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1. Introduction 
 
Accurately resolving the coupled momentum transfer between the liquid and solid 
phases is a fundamental problem in multiphase transport processes involving 
complex fluids, such as in hydraulic fracture operations. Specifically, we need to 
characterize the dependence of the normalized average fluid-particle force <F> on 
the volume fraction 𝜙𝜙 of the dispersed solid phase and on the rheology of the 
complex fluid matrix, parameterized through the Weissenberg number Wi measuring 
the relative magnitude of elastic to viscous stresses in the fluid.  
 
2. Governing equations 
 
The basic equations governing transient, incompressible and isothermal laminar 
flows of viscoelastic fluids are the continuity, momentum and constitutive equations. 
The continuity and momentum equations read: 
 

∇ ⋅ (𝜌𝜌𝐮𝐮) =  0, 
 

 
𝜕𝜕(𝜌𝜌𝐮𝐮) 𝜕𝜕𝜕𝜕⁄ + ∇ ⋅ (𝜌𝜌𝐮𝐮𝐮𝐮) + ∇ ⋅ (𝑝𝑝𝐈𝐈) − ∇ ⋅ 𝛕𝛕 = 0, 
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where 𝜌𝜌 is the fluid density, 𝐮𝐮 is the velocity vector, 𝜕𝜕 is the time, 𝑝𝑝 is the pressure, 𝐈𝐈 
is the identity tensor and 𝛕𝛕 is the total extra-stress tensor, which is split into solvent 
𝛕𝛕𝑆𝑆 and polymeric 𝛕𝛕𝑃𝑃 contributions, such that 𝛕𝛕 = 𝛕𝛕𝑆𝑆 + 𝛕𝛕𝑃𝑃. Both stress terms are 
obtained by the following equations, which form the constitutive model, 
 

𝛕𝛕𝑆𝑆 = ηS(∇𝐮𝐮 + ∇𝐮𝐮𝑇𝑇), 
 

𝜆𝜆𝛕𝛕
∇
𝑃𝑃 + 𝛕𝛕𝑃𝑃 = 𝜂𝜂𝑃𝑃 (𝛻𝛻𝒖𝒖 + 𝛻𝛻𝒖𝒖𝑻𝑻), 

 
where 𝜂𝜂𝑆𝑆 and 𝜂𝜂𝑃𝑃 are the solvent and polymeric viscosities, respectively, 𝜆𝜆 is the fluid 
relaxation time and 𝛕𝛕

∇
𝑃𝑃 indicates the upper-convective time derivative of the 

polymeric extra-stress tensor defined as 
 

𝛕𝛕
∇
𝑃𝑃 ≡ 𝜕𝜕𝛕𝛕𝑃𝑃 𝜕𝜕𝜕𝜕⁄ + 𝐮𝐮 ⋅ ∇𝛕𝛕𝑃𝑃 − 𝛕𝛕𝑃𝑃 ⋅ ∇𝐮𝐮 − ∇𝐮𝐮T ⋅ 𝛕𝛕𝑃𝑃. 

 
For this model, a characteristic (polymeric) viscosity ratio can be defined by 𝜁𝜁 =
𝜂𝜂𝑃𝑃 (𝜂𝜂𝑆𝑆 + 𝜂𝜂𝑃𝑃)⁄ = 𝜂𝜂𝑃𝑃/𝜂𝜂0, known as retardation ratio, where 𝜂𝜂0 is the total viscosity in the 
limit of vanishing shear rate. 

 
 
 
3. Case studies 
 
In order to develop our computational methodology, we address only non-colloidal 
suspensions with viscoelastic matrices, and focus on both dilute and moderately 
dense suspensions. Following Housiadas and Tanner [1], we consider the effect of 
other particles in the flow, by assuming that from the point of view of a single 
particle at any instant, the remaining particles act like a porous medium. Fig. 1 
illustrates schematically the computational domain, which is used here to simulate 
the steady-state flow of unbounded viscoelastic fluids around random arrays of 
spheres.  

 
Figure 1. Schematic of the channel cross-section used for DNS of random arrays of 
spheres immersed in Newtonian and quasi-linear Oldroyd-B viscoelastic fluids. The 
particle volume fractions considered include 𝜙𝜙 = 0.04, 0.08, 0.12, 0.16 and 0.20. 
 
 
 
 



3.1. Verification: Stokes flow of suspensions with Newtonian fluid matrices 
 
In this section the creeping flow of random arrays of spheres surrounded by a 
Newtonian fluid is studied. Fig. 2 shows our finite-volume simulation results for the 
dimensionless drag force <F> in a random array of spheres, immersed on a 
Newtonian fluid, at solid volume fractions up to 𝜙𝜙 = 0.2. 
 

 
Figure 2. The average value of the dimensionless drag force (multiplied by the 
porosity squared) for creeping flow of a Newtonian fluid past an array of spheres as 
a function of the packing fraction 𝜙𝜙 for 𝑛𝑛𝑐𝑐 = 5 different configurations. The symbols 
represent the simulation data, from this work (squares and diamond) and Hill et al. 
[2] (circles). Also shown are the correlations by Carman [3] (grey line), Brinkman [4] 
(dotted line), Kim and Russel [5] (solid line), Koch and Sangani [6] (dashed line), 
van der Hoef et al. [7] (dotted-dashed line) and Faroughi and Huber [8] (green 
lines). 

 
 

 
3.2. Study: drag force within an Oldroyd-B fluid 

 
We performed finite volume simulations of viscoelastic creeping flows (with the 
Oldroyd-B constitutive equation) past fixed random configurations of particles at 
Weissenberg numbers up to Wi = 4 and for solid volume fractions in the range          
0 < 𝜙𝜙 ≤ 0.2.  
 
With the purpose of finding a closure model for the drag force exerted by an Oldroyd-
B fluid on random arrays of particles at creeping flow conditions and retardation ratio   
𝛽𝛽 = 0.5, in Fig. 3(a) we show the dimensionless average drag force, ⟨𝐹𝐹(𝜙𝜙,𝑊𝑊𝑊𝑊)⟩. 
Additionally, in Fig. 3(b) we show the values of the normalized drag force, ⟨𝐹𝐹(𝜙𝜙,𝑊𝑊𝑊𝑊)⟩/
𝐹𝐹0(𝑊𝑊𝑊𝑊). 𝐹𝐹0(𝑊𝑊𝑊𝑊) represents the drag force exerted by the Oldroyd-B fluid in a single 
particle, as described in Faroughi et al. [9]. The numerical results presented in Figure 
3(b) show that the normalized drag force can be considered independent from the 
Weissenberg number. This way, we propose fitting an equation to the viscoelastic 
results as shown in Figure 3(b). 



 
Figure 3. Variation of (a) dimensionless average drag force ⟨𝐹𝐹(𝜙𝜙,𝑊𝑊𝑊𝑊)⟩ and (b) 
normalized drag force ⟨𝐹𝐹(𝜙𝜙,𝑊𝑊𝑊𝑊)⟩/𝐹𝐹0(𝑊𝑊𝑊𝑊) with Weissenberg number for random arrays 
of fixed particles with solid volume fractions 0 < 𝜙𝜙 ≤ 0.2 within an Oldroyd-B 
viscoelastic matrix-based fluid.  
 

 
4. Conclusions 

 
Direct numerical simulations (DNS) of random arrays of spherical particles 
immersed in Newtonian and viscoelastic fluids were performed using a finite-
volume method. Additionally, the drag force on individual particles were monitored 
with the aim to provide an approximate closed form model to describe the numerical 
simulation data obtained for the unbounded flow of Newtonian and Oldroyd-B fluid 
past random arrays of spheres, which is required to be integrated in a Eulerian-
Lagrangian solver that performs well over a wide range of kinematic conditions.  
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