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Abstract: Conservation and policy agendas, such as the European Biodiversity strategy, Aichi
biodiversity (target 5) and Common Agriculture Policy (CAP), are overlooking the progress made in
mountain grassland cover conservation by 2020, which has significant socio-ecological implications
to Europe. However, because the existing data near 2020 is scarce, the shifting character of mountain
grasslands remains poorly characterized, and even less is known about the conservation outcomes
because of different governance regimes and map uncertainty. Our study used Landsat satellite
imagery over a transboundary mountain region in the northwestern Iberian Peninsula (Peneda-Gerês)
to shed light on these aspects. Supervised classifications with a multiple classifier ensemble approach
(MCE) were performed, with post classification comparison of maps established and bias-corrected to
identify the trajectory in grassland cover, including protected and unprotected governance regimes.
By analysing class-allocation (Shannon entropy), creating 95% confidence intervals for the area
estimates, and evaluating the class-allocation thematic accuracy relationship, we characterized
uncertainty in the findings. The bias-corrected estimates suggest that the positive progress claimed
internationally by 2020 was not achieved. Our null hypothesis to declare a positive progress (at least
equality in the proportion of grassland cover of 2019 and 2002) was rejected (X2 = 1972.1, df = 1,
p < 0.001). The majority of grassland cover remained stable (67.1 ± 10.1 relative to 2002), but loss
(−32.8 ± 7.1% relative to 2002 grasslands cover) overcame gain areas (+11.4 ± 6.6%), indicating net
loss as the prevailing pattern over the transboundary study area (−21.4%). This feature prevailed
at all extents of analysis (lowlands, −22.9%; mountains, −17.9%; mountains protected, −14.4%;
mountains unprotected, −19.7%). The results also evidenced that mountain protected governance
regimes experienced a lower decline in grassland extent compared to unprotected. Shannon entropy
values were also significantly lower in correctly classified validation sites (z = −5.69, p = 0.0001,
n = 708) suggesting a relationship between the quality of pixel assignment and thematic accuracy. We
therefore encourage a post-2020 conservation and policy action to safeguard mountain grasslands by
enhancing the role of protected governance regimes. To reduce uncertainty, grassland gain mapping
requires additional remote sensing research to find the most adequate spatial and temporal data
resolution to retrieve this process.

Keywords: grasslands cover mapping; multiple classifier ensemble; bias-corrected area estimates;
Shannon entropy uncertainty; conservation policy
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1. Introduction

Grasslands are among the most threatened ecosystems in the world due to conversion,
desertification and degradation [1]. In Europe, mountain grasslands are particularly endan-
gered [2,3]. These high diversity and species-rich ecosystems that coevolved with centuries
of livestock grazing have been declining since the 1960′s [4]. The decline of mountain
grasslands has multiple impacts on the planet. Locally, the unique biodiversity [5], cultural
heritage [2] and ecosystem services [6] are compromised. Regionally, the set of pressures
once created by agro-pastoral activities and commodities (e.g., meat production) is moved
to lowlands, and globally, very sensitive ecological regions are degraded (e.g., tropical
regions) to replace the set of commodities lost in mountains [7]. Given the impacts, halting
the loss of mountain grasslands has become a priority for international and European
agendas. This is a priority of the Aichi Biodiversity Agenda Target 5 “Habitat loss and
degradation”, European Biodiversity agenda (Target 3 and 6) [8] and agri-environment
schemes and payments of the Common Agriculture Policy (CAP; [9,10]). Now, in 2021, and
with a new set of working documents on the table (e.g., European Strategy for Biodiversity
2030), what is the progress made in the conservation of mountain grasslands by 2020?
Understanding the progress made is necessary for policy action and policy making.

Several studies have been conducted in mountain grassland conservation in Europe
in the last decades [5,6,11–13]. Surprisingly, very few comprised a period of analysis close
enough to the international target year of 2020 (e.g., 2015–2020). The current understanding
of progress made by 2020 relies on a handful of studies [14–17], with most focused on major
mountain regions (e.g., Carpathians, Apennines), with smaller ranges (e.g., northwestern
Iberian mountains) less considered. A lag in time and space seems to exist between scientific
and policy agendas. This may be related to the strong emphasis of the scientific community
on the capitalization of nature to establish safeguards (e.g., ecosystem services). Hence, the
data available for the period 2015–2020 needs to be enriched. Based on a set of studies near
to 2020 (2015–2020), loss or decline was the prevalent pattern in mountain grasslands. In
the Apennines, grasslands decreased by 4.6% between 1987–2016 at the expense of forest
expansion after land abandonment [17]. This trajectory in boreal seminatural grasslands
was more dramatic. The extent of seminatural grasslands in 2015 was 49.1% less compared
to 1960 due to conversion into arable land and forests [14]. Jaworek-Jakubska et al. [16] in
the Polish mountains indicated a 10.4% decline of grasslands between 2000–2016 in favor
of forests. In contrast, a remarkable increase of managed grasslands was found between
1999–2015 (+39%) in the Carpathians [15]. More direct payments of CAP for mountain
grasslands were identified as the main reason for this trajectory. However, Halada et al. [15]
emphasized that conservation of mountain grasslands remains a challenge because of their
poor accessibility.

Regarding the progress in mountain grassland conservation, another two gaps seem
to exist. The first is the performance of different governance regimes (e.g., protected areas,
PAs). For instance, it was not possible to identify studies assessing how protected gover-
nance regimes affect grassland cover conservation. However, state-controlled PAs are a
main global conservation strategy to address concerns, such as those relating to the endan-
gered mountain grasslands of Europe [18]. They should be at the front line of conservation
action and political commitment to attenuate negative tendencies [19,20]. The second gap
relates to the use of maps as source data for conservation progress analysis. Most of the
studies assume mapped areas as true areas [14,15,17], whereas maps have errors (e.g.,
commission, omission) that can affect the estimates and, therefore, the trajectories observed
in international conservation targets. Uncertainty in grassland change studies remains
poorly documented. Nowadays, good practices recommend the provision of uncertainty
estimates. The conventional error matrix of producer’s and user’s accuracy assessments
cannot indicate the level of uncertainty in areal terms. Nonetheless, this approach can be ex-
tended to create unbiased area estimates with associated confidence levels (95% confidence
interval) [21,22]. Overall, knowledge in the performance of protected governance regimes is
necessary and of interest to policy action and PAs to support their missions [23]. Unbiased
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area estimates of mapped areas, as already in use in deforestation and carbon emissions
issues [24], can provide a more complete view e.g., for the two decades of European and
international policy commitment with mountain grasslands protection.

Multispectral satellite data and image classification play an important role in the as-
sessment of progress made in mountain grasslands conservation. They allow increasingly
accurate land cover and vegetation change maps [25,26] that can support the quantification
of spatial targets at multiple spatial [13] and temporal extents [26]. For this, the expansion
of open satellite data at moderate resolution (e.g., 10 to 30 m, Sentinel-2, Landat), of the set
of classifiers (e.g., random forests) and sources of actual or near-ground information (e.g.,
platform with free access to very high resolution imagery) in the last decade has provided
a substantial contribution. Nonetheless, a review of remote sensing literature shows that
grasslands have been relatively poorly studied compared to other land cover types (e.g.,
forests, [27]). Furthermore, the heterogeneity of grasslands in fragmented landscapes, as
is common to European mountains, remains the major challenge when classifying from
remote sensing data. To reduce classification issues, an important opportunity may exist
in the multiple classifier ensemble (MCE) approach. That provides the opportunity to
integrate independent classification results of different algorithms (e.g., those based on
artificial intelligence, such as random forests, k-nearest neighbour, decision trees) through
ensemble strategies (e.g., soft voting). Improvement of the accuracy of classification results
compared to single classifiers has been observed [28,29]. MCE also yields class-allocation
probability layers at the pixel level, which can be used to generate class-allocation uncer-
tainty information (e.g., Shannon entropy, [30]) and support refinement operations before
map comparisons, reporting pixel assignment confidence and analyses of the relationship
between class-allocation uncertainty and classification accuracy.

This study conducted mapping and analysis of bias-corrected grassland cover data
based on Landsat remote sensing imagery (2002–2019, 30 m resolution) over a transbound-
ary mountain region of the northwestern Iberian Peninsula (Peneda-Gerês) to address three
main questions:

(1) What is the progress made in grassland cover conservation by 2020 according to the
extent and net shift observed between 2002 and 2019?

(2) To what extent do protected and unprotected land governance regimes differ in
grassland cover conservation?

(3) What is the accuracy level of MCE approaches in mountain grasslands? What is the
relationship between class-allocation uncertainty and classification accuracy?

The main goal was to reduce the data and critical gap regarding the shifting character
of European mountain grasslands towards the international target established by 2020.
Grasslands of the study area are representative of ancient mountain pastoral systems of the
Iberian Peninsula, which are rapidly transforming with farmland change and abandonment,
and are a target of European policies [13]. Specifically, we used Landsat imagery and
derivatives within a multiple classifier ensemble approach [28] to map grassland cover in
2002 and 2019. Post classification comparison of uncertainty refined grassland cover maps
to identify changed areas. Accuracy and uncertainty assessments were made to characterize
the confidence of pixel assignment (Shannon entropy) and create bias-corrected change
areas estimates with 95% confidence intervals following the good practices protocol of
Olofsson et al. [22]. Using these data, the progress made in grasslands cover conservation by
2020 was summarized at four extents: transboundary, lowlands, mountains protected and
mountains unprotected. The trajectories in protected and unprotected governance regimes
were compared to identify the effect, if any, of governance regime in grassland conservation.
The relationship between class-allocation uncertainty and classification accuracy was
analysed. We conclude this study by discussing the alignment of the progress registered
with the European and international policy ambitions by 2020 and the uncertainty as a
major feature of mountain grasslands classification.
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2. Materials and Methods
2.1. Study Area

The study area was the Peneda-Gerês transboundary mountain region in the north-
western Iberian Peninsula (41◦42′59′′ N, 8◦08′60′′ W, 6352.92 km2, see Figure 1). Here,
the elevation ranges from 15 to 1513 m above sea level (a.s.l) and steep topography is
a main feature. The climate is temperate oceanic sub-Mediterranean with mean annual
precipitation of 1300 mm and mean annual temperature of 13 ◦C [13]. The study area
includes a lowlands domain (375,759 ha), and a mountain domain corresponding to the
transboundary Gerês-Xurés Biosphere reserve (259,533 ha). Within the mountain domain
are protected (Peneda-Gerês National Park, Portugal; Baixa Limia-Serra do Xurés Natural
Park, Spain) and unprotected land conservation regimes (189,932 ha). In this study, the
mountain protected conservation regime used for analysis refers to the Portuguese Peneda-
Gerês National Park (69,543 ha) established at the end of the authoritarian period (1972),
which makes it an excellent location to understand governance regime effects. The Peneda-
Gerês National Park is managed according to specific land use planning and has renown
in natural and cultural heritage as the last remaining native forest ecosystems enclosed in
man-made farmland mosaics with extensive human influence [31]. At the socio-economic
level, this transboundary study area provides testimony to the three major socio-economic
disruptions that have occurred in the Iberian Peninsula in the last half-century: the end
of the authoritarian periods and establishment of democracy (1974), the Europeanization
of society with adhesion to the European Union (EU, 1986) and the achievement of a
Europeanized society with entrance in the EuroZone (1999). The Europeanization of society
brought strong socio-economic growth supported by European funding, convergence of
environmental policy with EU directives (e.g., new law for environment) and the Common
Agriculture Policy (CAP) as a player in the farming systems of the region.

2.2. Workflow

This study used imagery from the Landsat 7 and 8 satellite sensors over a transbound-
ary mountain region in the Iberian Peninsula to detect grassland cover change, characterize
the progress made in mountain grasslands conservation by 2020, and evaluate its variation
among protected and unprotected land governance regimes. The overall methodology is
shown in Figure 2, and includes four main components. (a) Mapping of grassland cover
in 2002 and 2019. Two Landsat satellite scenes were selected and a supervised MCE ap-
proach [28] that combined three different artificial intelligence algorithms (random forests,
decision trees and K-nearest neighbours) was applied to discriminate grassland cover. This
resulted in maps of grasslands cover (n = 2) and probability layers (n = 2) for each class
(grasslands, no grasslands) and for each date. (b) Cleaning and change analysis, a two-step
procedure that first removed low probability grassland pixels from the class using the
U uncertainty metric (U > 0.2) and later performed a post classification comparison of
uncertainty-refined maps to create the grassland cover change map (2019–2002). (c) Accu-
racy and uncertainty assessment using the Shannon entropy and the bias-corrected error
matrix approach of Olofsson et al. [22]. Shannon evaluated the uncertainty in the class
assignment, while the error matrix assessed the accuracy of the grassland cover change
map and created bias-corrected area estimates for grassland cover and change areas using
reference data. (d) Statistical analysis to evaluate the progress made in the conservation
of grasslands cover, the effect of land governance regime and the relationship between
cumulated class-allocation uncertainty and classification accuracy.

2.2.1. Landsat Imagery and Ancillary Derivatives

Two Landsat satellite scenes covering the study area were obtained from the platforms
Landsat 7 (26 March 2002) and Landsat 8 (13 February 2019). The scenes were downloaded
from USGS as surface reflectance, geometrically corrected and stored in Geotiff format.
They were selected based on the following criteria: (i) cloud-free scenes taken in the
(ii) late winter-early spring season, and (iii) in all years of the analysis (anniversary-date



Remote Sens. 2021, 13, 3019 5 of 21

scenes), in order to optimize mapping and change detection and to reduce errors related
to seasonal differences [32]. In the study area, grasslands have a strong reflectance in the
late winter-early spring season that clearly distinguish them from other vegetation types in
winter dormancy, namely from early succession types (e.g., ferns). Due to the temporal
lag between the scenes, radiometric normalization using the pseudo-invariant features
technique was performed [33]. Normalization used the 2019 scene as the reference image
to adjust the 2002 scene. For each scene, we also computed the Tasseled Cap components
greenness (TCG), wetness (TCW) and fifth (TCF). TC components for each date were
derived using the equations given in [21,34].
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Figure 1. The transboundary mountain region located between Portugal and Spain in the Iberian
Peninsula. In the upper panels, the study area is captured by the greenness tasseled component
derived from Landsat imagery of February 2019. The study area is composed of a mountain domain
that comprises an extent of protected (Peneda–Gerês National Park, Portugal; Baixa Limia-Serra
do Xurés Natural Park, Spain) and unprotected land conservation regimes (in blue). The mountain
domain overlaps the administrative boundaries of the transboundary Gerês–Xurés Biosphere reserve.
The remaining areas surrounding the mountain domain were defined as lowlands. The areas used
for training and validation are also presented. The lower panels show an example of the traditional
terraced grasslands and of the local practices of hay collection in the summer season.
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2.2.2. Supervised Classification of Grassland Cover

To map grassland cover, we performed supervised classification with an MCE ap-
proach [28] that through soft voting combines the predicted probabilities of three classifiers:
random forests (RF), decision trees (DT) and k-nearest neighbors (KNN). MCE approaches
have previously been used in land cover mapping and have generally increased the accu-
racy of classifications with respect to single classifier approaches [28,29]. As input data,
we used the Landsat bands (Green, NIR, SWIR) and the Tasseled cap components (TCG,
TCW and TCF) created above. TCG was chosen because it maximised capture of the high
reflectance of grasslands in the late winter-early spring season, which provided good
separation during this period. TCW and TCF were chosen based on the improvements
demonstrated during grassland mapping in European landscapes [35]. Regarding the
classification scheme, two classes were considered (grasslands, no grasslands). Grasslands
included natural and managed grasslands that can be mown, grazed or ploughed. The
training data consisted of a total of 131 training sites recognizable as grasslands (n = 82)
or no grasslands (n = 49) in 2002 and 2019 (see Figure 1, Table 1). Each training site was a
homogeneous polygon of grasslands or no grasslands, with these selected using previous
field data and knowledge of the study area combined, and through visual inspection of
very high resolution imagery available in Google Earth [36]. Polygons were rasterized
at 30 m resolution, and each training site was composed of at least two pixels. The train-
ing site collection was a time-consuming procedure due to the small size, high degree of
fragmentation and heterogeneity of grasslands parcels that is typical of Mediterranean
mountain environments. Before classification, the parameters of each classifier were tuned
using a grid-search procedure with a 10-fold cross validation of the training samples (see
Appendix A, [37]). Classifiers were parameterized as presented in Table 1. This classifica-
tion procedure generated grassland cover and probability layers for each class and for each
date. All operations were performed in Python using the packages scikit-learn, gdal and
numpy [38,39].
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Table 1. Parameterization of the Multiple Classifier Ensemble approach and composition of the reference training data.

Classification Reference Training Data

Method Classifier Parameterization Class Training Sites N◦ of Pixels

Multiple Classifier
Ensemble (MCE)

Grasslands 82 272

No Grasslands 49 579

Random Forests (n_estimators = 500,
criterion = ‘gini’, max_depth = 4,

min_samples_split= 2, min_samples_leaf = 1,
max_features = ‘auto’, bootstrap = True,

oob_score = True);
Decision Trees (criterion = ‘entropy’,

max_depth = 4, min_samples_leaf = 1,
min_samples_split = 2, random_state = 100);

K-nearest neighbors (n_neighbors = 4,
weights = ‘distance’, leaf_size = 1);

Total 131 851

2.2.3. Cleaning Phase and Map of Grasslands Cover Change

To detect changes in grasslands, we performed a two-step approach. First, we im-
plemented a cleaning procedure that removed low probability grassland pixels from the
grasslands cover maps obtained above. Figure 3 illustrates the procedure performed.
The U uncertainty measure (U = 1–pmax) was used to identify low probability grassland
pixels [30]. U indicates the strength of the class assignment. A high U value indicates a
confusion between the grasslands and no grasslands classes. The estimation of U relies
on the degree of probability that a certain belongs to the grasslands class (pmax), which
was obtained from the modelled probability vector created for grasslands (pu) during
the ensemble classification. We set a limit that all pixels with U > 0.2 would be removed
from the grassland class and assigned to the no grassland class. This threshold follows
Loosvelt et al. [30] that found the majority of incorrectly classified pixels were associated
with U values larger than 0.2. Later, we performed a post classification comparison with
the “cleaned” maps to create grassland cover change maps (2019–2002). Each pixel was
identified as either having changed or not changed. This process resulted in a four-class
change map (stable grassland, no grassland, grassland loss, grassland gain).

2.2.4. Accuracy and Uncertainty Assessment: Pixel Class Assignment and Estimation of
Bias-Corrected Grasslands Cover Change Areas

Reporting the progress made in grassland cover conservation and its uncertainty,
as described for forest cover, is still not a practice [40]. Since we aimed to provide a
more complete view for the almost two decades of European and international policy
commitment with mountain grassland protection (2002–2019), we analysed accuracy and
uncertainty in the classification and change detection phases. In the classification phase,
we assessed the confidence of pixel class assignment using the Shannon entropy metric (H,
Equation (1), [41]). H is a weighted uncertainty measure that differs from the U uncertainty
measure by weighting the probabilities obtained by each class in a certain pixel to provide
an overview of pixel reliability. H is derived from the probability vector (pu) created by the
MCE classifier [28] that holds the probability p(i) of being classified into class i (pu = (p(1),
p(2), . . . , p(c)), with c being the total number of land cover classes (here c = 2). A pixel has
minimal entropy (H = 0) with a maximum probability (pmax = 1), while maximal entropy
(H = 1) occurs when all classes have the same probability, e.g., p(i) = 1/c, and no specific
classis preferred (grasslands or no grasslands). The uncertainty about the pixel’s true class
is maximal. The Shannon entropy uncertainty metric is a per-pixel layer.

H = −∑c
i=1[p(i)·log(p(i))], (1)
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Figure 3. Scheme of the cleaning phase procedure applied to predicted grassland cover maps before
their post-c comparison that results in the low uncertainty grassland cover maps for 2002 and 2019
presented in Figure 4. (a) The input layer used, (b) insets showing the same area (5.5 × 6 km) in 2002
and 2019 for each of the input layers (grassland cover, grassland probability and U uncertainty).

In the change detection phase, we assessed the accuracy of the grassland cover change
map and generated bias-corrected area estimates with 95% confidence intervals [22]. For
that purpose, we followed the good practices protocol of Olofsson et al. [22]. This approach
uses stratified random sampling to define validation sites where the confrontation between
classified and reference classes generates an error matrix. The error matrix is then used
to obtain accuracy estimates in terms of proportions of area, which are further used to
compute the bias-corrected area estimates for each of the four-class changes at a 95%
confidence level. The bias-corrected area estimate is obtained by including the area of map
omission error and by leaving out the area of map commission error [22]. Consequently,
for the grassland change map, an error matrix was produced in terms of proportions of
area. When map categories are in the rows (i) and the reference categories in the columns
(j), Atot refers to the total area of the map, Am,I is the mapped area (ha) of category i in the
map and Wi = Am,iAtot is the proportion of the mapped area as category I and pij is then
as given in Equation (2).

p̂ij = Wi
nij

ni
, (2)
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The error-adjusted area estimate (Âj) of a category is obtained as in Equation (3).

p̂ij = Wi
nij

ni
, (3)

The estimated standard error of the estimated proportion of area S
(

p̂ j
)

is given by
Equation (4).

S
(

p̂ j
)
=

√√√√ q

∑
i=1

W2
i

nij
ni

(
1− nij

ni

)
ni − 1

. (4)

Later, the standard error of the stratified area estimate, and the 95% confidence interval
for Âj are derived as in Equations (5) and (6), respectively.

S
(

Âj
)
= Atot × S

(
p̂ j
)
, (5)

Âj ± 2× S
(

Âj
)
, (6)

A set of 708 validation sites (see Figure 1) was defined using a stratified random
sampling with unequal sample (stable grasslands (n = 43), stable no-grasslands (n = 608),
grassland loss (n = 32) and grassland gain (n = 25)) informed by the grassland change maps.
For each validation site, the class was assigned through visual inspection of very high
resolution imagery available in Google Earth [36]. This procedure was initially applied
to the entire study area. Later, however, in order to create bias-corrected area estimates
also for the remaining extent of analysis (lowlands and mountains domain, protected and
unprotected mountain extents), we made the assumption that the pattern of map omission
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and commission error observed across the study area would be valid also for each scale
of analysis. Therefore, using the error matrix of the study area (n = 708), we created area
estimations for each extent of analysis by updating only the mapped areas.

2.3. Statistical Analysis

To assess the progress made in the conservation of mountain grasslands in the trans-
boundary study area, the grassland covers of 2019 and 2002 were compared using a
two-proportion Z-test with continuity correction that produced a two-tailed probabil-
ity value that evaluated the null hypothesis of equality of proportions in the two times.
The two-proportion Z-tests were separately made for the entire study area (635,292 ha),
lowlands (375,759 ha) and mountain domains (259,533 ha), protected (69,543 ha) and un-
protected governance extents (189,932 ha). If differences were significant (p < 0.05), positive
progress had been achieved in the case where the proportion of grassland cover was at
least maintained or expanded between 2002 and 2019. Conversely, progress was negative
if the proportion of grassland cover in 2019 was lower than in 2002.

To assess the impact, if any, of protected and unprotected governance regimes in the
progress made, we also used a two-proportion Z-test that determined if the net loss of
grasslands fitted a null hypothesis of equal distribution between protected and unprotected
governance extents. In the study area, the current protected extent is larger than that
used in this statistical analysis. The protected extent of this analysis refers only to the
Peneda-Gerês National Park (69,543 ha) in the Portuguese territory. We focused only on
this protected extent because it has been protected since 1971 or over the entire period
of analysis. The protected extent in the Spanish territory was only created in 2008. The
function prop.test of R the statistical software was used to perform the two-proportion tests.

To analyse the relationship between class-allocation uncertainty and classification
accuracy, we grouped the results of validation (n = 708) into correct classified and misclas-
sified, and estimated the cumulated Shannon entropy (Shannon entropy 2002 + Shannon
entropy 2019) for each site using the Shannon entropy layers created in Section 2.2.4. The
comparison of cumulated Shannon entropy values of groups was made using the non-
parametric Wilcoxon-Mann-Whitney test with 10,000 sample Monte Carlo distribution
approximations implemented in the R coin package [42].

3. Results
3.1. Grassland Cover Change in the Peneda-Gerês Transboundary Mountain Region

This study used bias-corrected change estimates to understand grassland cover
change, which are estimates obtained from the adjustment of mapped areas for the omis-
sion and commission errors found during the accuracy assessment (Figure 4). In the
period 2002–2019, the bias-corrected estimates revealed considerable changes over the
transboundary mountain region of Peneda-Gerês in the northwestern Iberian Peninsula
(Figure 5). Grasslands experienced changes at all extents of analysis. Across the en-
tire study area, grasslands have always been a non dominant cover type (2019–2002; no
grasslands = 558,345 ± 7829 ha, 88.7% of the study area, Table 2) and 46,378 ± 7577 ha of
grasslands remained stable (67.1 ± 10.1% relative to 2002 grassland cover). Grassland loss
occurred in 22,695 ± 4945 ha (−32.8 ± 7.1% relative to 2002 grassland cover) and grassland
gain occurred in 7875 ± 4587 ha (+11.4 ± 6.6%), resulting in a net loss of grassland cover of
14,820 ha (−21.4%) over the study area. When narrowing the analysis into lowland and
mountain domains, we observed a similar trajectory. Grassland loss in lowlands reached
17,428± 3706 ha (−34.6± 7.3% relative to 2002 grassland cover in lowlands) and grassland
gain occurred in 5884 ± 3435 ha (+11.7 ± 6.8%), resulting in a net loss of grassland cover of
11,544 ha (−22.9%) in the lowlands of the study area. Here, 13,529 ± 2406 ha of grasslands
remained stable (65.3 ± 10.5% relative to 2002 grassland cover in lowlands). In the moun-
tain domain, grassland loss occurred in 5267 ± 1302 ha (−28.0 ± 6.9% relative to 2002
grassland cover in the mountain domain) and grassland gain occurred in 1991 ± 1156 ha
(+10.5± 6.1%), resulting in a net loss of grassland cover of 3276 ha (−17.4%) over the moun-
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tain domain. Stable grassland amounted to 71.9 ± 12.8% relative to 2002 grasslands cover
in the mountain domain. Across the governance regimes (mountain unprotected and pro-
tected), the net loss pattern prevailed. In the unprotected extent, grasslands loss occurred
in 4697± 1094 ha (−28.2± 6.5% relative to 2002 grasslands cover in the unprotected extent)
and grasslands gain occurred in 1725 ± 1008 ha (+10.4 ± 6.1%), resulting in a net loss
of grassland cover of 2962 ha (−19.7%). Stable grasslands amounted to 11,926 ± 1950 ha
(71.7 ± 11.7% relative to 2002 grassland cover in the unprotected extent). In the protected
area, grassland loss reached 570 ± 242 ha (−26.2 ± 11.1% relative to 2002 grasslands cover)
and grassland gain occurred in 256 ± 150 ha (+11.7 ± 6.8%), resulting in a net loss of grass-
land cover of 314 ha (−14.4%). Stable grassland amounted to 1603 ± 518 ha (73.7 ± 22.8%
relative to 2002 grasslands cover in the protected area.
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Figure 5. Total estimated areas of grassland cover change with confidence intervals over the trans-
boundary study area of Peneda–Gerês and for the different extents of analysis: lowlands and
mountains, mountains protected and unprotected. In the upper panel, absolute area. Lower panel,
proportional change relative to the initial 2002 grassland cover areas (e.g., grassland loss in the
study area is equivalent to approximately 32.8% of grassland area in 2002). Error bars indicate 95%
confidence intervals based on the standard errors derived from the error matrix.
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Table 2. Total estimated bias-corrected areas for the stable grasslands and no grasslands classes with margin of error at the
95% confidence level (ha) at all extents of analysis: study area, lowlands and mountain domains, protected and unprotected
mountain governance extents. The standard error and the 95% bias-corrected areas (ha) were derived from the error matrix
according to the good practices protocol of Olofsson et al. [22].

Period
(2019–2002)

Mapped Area (ha) Bias-Corrected (ha)
Standard Error of

Bias-Corrected Area
Estimate (ha)

Confidence Interval
(95%; ha)

Stable
Grasslands

No
Grasslands

Stable
Grasslands

No
Grasslands

Stable
Grasslands

No
Grasslands

Stable
Grasslands

No
Grasslands

Study area 37713 546995 46378 558345 3866 3995 7577 7829

Lowlands 26959 310315 32849 319598 2694 2756 5280 5402

Mountains 10752.9 236680 13259 238747 1228 1297 2406 2542

Mountain
protected 885 67345 1603 67173 264 288 518 564

Mountain
unprotected 9869 169335 11926 171574 995 1041 1950 2040

3.2. The Progress in Mountain Grasslands Conservation by 2020 and the Difference among Land
Governance Regimes

To understand the progress made in mountain grasslands conservation by 2020, two-
proportion Z-tests compared the bias-corrected grasslands cover estimates of 2019 and 2002
in each extent of analysis (Table 3; e.g., study area, lowlands, mountains, unprotected and
protected governance). This suggested that the positive progress claimed internationally
by 2020 was not achieved. The differences in grasslands cover were significant (p < 0.05),
but decline was the prevalent pattern and, therefore, negative progress was observed. A
positive progress would be achieved where the proportion of grassland cover of 2019 was
at least equal to 2002 (null hypothesis). The equality of proportions hypothesized was
rejected at all extents of analysis. In 2019, grassland cover was significantly lower with
respect to 2002 in the study area (X2 = 1972.1, df = 1, p < 0.001), lowlands (X2 = 1698.0, df = 1,
p < 0.001), mountains (X2 = 334.9, df = 1, p < 0.001), protected (X2 = 25.0, df = 1, p < 0.001)
and unprotected governance extents (X2 = 314.6, df = 1, p < 0.001). To assess the impact, if
any, of protected and unprotected governance regimes in the progress made, we evaluated
if the net loss of grasslands fitted a null hypothesis of equal distribution between protected
and unprotected governance extents (Table 3). This showed that proportions of net loss of
grasslands were significantly lower in the protected governance regime (X2 = 501.2, df = 1,
p < 0.001) suggesting that protected land areas are attenuating the negative tendency of
mountain grasslands decline.

Table 3. Results of the two proportion Z-tests that compared: the proportions of grassland cover in 2019 and 2002 across the
different extents of analysis to analyse the progress made in mountain grasslands conservation by 2020 (upper table); and the
grasslands net loss between mountains protected and unprotected land governance regimes to understand to what extent does
the protected governance regime affect grassland cover change and attenuate negative conservation tendencies (lower table).

Extent of Analysis
Grasslands Cover (ha)

Sample Size (ha) Pearson’s
Chi-Squared (X2) P (Two-Tailed)

Year 2019 Year 2002

Study area 58159 72401 635292 1972.1 p < 0.001
Lowlands 38733 50277 375759 1698 p < 0.001
Mountains 15519 18796 259533 334.9 p < 0.001

Mountains protected 1859 2173 69602 25 p < 0.001
Mountains unprotected 13661 16623 189932 314.6 p < 0.001

Grasslands Net Loss (ha) Sample Size (ha) Pearson’s
Chi-Squared (X2) P (Two-Tailed)

Mountains protected 314 2173
14.9 p < 0.001

Mountains unprotected 2962 16623
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3.3. The Confidence of Grasslands Pixel Assignment and Uncertainty in Grasslands Cover
Change Estimates

The Shannon entropy (H) examined the pixel class assignment performed by the MCE
approach that resulted in uncertainty maps that locate the strengths and weaknesses in
the grasslands class assignment in 2019 and 2002 (Figure 6). A grasslands pixel with a
low Shannon values indicates confidence in that assignment. Our Shannon uncertainty
map, and the shape of frequency distributions of values, indicated that the majority of
grassland pixels values were below the threshold of 0.2 (mean value in the dashed line). The
0.2 threshold was associated with accurate pixel assignment [30]. In 2019, 67.3% of the pixels
assigned to the grasslands class registered values below this threshold (mean value = 0.18).
In 2002, 79.2% of grassland pixels were below this threshold (mean value = 0.16). Therefore,
in 2019 and 2002 there were 32 and 28% of grassland pixels where the grasslands class was
more uncertain based on the Shannon entropy.
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Figure 6. Uncertainty in the grassland pixel class assignment during the classification stage (2002,
2019). Uncertainty was estimated with the Shannon entropy and the probability layers of grass-
land/no grassland created during the classification stage. Left panels show uncertainty for each pixel
classified as grasslands (30 m resolution) in a green-to-red colour gradient. Right panels represent
the frequency distribution of uncertainty across grassland pixels, with the dashed line indicating the
mean values.
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While the Shannon entropy stated the confidence in the class assignment in each map,
the error matrix assessment following the good practices protocol of Olofsson et al. [22]
confronted the mapped grasslands cover changes in relation to reference data. Across
the study area, the grassland cover change map had an overall accuracy of 0.95 ± 0.02
(Table 4), but the accuracy of individual classes varied considerably. Most of the confusion
occurred between the grassland gain class, the no grasslands (pij = 0.014, n = 10) and stable
grasslands (pij = 0.01, n = 7) classes (Appendix B gives the error matrix as sample counts).
The producer’s and user’s accuracy revealed that the change map tended to omit the stable
grasslands class (user’s: 0.87, producer’s: 0.70) and overestimate grassland gain (user’s:
0.28, producer’s: 0.79) and grasslands loss (user’s: 0.74, producer’s: 0.92). Based on the
error matrix, the mapped areas were biased low for the stable grasslands (−18.6%) and
biased high for the grassland gain (+281%) and grassland loss (+25.2%) relative to the
estimated areas. The accuracy assessment supported the need to adjust the area obtained
from pixel counting by taking into account the information contained in the error matrix
and the use of these bias-corrected estimates with 95% confidence interval to assess the
progress in mountain grasslands conservation by 2020. This accuracy pattern prevailed
at each extent of analysis (lowlands, mountains, mountain protected and unprotected;
Table 4). This was expected, since the error matrix used as the input for bias-corrected area
estimates at these extents was the same as the study area, varying only the mapped area.

Table 4. Estimated error matrix for each extent of analysis (study area, lowlands, mountains, mountain protected and
mountain unprotected) with cell entries expressed as the estimated proportion (pij) of area in cel ij. Overall, user’s and
producer’s accuracies with 95% confidence intervals. Appendix B gives the error matrix as sample counts (nij, left) and
estimated proportions (pij, right).

Study Area Reference categories

Map
categories

No
grasslands

Stable
grasslands

Grasslands
gain

Grasslands
loss Total Wi User’s Producer’s Overall

No grasslands 0.853 0.007 0.000 0.001 607 0.86 0.99 0.97

0.95 ± 0.02
Stable grasslands 0.008 0.051 0.000 0.000 42 0.06 0.86 0.70
Grasslands gain 0.014 0.010 0.010 0.001 25 0.03 0.28 0.79
Grasslands loss 0.004 0.005 0.003 0.033 34 0.04 0.74 0.92

Total 0.879 0.073 0.012 0.036 708 1.00

Lowlands Reference categories

Map
categories

No
grasslands

Stable
grasslands

Grasslands
gain

Grasslands
loss Total Wi User’s Producer’s Overall

No grasslands 0.818 0.007 0.000 0.001 607 0.826 0.99 0.96

0.93 ± 0.02
Stable grasslands 0.010 0.061 0.000 0.000 42 0.072 0.86 0.70
Grasslands gain 0.017 0.012 0.012 0.002 25 0.044 0.28 0.78
Grasslands loss 0.005 0.007 0.003 0.043 34 0.059 0.74 0.93

Total 0.851 0.087 0.016 0.046 708 1.00

Mountains Reference categories

Map
categories

No
grasslands

Stable
grasslands

Grasslands
gain

Grasslands
loss Total Wi User’s Producer’s Overall

No grasslands 0.903 0.008 0.000 0.002 607 0.912 0.98 0.98

0.96 ± 0.01
Stable grasslands 0.006 0.036 0.000 0.000 42 0.041 0.86 0.68
Grasslands gain 0.009 0.006 0.006 0.001 25 0.022 0.28 0.81
Grasslands loss 0.002 0.003 0.001 0.018 34 0.024 0.74 0.88

Total 0.92 0.052 0.008 0.002 708 1.00

Mountain
Protected Reference categories

Map
categories

No
grasslands

Stable
grasslands

Grasslands
gain

Grasslands
loss Total Wi User’s Producer’s Overall

No grasslands 0.958 0.008 0.000 0.002 607 0.968 0.99 0.99

0.97 ± 0.01
Stable grasslands 0.002 0.011 0.000 0.000 42 0.013 0.86 0.47
Grasslands gain 0.005 0.003 0.003 0.000 25 0.011 0.28 0.87
Grasslands loss 0.001 0.001 0.001 0.006 34 0.008 0.74 0.75

Total 0.965 0.023 0.004 0.008 708 1.00

Mountain
Unprotected Reference categories

Map
categories

No
grasslands

Stable
grasslands

Grasslands
gain

Grasslands
loss Total Wi User’s Producer’s Overall

No grasslands 0.883 0.007 0.000 0.001 607 0.892 0.99 0.99

0.96 ± 0.01
Stable grasslands 0.007 0.045 0.000 0.000 42 0.052 0.86 0.71
Grasslands gain 0.011 0.007 0.007 0.000 25 0.026 0.28 0.81
Grasslands loss 0.003 0.004 0.002 0.022 34 0.030 0.74 0.90

Total 0.903 0.063 0.009 0.025 708 1.00
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Regarding the relationship between class-allocation uncertainty in the classification
stage and accuracy in the validation stage, the nonparametric Wilcoxon-Mann-Whitney test
with 10,000 sample Monte Carlo distribution approximations showed that median values of
cumulated Shannon entropy were significantly different between corrected classified and
misclassified reference areas (z = −5.6947, p = 0.0001, n = 708). Areas correctly classified
have low cumulated Shannon entropy values (Figure 7).
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Figure 7. Raincloud plot showing the differences between correct classified and misclassified valida-
tion sites as a function of cumulated Shannon entropy (Shannon entropy 2002 + Shannon entropy
2019). Comparison made through the Wilcoxon-Mann-Whitney test with 10,000 sample Monte Carlo
distribution approximations and with the entire validation dataset (n = 708; **** p < 0.0001). The
plot gives the data distribution (the ‘cloud’), individual raw observations (the ‘rain’) and a boxplot
for corrected and misclassified sites. In the boxplot, the horizontal bar in the center of the box is the
median, and whiskers span 1.5 times the interquartile range.

4. Discussion
4.1. Progress in the Conservation of Mountain Grasslands in Southern Europe by 2020

Our grassland cover change analysis based on bias-corrected area estimates over the
transboundary mountain region of Peneda-Gerês in the Iberian Peninsula, a representative
of ancient and traditional pastoral systems of Southern Europe, revealed progress that
is inconsistent with the European and international targets for mountain grassland con-
servation by 2020. From the point of view of being strictly based on cover, conservation
has negatively progressed in mountain grasslands. Decline was the prevalent pattern
between 2002 and 2019 in the study area, lowlands, mountains, mountains protected and
unprotected extents. The results are congruent with the trajectory of decline documented
in the European mountains since the 1960s [11,43,44], in the neighbourhoods [45], the set
of studies close to the 2020 target year [14–17], and in the study area between 2000–2010 by
Regos et al. [13]. Over in the area corresponding to our mountain and mountain protected
extents, Regos et al. [13] found a decline of 33.8% and 43.1% in grassland cover respectively,
using mapped area estimates (not corrected for classification errors). By 2020, our net loss
in grasslands over these two extents (mountains, −17.4%; mountains protected extent,
−14.4%) was lower than previously registered. This suggests that the rates of loss are
slowing down and conservation efforts performed in the region by different policies in
the last 10 years (e.g., decoupled aid of CAP since 2010) are at least smoothing negative
tendencies in mountain grasslands. The decoupled aid of CAP (since 2010) increased direct
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payments to farmers (30%) based on compliance with “greening measures” (e.g., maintain-
ing of grasslands and biodiversity [46]. These payments convinced farmers to maintain
and convert annual crops to grasslands and, where possible, reopen grasslands. This is
plausible given the strong socio-economic crisis that affected Portugal (2008–2016). People
that remained in the region used the reopening of farmlands as one of the strategies to
cope with the crisis. In the Carpathians, Halada et al. [15] identified a remarkable increase
of managed grasslands (1999–2015; +39%) and CAP efficiency as the main booster for
this trajectory.

Despite the deceleration observed, the net loss of grasslands over our study area by
2020 (−21.4%) was fourfold higher than in other southern European mountains (Apennines:
−4.6%; [17]) and twice that of registered in Central European mountains (−10.4%, [16]). Large
declines were only registered in boreal seminatural grasslands (1960–2015, −49.1%; [14].
While we have not specifically assessed the environmental implications of grassland decline
for the Iberian mountains, the literature shows that biodiversity can decrease [47] either
through abandonment or intensification of practices in the remaining grasslands, increased
wildfire proneness and extreme events [48], natural encroachment of cultural heritage [49],
alternations in the biomass balance affecting cattle diet [50] and reductions in national food
security [51].

A smoothing that moderates the losses of grasslands seems to be exerted by the
protected land governance regime. However, this requires careful interpretation. The
differences found between protected and unprotected governance regimes requires further
counterfactual investigation to obtain an evidence-based effect of governance regime [52].
The net grassland loss in the protected was −5.3% lower than in the unprotected regime.
Ridding et al. [20] also found that sites receiving protection retained more grasslands
compared to unprotected sites. Unfortunately, in Europe, grasslands are underrepresented
among nationally protected areas [53]. Conservation policy has to address this issue. The
lack of studies makes further discussion difficult in this regard.

4.2. Accuracy and Uncertainty

In fragmented landscapes such as the European mountains where grasslands can
be smaller than 1 ha, grassland mapping with earth observations as denoted by Lopes
et al. is still a challenge [27,54]. With a two-class classification scheme embedded in an
MCE approach, our accuracy and uncertainty at moderate resolution support this idea.
Despite the efforts to minimize sources of noise (e.g., phenological differences, chosen
classifier, quality of pixel assignment), the accuracy and uncertainty registered suggest
that grasslands cover in mountains should always be estimated with a confidence interval.
Assuming the mapped area to represent the true grassland cover in such internationally
sensitive issues as conservation and policy targets has risks. By providing unbiased area
estimates with 95% confidence intervals and Shannon entropy at the pixel level, we made
progress with respect to previous studies [13,55]. Readers, conservationists, policy makers
are now aware about uncertainty in the area estimates and where doubts persist spatially.

Our high overall classification accuracy, and the decrease observed in change classes
(grassland loss, grassland gain), followed previous grassland studies with Landsat data
in mountains [35,56,57]. The producer’s and user’s accuracy of grasslands loss classes
was surprising in a positive way, since they represent an improvement with respect to
previous findings [35,56]. The accuracy issues with the grassland gain class were not new.
Griffiths [56] also reported low producer’s (0.36) and user’s (0.61) accuracy for this type
of change. Our low user’s accuracy represents a weakness of the present study. Remote
sensing and conservation communities must work together to find a solution for this
classification issue. Despite that, bias-corrected data showed a predominance of grassland
loss with respect to gain. Even considering the lower bias-corrected estimate (ha, lowest
95% confidence interval), we still found a trajectory of decline in grasslands between 2002
and 2019.
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Loosvelt et al. [30] found the majority of incorrectly classified pixels were associated
with large Shannon entropy values. Our results, based on the comparison of the cumulated
Shannon entropy values of the correctly and misclassified validation areas, supports
this finding. This uncertainty pixel layer may thus support intermediate refinement of
classification outputs and inform the spatial variation of classification accuracy [58].

5. Conclusions

This study attempts to provide a characterization of the progress made by 2020 in
mountain grassland conservation using a satellite remote sensing approach that copes with
the frequently unconsidered uncertainty issue. The results presented here fill a data gap
around the year 2020, and a critical gap in understanding the shifting character of mountain
grasslands due to two decades of European and international policy commitment over this
sensitive socio-ecological domain. It illustrates also how uncertainty can be incorporated in
mapping studies and improves policy assessment and reporting over mountain grasslands.
The conservation progress described here is consistent with the notion that European
and international policy commitments over mountains are slowing negative tendencies in
mountain grasslands but not bringing these close to zero or reversing them. The slightly
lower negative tendency of the mountain protected governance regime, compared to
unprotected, is consistent with the alleviation effect that protected areas can exert in
systems under pressure, such as mountain grasslands. Expanding protection of grasslands
by supporting farmers to maintain and reopen pastoral activities, and regulating land
conversions in lowlands, seems necessary to safeguard mountain grasslands. Despite this,
the reduction of uncertainty in grassland change areas, namely grassland gain, remains
an issue that future studies should address in view of more accurate perspectives. Class-
allocation uncertainty metrics at the pixel level can be of support in the refinement of
classifications, and benefit accuracy. For a more complete perspective in conservation and
policy efficiency in mountains, a characterization of the ecological condition of grasslands
is necessary, namely in key components such as degradation, quality and productivity,
where satellite remote sensing can also contribute.
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Appendix A

Table A1. Classifiers and parameterization performed during the run of supervised classifications with the multiple
ensemble classifier approach.

Classifier Grid Search- Parameters Tuning Parameterization

Random forest (RF) ‘n_estimators’: [100, 300, 500, 800, 1000], ‘max_depth’:[4,
8, 16,24], ‘min_samples_leaf’:[1,2,4],
‘min_samples_split’:[2,4,6], ‘criterion’: [‘gini’, ‘entropy’],
‘bootstrap’: [True, False],

n-estimators:500, criterion= ‘gini’, max_features=
‘auto’, max_depth=3, min_smaples_split=2,
min_samples_leaf=1, oob_score=TRUE

Decision trees (DT) ‘max_depth’:[4, 8, 16, 24], ‘min_samples_leaf’:[1,2,3,4],
‘min_samples_split’:[2,4,6], ‘criterion’: [‘gini’, ‘entropy’]

criterion= ‘gini, random_state=100, max_depth=3,
min_samples_leaf=3, min_smaples_split=2,
splitter=“best”

K-nearest neighbor (KNN) ‘n_neighbors’:[3, 4, 5, 6], ‘leaf_size’:[1,3,5], ‘weights’:
[‘distance’, ‘uniform’]

n_neighbors=3, weights=‘distance’

Ensemble Estimators= ‘RF, DT, KNN’, voting=‘soft’

Appendix B

Table A2. Error matrix as sample counts (nij) of the grasslands change map for each extent of analysis (study area, lowlands,
mountains, mountain protected and mountain unprotected). Am,i is the mapped area (ha) of category i and wi is the
proportion of the mapped areas as category i.

Study Area Reference categories

Map
categories

No
grasslands

Stable
grasslands

Grasslands
gain

Grasslands
loss Total Am,i (ha) wi

No grasslands 601 5 0 1 607 546995.2 0.86
Stable grasslands 6 36 0 0 42 37712.6 0.06
Grasslands gain 10 7 7 1 25 22149.9 0.03
Grasslands loss 3 4 2 25 34 28434.3 0.04

Total 620 52 9 27 708

Lowlands Reference categories

Map
categories

No
grasslands

Stable
grasslands

Grasslands
gain

Grasslands
loss Total Am,i (ha) wi

No grasslands 601 5 0 1 607 310314.9 0.83
Stable grasslands 6 36 0 0 42 26959.7 0.07
Grasslands gain 10 7 7 1 25 16367.9 0.04
Grasslands loss 3 4 2 25 34 22116.1 0.06

Total 620 52 9 27 708

Mountains Reference categories

Map
categories

No
grasslands

Stable
grasslands

Grasslands
gain

Grasslands
loss Total Am,i (ha) wi

No grasslands 601 5 0 1 607 236680.2 0.91
Stable grasslands 6 36 0 0 42 10752.9 0.04
Grasslands gain 10 7 7 1 25 5782.1 0.02
Grasslands loss 3 4 2 25 34 6318.3 0.02

Total 620 52 9 27 708

Mountain Protected Reference categories

Map
categories

No
grasslands

Stable
grasslands

Grasslands
gain

Grasslands
loss Total Am,i (ha) wi

No grasslands 601 5 0 1 607 67344.6 0.97
Stable grasslands 6 36 0 0 42 884.1 0.01
Grasslands gain 10 7 7 1 25 791.7 0.01
Grasslands loss 3 4 2 25 34 581.6 0.01

Total 620 52 9 27 708

Mountain
Unprotected Reference categories

Map
categories

No
grasslands

Stable
grasslands

Grasslands
gain

Grasslands
loss Total Am,i (ha) wi

No grasslands 601 5 0 1 607 169335.3 0.89
Stable grasslands 6 36 0 0 42 9868.9 0.52
Grasslands gain 10 7 7 1 25 4990.3 0.02
Grasslands loss 3 4 2 25 34 5736.7 0.03

Total 620 52 9 27 708
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