ML DRIVEN MODELS TO PREDICT THE DRAG COEFFICIENT OF A SPHERE TRANSLATING IN SHEAR-THINNING VISCOELASTIC FLUIDS

A. I. RORIZ¹, S. A. FAROUGHI^{2,*}, G. H. McKINLEY³, C. FERNANDES¹

¹IPC – Institute for Polymers and Composites Department of Polymer Engineering University of Minho, Portugal

²Geo-Intelligence Laboratory Ingram School of Engineering, Texas State University San Marcos, Texas, 78666, USA

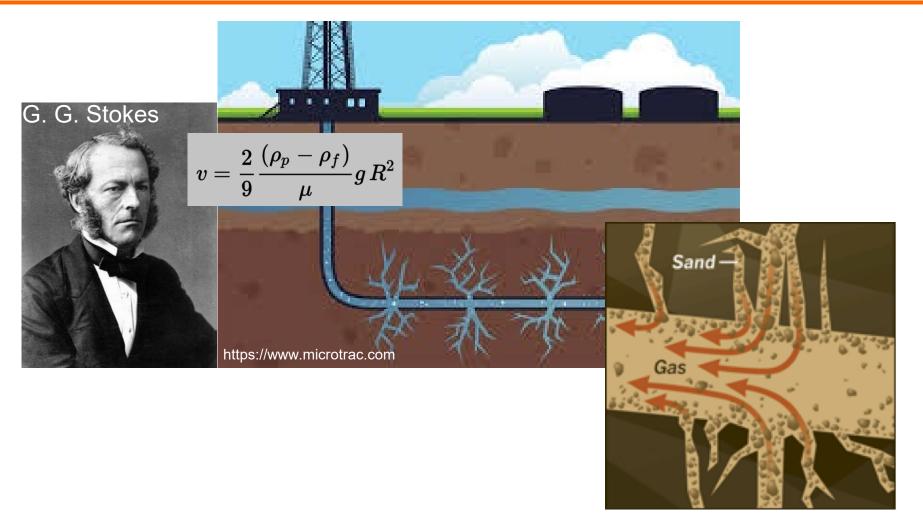
³HML – Hatsopoulos Microfluids Laboratory Department of Mechanical Engineering Massachusetts Institute of Technology, USA

> 17th International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2021)

Outline

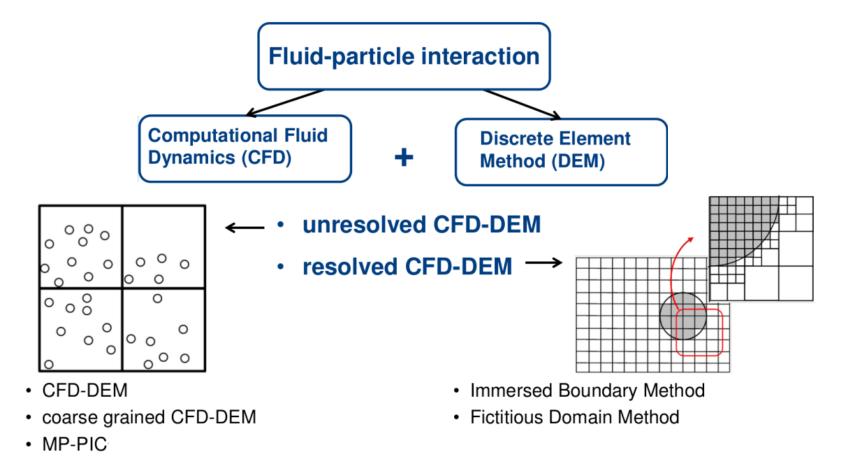
- 1. Introduction & Motivation
- 2. Numerical Approach
- 3. Direct Numerical Simulations
- 4. ML Validation | Single sphere translating in viscoelastic Oldroyd-B fluid
- 5. ML Validation | Single sphere translating in viscoelastic Giesekus fluid
- 6. Conclusions

1. Introduction & Motivation



*A.C. Barbati, et al., "Complex fluids and hydraulic fracturing", *Annual review of chemical and biomolecular engineering*, 7, 415, 2016.

1. Introduction & Motivation



*C. Fernandes, et al., "Validation of the CFD-DPM solver DPMFoam in OpenFOAM through analytical, numerical and experimental comparisons", *Granular Matter*, 20, 64, 2018.

*C. Fernandes, et al., "Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method", *Journal of Non-Newtonian Fluid Mechanics*, 266, 80, 2019.

2. Numerical Approach

Ω

	$\sum \mathbf{F} = \mathbf{F_a} + \mathbf{F_D} + \mathbf{F}_p + \mathbf{F}_{vol} + \mathbf{F}_{lift} + \mathbf{F}_{buoy} + \mathbf{F}_h,$
Newtonian Fluid	$\mathbf{F}_a = rac{1}{2} ho rac{m_P}{ ho_P}ig(rac{D\mathbf{U}}{Dt} - rac{d\mathbf{U}_P}{dt}ig),$
	$\mathbf{F}_D = m_p rac{\mathbf{U} - \mathbf{U}_P}{ au_P}, \qquad au_p = rac{4}{3} rac{ ho_p D_p}{ ho C_D \mathbf{U} - \mathbf{U_p} }.$
	$\mathbf{F}_p = -rac{m_P}{ ho_P} abla p,$
	$\mathbf{F}_{vol} = rac{1}{2} ho rac{dV_P}{dt} (\mathbf{U}-\mathbf{U_p}),$
onia	$\mathbf{F}_{lift} = C_L ho rac{m_P}{ ho_P} (\mathbf{U} - \mathbf{U_p}) imes \omega,$
<u>ewt</u>	$\mathbf{F}_{buoy}=m_P(1-rac{ ho}{ ho_P})\mathbf{g},$
Ne	$\mathbf{F}_{h}=rac{3}{2}D_{P}^{2}\sqrt{\pi ho\mu}\int_{0}^{t}rac{D\mathbf{U}}{rac{D\mathbf{U}}{Dt'}-rac{d\mathbf{U_{P}}}{dt'}}{\sqrt{t-t'}}dt',$
	$\int \frac{24}{Re_p}$ if $\operatorname{Re}_p \le 0.1$
	$C_D = \begin{cases} \frac{24}{Re_p} & \text{if } \operatorname{Re}_p \le 0.1\\ \frac{24}{Re_p} (1 + \frac{1}{6}Re_p^{2/3}) & \text{if } 0.1 \le Re_p \le 1000\\ 0.44 & \text{if } \operatorname{Re}_p > 1000 \end{cases}$
	$(0.44 if Re_p > 1000$

* S. A. Faroughi, Theoretical Developments to Model Microstructural Effects on The of PhD Rheology Complex Fluids, Thesis. 2016. * S. Subramaniam, Progress in Energy and Combustion Science, Elsevier, 2013.

* R. Hill, et al., "Moderate-Reynolds-numbers flows in ordered and random arrays of spheres", Journal of Fluid Mechanics, 448, 243, 2001.

$$\begin{array}{l} \left. \begin{array}{l} \left. \begin{array}{l} \text{Creeping flow conditions } (Re < 1 \,) \\ \left. \begin{array}{l} \left. \right\rangle \ \phi \approx 0, \quad 0 < \zeta < 1, \quad 0 \leq Wi \leq 10 \\ \\ \left. \\ \left. \\ \left. \\ \left. \right. \\ \left. \\ \left. \right. \right. \\ \left. \right. \\$$

* S. A. Faroughi, C. Fernandes, J. Miguel Nóbrega, and G. H. McKinley. A closure model for the drag coefficient of a sphere translating in a viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics, 277:104218, 2020.

* C. Fernandes, S.A. Faroughi, R. Ribeiro, A.I. Roriz, and G.H. McKinley. Finite volume simulations of the inertia-less steady translation of random arrays of spheres in viscoelastic fluid flows: application to hydraulic fracture processes. In preparation, 2021.

ICCMSE 2021

2. Numerical Approach

Continuity equation

$$\nabla \cdot (\rho \mathbf{u}) = 0$$

Constitutive equations (shear-thinning Giesekus model)

$$\boldsymbol{\tau}_S = \eta_S \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right)$$

Momentum equation

 $\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) + \nabla \cdot (p \mathbf{I}) - \nabla \cdot \boldsymbol{\tau} = 0$

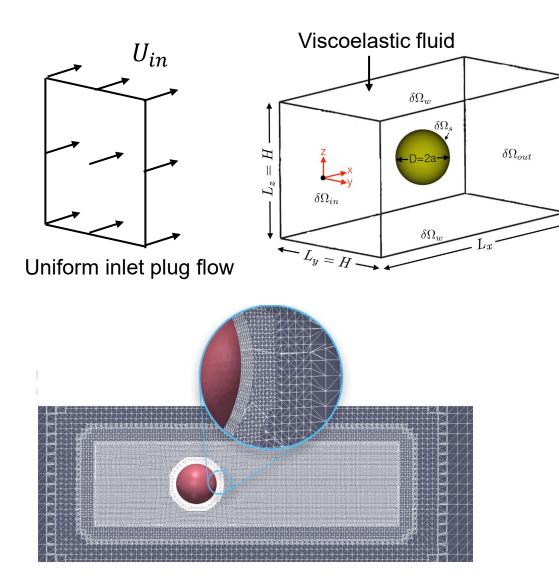
 $au = au_S + au_P$

 $\lambda \vec{\boldsymbol{\tau}}_{P} + \boldsymbol{\tau}_{P} + \frac{\alpha \lambda}{\eta_{P}} \boldsymbol{\tau}_{P} \cdot \boldsymbol{\tau}_{P} = \eta_{P} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{T} \right)$

If $\alpha = 0$, then it is quasi-linear Oldroyd-B model

 α is the mobility parameter, λ is the relaxation time, η_S and η_P are the solvent and polymeric viscosities, respectively.

3. Direct Numerical Simulations



Dimensionless numbers (input variables)

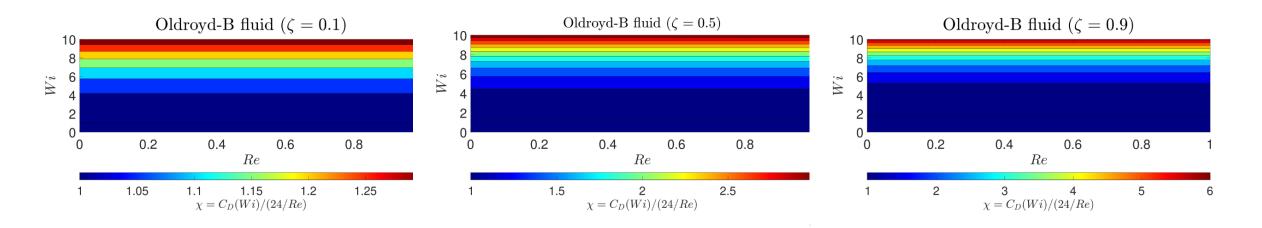
$$Re = 2Re_a = \frac{2a\rho U_{in}}{\eta_0}$$
$$Wi = \frac{\lambda U_{in}}{H}$$
$$\zeta = \frac{\eta_P}{(\eta_S + \eta_P)} = \frac{\eta_P}{\eta_0}$$

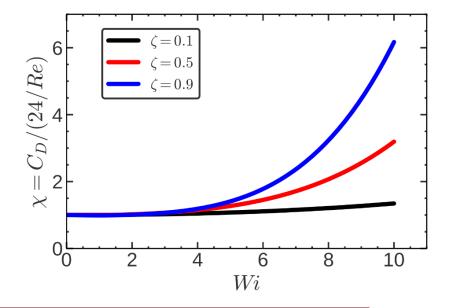
α is the mobility parameter

Drag coefficient correction (output variable)

$$\chi = \frac{C_D}{(24/Re)}$$
 where $C_D = \frac{2}{\rho U^2 A} \int_{\delta\Omega_s} (\boldsymbol{\tau}_P + \boldsymbol{\tau}_S - p\boldsymbol{I}).\boldsymbol{n}.\boldsymbol{x} dS$

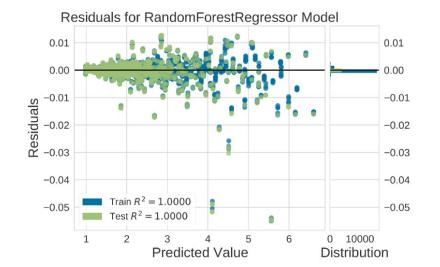
4. ML Validation | Single sphere suspended in viscoelastic Oldroyd-B fluid

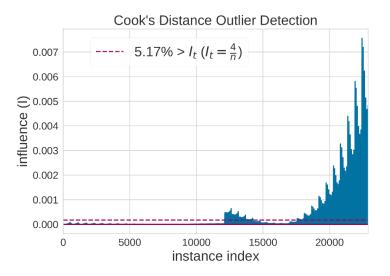


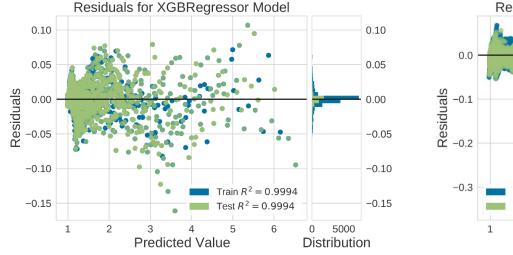


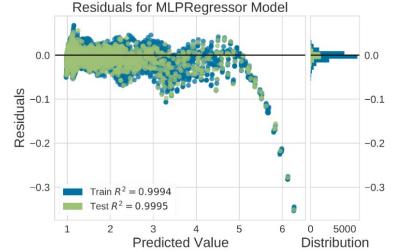
- Total of 23040 input values generated by the closure model developed by Faroughi et al. (2020).
- The range of the input data used varied within Reynolds number $0 < Re \le 1$, Weissenberg number $0 \le Wi \le 10$, retardation ratio $0 < \zeta < 1$.
- The increase of the retardation ratio leads to a drag correction coefficient increase.

4. ML Validation | Single sphere suspended in viscoelastic Oldroyd-B fluid









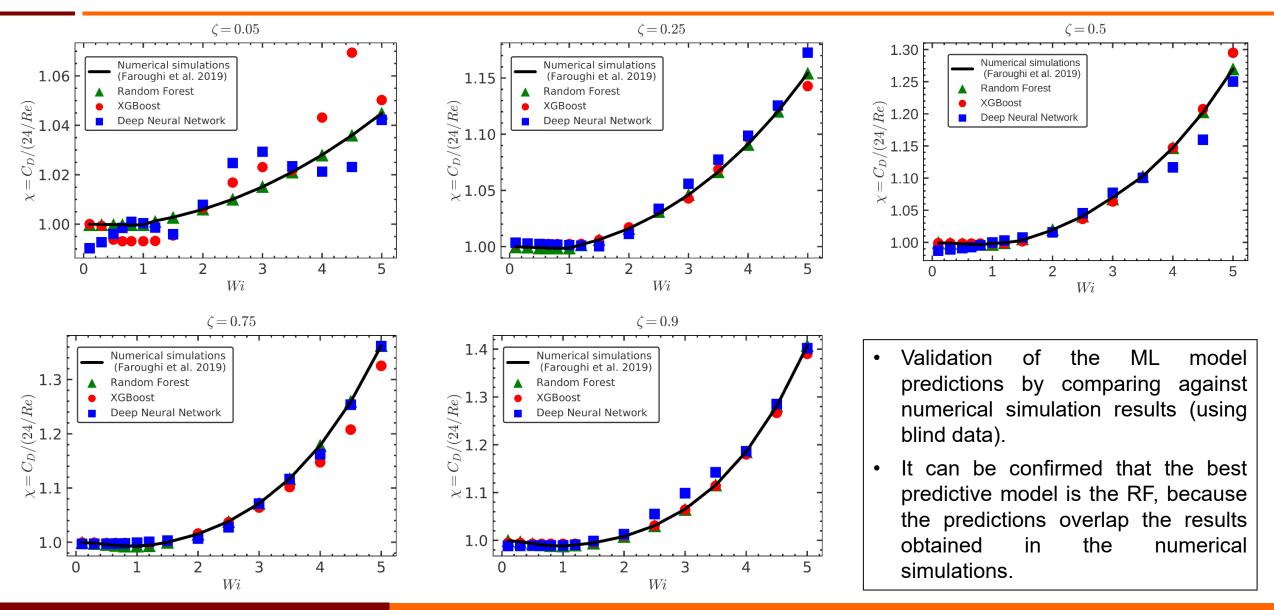
- The data set is divided into training and testing subsets to compare with the predicted data, in percentage 80/20.
- For each ML model, the following hyperparameters were tuned:

<u>Random Forest:</u> n_iter = 50, cv = 3, verbose=2, random_state=42, n_jobs = -1, max_depth= 100, min_samples_leaf: 2, min_samples_split: 5, n_estimators=800 (RandomizedSearchCV). <u>XGBoost:</u> objective="reg:gamma", random_state=42.

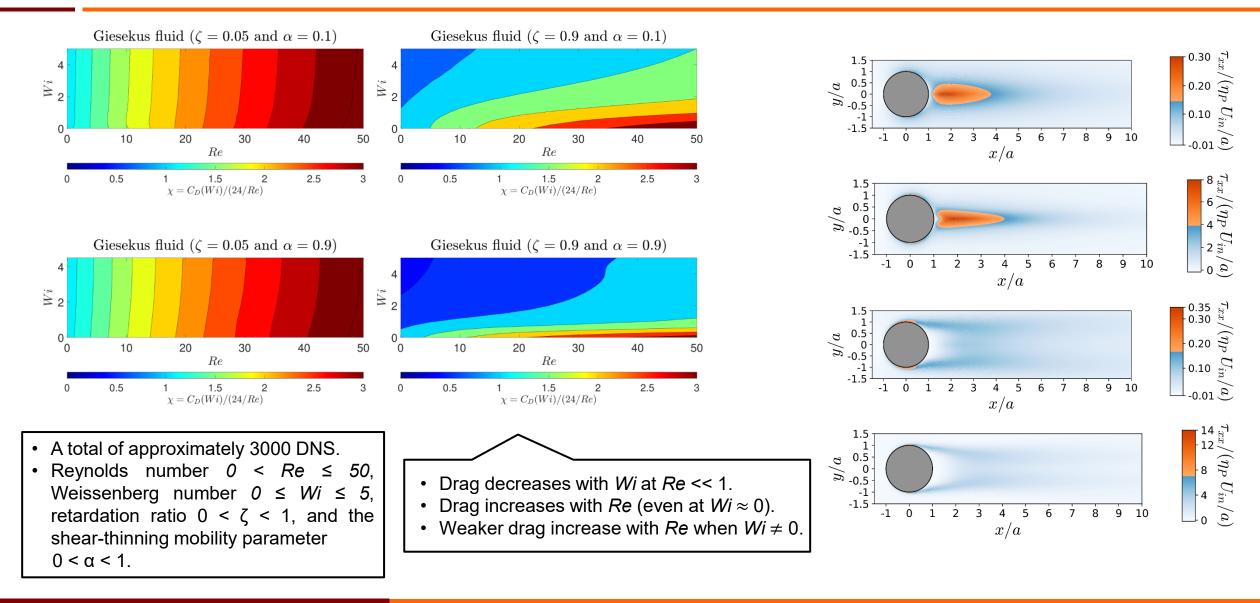
<u>Neural Network:</u> hidden_layer_sizes=(50,40,30), max_iter=8000, random_state=42.

- The best R² is obtained for the Random Forest model.
- The main distribution of the residual error is around zero for all the ML algorithms employed.
- The Cook's distance plot shows that about 5% of the data can be considered outliers.

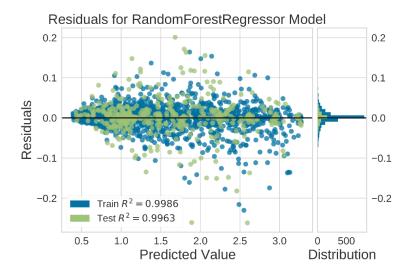
4. ML Validation | Single sphere suspended in viscoelastic Oldroyd-B fluid

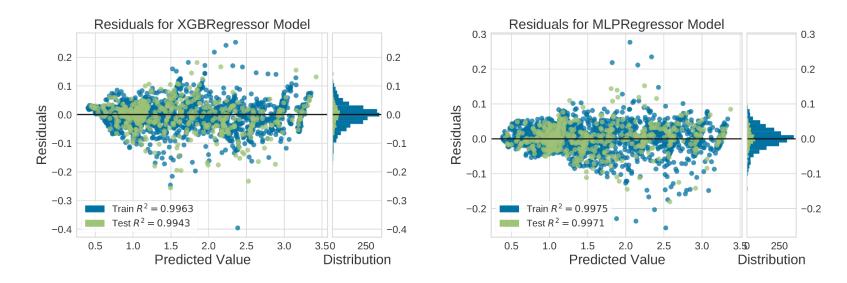


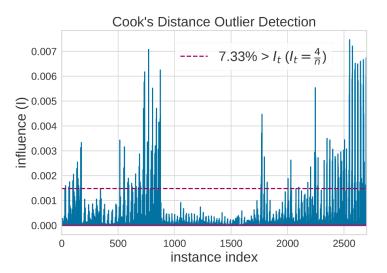
5. ML Validation | Single sphere suspended in viscoelastic Giesekus fluid



5. ML Validation | Single sphere suspended in viscoelastic Giesekus fluid







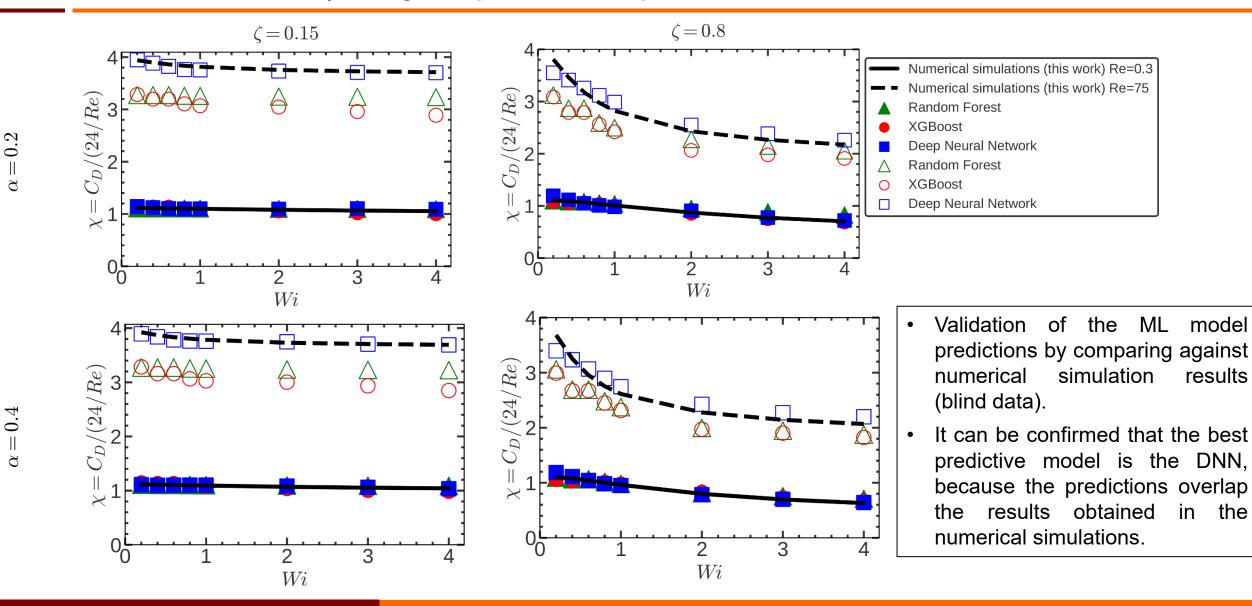
- The data set is divided into training and testing subsets to compare with the predicted data, in percentage 80/20.
- For each ML model, the following hyperparameters were tune:

<u>Random Forest:</u> Random_state=42, n_iter = 50, cv = 3, verbose=2, n_jobs = -1, max_depth: 100, min_samples_leaf= 2, min_samples_split= 5, n_estimators=800 (RandomizedSearchCV). <u>XGBoost:</u> Objective:"reg::gamma", Random_state=42.

<u>Neural Network:</u> hidden_layer_sizes=(50,50,55,25), max_iter=8000, Random_state=42.

- The best R² considering train and test data sets is obtained for the Deep Neural Network model with a value of 0.9971.
- The main distribution of the residual error is around zero for all the ML algorithms employed.
- The Cook's distance plot shows that about 7% of the data can be considered outliers.

5. ML Validation | Single sphere suspended in viscoelastic Giesekus fluid



6. Conclusions

- ✓ The dataset to train and test the ML models for Oldroyd-B fluid was constituted from a total of 23 040 input values generated from a closure drag law found in the scientific literature, where the kinematic input variables varied within Reynolds $0 < Re \le 1$, Weissenberg $0 \le Wi \le 10$ and polymeric retardation ratio $0 < \zeta < 1$.
- ✓ The dataset to train and test the ML models for Giesekus fluid was constituted from a total of 2 700 input values generated from direct numerical simulations, where the kinematic input variables varied within Reynolds $0 < Re \le 50$, Weissenberg $0 \le Wi \le 5$, polymeric retardation ratio $0 < \zeta < 1$ and shear-thinning mobility parameter $0 < \alpha < 1$.
- ✓ The ML model with the best R-squared for the Oldroyd-B fluid was the Random Forest, and for the Giesekus fluid was the Deep Neural Network.
- ✓ This work would increase our ability to facilitate the coupling across scales, e.g. in a multiphase algorithm based in the momentum transfer approach constituted by a discrete particle method with a viscoelastic continuum phase.
- The key concept towards this direction is the creation of a statistically large database that could be incorporated from a powerful machine learning framework. In summary, simulations and ML techniques can coexist with the purpose of accelerating numerous engineering applications.

Acknowledgements

- The authors would like to acknowledge the funding by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT - Portuguese Foundation for Science and Technology under the projects UIDB/05256/2020 and UIDP/05256/2020 and MIT-EXPL/TDI/0038/2019 – APROVA
 Deep learning for particle-laden viscoelastic flow modelling (POCI-01-0145-FEDER-016665).
- \checkmark The authors also acknowledge the support of the computational clusters:
 - Search-ON2 (NORTE-07-0162-FEDER-000086) the HPC infrastructure of Uminho under NSRF through ERDF (URL: http://search6.di.uminho.pt);
 - Texas Advanced Computing Center (TACC) at The University of Texas at Austin (URL: http://www.tacc.utexas.edu);
 - Gompute HPC Cloud Platform (URL: https://www.gompute.com);
 - Minho Advanced Computing Center (MACC) within the project number CPCA/A2/6052/2020 (URL: https:// macc.fccn.pt).
 - Consorzio Interuniversitario dell'Italia Nord Est per il Calcolo Automatico (CINECA) within the project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme.
 - ➤ Jusuf within the project PRACE-ICEI (icei-prace-2020-0009).

Thank you for your attention!

