦C before the assay was performed per the manufacturer’s instructions. The
DNA concentration was determined using a standard curve. A live/dead assay for cell
viability was also carried out 3 and 7 days after incubation using a live/dead kit and the
staining observed under the microscope (Eclipse Nikon 90i, Nikon, Tokyo, Japan). Live
cells were stained green, and dead cells were stained red.

Cell culture was carried out like hydrogel cell culture but with the range of scaf-
folds created by 3D-printing GelMA, and 7 days post-seeding, samples were collected
for immunocytochemical and gene expression analysis. Immunocytochemical and gene
expression analysis was performed as previously described.

2.4. Statistical Analysis

Statistical analyses were performed using GraphPad Prism (version 5) software with
3–4 samples analysed for each experimental group. Pairwise comparisons between means
of different groups were performed using Student’s t-test. Two-way ANOVA was used for
analysis of variance, with Tukey’s post hoc test to compare between groups. Numerical
and graphical results were displayed as the mean ± standard deviation. Significance was
accepted at a level of p < 0.05.
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3. Results and Discussion

Impaired skin wound healing due to severe injury often leads to the formation of
fibrotic and dysfunctional scar tissue. Myofibroblasts play a key role in wound healing.
However, excessive and persistent action can result in undesirable contracture and scar-
ring. Myofibroblast activation is regulated by several key cytokines, such as transforming
growth factor β1 (TGF-β1), which promote persistent activation via a positive regulation
loop [28,29]. This process is often characterised by the increased expression of αSMA and
ECM proteins [30,31]. Yet, despite extensive research on impaired wound healing, scar
formation and contracture remain a challenge [32]. Therefore, the aim of this study was to
investigate the mechanical effect of GelMA stiffness on human dermal fibroblast behaviour
and develop 3D-printed GelMA scaffolds with tuneable pore size and porosity that would
support fibroblast activity but inhibit myofibroblast activation, reducing the potential for
scar tissue formation.

3.1. GelMA Hydrogel Fabrication and Mechanical Characterisation

We first assessed the effect of the mechanical properties of bulk GelMA hydrogels
on fibroblast activity to understand the role of GelMA stiffness in myofibroblast activa-
tion. Fibroblasts tune their morphology and cytoskeletal structure in response to matrix
stiffness [33], and studies have shown that mechanical stimuli can trigger myofibroblast
activation, with matrix stiffness greater than 20 KPa effective in driving the phenotype
transition of fibroblasts to myofibroblasts [34,35]. This activation is linked with faster
wound closure [36], which is important for initial wound healing. However, long-term
activation can lead to fibrosis in later stages of the wound-healing response, impairing
skin regeneration by inducing scar formation [37]. This activation has been attributed
to the stiffness of the substrate, whereby increased stress signals increase myofibroblast
activation and survival [38]. To determine whether the same effect of GelMA stiffness can
be attributed to myofibroblast transition, bulk GelMA hydrogels were initially fabricated
with mechanical properties that ranged from soft (<3 kPa) to stiff (>20 kPa), using different
concentrations of GelMA with a constant concentration of a photoinitiator (LAP) of 0.5%
(w/v) (Figure 1A).
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Figure 1. (A) Effect of increasing concentrations of GelMA on the compressive modulus of the hydrogels. The compressive
modulus increased with increasing GelMA concentration. Hydrogels containing 3%, 8% and 10% GelMA had a significantly
higher compressive modulus compared with 1% GelMA hydrogels (* p < 0.05). (B) Images of selected soft (2%), medium
(3%) and stiff (10%) GelMA hydrogels.

As expected, increasing the concentration of GelMA significantly increased the me-
chanical properties of the hydrogels from ~3 up to ~40 kPa. Hydrogels containing 3%,
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8% and 10% GelMA had a significantly higher compressive modulus than 1% GelMA
hydrogels (p < 0.05). As such, hydrogels with GelMA concentrations of 1%, 3% and 10%
were taken forwards as representative of significantly different soft (~3 kPa), medium
(~10 kPa) and stiff (~40 kPa) hydrogels for further analysis with human dermal fibroblasts
to elucidate the effect of stiffness on human dermal fibroblast behaviour.

3.2. Effect of GelMA Hydrogel Stiffness on Fibroblast Morphology and Phenotype

Changes in cell morphology have previously been reported to control a variety of cell
behaviours, including cell division [39], proliferation and apoptosis [40], migration [41] and
differentiation [42]. Studies have reported that during fibroblast-to-myofibroblast transition,
cells undergo morphological changes, most notably becoming elongated in shape, with
a larger cell spread area and reduced circularity [5,43]. We investigated fibroblast cell
morphology on the soft (~3 kPa), medium (~10 kPa) and stiff (~40 kPa) GelMA hydrogels
to determine whether the range of GelMA stiffness achieved would induce morphological
changes in the seeded dermal fibroblasts (Figure 2). In addition, myofibroblast activation is
regulated by several key cytokines, such as transforming growth factor-β1 (TGF-β1), which
promote persistent activation via a positive regulation loop [28,29]. Thus, TGF-β1 was
used as a positive control for myofibroblast activation. Figure 2A demonstrates significant
morphological changes in the fibroblasts across the GelMA hydrogel stiffness range, with
cells taking on a more elongated morphology in the stiffer hydrogels. In addition, the
cell spread area significantly increased and cell circularity significantly decreased with
increasing stiffness (p > 0.05) (Figure 2B,C). Furthermore, the addition of TGF-β1 did not
affect the spread area or circularity of the cells on the hydrogels, indicating that the stiffness
of GelMA alone is sufficient to induce morphological changes indicative of myofibroblast
differentiation. Nevertheless, this is expected because although the stiffness of the materials
promotes changes, it is not expected to “exhaust” the cells. Therefore, they are still capable
of responding to TGF-β1.

A hallmark of the myofibroblast phenotype is the expression of αSMA, a cytoskele-
tal protein that promotes increased force production, contributing to wound closure.
However, excessive expression of αSMA can lead to undesirable wound contracture and
scarring [29,44].

Figure 3A shows that increasing GelMA stiffness promoted increased gene expression
of αSMA, even in the absence of TGF-β1, with the highest level of expression observed
in the stiff GelMA hydrogel (p < 0.05). Whilst the addition of TGF-β1 did not affect the
expression of αSMA in the soft GelMA hydrogels, the increases observed in the medium
and stiff hydrogels were significantly enhanced in the presence of TGF-β1 (p < 0.05). These
results are confirmed in Figure 3B, which shows increasing αSMA protein expression
with increasing GelMA hydrogel stiffness in the presence of TGF-β1, with the stiff GelMA
hydrogel promoting the greatest level of αSMA protein production.
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phalloidin (red) and αSMA (green). Scale bar = 100 µm.

Taken together, these results demonstrate that increasing stiffness of GelMA hydrogels
promotes myofibroblast activation and fibrosis-related gene and protein expression. This
effect was greater in the presence of TGF-β1, indicating a synergistic effect of TGF-β1 and
GelMA stiffness in stimulating myofibroblast differentiation, as reported previously [45].

Connective tissue growth factor (CTGF) is a central mediator of tissue remodelling and
fibrosis. It activates myofibroblasts and stimulates the deposition and remodelling of ECM
proteins, including fibronectin I (FN), collagen I (Col I) and collagen III (Col III) [21,27,31]. A
number of studies have shown that increasing mechanical properties of the ECM influences
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the expression of these proteins and promotes myofibroblast activation [46,47]. We therefore
sought to determine whether GelMA stiffness would influence myofibroblast activation in a
similar manner. CTGF gene expression was significantly up-regulated in both medium and
stiff GelMA hydrogels compared with the soft GelMA hydrogel (Figure 4). The increase
was more pronounced in the TGF-β1-treated groups. The expression of FN increased in
the medium and stiff hydrogels in the absence of TGF-β1, although the difference in the
expression levels was not significant. However, in the presence of TGF-β1, the expression of
FN significantly increased with increasing stiffness. Expression of Col I was significantly up-
regulated in the untreated GelMA hydrogel. Interestingly, this significant increase was not
observed in the stiff hydrogels. However, in the presence of TGF-β1, a significant increase
in Col I expression was observed in the medium and stiff GelMA hydrogels compared with
the soft GelMA hydrogel. Col III gene expression was significantly up-regulated in the
medium and stiff GelMA hydrogels without the addition of TGF-β1.
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3.3. Fabrication and Characterisation of 3D-Printed GelMA Scaffolds

In the literature, there is extensive research highlighting a porous architecture as an
important consideration in the design of biomaterials for tissue regeneration [30,48]. 3D
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printing technology allows rapid and controlled fabrication of biomaterials with a precise
and defined porous architecture. Having demonstrated that GelMA stiffness affects fibrob-
last morphology and gene expression of ECM and myofibroblast activation proteins, we
investigated whether 3D-printed GelMA scaffolds with a defined porous architecture could
reduce the effect of bulk-GelMA-hydrogel-stiffness-induced myofibroblast activation and
better control dermal fibroblast behaviour towards scarless skin regeneration. Although
bulk GelMA hydrogel stiffness results showed the softer hydrogels (~3 kPa) to be optimal
for inhibiting myofibroblast activation, it was not possible to use this concentration for 3D
printing. Recently, Shie et al. (2020) investigated a range of 3D-printed GelMA scaffolds
(5–15% GelMA concentration) to determine the optimal GelMA concentration for 3D print-
ing and reported that concentrations of 10% and 15% GelMA are optimal for fabrication
as concentrations below this have a sol–gel temperature below room temperature [48].
Therefore, we fabricated 3D-printed scaffolds using 10% GelMA concentration, the same
concentration as the stiffest GelMA hydrogel, and developed four different scaffold designs
by varying the intra-filament distance. A number of design parameters were evaluated,
including resulting pore size, porosity, mechanical properties and swelling.

Figure 5A shows representative images of the four 3D-printed designs, referred to as
designs 1–4, with intra-filament distances of 2, 1, 0.75 and 0.6 mm, respectively. Results
demonstrated that pore size is dependent on intra-filament distance and decreases with
reducing distance. Design 1 had the largest pore size of 898.6 µm, and designs 2, 3 and
4 had pore sizes of 541.7, 358.1 and 272.03 µm, respectively (Figure 5B). Pore size has a
significant effect on cell behaviour, and the optimal pore size range is dependent on the
cell type, biomaterial and tissue-specific applications [49,50]. In the field of skin healing, a
number of studies have investigated the effect of pore size on fibroblast behaviour. One
such study investigated human dermal fibroblast activity on 3D-printed gelatin scaffolds
with pores ranging from 400 to 750 µm and found that scaffolds with pores larger than
580 µm support increased cell viability and proliferation compared with scaffolds with
smaller pore sizes [51]. Another study, by Parenteau-Bareil et al., demonstrated that freeze-
dried collagen scaffolds with pore sizes ranging from 130 to 200 µm support human dermal
fibroblast adhesion and proliferation over a long-term culture period of 35 days [52]. The
pore sizes produced in all four scaffold designs are considered within the optimal range for
fibroblast viability, proliferation and migration.

Similar to pore size, reduction in the intra-filament distance decreased the porosity.
Scaffold porosity was calculated based on the material’s density (10 g/100 mL). Figure 5C
shows the different porosities achieved by altering the intra-filament distance. Design 1
was the most porous scaffold, at 70.4%; designs 2, 3 and 4 had a porosity of 49.93%, 31.53%
and 23.86%, respectively. It is generally accepted that the higher the porosity, the better the
construct development. However, there is an important balance, as an increase in porosity
will lead to a decrease in mechanical properties. This is generally a greater concern in
natural biomaterials as they are mechanically weaker materials. With this in mind, the
effect of macroporosity on the mechanical properties of the scaffolds was investigated using
an unconfined uniaxial compression relaxation test. Results showed that designs 1, 2, 3 and
4 have a compressive modulus of 16.51, 23.08, 29.27 and 38.63 kPa, respectively (Figure 5D),
demonstrating that reducing the porosity increases the mechanical properties. Although
a concentration of 10% GelMA was used for all four scaffold designs, the mechanical
properties of the 3D-printed GelMA scaffolds were lower than the compressive modulus
of the bulk 10% GelMA hydrogel.
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Hydrogel and biomaterial swelling is an essential consideration since it affects various
parameters, including surface properties, cell mobility and waste diffusion, as the hydrogel
swelling increases the area permitted for diffusion across the hydrogel network [53,54].
Swelling is also beneficial in the wound-healing process as it builds a small amount of
pressure on the wound boundaries [55]. This may increase surface contact with this tissue,
contributing to decreased wound contraction and, as a result, stimulating cell ingrowth and
therefore wound healing [55,56]. Due to the changes in the porous architecture across the
design range, the swelling ability of the 3D-printed GelMA scaffolds was investigated and
found to be independent of pore size or porosity (Figure 6). All designs rapidly absorbed
water, with over 30% uptake observed in all designs after only 30 min. No significant
difference in swelling behaviour was observed between the four scaffold designs, for up
to 24 h, indicating that porosity did not affect the swelling capacity of the scaffolds. The
concentrations of GelMA and LAP were consistent in all scaffold designs; therefore, the
number of cross-links within the matrix remained unchanged, maintaining equal fluid
kinetics in all four scaffold designs [57].
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Our results demonstrated that by altering intra-filament distance, we successfully
maintained high resolution and definition during fabrication, producing 3D-printed GelMA
scaffolds with a controlled porous architecture and mechanical properties without altering
scaffold composition or swelling properties.

3.4. Effect of 3D-Printed GelMA Scaffolds on Fibroblast Behaviour

As previously mentioned, a scaffold porous architecture and mechanical properties
can significantly affect cell behaviour. We investigated fibroblast growth and morphology
on the developed range of 3D-printed GelMA scaffolds to determine the effect of a porous
architecture on fibroblast behaviour. All four scaffold designs supported fibroblast attach-
ment, viability and proliferation over 7 days of culture (Figure 7). However, there was no
significant difference observed in cell attachment (Figure 7A), viability (Figure 7B) or DNA
content (Figure 7C) between the different designs, indicating that normal dermal fibroblast
activity within the 3D-printed GelMA scaffolds is independent of pore size and porosity.
Figure 7D shows that few/no dead cells were present. Additionally, the live cells presented
a homogeneous distribution within the 3D-printed structure, confirming the viability of all
the designs and validating previous viability and proliferation results.

In this study, we showed that bulk GelMA hydrogel stiffness (Figure 2) promotes
morphological changes in the fibroblasts associated with myofibroblast activation. Recent
studies have shown that fibroblasts exhibit quantitative differences in morphology and
cytoskeletal architecture following culture in 3D scaffolds versus 2D substrates, with
cells presenting a more elongated morphology with increasing pore size [58]. Tolksdorf
et al. (2020) demonstrated an anti-fibrotic effect of smaller-size pores in silicone-based
substrates [59]. With this in mind, we assessed fibroblast infiltration and morphology
within the 3D-printed GelMA scaffold range at 7 days post-seeding, with a stiff GelMA
hydrogel with and without TGF-β1 as a positive control. It is important to note that
the scaffolds were fabricated using a 10% GelMA concentration, which formed the stiff
GelMA hydrogels and promoted the greatest change in fibroblast morphology towards
a myofibroblast phenotype. Fibroblasts successfully infiltrated the 3D-printed GelMA
scaffolds independent of pore size and TGF-β1 treatment and were observed lining the
pores of the scaffolds in all design groups (Figure 8A). We observed an increase in fibroblast
elongation within the scaffold pores in all groups compared with the stiff GelMA hydrogel.
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This elongated morphology was similar in all four scaffold designs with and without
TGF-β1. Interestingly, the circularity of fibroblasts within the porous scaffolds was similar
to that observed on the stiff GelMA hydrogel (Figure 8C). However, the cell spread area
was reduced in the porous GelMA scaffolds compared with the stiff GelMA hydrogel,
with a significant reduction observed in design 4 (Figure 8B). These results suggest that
the change in morphology observed is a direct effect of pore size and the cells’ ability to
bridge the pores [58,60] and not indicative of myofibroblast activation. In fact, αSMA gene
expression was significantly down-regulated in all four 3D-printed GelMA scaffold designs
(p < 0.05) compared to the same GelMA concentration in stiff GelMA hydrogels, both with
and without TGF-β1 (Figure 9A). These results were confirmed by immunofluorescence,
which showed reduced αSMA protein expression in the 3D-printed GelMA scaffolds
compared to the stiff GelMA hydrogel, more pronounced in the presence of TGF-β1
(Figure 9B), suggesting that the scaffold’s porous architecture can inhibit the mechano-
regulation induction of myofibroblast activation seen in the GelMA hydrogels of similar
mechanical properties.
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Figure 9. (A) Gene expression of αSMA in the 3D-printed scaffold design range compared with the
stiff GelMA hydrogel. * p < 0.05 compared to the stiff GelMA hydrogel in the absence of TGF-β1;
** p < 0.05 compared to the stiff GelMA hydrogel in the presence of TGF-β1. (B) αSMA protein
expression in the 3D-printed scaffold design range compared to the stiff GelMA hydrogel. DAPI
(blue), phalloidin (red) and αSMA (green). Scale bar = 100 µm.
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Recently, it has been shown that the presence of pores can reduce both in vitro and
in vivo fibrosis by reducing the presence of αSMA and TGF-β1 and therefore by reducing
fibroblast activation [61,62]. This effect might be because of the presence of texture on surfaces,
the existence of pores, promoting the growth of fibroblasts on the surface, resulting in a
decrease in contractile forces and therefore a reduction in fibrotic activity [63,64]. However,
to the best of our knowledge, the same effect has not been found on 3D-printed structures.

To further elucidate the effect of a GelMA scaffold’s porous architecture on myofi-
broblast activation, CTGF, FN, Col I and Coll III gene expression were evaluated in the
different scaffolds and compared to the stiff GelMA hydrogel (Figure 10). The majority
of cells involved in wound healing express TGF-β1, which plays a critical role in ECM
production. As such, similar to the GelMA hydrogel stiffness studies, the fibroblast-seeded
scaffolds were cultured both with and without TGF-β1. The expression of CTGF in the
porous GelMA scaffolds was comparable to the stiff GelMA hydrogel in the absence of
TGF-β1, with no statistical difference found between the four scaffold designs. Inter-
estingly, when TGF-β1 was added to the culture media, a significant increase in CTGF
expression (p < 0.05) was observed in design 2 scaffolds compared with the stiff GelMA
hydrogel and other scaffold groups. Studies on other cell types have revealed the important
roles of CTGF in the TGF-β1-dependent induction of ECM production and myofibroblast
differentiation [65–67].
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Figure 10. Expression of CTGF, FN, Col I and Col III in four 3D-printed GelMA scaffold designs compared with the bulk
stiff GelMA hydrogel at 7 days. * p < 0.05 compared to the stiff GelMA hydrogel in the absence of TGF-β1, ** p < 0.05
compared to the stiff GelMA hydrogel in the presence of TGF-β1, ** p < 0.05 compared to design 3 and *** p < 0.05 design 4
in the presence of TGF-β1.

The levels of main structural components of skin ECM, such as Col I and III and FN,
are all increased in raised dermal scar tissue [68]. We observed increased expression of these
ECM molecules in the medium and stiff GelMA hydrogels compared with the soft GelMA
hydrogel as a result of increasing mechanical stiffness. However, the porous architecture
of the 3D-printed GelMA porous scaffolds significantly altered the expression profiles in
comparison to the non-porous stiff GelMA hydrogels. Fibroblasts found in dermal scar
tissue have a rate of FN-1 biosynthesis that is four times as high as that of fibroblasts in the
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normal dermis [69]. Yet, Figure 10 shows that FN gene expression was down-regulated in
all four porous scaffold groups, independent of pore size, compared with the non-porous
stiff GelMA hydrogel. The addition of TGF-β1 significantly up-regulated FN-1 expression
in the stiff GelMA hydrogels and resulted in a more pronounced pore size effect on FN-1
expression within the GelMA scaffold range, with an increase in expression observed
in designs 2 and 3. Nonetheless, even in the presence of TGF-β1, FN-1 expression was
significantly down-regulated in all four scaffold designs (p < 0.05) compared with the stiff
GelMA hydrogel. During the early stages of wound healing, myofibroblast expression of
Col III is greater than that of Col I [1]. Our results showed that, similarly to FN-1 expression,
Col III gene expression was significantly down-regulated in all four porous GelMA scaffold
designs with different pore sizes and porosities (p < 0.05) compared with the stiff GelMA
hydrogel. This result, although unexpected, could be related to the way cells sense the
stiffness in the non-porous and porous structures.

This down-regulation was observed in both treated and untreated TGF-β1 groups.
Conversely, Col I gene expression was up-regulated in design 1 and 2 scaffolds (p < 0.05)
when compared with the stiff GelMA hydrogel. However, with the addition of TGF-β1,
Col I was significantly up-regulated in all four scaffold designs compared with the stiff
GelMA hydrogel, although the up-regulation of Col I in design 4 was significantly less
than that observed in designs 1, 2 and 3. Taken together, these results show that the
porous architecture of 3D-printed GelMA scaffolds promotes gene expression of Col I, a
key structural protein in skin, while inhibiting TGF-β1-induced overexpression of FN and
Col III. In contrast, collagen I gene expression was up-regulated. Nevertheless, Webb et al.
cultured fibroblasts on porous surfaces, and after 4 weeks, they observed collagen type
I and fibronectin filling the pores [70]. Taking all this into consideration, the increase in
collagen type I gene expression in our study might suggest that cells produce collagen type
I to fill in the gaps in our 3D-printed scaffolds.

Nevertheless, further studies are required to fully understand the specific interplay
between a GelMA scaffold porous architecture and mechanical properties in terms of
fibroblast-to-myofibroblast transition and determine whether the scaffolds developed can
improve dermal skin wound healing in vivo.

4. Conclusions

In this study, we demonstrated for the first time that the mechanical properties of
GelMA hydrogels have a significant effect on human dermal fibroblast behaviour, whereby
increasing stiffness promotes myofibroblast activation through increased fibrosis-related
gene and protein expression. While not optimal for myofibroblast inhibition, we used the
same concentration of GelMA (10%) as the stiffest non-porous hydrogel and successfully
developed a range of 3D-printed GelMA scaffolds with a tuneable porous architecture
and porosity that facilitated fibroblast viability, proliferation and infiltration. We further
demonstrated that the introduction of pores into the GelMA stiff hydrogel negates the effect
of bulk GelMA hydrogel stiffness on myofibroblast activation, with reduced expression of
αSMA, FN and Col III observed within scaffold groups treated with TFG-β1. Moreover,
Col I significantly increased in scaffolds treated with TGF-β1. Collectively, these results
show that these 3D-printed GelMA scaffolds have the potential to improve dermal skin
regeneration, whilst inhibiting fibrosis and scar formation.
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