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Abstract 

Despite significant advances in therapeutic possibilities for the treatment of inflammatory bowel disease (IBD) in 
recent years, there is still a big room for improvement. In particular, biological treatment can induce not only clini-
cal remission but also mucosal healing of the gastrointestinal tract. Among these therapeutic molecules, anti-tumor 
necrosis factor-alpha (anti-TNF-α) antibodies were the first to revolutionize treatment algorithms in IBD. However, due 
to the parenteral route of administration and systemic mode of action, TNF-α blockers are characterised by high rates 
of immunogenicity-related loss of response and serious adverse events. Moreover, intravenous or subcutaneous ther-
apy is not considered patient-friendly and requires occasional, direct contact with healthcare centres. To overcome 
these limitations, several attempts have been made to design oral pharmaceutical formulations of these molecules. It 
is hypothesized that oral anti-TNF-α antibodies therapy can directly provide a targeted and potent anti-inflammatory 
effect in the inflamed gastrointestinal tissues without significant systemic exposure, improving long-term treatment 
outcomes and safety. In this review, we discuss the current knowledge and future perspectives regarding different 
approaches made towards entering a new era of oral anti-TNF-α therapy, namely, the tailoring of biocompatible 
nanoparticles with anti-TNF-α antibodies for site-specific targeting to IBD. In particular, we discuss the latest concepts 
applying the achievements of nanotechnology-based drug design in this area.
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Background
Inflammatory bowel disease (IBD) represents chronic, 
disabling, and incurable gastrointestinal disorders of 
unknown origin. There are two main disease entities clas-
sified as IBD—Crohn’s disease (CD) and ulcerative coli-
tis (UC). Approximately seven million people suffer from 
IBD globally [1]. Furthermore, the incidence of these 
diseases is still increasing worldwide. The clinical course 
of IBD can be very diverse, leading in a significant pro-
portion of those primarily young patients to irreversible 
bowel damage. Thus, IBD is not only a growing medi-
cal problem but also a social one [2]. Therefore, actions 
aimed at improving the results of IBD treatment should 
be considered a priority.

The main goal of IBD therapy is to heal the inflamed 
gastrointestinal tract, achieving steroid-free remission, 
and protect the patients from irreversible bowel dam-
age and disability [3]. The therapeutic armamentarium 
includes various pharmacological agents, including 
aminosalicylates (5-ASA), immunosuppressants (thio-
purines, methotrexate), steroids, small molecule drugs 
(tofacitinib, ozanimod), and biological drugs [4]. The 
former therapeutic category, in particular, has revolu-
tionized treatment strategies in IBD in the last 20 years. 
Anti-tumor necrosis factor-α (anti-TNF-α) antibod-
ies and newer groups of monoclonal antibodies (mAbs) 
directed against α4β7 integrin (vedolizumab) or interleu-
kin-12 and -23 (IL-12/23) (ustekinumab) are character-
ized by the highest anti-inflammatory potential [4].

Despite the apparent advances in the quality of care in 
IBD, there is still a broad range of unanswered questions 
regarding how to improve the therapeutic outcomes fur-
ther. One of the new strategies undertaken in this area 
is developing new pharmaceutical formulas of already 
used and effective drugs to overcome their known limi-
tations, including immunogenicity and adverse events. In 
this paper, we present the current knowledge and future 

Graphical Abstract

Fig. 1 Schematic representation of IgG antibody structure 
(A) consisting of a shorter light chain (pink) and a long heavy 
chain (orange), the constant region (Fc, marked in blue), and its 
antigen-binding fragment (Fab, marked in green). VL: light chain 
variable region; VH: heavy chain variable region; CL: a constant 
region of the light chain; (CH1, CH2, CH3): regions of the heavy chain 
labeled 1, 2, 3, respectively. Schematic structure of infliximab (B) and 
adalimumab (C) [own drawing]

directions in terms of the oral administration of mAbs, 
as these biological molecules have been described as the 
most suitable approach to decorate nanoparticles for 
site-specific targeting. In particular, we discuss the appli-
cation of the newest achievements in nanotechnology-
based drug design in this area.

Limitations of currently available pharmaceutical 
formulations of anti‑TNF‑α antibodies
Infliximab (IFX) and adalimumab (ADM) are the two 
most widely used TNF-α inhibitors [5, 6]. IFX is a chi-
meric human-mouse IgG1 mAb, while ADM is a fully 
human IgG1 mAb (Fig. 1).
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Both drugs are administered parenterally—IFX intrave-
nously or subcutaneously, ADA—subcutaneously [5–7]. 
These routes of administration result in a systemic mode 
of action. On the one hand, this can be beneficial for 
those IBD patients with the most severe disease course. 
On the other hand, it can result in specific and possi-
bly life-threatening side effects, encompassing systemic 
infections, allergic reactions, decompensation of cardiac 
failure, and many others [5, 6]. Moreover, the parenteral 
route of administration is associated with immunogenic-
ity. According to frequent reports, approximately 70% of 
patients receiving IFX and 40% of those receiving ADM 
develop neutralizing anti-drug antibodies (ADAs) [8]. 
This phenomenon is believed to be responsible for high 
rates of primary (~ 30%) and secondary (~ 50%) non-
response to anti-TNF-α inhibitors in IBD [8–10].

Several steps have been undertaken to improve these 
results. One of the therapeutic strategies adopted 
depends on a combination of a TNF-α inhibitor together 
with an immunomodulator (a combo therapy) [11]. Mul-
tiple studies, including one of the largest and robust 
ones—the SONIC trial, provided evidence for higher 
remission rates, improvement in mucosal healing, and 
lower incidence of a secondary non-response among 
patients receiving dual treatment, probably by reducing 
the frequency of ADAs generation [8, 11, 12]. Another 
strategy is a personalized therapeutic approach by per-
forming reactive or proactive drug monitoring [8]. It 
is hypothesized that the measurement of IFX or ADM 
serum levels and ADAs can help optimize the dosing of 
anti-TNF-α agents, which could improve the long-term 
effectiveness of the therapy. Unfortunately, despite all 
these efforts, a significant proportion of IBD patients 
treated with TNF-α inhibitors still experience therapeu-
tic failure [8–10].

Another possible limitation of the current forms of 
anti-TNF-α therapy, associated with the parenteral route 
of drug administration, is a need for regular and direct 
contact with healthcare providers, including the need 
for hospitalizations. This limitation is relevant mainly 
for patients receiving intravenous IFX injections. While 
subcutaneous administration of ADM or IFX is relatively 
easy, and most patients can do it without any assistance, 
there is still a need to undergo training supervised by a 
professional healthcare provider and visit the health-
care centre occasionally. This limitation is fundamental 
in the context of restrictions and recommendations for 
maintaining social distance related to the coronavirus 
disease-19 (COVID-19) pandemic [7, 13, 14]. Moreover, 
both parenteral routes of administration can be associ-
ated with pain, stress, and discomfort, therefore they are 
not considered fully patient-friendly [15].

Considering all the limitations of currently available 
pharmaceutical formulations of anti-TNF-α antibodies 
discussed above, it is of high importance to search for 
new solutions to improve therapeutic outcomes and their 
safety. Developing a unique formula of orally admin-
istered TNF-α inhibitors seems to fulfil all criteria for 
being a significant step forward in the quality of care in 
IBD. Table  1 summarizes the potential advantages and 
limitations of parenteral (intravenous and subcutaneous) 
and oral routes of administration of anti-TNF-α-acting 
molecules in IBD.

Interestingly, there is some evidence on the potential 
oral application of TNF-α-neutralizing antisense oligo-
nucleotides or small interfering RNAs [16]. However, 
all of these experiments were conducted using animal 
models of colitis. In contrast to that, the largest body 
of evidence is currently available for oral anti-TNF-α 
mAbs. Moreover, one should bear in mind that only anti-
TNF-α mAbs (given parenterally) are used in the therapy 
of human IBD. That is why it seems that the concept of 
oral administration of this type of biological agents is 
the most promising one with the biggest potential to be 
implemented in clinical practice.

Current knowledge on orally administered 
monoclonal antibodies in IBD
Currently, mAbs are administered mainly parenterally. 
Oral delivery of proteins remains a significant challenge. 
However, due to dynamic advances in drug design and 
chemistry, the possibilities to develop this specific phar-
maceutical formula of different therapeutic molecules 
have improved significantly. Several approaches have 
been proposed to increase the stability of orally admin-
istered antibodies against the acidic and protease-rich 
environment of the gastrointestinal tract [17]; these 
include formulating them in liposomes, coating them 
with polymers, and genetic engineering of gastro-resist-
ant forms [18, 19]. The high molecular weight of these 
drugs may also compromise their absorption into the 
periphery, which results in a relatively low risk of signifi-
cant systemic exposure to the therapeutic molecule [17].

Ochi et al. were the first to show that oral administra-
tion of a mAb—anti-CD3 effectively suppressed experi-
mental autoimmune encephalomyelitis [20]. In 2010, 
Ilan et al. described that oral dosing of anti-CD3 (OKT3) 
mAbs in healthy volunteers is safe, does not develop 
neutralizing antibodies, and is biologically effective [21]. 
These studies substantiate the feasibility of oral admin-
istration of mAbs-composed formulations in different 
clinical settings.

As a consequence of these developments, interest in 
the oral administration of mAbs for targeted intestinal 
drug delivery in IBD has also increased in recent years 
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[22, 23]. For example, the aforementioned oral form of 
anti-CD3 (OKT3) mAb has also been tested in the treat-
ment of moderate-to-severe UC [24]. Anti-CD3 mol-
ecule—muromonab-CD3 specifically binds to the T3 
antigen complex (CD3) on human T lymphocytes and 
modulates several T-cell-mediated immune response 
functions. It has been registered to treat allograft rejec-
tions after transplantation. Originally, it is administered 
parenterally, however, due to a high risk of severe adverse 
effects, its application in other immune-mediated condi-
tions is limited. To overcome these limitations, an oral 
form of anti-CD3 was developed. This molecule in a 
murine T-cell-induced colitis model significantly altered 
cytokine responses and showed high efficacy in reduc-
ing the inflammatory activity [25]. Subsequently, a small 
open-label pilot study was performed assessing the util-
ity of oral OKT3 therapy in UC of moderate-to-severe 
activity [24]. The therapy was well-tolerated, and no seri-
ous adverse events were noted. The drug promoted an 
anti-inflammatory response when assessed on the gene 
expression levels in peripheral mononuclear cells. Due to 
a relatively small number of participants, it was impos-
sible to determine the therapeutic clinical benefit. Unfor-
tunately, the development of OKT3 is no longer actively 
promoted in the United States, and further analyses 
are not available [24]. Nevertheless, it was shown to be 
entirely feasible to develop an oral form of biologically 
active mAb without the risk of its inactivation in the gas-
trointestinal tract. Oral administration induced targeted, 
local immunomodulatory effect with low systemic drug 
exposure and was characterized by a good safety profile.

The studies on the efficacy and tolerability of OKT3 
in IBD represented a fascinating approach. However, 
it investigated a novel therapeutic molecule adminis-
tered in a completely new, experimental way. It seems 
more feasible and clinically relevant to design a novel 
orally administered formulation but containing a drug 
with a known and precisely proven efficacy, like TNF-α 
inhibitors.

The first attempts to develop an oral form of TNF-α 
blockers were undertaken by Worledge et  al. already in 
2000 [26]. The authors demonstrated that oral admin-
istration of avian anti-TNF-α antibodies significantly 
decreased inflammation in colonic tissues in a rat model 
of chemically-induced colitis. Interestingly, these effects 
were more pronounced when compared to sulfasalazine 
and dexamethasone. Another interesting concept in this 
area was proposed by Vandenbroucke et  al. [27]. They 
developed a strain of Lactococcus lactis secreting mono-
valent and bivalent TNF-neutralizing nanobodies. The 
authors demonstrated that oral administration of these 
bacteria resulted in a local, colonic secretion of anti-TNF 
molecules, which induced anti-inflammatory effects in 

a dextran sulfate sodium (DSS) chronic colitis in mice. 
Bhol et  al. [75] proposed AVX-470—a polyclonal anti-
body directed against TNF-α—as a candidate for IBD oral 
administration. The authors confirmed its anti-inflamma-
tory properties both in in vitro and in vivo experiments 
in different animal models of IBD. The authors designed 
a randomized controlled trial in patients with moderate 
to severe UC in the next step [28, 29]. The study showed 
a dose-dependent beneficial trend in terms of clinical, 
endoscopic response and inflammatory biomarkers in 
patients receiving the drug compared to placebo. Orally 
administered AVX-470 was safe and well-tolerated with 
minimal systemic circulation absorption and no immu-
nogenicity induction. Maurer et  al. [30] formulated a 
5  mg IFX tablet by incorporating the mAb into a sugar 
glass matrix based on oligosaccharide inulin and coated 
by a colon-specific ColoPulse release system. They 
showed that this formulation was stable in a long-term 
observation period. After 16 months, a mean 83% biolog-
ical activity of the drug closed in vials and stored at 25 °C 
was detected. The authors further validated their results, 
showing the high stability and potency of ColoPulse-IFX 
compared to fresh IFX stock [31]. Since the production 
process of this formulation was validated, clinical trials 
are the final step of the ColoPulse-IFX investigation.

Another concept was proposed by Crowe et al. [32]. In 
their experimental model, a V565 domain of anti-TNF-α 
antibody was used, which is believed to be biologically 
active and resistant to intestinal proteases. They demon-
strated that V565 was highly influential in neutralizing 
both the soluble and membrane-bound form of TNF-α. 
What is more, the investigated molecule was biologi-
cally stable after incubation with proteolytic enzymes 
and when exposed to intestinal and fecal supernatants. 
The V565 domain achieved a high concentration in the 
colonic tissue and stool after oral administration in a 
murine model of DSS-induced colitis. The authors also 
detected its levels in the serum, providing evidence for 
some penetration of the molecule through the inflam-
matory-disrupted intestinal wall. The same group devel-
oped enteric-coated mini-tablets of V565 resistant to 
gastric content and dissolving in the small intestine [33]. 
These experimental molecules were then orally admin-
istered in cynomolgus monkeys. The authors confirmed 
the small intestine as the site of mini-tablets dissolution 
and detected V565 in the stool, providing evidence of 
drug survival in the gastrointestinal tract after oral dos-
ing. At the same time, it was shown that systemic expo-
sure to V565 was very low. The same group showed in a 
small human IBD study that oral V565 mini-tablets were 
protected in the stomach and then gradually released in 
the intestines achieving a high local concentration and 
providing a decrease in inflammatory markers in colonic 
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biopsies taken from UC patients after 7 days of treatment 
[34].

In 2021 results from a phase 2a clinical trial have been 
published showing that administration of OPRX-106—a 
novel oral TNF-α-blocking molecule is effective and safe 
in patients with mild-to-moderate UC [35]. OPRX-106 
is a lyophilized Nicotiana tabacum (BY2) tobacco plant 
expressing recombinant TNFR2-Fc fusion protein. In this 
study, twenty-five UC patients were enrolled in an open-
label manner to receive two different doses of OPRX-106 
for 8 weeks. At the end of the evaluation, 67% and 28% 
of patients experienced clinical response and remis-
sion, respectively. This was accompanied by the reduc-
tion in fecal inflammatory markers and improvement in 
colonic histological scores. In parallel to clinical assess-
ment, the authors conducted further research on the 
potential mechanisms of action of the investigated mol-
ecule. While they detected no significant absorption of 
OPRX-106 into the systemic circulation, they were able 
to show an increase in a CD4+ CD25+ FoxP3 subset of 
anti-inflammatory, suppressor T lymphocytes. One pos-
sible explanation for this phenomenon is the interaction 
of anti-TNF-α-acting molecule via Fc-receptor with a 
subgroup of CD14+/HLA-DR+ cells [36]. On the one 
hand, this interaction results in the production of IL-10—
an anti-inflammatory cytokine. On the other hand, it 
promotes suppressor cells like Tregs or regulatory mac-
rophages and NK cells.

Another important observation was the reduction of 
IL-6 and interferon-gamma levels after administration 
of OPRX-106 [35]. IL-6 seems to be the crucial cytokine 
in IBD responsible for the resistance of CD4+ T helper 
cells in inflammatory infiltrates to proapoptotic stimuli 
[36]. This phenomenon is mediated by the transmem-
brane TNF (tmTNF) interaction on monocytic cells with 
TNFR2 on CD4+ helper cells. The administration of 
anti-TNF-α agents is believed to interfere with this path-
way by blocking the binding of tmTNF to TNFR2 and 
decreasing the production of IL-6 [36, 37]. As a result, 
pro-inflammatory cells regain their susceptibility to proa-
poptotic stimuli, which decreases the intensity of inflam-
matory infiltrates.

The immunoregulatory properties of OPRX-106 
showed in patients with active UC confirmed previ-
ous observations made by the authors in animal mod-
els of chemically-induced steatohepatitis and colitis [38, 
39]. They were able to show the reduction of inflamma-
tory infiltrates after oral administration of OPRX-106, 
which was accompanied by the induction of regulatory 
T cells and the increase of anti-inflammatory cytokines. 
Whether these phenomena—described in animal mod-
els and humans—are mediated by the direct interaction 
of anti-TNF-α molecules with tmTNF on immune cells, 

as suggested in the case of parenterally administered 
TNF-α-blocking agents in IBD, is to be established. Nev-
ertheless, the studies on the efficacy of OPRX-106 were 
the first to show not only the rationale for using orally 
administered anti-TNF-α molecules but also presented 
possible mechanistic explanations for their modes of 
anti-inflammatory action.

Nanotechnology‑based drug design and oral 
anti‑TNF‑α therapy: current knowledge, future 
directions
More recently, other attempts have been made to develop 
oral formulations of anti-TNF-α antibodies by using the 
discoveries of pharmaceutical nanotechnology. Kim et al. 
[40] proposed nanocomposite-based oral IFX delivery 
systems. All three designed liposomal drug formulations 
(liposome-coated IFX, aminoclay liposome-coated IFX, 
and Eudragit® S100 aminoclay liposome-coated IFX) 
showed a high encapsulation efficiency. A DSS murine 
model of colitis showed their capability to decrease intes-
tinal inflammation on histomorphological and cytokine 
levels after oral administration. In line with this approach 
of using nanopharmaceuticals as a new formulation of 
mAbs, Wang et al. [41] discovered a nanoparticle based 
on natural polyphenol tannic acid and polyethylene gly-
col containing polymer for oral IFX. The solution of this 
novel pharmaceutical formula given as drinking water 
was very effective in achieving a high local concentration 
of therapeutic molecule directly in the inflamed intestinal 
tissues in a murine DSS-induced colitis model. Moreover, 
the authors showed that treatment with IFX-loaded nan-
oparticles ameliorated not only the inflammatory activity 
assessed histologically, but it also resulted in a decrease 
of serum inflammatory markers.

Table  2 summarizes the current achievements in the 
development of oral pharmaceutical formulations con-
taining anti-TNF-α acting molecules.

An ideal drug delivery system should combine the abil-
ity to overcome anatomical and biological barriers, selec-
tively recognize the target sites through surface ligands, 
and be stable, biodegradable, and non-toxic [42]. As 
reflected by the recent studies by Kim et  al. and Wang 
et  al. [40, 41] it seems that clinical application of orally 
administered anti-TNF-α antibodies in IBD could be 
shortly possible by utilizing the recent advances in the 
development of nanopharmaceuticals. According to the 
newest discoveries in this area, it can be hypothesized 
that orally administered mAbs-loaded lipid nanoparti-
cles (LNPs) would maximize the advantages of targeted 
therapy in IBD. This goal can be achieved by efficient 
local drug release in the inflamed areas of the gastroin-
testinal tract with low systemic exposure, resulting in an 
improved safety profile of anti-TNF-α antibodies and a 
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low risk of developing ADAs. Moreover, LNPs have the 
potential to increase the stability of a loaded therapeu-
tic molecule. This feature of LNPs allows overcoming 
another disadvantage of mAbs, which is the risk of partial 
drug degradation over storage time.

LPNs are obtained from biodegradable lipid materials 
of physiological nature and of high melting point. The 
high melting point (usually above room and body tem-
perature) ensures that the lipid core of nanoparticles 
is solid, promoting the sustained release of the loaded 
drug [43]. The lipid character of these drug delivery sys-
tems is particularly suited for oral administration as they 
will undergo the same metabolic pathways as the lipids 
from food [17, 44]. Lipids work as absorption enhanc-
ers, thereby improving the bioavailability of the loaded 
drugs. This is particularly interesting for drugs belonging 
to classes II and IV of the Biopharmaceutical Classifica-
tion System (BCS) [22]. The advantages of using LNPs as 
promising carriers for the oral administration of mAbs 
are attributed to their biodegradability, low cytotoxicity, 
high drug loading capacity, and scalability. Their produc-
tion is cost-effective, and the particles provide a drug 
release in a controlled manner for up to several weeks 
[45]. Both types of LNPs, namely solid lipid nanoparti-
cles (SLN) and nanostructured lipid carriers (NLC), are 
currently considered to be the newest and the most effec-
tive carriers of active substances [23, 46, 47]. Their main 
advantage is to increase the bioavailability of the incorpo-
rated drug administered by different routes [48, 49]. They 
can modify drug release [50] for site-specific targeting of 
the drug to improve its bioavailability [51, 52]. LNPs are 
composed of biodegradable and biocompatible lipids [53, 
54], solid at room and body temperatures. They have also 
been successfully proposed to encapsulate proteins and 
small peptides [45, 46, 55–59]. All lipids and surfactants 
used for the synthesis of LNPs are classified by the Food 
and Drug Administration (FDA) and European Medicine 
Agency (EMA) as generally regarded as safe substances, 
of recognized biocompatibility and biodegradability since 
they are physiological lipids that occur naturally in the 
organism [53, 57]. The location of the drug in the lipid 
matrix governs its release rate [45], being dependent on 
the type and concentration of lipids, surfactants, and 
drug and on the selected production method [60]. SLN 
and NLC can occur in three different types of structures, 
defined either by the type of lipids used for their pro-
duction or by the location of the drug in the lipid matrix 
[61, 62]. Loaded drugs can be placed between fatty acid 
chains or between lipid layers. SLN work as absorp-
tion enhancers when orally administered [62–64], while 
NLC increase loading capacity for drugs that usually 
show higher solubility in liquid lipids than in solid lipids 
(Fig. 2) [65, 66].

The use of nanoparticles for oral administration is 
mainly associated with the safety of LNPs and their abil-
ity to promote enteral absorption with the increased bio-
availability of both hydrophilic and lipophilic drugs. On 
the other hand, understanding the impact of the size and 
shape of LNPs on their distribution in the intestine can be 
used to develop improved drug delivery systems to treat 
gastrointestinal diseases, such as IBD. The biodegradable 
lipid matrix of SLN/NLC undergoes enzymatic decom-
position into components naturally occurring in the 
human body [53]. Due to the ability of LNPs to delayed 
drug release, SLN/NLC can be featured for site-specific, 
targeted, and modified-drug release for the treatment of 
inflammation in the course of IBD. It is worth underlin-
ing that a potential enteric formulation could be devel-
oped for the delayed release of the actives into the colon 
by encapsulating drugs-loaded LNPs in gastro-resistant 
capsules to prevent earlier degradation of nanoparticles 
in the stomach (Fig. 3).

Enteric-coated systems are intended to pursue colon 
delivery by exploiting differences in the pH of gastroin-
testinal fluids [67]. Loading the drug in the pH-sensitive 

Fig. 2 Schematic representation of SLN—loaded with antibody (own 
drawing). mAb monoclonal antibody, SLN solid lipid nanoparticles, IFX 
infliximab, ADM adalimumab

Fig. 3 Graphically presented roadmap to a new therapeutic era of 
oral anti-TNF-α therapy (own drawing). anti-TNF-α anti-tumor necrosis 
factor-alpha, mAb monoclonal antibody, LNPs lipid nanoparticles
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polymers allows for delayed release by protecting the 
active ingredient from the acidic pH of the stomach and 
proximal small intestine. These polymers then break 
down in the more basic pH of the terminal ileum, thus 
providing a targeted drug delivery to the ileum and colon 
[68]. One of the most recommended pH-sensitive poly-
mers in designing of ileocolonic-targeted drug delivery 
systems is methacrylic-acid-based polymers [67–70]. 
The polymethacrylates with a pH-dependent dissolution 
threshold ranging from pH 6.0 to 7.0 can be success-
fully used as coating agents, which protect the drug 
core against gastric juice and proximal small intestinal 
contents [67]. The results of conducted release studies 
have already proved that the Eudragit® enteric-coated 
matrix tablets successfully achieved gastric resistance 
and timed-release of the drug, assuring an adequate lag 
time for the intended ileocolonic targeting followed by a 
controlled-release phase [69, 70]. Therefore, this formu-
lation strategy behind most anti-inflammatory drugs is 
commercially available worldwide for the therapy of IBD.

Besides the advantages of LNPs towards drug stabil-
ity and bioavailability, they must take physicochemical 
interactions between carriers and loaded proteins (anti-
bodies) into account, to ensure the release of intact and 
biologically active drugs. Drugs may be located inside the 
nanoparticles matrix or be adsorbed onto the surface of 
the nanoparticles. Thus, depending on their location, the 
antibody-lipid matrix interactions may distinctly affect 
antibody structure and bioactivity. The intermolecu-
lar forces between the protein and the lipid matrix may 
encompass covalent and electrostatic binding, polari-
zation interaction, dispersion forces, and hydrophobic 
binding. However, there is a lack of knowledge on how 
these interactions may affect the 3D structure of proteins 
and, ultimately, how they influence bioactivity.

Till now, several drug-designing protocols have been 
successfully finalized, and different nanoparticle-based 
therapeutic formulations containing monoclonal anti-
bodies have been developed. As an example, our group 
has recently described a new cationic SLN formulation 
composed of solid lipid (Compritol ATO 888), surfactant 
(Poloxamer 188), and cetyltrimethylammonium bromide 
(CTAB) to incorporate perillaldehyde 1,2-epoxide, and 
surface-tailored with a mAb for site-specific targeting of 
human epithelial growth receptor 2 (HER2) [71]. Perillal-
dehyde 1,2-epoxide-loaded cationic SLN (cPa-SLN) were 
produced by high shear homogenization, achieving more 
than 80% of drug encapsulated in the lipid matrix. The 
study showed that the cytotoxic effect of perillaldehyde 
1,2-epoxide against MCF-7 cell lines could be alleviated 
when surface-modifying the particles with streptavidin. 
The particles exhibited some antioxidant capacity attrib-
uted to the encapsulated monoterpene derivative. The 

cationic character of these particles provided a binding 
pathway via streptavidin to mAb. Streptavidin adsorp-
tion onto cPa-SLN-mAb improved the cell viability 
in comparison to the cationic cPa-SLN. The obtained 
results strengthen the potential use of mAb-coated lipid 
nanoparticles to increase mAb stability while reducing its 
immunogenicity. Cationic SLN have also been success-
fully tailored with a compact antibody against HER2 via 
streptavidin–biotin interaction to promote site-specific 
targeting to breast cancer cells [71]. We have found that 
streptavidin adsorption did not affect cell viability nor 
SLN accumulation in the target cells. Still, the surface-
tailored SLN significantly improved cell internaliza-
tion (with higher internalization in HER2/neu positive 
BT-474 than in HER2/neu negative MCF-7). At the same 
time, cytotoxicity was solely governed by the inherent 
toxicity profile of the lipid matrix (Fig. 4).

The concept of loading anti-TNF-α antibodies into 
novel orally administered formulations can also have 
some possible limitations—pharmaceutical and clinical. 
First of all, their administration through the oral route 
can be compromised by their stability in the gastrointes-
tinal tract. Yadav et al. [72] have shown that proteolytic 
enzyme elastase was the main responsible for the insta-
bility of mAbs (e.g., infliximab and adalimumab) in the 
small intestine and to a lesser extent—the presence of 
trypsin and chymotrypsin. On the other hand, Wallace 
et al. [73] reported that mABs’ stability and susceptibility 
to proteases is governed by the gastrointestinal regions. 
Kim et al. [40] have shown that oral delivery systems tai-
lored with mAbs can improve the bioavailability of low 
solubility and high permeability drugs. Loaded antibod-
ies are less cytotoxic, thereby with the need of lower dos-
ages of mAb, to achieve an efficient delivery and loading 
of macromolecules. It is known that the enteric meth-
acrylic acid copolymer Eudragit® efficiently degrade and 
deliver drugs only at intestinal-specific pH both in  vivo 
and in vitro, thus minimizing drug side effects [74]. Pre-
vious experiments performed by other authors showed 
that this concept is fully feasible and allows for effective 
oral delivery of therapeutic mAbs directly to the inflamed 
intestinal tissues without risk of premature proteoly-
sis and denaturation [32, 33, 40]. That is why, based on 
the pre-clinical studies conducted so far, there is no cur-
rent evidence on any chemical or pharmaceutical limita-
tions regarding loading antibodies in novel nanocarriers. 
Therefore, oral anti-TNF-based nanocarriers are consid-
ered up-and-coming therapeutic approaches for treating 
IBD. They have shown a significant anti-inflammatory 
effect and remarkably decreased TNF-α levels in a DSS-
induced mouse colitis model, as it was discussed above.

Regarding the possible clinical limitations, orally 
administered TNF-α inhibitors can be insufficient for 
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IBD patients with the most severe forms of the disease. 
This can be due to a targeted mode of action directly in 
the gastrointestinal wall with considerably low systemic 
exposure. This could also be problematic in the case of 
patients experiencing extraintestinal manifestations. 
However, individuals with the highest IBD activity usually 
have to be hospitalized and are preferably treated using 
intravenous and/or subcutaneous drugs. In this scenario, 
starting oral anti-inflammatory treatment can be consid-
ered after the initial induction of clinical response via the 
parenteral route. On the other hand, irrespectively of the 
clinical circumstances, the activity of intestinal inflam-
mation is the driving factor of all symptoms and compli-
cations typical for IBD. Thus, a rapid decrease in disease 
severity in the intestinal tissues induced by orally admin-
istered therapeutic molecules can also indirectly result in 
a systemic response. Therefore, it seems that oral admin-
istration of anti-TNF-α antibodies could be considered in 
the phase of inducing remission in IBD of mild-to-mod-
erate activity and in selected patients with severe disease, 
as well as in all patients in the maintenance treatment.

Conclusions
The main goal of IBD therapy is to treat the inflamed 
gastrointestinal tract to achieve steroid-free remission 
and to protect patients from irreversible bowel dam-
age, together with a life-long disability. Among a grow-
ing range of therapeutic options, biologic agents, in 
particular TNF-α inhibitors, have revolutionized treat-
ment strategies in IBD with the highest anti-inflamma-
tory potential. Despite rapid advances in the quality 
of care in IBD brought by these biologic agents, there 

are still some significant limitations to consider. Cur-
rently, biologic agents are administered parenterally, 
which results in a systemic mode of action, particularly 
beneficial for those severely ill. However, this can also 
lead to immunogenicity and serious adverse events and 
often has to be performed under professional medical 
supervision.

That is why it is hypothesized that introducing oral 
anti-TNF-α therapy can revolutionize treatment algo-
rithms and significantly improve clinical outcomes in 
IBD. Several attempts have been made in this area. The 
promising results of a growing number of nanotechnol-
ogy-based scientific protocols focused on developing 
orally administered formulations of nanoparticles loaded 
with mAbs are believed to enable entering a new era of 
orally administered biologic therapy. Great expectations 
are raised to the newly proposed pharmaceutical for-
mulation of TNF-α inhibitors loaded in LNPs (Fig.  5). 
The advantages of LNPs as carriers for oral administra-
tion of mAbs are attributed to their biodegradability, low 
cytotoxicity, high drug loading capacity, and scalability. 
The production of LNPs is cost-effective, and the parti-
cles ensure drug release in a controlled manner for up 
to several weeks. LNPs can be designed and optimized 
to enable a modified drug release in the terminal ileum 
and colon, maximizing the bioavailability of mAbs. Such 
formulations should ensure high anti-inflammatory drug 
activity in an inflamed gut with a considerably low sys-
temic exposure, resulting in lower immunogenicity and 
improved safety profile. Since oral drug delivery is con-
sidered the most convenient drug administration route 
with high patients compliance, this approach would 

Fig. 4 Graphically presented already developed SLN-tailored mAbs by the authors (own drawing). CTAB cetyltrimethylammonium bromide, mAb 
monoclonal antibody, SLN solid lipid nanoparticles, HER2 human epithelial growth receptor 2, IFX infliximab, ADM adalimumab
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significantly improve the quality of life of IBD patients 
who are otherwise bound to get regular TNF-α inhibitor 
injections. It could also open the door for the new poten-
tial biologic agents to be delivered orally in the future 
treatment of IBD.
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