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1. Introduction & Motivation

https://www.microtrac.com

G. G. Stokes

*A.C. Barbati, et al., "Complex fluids and hydraulic fracturing“, Annual review of chemical and biomolecular
engineering, 7, 415, 2016.
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1. Introduction & Motivation

*C. Fernandes, et al., “Validation of the CFD-DPM solver DPMFoam in OpenFOAM through analytical, numerical and
experimental comparisons”, Granular Matter, 20, 64, 2018.

*C. Fernandes, et al., “Fully-resolved simulations of particle-laden viscoelastic fluids using an immersed boundary method”, Journal
of Non-Newtonian Fluid Mechanics, 266, 80, 2019.



ICCMSE 2021

2. Numerical Approach

* S. A. Faroughi, Theoretical Developments to Model Microstructural Effects on The
Rheology of Complex Fluids, PhD Thesis, 2016.
* S. Subramaniam, Progress in Energy and Combustion Science, Elsevier, 2013.
* R. Hill, et al., “Moderate‐Reynolds‐numbers flows in ordered and random arrays of
spheres”, Journal of Fluid Mechanics, 448, 243, 2001.
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* S. A. Faroughi, C. Fernandes, J. Miguel Nóbrega, and G. H. McKinley. A closure model 
for the drag coefficient of a sphere translating in a viscoelastic fluid. Journal of Non-
Newtonian Fluid Mechanics, 277:104218, 2020.
* C. Fernandes, S.A. Faroughi, R. Ribeiro, A.I. Roriz, and G.H. McKinley. Finite volume
simulations of the inertia-less steady translation of random arrays of spheres in
viscoelastic fluid flows: application to hydraulic fracture processes. In preparation, 2021.

Creeping flow conditions (            )




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2. Numerical Approach

Continuity equation

Momentum equation

Constitutive equations (shear-thinning
Giesekus model)
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3. Direct Numerical Simulations

Uniform inlet plug flow 

Viscoelastic fluid𝑈𝑈𝑖𝑖𝑖𝑖
Dimensionless numbers (input variables)

where 

Drag coefficient correction (output variable)
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4. ML Validation | Single sphere suspended in viscoelastic Oldroyd-B fluid
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• Total of 23040 input values generated by the
closure model developed by Faroughi et al. (2020).

• The range of the input data used varied within
Reynolds number 0 < Re ≤ 1, Weissenberg number
0 ≤ Wi ≤ 10, retardation ratio 0 < ζ < 1.

• The increase of the retardation ratio leads to a drag
correction coefficient increase.
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• The data set is divided into training and testing subsets to compare with the predicted data, in
percentage 80/20.

• For each ML model, the following hyperparameters were tuned:
Random Forest: n_iter = 50, cv = 3, verbose=2, random_state=42, n_jobs = -1, max_depth= 100,
min_samples_leaf: 2, min_samples_split: 5, n_estimators=800 (RandomizedSearchCV).
XGBoost: objective="reg:gamma“, random_state=42.
Neural Network: hidden_layer_sizes=(50,40,30), max_iter=8000, random_state=42.
• The best R2 is obtained for the Random Forest model.
• The main distribution of the residual error is around zero for all the ML algorithms employed.
• The Cook's distance plot shows that about 5% of the data can be considered outliers.

4. ML Validation | Single sphere suspended in viscoelastic Oldroyd-B fluid
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• Validation of the ML model
predictions by comparing against
numerical simulation results (using
blind data).

• It can be confirmed that the best
predictive model is the RF, because
the predictions overlap the results
obtained in the numerical
simulations.

4. ML Validation | Single sphere suspended in viscoelastic Oldroyd-B fluid
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5. ML Validation | Single sphere suspended in viscoelastic Giesekus fluid
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• Drag decreases with Wi at Re << 1.
• Drag increases with Re (even at Wi ≈ 0).
• Weaker drag increase with Re when Wi≠ 0.

• A total of approximately 3000 DNS.
• Reynolds number 0 < Re ≤ 50,

Weissenberg number 0 ≤ Wi ≤ 5,
retardation ratio 0 < ζ < 1, and the
shear-thinning mobility parameter
0 < α < 1.
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• The data set is divided into training and testing subsets to compare with the predicted data,
in percentage 80/20.

• For each ML model, the following hyperparameters were tune:
Random Forest: Random_state=42, n_iter = 50, cv = 3, verbose=2, n_jobs = -1, max_depth: 100,
min_samples_leaf= 2, min_samples_split= 5, n_estimators=800 (RandomizedSearchCV).
XGBoost: Objective:”reg::gamma”, Random_state=42.
Neural Network: hidden_layer_sizes=(50,50,55,25), max_iter=8000, Random_state=42.
• The best R2 considering train and test data sets is obtained for the Deep Neural Network

model with a value of 0.9971.
• The main distribution of the residual error is around zero for all the ML algorithms employed.
• The Cook's distance plot shows that about 7% of the data can be considered outliers.

5. ML Validation | Single sphere suspended in viscoelastic Giesekus fluid
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5. ML Validation | Single sphere suspended in viscoelastic Giesekus fluid

• Validation of the ML model
predictions by comparing against
numerical simulation results
(blind data).

• It can be confirmed that the best
predictive model is the DNN,
because the predictions overlap
the results obtained in the
numerical simulations.
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6. Conclusions
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 The dataset to train and test the ML models for Oldroyd-B fluid was constituted from a total of 23 040 input values
generated from a closure drag law found in the scientific literature, where the kinematic input variables varied within
Reynolds 0 < Re ≤ 1, Weissenberg 0 ≤ Wi ≤ 10 and polymeric retardation ratio 0 < ζ < 1.

 The dataset to train and test the ML models for Giesekus fluid was constituted from a total of 2 700 input values
generated from direct numerical simulations, where the kinematic input variables varied within Reynolds 0 < Re ≤ 50,
Weissenberg 0 ≤ Wi ≤ 5, polymeric retardation ratio 0 < ζ < 1 and shear-thinning mobility parameter 0 < α < 1.

 The ML model with the best R-squared for the Oldroyd-B fluid was the Random Forest, and for the Giesekus fluid
was the Deep Neural Network.

 This work would increase our ability to facilitate the coupling across scales, e.g. in a multiphase algorithm based in
the momentum transfer approach constituted by a discrete particle method with a viscoelastic continuum phase.

 The key concept towards this direction is the creation of a statistically large database that could be incorporated from
a powerful machine learning framework. In summary, simulations and ML techniques can coexist with the purpose of
accelerating numerous engineering applications.
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Thank you for your 
attention!
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