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Abstract: Cardiovascular diseases are a major cause of death and disability worldwide and they are
commonly associated with the occurrence of atherosclerotic plaque deposition in the vessel walls,
a process denoted as atherosclerosis. This is a chronic and progressive inflammatory disease of
large-/medium-sized blood vessels that affects blood flow profiles, with the abdominal aorta and
its branches being one of the locations prone to the development of this pathology, due to their
curvatures and bifurcations. In this regard, the effect of flow patterns was studied and compared
for both a simplified three-dimensional model of aorta bifurcation on the iliac arteries and a realistic
model of iliac bifurcation, which was constructed from a computational tomography medical image.
The flow patterns were analyzed in terms of velocity and wall shear stress distribution, but a special
focus was given to the size and location of the recirculation zone. The simulations were performed
using the Computational Fluid Dynamics software, FLUENT, taking into account the cardiac cycle
profile at the infrarenal aorta. The shear stress and the velocity distribution observed for both models
indicated that higher shear stress occurred along the flow divider wall (inner wall) and low shear
stress occurred along the outer walls. In addition, the results demonstrated that the wall shear stress
profiles were deeply affected by the transient profile of the cardiac cycle, with the deceleration phase
being the most critical phase to the occurrence of backflow.

Keywords: atherosclerosis; blood flow; cardiovascular modelling; computational fluid dynamics

1. Introduction

Atherosclerosis is characterized by the thickening of the arterial wall, a process in
which cholesterol molecules are deposited and, consequently, cause the narrowing of the
arterial lumen and inadequate blood flow to organs perfused by the affected artery [1–3].
Although this disease seems to be simple, it usually worsens silently over the years, leading
to severe conditions, and it remains a major cause of death globally [4]. Hence, there has
been a growing interest in understanding the biomechanics of its formation, detection, and
treatment of atherosclerotic lesions, with computational simulations being one of the main
tools applied to better understand the disease and to develop new treatments [5–8].

Over the years, this pathology has been deeply studied; however, the focus has es-
sentially been on the carotid [9–12] and coronary arteries [13–16], since these are the most
commonly affected arteries. Nevertheless, the abdominal aorta branches are also of great
importance, such as the renal arteries and iliac bifurcation [5,17–20]. According to the
literature, patients with atherosclerotic lesions in the iliac arteries will probably show
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coronary disease with varying degrees of severity [21]. Moreover, when these arteries are
affected, claudication can occur, which is characterized by ischemic muscle pain or weak-
ness brought on by exertion and promptly relieved by rest [22,23]. In the presence of this
pathological condition, three scenarios can occur, namely, amputation, revascularization,
or the death of the patient as a result of cardiovascular events [23]. Given the impact of this
disease on human health, some investigations have been conducted [18,24–28], but further
hemodynamic studies in these stenotic arteries are needed.

In this field of investigation, various researchers have applied idealized geometries
to represent the desired disease model in simplified conditions [29–31]. Nevertheless, in
recent decades, the field of medical imaging has been developing a set of techniques that
noninvasively produce images of internal anatomical structures. The two most widely used
techniques include Computational Tomography (CT) imaging and Magnetic Resonance
Imaging (MRI). These imaging techniques provide helpful information with diagnostic
and prognostic value and also allow the generation of computational surfaces for the
development of acceptable models that mimic real conditions for the improvement of
numerical studies [32–34].

One of the earliest studies was conducted by Taylor et al. [35]. In this study, the
authors simulated the blood flow in an idealized model of the abdominal aorta under
resting and exercise pulsatile flow conditions. Under resting conditions, a recirculation
zone was formed along the downstream wall of the aorta immediately distal to renal
branches. This study also demonstrated low values of wall shear stress (WSS) at the same
location. In contrast, under moderate exercise conditions, all regions of low shear stress
and high oscillatory shear index were eliminated [35]. More recently, a similar study was
conducted by Mohammed and co-workers [5]. The authors studied idealized stenotic and
healthy renal arteries under rest and exercise conditions. The authors observed flow recir-
culation zones in the proximal side during rest which reduced significantly during exercise
conditions. In addition, they observed that the WSS behavior at the renal bifurcation in the
distal side and in the stenosis throat, was more intense during exercise when compared
with rest conditions. Another interesting study was conducted by Prince et al. [22]. The
research team studied the feasibility of endovascular treatment of iliac stenosis in thirty-
four patients. On the basis of the results obtained, it was verified that this method has a
high technical success rate, causing the relief of claudication symptoms in the majority of
patients. Sanghan et al. [36] investigated the effects of iliac stenosis on abdominal aortic
aneurysm (AAA) formation in both mice and humans. Their results suggested that arterial
stenosis at the time of aneurysm induction leads to faster AAA growth, indicating that
moderate iliac stenosis may have upstream effects on AAA progression.

Taking into account the lack of hemodynamic studies in the iliac arteries and consider-
ing their importance, the purpose of this work is to understand flow patterns, including
reverse flows, in the vicinity of the iliac bifurcation considering a pulsatile flow profile.
To this end, both idealized and realistic geometries were considered aiming to evaluate if
there are significant differences between the flow patterns obtained. A realistic anatomic
model was constructed from a CT medical image, and the flow patterns were analyzed
in terms of velocity and WSS distribution, but a special focus was given to the size and
location of the recirculation zone. Aiming to achieve these goals, the geometry of the
different models and the respective mesh suitable to capture the relevant fluid flow details
were developed. Then, the FLUENT software package was used to perform the numerical
simulations defining the appropriate settings [37].

Through this study, new insights about stenosis development in bifurcation regions
and the effect of considering idealized and realistic models are provided. Moreover,
numerical simulations aid in evaluating the hemodynamic variables for different hemody-
namic conditions.
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2. Computational Model

The development of a computational model for cardiovascular applications involves
different steps. First of all, it is essential to identify the anatomic region of interest and
create a computer model for that specific truncated region, which should be representative
of real conditions. Then, the governing equations are solved for the entire domain allowing
to extract the information about hemodynamic behavior [38].

2.1. Mathematical Equations

The CFD software used, ANSYS FLUENT, solves the three-dimensional equations for
mass, Equation (1), and momentum, Equation (2), assuming conservation for each variable:

∇→v = 0 (1)
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where
→
v is the fluid velocity vector, ρ is the density, p is the static pressure, and τ is the

stress tensor. The turbulence was modelled by the k-ε model, with enhanced wall treatment,
which is described by Equations (3) and (4):
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where k is the kinetic energy, ε the dissipation rate, µ the viscosity, and µt the turbulent
(or eddy) viscosity. Gk represents the generation of turbulence kinetic energy due to the
mean velocity gradients. C1ε and C2ε are constants, 1.44 and 1.92, respectively. σk = 1.0 and
σε = 1.3 are the turbulent Prandtl numbers for k and ε, respectively. The turbulent viscosity
is given by Equation (5), combining k and ε as follows:

µt = ρCµ
k2

ε
(5)

where Cµ is 0.09.

2.2. Boundary Conditions and Fluid Flow Assumptions

The abdominal aorta is an artery of great size, and therefore, the viscosity is approxi-
mately constant, which makes it possible to consider the Newtonian model to be a good
approximation of the numerical simulation. This assumption was previously assessed by
Carneiro et al. [39], whose study demonstrated that the differences of fluid flow behavior
for Newtonian and non-Newtonian profiles are not considered significant at the presented
numerical model. Due to this assumption, the numerical simulations were carried out
considering a Newtonian and incompressible fluid, for which the viscosity was assumed
to be 0.0004 kg/m·s and the density 1057 kg/m3. Furthermore, the wall was modelled as
rigid and the k-ε turbulent model was used with enhanced wall treatment.

The numerical simulations were performed considering an unsteady inlet velocity
profile as depicted in Figure 1. Taylor and Draney [40] have quantified the blood flow at
the infrarenal aorta and they described an inlet velocity profile as a function of time for the
complete cardiac. On this basis, Carneiro et al. [41] approximated a curve to a sinusoidal
function through a numerical method using the CoNum, a numerical application written
in C++ developed at the University of Minho, in order to achieve the maximum velocity of
the pulsatile waveform and define the inlet velocity value.
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Figure 1. Axial velocity on the inlet with the representation of different time instants: t1 = 0.00 s,
t2 = 0.16 s, t3 = 0.26 and t4 = 0.36 s.

Thus, the pulsatile inlet velocity is defined by Equation (6), where V in m/s is obtained
by multiplying the resulting value for 10−2.

V(t) = 2.46 + 5.10cos(2πt)− 1.93cos(4πt)− 4.93cos(6πt)
−0.919cos(8πt) + 5.81sin(2πt) + 6.72sin(4πt)
+0.395sin(6πt)− 1.07sin(8πt)

(6)

where V is the inlet velocity in the axial direction (m/s) and t is the time (s).

2.3. Numerical Solution

The numerical solution of the governing partial differential equations begins by
discretizing the domain into elementary control volumes, using the commercial software
package ANSYS®. Then, FLUENT software is used to solve the equations of continuity,
momentum, and turbulence in each control volume, guaranteeing conservation for each
variable. Each equation is integrated over each control volume and values of the dependent
variable and its derivatives at control surfaces are approximated in terms of nodal values
at surrounding points [42]. In summary, the differential equations are approximated by
a set of algebraic equations over the computational domain and the algebraic equations
are subsequently solved. The standard scheme for solving the pressure equation and the
second-order upwind scheme to discretize the momentum, turbulence kinetic energy, and
turbulence dissipation rate equations were used. Solutions are obtained iteratively, solving
the equations sequentially, using the segregated solver with the Semi-Implicit Method for
Pressure-Linked Equations (SIMPLE) algorithm for the pressure-velocity coupling. The
convergence is accepted when the residuals are below 10−5.

3. Geometry and Mesh
3.1. Simplified Model

A schematic representation of the three-dimensional geometry considered in this
investigation and the configuration details are given in Figure 2. Please note that both iliac
arteries are assumed to have the same geometric characteristics.
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After the geometry was created, the computational mesh was generated. To reduce
the computational time, a symmetrical geometry is assumed in the median planes y and z,
reducing the domain to just one quarter. The domain was decomposed into four connected
subdomains. Specifically, two of these are at the bifurcation region, to refine the mesh
near the bifurcation, where higher velocity gradients are expected. The mesh consisted of
hexahedral elements of different sizes: 2.3 mm for the aorta, 0.75 mm in the bifurcation
zone, and 1.4 mm for the iliac. These mesh sizes were assumed from a preliminary study,
published elsewhere [39]. Boundary layers, with a growth factor of 1.2, were considered at
the cross-section throughout the entire domain, to refine the mesh near the walls, and at
the inlet and outlet faces of the abdominal aorta. It should be referred that grid refinement
tests were performed, and the following mesh showed to be adequate to perform the
numerical simulations.

The resulting computational domain for this model was built with 13,376 hexahedral
elements (Figure 3).
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3.2. Anatomic Model

Considering that each individual has its own anatomical specificities, investigating
the hemodynamic behavior on a real iliac bifurcation model is of great importance. The
application of CFD analysis in realistic vessel models represents an important tool in the
investigation of blood flow fields under real anatomical conditions.

Through a CT image, the generation of a computational model through real anatomic
data is possible. Thus, a model of the abdominal aorta and iliac branches obtained from CT
images of a normal adult subject was implemented in order to compare the computational
results obtained from a realistic and a simplified anatomic geometry.

Briefly, the 3D geometry of the patient-specific model was obtained in a DICOM
(Digital Imaging and Communications in Medicine) format, and it was segmented and post-
processed using the MIMICS software (Materialise, Belgium). Then, when all the image
processing steps had been concluded, the 3D model was exported in stereolithographic
(STL) format, and imported to SolidWorks software. As the 3D model obtained directly
from rendering the CT images had too many interferences in its surface, a second model
was constructed in SolidWorks, using the first model as a source for dimensions, curvature,
and bifurcation axes. A three-dimensional view of the realistic model obtained is shown in
Figure 4.

The file was then imported into the pre-processor software. The domain was divided
into 41,314 tetrahedral elements applying wall refinement criteria. The computational
model and its mesh are shown in Figure 5. Five boundary layers, with a growth factor of
1.2, were considered at the cross-section throughout the entire domain in order to refine
the mesh near the walls, and at the inlet and outlet faces of the abdominal aorta.

The simulations with the realistic model were performed according to the previously
used boundary conditions, including the pulsatile input flow rate.
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4. Results and Discussion
4.1. Flow in the Simplified Geometry

For the simplified geometry (presented in Figure 2), the blood flow was simulated
considering the inlet velocity profile representative of the cardiac cycle infrarenal (Figure 1).
The distribution of x velocities, in the vicinity of the iliac bifurcation, obtained for the time
instants of t1 = 0.00 s, t2 = 0.16 s, t3 = 0.26 and t4 = 0.36 s, is shown in Figure 6.
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The results show that at the beginning of the cardiac cycle (t1), the flow is not fully
developed, and the velocity is positive in the whole domain, with a low value, being
approximately zero. At the systolic peak (t2), the velocity increases in the central region of
the abdominal aorta until the maximum value is reached, 1.26 m/s. At the instants t2 and t3,
the development of a recirculation region in the outer wall, downstream of the bifurcation,
is also observed. At the instant t4, for the minimum peak, the velocity is negative in almost
the entire domain.

To clarify the presentation and the discussion of the results, some regions were identified
(Figure 7) in the geometry that they have received particular attention, such as, the radial lines
x1, x2, x3, and x4 with the axial positions of 150, 165, 175 and 185 mm, respectively.
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Figure 7. Relevant locations of the geometry.

Figure 8 presents the contours of velocity magnitude at the four transverse sections,
x1, x2, x3, and x4, close to the iliac bifurcation for the different time instants of the cardiac
cycle. The velocity increases at the center of the abdominal aorta, from x1 to x2, the location
at which the maximum velocity is found. A vortex of recirculation is formed in the position
x3, near the outer wall of the iliac artery, decreasing to the x4 position. In the deceleration
phase, upstream of the abdominal aorta, in x2, two small areas of fluid recirculation close
to the wall for each one of the iliac arteries are visible. Between positions x3 and x4, the
thickness of the vortex increases during deceleration which spreads to the entire cross-
section from t2 to t3 instant. However, in t4 there is a zone of positive flow on the interior
wall of the iliac artery, which decreases along the axial position. In the deceleration phase
for the x3 to x4 locations, the recirculation vortex increases both in the axial (Figure 6) and
in radial directions (Figure 8), presenting this phase of the cardiac cycle is more likely to
lipidic deposition.

These effects indicate that the development of atherosclerosis is, therefore, deeply
correlated with the transient character of the cardiac cycle, mainly in the deceleration phase,
where the recirculation expands all over the iliac artery. Figure 9 illustrates the vectors of
velocity magnitude at the median plane x-y in the vicinity of the iliac bifurcation for the
deceleration phase.

The formation of a vortex at the outer wall of the iliac artery for both instants of
the deceleration phase is shown. From the instance t2 to t3, vortex thickness increases,
occupying the entire cross-section in t3. These observations are consistent with the results
seen in Figure 8. The formation of recirculation zones close to the outer wall was also
previously observed by other authors [20].

To evaluate the development of the recirculation area, the variation of recirculation
spread close to the outer wall of the iliac artery during the acceleration and deceleration
phases is presented in Figure 10.
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Figure 8. Distribution of velocity magnitude (m/s) in the cross-sections in the vicinity of iliac bifurcation along the cardiac
cycle, (a) t = 0.00 s, (b) t = 0.16 s, (c) t = 0.26 s, (d) t = 0.36 s.
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Figure 10. Length of the recirculation area during the acceleration and deceleration phase of the
cardiac cycle.

Recirculation initiates at 0.06 s of the infrarenal cardiac cycle. During the acceleration
phase, its increase is gradual, but in the deceleration phase, the increase of the recircu-
lation length is more pronounced, particularly after 0.22 s. At 0.26 s, the recirculation
zone reaches a value of 72 mm of length. After 0.26 s, the recirculation extends through-
out the computational domain of the iliac arteries and, therefore, its length cannot be
further evaluated.

The atherosclerotic plaque formation, together with its focal distribution has been
associated with the variations of WSS. In fact, it has been established that arterial locations
where the WSS is significantly lower in magnitude and oscillatory values occur, appear to
be the highest risk areas for the increase of intimal wall thickening. The WSS distribution
along the abdominal aorta and the outer and inner walls of the iliac artery is shown in
Figure 11, for all representative instants of the cardiac cycle.

At the beginning of the cardiac cycle (t1), the WSS on the wall is approximately
constant throughout the entire domain. The behavior of the WSS profile is similar to the
deceleration phase (instants t2 and t3), but with higher values for the instant t2, due to
higher inlet velocity. For the moment t4, the profile of the WSS is the opposite to that
verified in the deceleration phase, except close the outer wall of the iliac artery, probably
because of the negative velocity values.



Fluids 2021, 6, 284 10 of 18

Fluids 2021, 6, x FOR PEER REVIEW 10 of 19 
 

 

extends throughout the computational domain of the iliac arteries and, therefore, its 
length cannot be further evaluated. 

The atherosclerotic plaque formation, together with its focal distribution has been 
associated with the variations of WSS. In fact, it has been established that arterial locations 
where the WSS is significantly lower in magnitude and oscillatory values occur, appear to 
be the highest risk areas for the increase of intimal wall thickening. The WSS distribution 
along the abdominal aorta and the outer and inner walls of the iliac artery is shown in 
Figure 11, for all representative instants of the cardiac cycle. 

(a) (b) 

 
(c) 

Figure 11. Distribution of WSS at the median x-y plane during the cardiac cycle, (a) at the abdominal aorta wall, and at 
the (b) outer and (c) inner wall of the iliac artery. 

At the beginning of the cardiac cycle (t ), the WSS on the wall is approximately 
constant throughout the entire domain. The behavior of the WSS profile is similar to the 
deceleration phase (instants t  and t ), but with higher values for the instant t , due to 
higher inlet velocity. For the moment t , the profile of the WSS is the opposite to that 
verified in the deceleration phase, except close the outer wall of the iliac artery, probably 
because of the negative velocity values. 

The acceleration and deceleration phases of the infrarenal cardiac cycle are 
characterized by large fluctuations in values of WSS in the vicinity of the iliac bifurcation, 
associated with the formation of vortices downstream of bifurcation. The initial segment 
of the exterior and interior walls of the iliac arteries is the most likely site for the 
endothelium degradation, with subsequent deposition of plaque. Thus, atherosclerosis is 
more likely to be originated in the vicinity of the iliac bifurcation, because of the complex 
flow created by geometry features [17]. 

 
 
 

Figure 11. Distribution of WSS at the median x-y plane during the cardiac cycle, (a) at the abdominal aorta wall, and at the
(b) outer and (c) inner wall of the iliac artery.

The acceleration and deceleration phases of the infrarenal cardiac cycle are character-
ized by large fluctuations in values of WSS in the vicinity of the iliac bifurcation, associated
with the formation of vortices downstream of bifurcation. The initial segment of the exterior
and interior walls of the iliac arteries is the most likely site for the endothelium degradation,
with subsequent deposition of plaque. Thus, atherosclerosis is more likely to be originated
in the vicinity of the iliac bifurcation, because of the complex flow created by geometry
features [17].

4.2. Flow in the Anatomic Geometry

Although the simplified model represents a good approximation of the realistic condi-
tions, the assumptions and geometrical modeling present some limitations, since they do
not fully describe the morphological irregularity of real arteries [32]. Therefore, the use
of realistic models is crucial, as it accounts for the diameter and cross-section variations
along the vessels. For this reason, in the present study, the numerical simulations of the
simplified and the real iliac bifurcation geometry are compared in order to infer about
the hemodynamic profiles obtained for both cases. According to this, the same study was
performed for the real model along the cardiac cycle.

The vectors of velocity magnitude are presented in Figure 12 for the median x-y plane
for different instants of acceleration and deceleration phase of cardiac cycle for the time
instants of t1 = 0.00 s, t2 = 0.16 s, t3 = 0.26 and t4 = 0.36 s.
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instants of acceleration and deceleration phase of the cardiac cycle.

The division of flow between the two iliac arteries and the formation of a vortex
recirculation in the outer wall of each iliac artery are visible on the basis of the analysis
of the results. This vortex has larger dimensions in the right iliac artery, which may
be explained through the geometry of the bifurcation. In the realistic model, there are
no geometrical discontinuities close to the bifurcation, a feature that could affect the
distribution of blood immediately upstream of the bifurcation. Plus, it is important to
note that each artery has a different angle in relation to the positioning of the abdominal
aorta, as well as the iliac arteries have different diameters. These parameters might be
responsible for the non-uniform distribution of blood flow in both iliac branches. Therefore,
the differences of results may be due to fact that the right iliac branch has a different shape
to the left one and due to the obviously higher bifurcation angle performed by the right
artery with the abdominal aorta.

The velocity profiles reveal the presence of reverse flow throughout, especially for
the instants t3 and t4, which correspond to the deceleration phase. It is also demonstrated
that the recirculation initiates at the outer wall of iliac arteries, as happens in the simplified
model, differing in the manner in which the vortex is spread. Consequently, it may be
said that the deceleration of the flow is a decisive factor for the occurrence of recirculation,
which is even more pronounced as the cardiac cycle evolves to the period of backflow.

The isokinetic lines for cross-sections of the abdominal aorta, right and left iliac arter-
ies, S1–S9, for time instants of t1, t2, t3, and t4 are presented in Figures 13–15, respectively.
The cross-sections are outlined in their respective figures. Note that the colored scales for
the anatomical results were adjusted to allow the assessment of the velocity magnitude
differences for each location at different instants of the cardiac cycle. Without this adjust-
ment, the variations in the velocity would not be noticeable, especially for the instants
corresponding to the deceleration phase.
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Figure 13. Velocity magnitude (m/s) for different cross-sections during the cardiac cycle at the abdominal aorta, (a) t = 
0.00 s, (b) t = 0.16 s, (c) t = 0.26 s, (d) t = 0.36 s. 

V
el

oc
ity

 (m
/s

) 

Figure 13. Velocity magnitude (m/s) for different cross-sections during the cardiac cycle at the abdominal aorta, (a) t = 0.00
s, (b) t = 0.16 s, (c) t = 0.26 s, (d) t = 0.36 s.
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Figure 14. Velocity magnitude (m/s) for different cross-sections during the cardiac cycle at the left iliac artery, (a) t = 0.00 s,
(b) t = 0.16 s, (c) t = 0.26 s, (d) t = 0.36 s.
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Figure 15. Velocity magnitude (m/s) for different cross-sections during the cardiac cycle at the right iliac artery, (a) t = 0.00
s, (b) t = 0.16 s, (c) t = 0.26 s, (d) t = 0.36 s.
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Figure 13 shows that the highest velocity occurs in the center of the abdominal aorta,
but in t4 there are two peaks of velocity, suggesting the division of flow bifurcation in the
two iliac arteries. Although the flow profile is more symmetrical in the first section (S1), it
is verified that the maximum velocity tends to move towards the right iliac artery.

In Figure 14, the formation of a recirculation area at the outer wall of the left iliac
artery is shown, during the deceleration phase (t3). In t4, where the vortex of recirculation
t3 was formed, the maximum velocity magnitude can be observed, suggesting that the
recirculation area is extended to the entire cross-section.

Comparing Figures 13 and 14, it is also demonstrated that the right iliac artery reaches
higher values of velocity magnitude. The higher flow rate in this artery should be due to its
higher cross-section when compared with the left iliac artery. In Figure 15, a recirculation
area in cross-sections S8 and S9 can also be noted. Like the left iliac artery, it is suggested
that recirculation extends to the whole cross-section.

To allow a better understanding of the results, the velocities between the two models,
idealized and realistic, were compared for t2, which corresponds to the peak velocity of the
profile shown in Figure 1. For this purpose, only the axial regions of interest were selected
to perform the comparison as represented in Table 1.

Table 1. Comparison between the velocities measured for the anatomical and idealized model.

Axial Positions Maximum Velocity (m/s)
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Looking at the previous results, it can be observed that the velocities estimated in the
anatomical model are lower than those obtained for the idealized model. This is due to
the differences in the flow rates of the two models. Although the same velocity profile
was used as with the idealized geometry, the actual cross-section is smaller at the inlet
boundary. Nonetheless, taking into consideration the cross-section areas of the aorta and
iliac arteries for both geometries, the data presented in Table 1 are in agreement with flow
rate and geometric details. The differences between the right and left branches of the iliac
arteries (both with diameters within 0.5 mm of each other) are due to the asymmetric flow
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patterns between the two branches. As can be observed from Figure 12 (at t2), the higher
split angle of this artery drives the main flow towards the outer wall yielding a higher peak
velocity when compared with the left branch.

In summary, with this study, it was verified that although the idealized models make
it possible to study the flow phenomena with a high degree of precision, the comparison
between idealized geometries and the real anatomical ones cannot be carried out directly.
The different curvatures of the bifurcation and possible variations in the cross-section
area can result in some differences in the flow distribution, which impacts on velocity
patterns, but the occurrence of recirculation vortices in the outer walls of the artery was
also observed. Another conclusion is related to the specificity of the cardiac cycle, and
the results show that during reverse flow, the vortex of recirculation extends to the entire
section downstream of the bifurcation, as presented in Figure 15.

5. Conclusions

A simplified CFD model and a realistic one based on anatomical geometry were im-
plemented in order to simulate the blood flow dynamics in the abdominal aorta bifurcation
into the iliac arteries. The flow was modeled and the grid quality was conveniently checked.
The strategy applied to the grid generation was thought to take into consideration the
refinements required to capture the high variable gradients of flow patterns, and therefore,
to obtain accurate results.

The shear stress distribution observed in the iliac arteries of the simplified model
followed the usual trend seen in bifurcation studies with high shear stress occurring along
the flow divider wall (inner wall) and low shear stress occurring along the outer walls. In
addition, the WSS profiles for the simplified model were deeply affected by the transient
profile of the cardiac cycle. These effects indicate that the development of atherosclerosis is,
therefore, deeply correlated with the transient character of the cardiac cycle, mainly in the
deceleration phase, where the recirculation expands all over the iliac artery. The velocity
patterns and WSS distribution obtained in the present work are in good agreement with
previous investigations [35,43].

The introduction of in vivo images in the computational models contributed to the
understanding of blood flow in the descending abdominal aorta under physiologic condi-
tions. The results of the simulation using the realistic model geometry confirmed that the
more likely regions of the geometry to develop a recirculation area occur, preferentially,
downstream the bifurcation at the outer walls of iliac branches.

The anatomical geometry is smoothed, reducing the geometrical discontinuities that
promote the formation of atherosclerosis when compared with the simplified model. How-
ever, the simulations demonstrated that the deceleration phase of the flow is a decisive factor
for the occurrence of recirculation, which is more pronounced for the period of backflow.

There are potential limitations of the presented numerical models due to the performed
assumptions: the walls of the model were considered as rigid walls and the same transient
inlet flow rate for both models was defined.

The pulsatile nature creates a dynamic environment that raises many interesting and
fundamental unsteady fluid mechanical questions. Each feature of hemodynamics plays a
role in the generation, detection, and treatment of arterial disease. This study improved our
understanding that most cardiovascular diseases are highly localized and must be caused
by local factors acting at a specific site of blood vessels. In conclusion, this study allowed a
better understanding of the relationship between hemodynamics and vascular diseases,
by assessing the distributions of blood velocity and biomechanical forces imposed on the
arterial wall by the blood fluid.
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