
The role of verification in interactive systems design
�

José C. Campos and Michael D. Harrison

Human-Computer Interaction Group
Department of Computer Science, University of York

Heslington, York YO10 5DD, U.K.
e-mail:

�
Jose.Campos,Michael.Harrison � @cs.york.ac.uk

Abstract. In this paper we argue that using verification in interactive systems de-
velopment is more than just checking whether the specification of the system has
all the required properties; and that changing the focus from a global specification
into partial, property oriented, specifications can provide a number of advantages
and make verification act as an aid to decision making. We also present a compiler
that allows for the verification of interactor specifications to be done in SMV, as
well as a simple case study where verification is used to inform a design decision.

1 Introduction

The introduction of automation in safety critical environments raises the question of
system correctness. When an automated system is responsible for the control of a sen-
sitive process, even a small failure might have unacceptable outcomes. This problem is
particularly relevant in reactive systems, as it becomes hard to comprehend and predict
all the different interactions the system might have with its environment.

The use of formal mathematical models during development can impact system
design at two levels [21]:

– the use of rigorous mathematical concepts and notations can help in the organiza-
tion and communication of ideas;

– mathematical models can allow us to reason rigorously about properties of the sys-
tem being designed.

The latter, although sometimes seen just as a side effect of formal specification, is par-
ticularly relevant when we think of guaranteeing the correctness of a system, and has
long been an object of study [16].

Formal reasoning, however, tends to be a delicate, detailed, and time consuming
process. This has led to the study of mechanical reasoning techniques as a way to (at
least partially) automate the analysis. Two main categories of methods can be identified:

– algorithmic methods (i.e. model checking – see [5]): these are fully automated and,
given a suitable system description and property, are capable of determining if the
property is valid in the system;�

Published In P. Markopoulos and P. Johnson, editors, Design, Specification and Verification of
Interactive Systems ’98, Springer Computer Science, pages 155-170. Eurographics, Springer-
Verlag/Wien, 1998.

– deductive methods (i.e. theorem proving): these are semi-automated methods where
a more traditional mathematical proof is performed by a tool under user guidance
(examples of theorem provers are PVS [6] and the Larch system [13]).

Interactive systems are special cases of reactive systems, and have growing applica-
tion in safety critical environments (aeroplanes and nuclear power plants being two of
the most commonly cited examples). These systems have raised interest in the applica-
tion of verification techniques to their development. In the last four years a number of
approaches to verification have been proposed. For example, Abowd et al. [1] use Ac-
tion Simulator [19] to represent very abstract, action level, descriptions of interactive
systems. These descriptions can then be translated into the SMV model checker for ver-
ification. Paternó [20] also uses a model checker, but the specification is more detailed.
He uses Lotos interactors, to derive a specification of the system from its task descrip-
tion. Bumbulis et al. [3] and d’Ausbourg et al. [7], on the other hand, use specifications
built at a lower level of abstraction: buttons, mouse clicks, etc. While the first authors
use the HOL theorem prover, the second use a model checking related technique. For a
review of these approaches see [4].

In the remainder of this paper we will identify some of the problems that arise
when trying to apply these approaches and propose a means of integrating verification
into the development process of interactive systems. In section 2 we will argue that a
shift in focus is needed when thinking of the verification of interactive systems, and in
section 3 we will present some work that is being done in this context. In section 4 we
illustrate the previous discussion with an example. And finally, in section 5 we draw
some conclusions, and propose some further work.

2 Changing the focus

Whatever the level of abstraction and tool used, all the approaches mentioned above
tend to see verification as a final step in validating a specification against a set of de-
sirable properties (see figure 1). Some authors have proposed templates for interesting

Requirements Design VerificationSpecification

Fig. 1. Verification as a final step in development

properties that can be verified with their approaches (see [1] and [20]). So in Abowd
et al., templates deal mainly with what user interface states can be reached. On the
other hand, in Paternó, templates deal mainly with what user interface actions can be
executed. Whether states or actions are used, an attempt is made in both approaches to
map these states/actions to significant concepts at the user interface level: tasks, modes,
visibility, etc.

On the whole, these sets of templates tend to explore what the model checking will
allow (what meaning can be attributed to checkable properties), rather than being driven
by the requirements needs.

On the role of models All the above cited approaches are based around the notion
of a single specification. However, given the complex and semantically rich nature of
interactive systems, it becomes impossible to make sure that we have tied down all
relevant details of a system in a specification at the outset.

In fact, given the diversity of perspectives we can take on an interactive system, it
has been argued, by Fields et al. [12], that no available single specification notation is
powerful enough to capture all relevant details of a given system. Instead the authors
argue that, if we are to be able to validate a system design against an heterogeneous set
of requirements, then a number of specialised models will be needed. Each model taking
an appropriate viewpoint on the system, vis-à-vis the requirements being considered.

We can start to identify a trend towards a type of approach to verification in which
we are not restricted to a particular verification tool or technique.

On the role of properties By defining a set of property templates for a given class
of systems, we try to pinpoint what properties are relevant and/or impact the quality
of those systems. Regarding interactive systems, a number of factors complicate this
purpose.

First of all, we do not yet have a global theory of interaction to act as a guide in
design and as a global measure of quality. The lack of such global measures, means
that every system is a theory and it is hard to make generalisations. So, the interesting
properties will be dependent on the system being developed and it becomes hard to
define a set of templates that are generically useful and applicable.

Additionally, given the complexity of interactive systems, and the number of differ-
ent perspectives that we can have on them, it becomes difficult to make design decisions
based on prescriptive theories alone. The ability to check the impact of possible choices
in different aspects of the system could be very helpful in this. The validation process
could be used as a guide to the process of choice as it provides insight into the problem
that is being tackled.

A further problem with defining a set of templates is that the properties of interest
will depend on the particular specification being used. Consider, for instance, a template
stating that it should be possible to execute a task from every state in the context of
a hypothetical teller machine specification. The applicability of the template changes
drastically with the level at which the specification is done. If we choose to consider
only individual interactions between the machine and its user, then the template should
not be used: in each interaction, we want the user to be able to perform only one task.
However, if we take a broader look at the system, and choose to consider the successive
interactions of different users, then the property is relevant as we want the user to be
able to insert the card again to perform a new task.

Thus, the role that properties play is dependent, not only on the system under con-
sideration, but also on the particular specification that is used. We can conclude that we
must exercise care when looking for what properties we should prove of specifications.

On what exactly is being proved Seeing the verification step as a final step in the
development process, and trying to use off the shelf properties, might lead us to end up
looking for properties of the specification instead of the system. Although this is not, in
itself, negative (we might want to make sure that the specification is consistent and has
no mistakes) care must be taken not to confuse the two types of properties.

Consider again the property that every task is possible from every state. If the spec-
ification is done with finite state machines, and tasks are defined as some target state,
this tells us those target states are always reachable. How much does it tell us about the
system? It is quite different if we need ten actions or one hundred actions to achieve task
completion. No information about this is obtained from verifying the property though.

On the applicability of the techniques The number of different perspectives that we
might have on interaction means that if we aim to have a global unified specification
encompassing all the relevant information, we will get a very complex model. This is
specially problematic as we still lack tools comprehensive enough to enable the verifi-
cation of systems as rich as interactive systems. As has been pointed out in [21], model
checkers can be used to reason about control, but lack more generic expressive power,
while theorem provers are good at dealing with rich data but lack the ability to reason
easily about control. While some attempts have been made to combine both techniques,
further work is needed in the area.

Even if a powerful enough tool were available, it turns out that it is still hard to de-
rive and prove the relevant properties from the system specification. On the one hand,
general purpose specifications might not have all the information required for a spe-
cific property. On the other hand, a general purpose specification might have too much
unnecessary detail (so far as a specific property is concerned) making the proof more
difficult, if not impossible.

At a different level, it is also true that the style of specification drastically influences
what and how analysis can be done. Consider for instance model checking. If our speci-
fication is not reducible to a finite state machine, we simply cannot use model checking
on it1. If we do use a finite state machine, however, then theorem proving becomes of
little use. Generally, model checkers are better at analysing finite state machines.

In the case of theorem provers, the situation can become even more complex. The
fact that we can use a theorem prover to verify a specification, does not mean necessarily
that it will be easy to do so. In fact, different styles of specification can have a drastic
impact on how easy (feasible) it is to prove one thing or another, and different properties
can ask for different styles of reasoning.

All this means that the specification should be written with the type of proof that we
intend to perform in mind.

On changing how verification is applied It is now clear that a shift in focus is needed.
Instead of focusing verification on the specification, we must focus on the system itself
and its properties. This way, specification and validation become part of the same de-
velopment process, where validation is used to inform design decisions. This can be
achieved by using, not a monolithic specification of the system which tries to encom-
pass all of the system (at its level of abstraction), but a set of specifications (or models
– cf. [12]) each taking a particular viewpoint on the system.

This way, we can achieve a number of benefits:

– by focusing on properties, we use verification to validate the choices that are made
in relation to what is important of the system, not its specification;

1 To help obviate this problem, some work has been done on model checking non-finite state
machines. For an example of the application of this type of technique to HCI see [18].

– by using a number of models, instead of a single specification, we are able to apply
the most appropriate verification technique to each property;

– conversely, by using a number of models, we can develop each model in the most
suitable formalism, regarding the tool that will be used;

– using models that focus on properties also means the models will be simpler and
easier to manage and verify, so we will be able to verify properties that otherwise
would be too difficult to check;

– another possibility raised by this approach is the reuse of properties and their
proofs: because we focus on properties, we might be able to reuse the proofs when
thinking of related properties of different systems.

As pointed out in [12], the use of a number of models to represent different aspects
of the same reality does raise some problems. In particular, problems with consistency
between models, and with the veracity of the models towards the system being mod-
elled. We tend to agree with the authors in that these issues are not necessarily disad-
vantages or even specific to the approach, and that, in the end, these concerns have to
do more with the designer than with the tool.

Nevertheless, it is also the case that an appropriate tool should support the designer
in dealing with these concerns. Although we do not address the issue in the present
paper, it does deserves further consideration.

3 An Interactors to SMV compiler

From what has been said so far, it can be seen that we will need a toolbox of different
verification strategies tailored to work with our specifications. We have been experi-
menting with different techniques and tools, and, in this context, we are developing a
compiler to allow the verification of interactor based specifications with SMV.

The notion of Interactor [20,9] is basically that of an object capable of making its
state perceivable to its users. York interactors do not prescribe a specific specification
notation to describe the interactor’s state and behaviour. Instead, they act as a mecha-
nism for structuring the use of standard specification techniques.

In SMV [17] the state of the system is defined by a set of variables (boolean or
enumerated). The behaviour is defined as a transition relation on states. This is done,
either by a set of logic expressions asserting which transitions of the state are valid, or
by a set of firing rules.

In [1] Abowd et al. presented an application of SMV to the verification of interac-
tive systems specifications. Their approach, however, is based on a simple propositional
production system based description of the interactive system written in Action Simu-
lator. This means only very simple abstract specifications can be checked, and, in fact,
the authors propose the approach to be used at a very high level of abstraction in early
interactive system design.

With interactors, however, specifications are built compositionally. The system is
broken down into a number of meaningful components, and each component is specified
by an interactor. These interactors communicate between themselves and/or with the
user as appropriate.

It seems clear that this style of specification is potentially more expressive than a
PPS, and will not, in most cases, be adequately translatable into a single PPS. We need
then investigate how to express such specifications in SMV.

Specifying one interactor Several different formalisms have been used to specify in-
teractors, including Z [9], modal action logic (MAL) [10], and VDM [14].

The fact that we want to be able to model our interactor specifications in SMV,
influences the choice of notation to describe interactors. When defining exactly what
kind of interactor to use, we have to decide on:

– how the state of the interactor is defined;
– how the behaviour of the interactor is specified;
– how communication between interactors is modelled.

In order for the interactor specification to be reducible to a finite state machine,
SMV deals only with boolean and enumerated type variables. This restriction will be
carried forward to our interactor notation. Although this is a major restriction, we feel
the approach will still be useful because we are interested in building partial, property
oriented, models. And, in fact, this is a restriction common to all approaches using
model checking techniques.

As to the modelling of interactor behaviour, of the different approaches to mod-
elling with interactors, the use of MAL seems to be a good candidate for modelling
interactor behaviour. MAL augments propositional logic with the notion of action and
three operators:

– OBL — OBL(���) means action ��� must happen next;
– PER — PER(���) means action ��� can happen next;
– �
	 — ������	�
�����
 means after action ��� proposition
�����
 holds.

The operators OBL and PER correspond to some form of quantification over the
actions that may be initiated by the user in a given state:

– OBL(���) ����������� � !#"%$�	'&(�*),+.-/!0"213!0"4$
– PER(���) �65 ��� �7�8!0"219!0" $;: � !0" $ 	'&<�*),+

where � !#" $ 	'&<�*),+ means “it is possible to perform action !#" $ in the current state” (i.e.
there is, at least, one trace from the current state that starts with action !0" $). Although
we do not use these two operators in this paper, the potential for asking questions about
obligation and permission are of interest to us.

The formula � 	=
�����

indicates that
�����
 holds before any action is taken (i.e.
�����
 holds in the initial state
of the system). Formula
�����
 $ ->�?���*	=
�����
A@
means that when proposition
�����
 $ holds, performing action ��� makes proposition
�����
 @ true.

If we interpret propositions
�����
 $ and
�����
A@ above as pre- and post-conditions of
action ��� , we can use this type of formula to define a production system in a similar way

to Action Simulator. The difference is that each interactor defines its own finite state
machine, while with Action Simulator we have only one global finite state machine.

We follow loosely Dearden and Harrison’s syntax in [8]. As an example consider
the following which represents a window defining whether it is mapped on the screen
or not:

interactor B7CED�F��GB
attributesH ��
�
I+�FKJML��%�ON=+��GD
visibleH ��
�
I+�F
actionsH ��
7P
)QD H ��

axioms
1. � 	ER H ��
�
I+�F
2. R H ��
�
I+�FS-T� H ��
�	<UWV*XWY
Z H ��
�
,+�FM[
3. H ��
�
I+�FS-T�=)QD H ��
�	ER\UWV*XWY4Z H ��
�
I+�FM[
The state of the interactor is defined by a set of attributes. These attributes can then

be associated with modalities to specify how they should be rendered in the presenta-
tion. In the present case, the only information in the state is whether the interactor is
mapped on the screen or not, and this information must be visible in the presentation of
the interactor (cf. visible clause).

The behaviour of the interactor is defined by a set of axioms on the available actions.
These axioms define all possible behaviours of the interactor. In the present case we
have two actions (to toggle the state on or off), and three axioms. Axiom 1 states that the
initial state of the interactor is unmapped. Axioms 2 and 3 define when the actions are
available and their effect on the state. Axiom 2, for instance, states that if the interactor
is not mapped then action H ��
 can take place and gives rise to a new state where the
interactor is mapped. As we assume the axioms to define all possible behaviours, if
the interactor is not mapped, only the H ��
 actions can occur. Note that UWV*XWY
Z H ��
�
,+�FM[
means the value of H ��
�
I+�F in the next state.

The algorithm to translate one interactor into the SMV input language is very similar
to that presented in [1]. The major difference being that we include in each state, not the
next action to be executed, but the last action that was executed (the action that led into
the present state instead of the action that leads out of the present state). This avoids the
explosion of the initial states (simplifying the composition of interactors) but makes the
detection of deadlocks more difficult.

The algorithm has been implemented in a prototype compiler. If we run the exam-
ple above through the compiler we get the following SMV module (where POSTnil

represents the post-condition of the stuttering step):

MODULE window
VAR
mapped: boolean;
action:

�
nil, map, unmap � ;

DEFINE
POSTnil := (next(mapped)=mapped);

INIT
!mapped & action=nil
TRANS

(mapped & next(action)=unmap & !next(mapped))
| (!mapped & next(action)=map & next(mapped))
| (next(action)=nil & POSTnil)
FAIRNESS
!action=nil

The structure of the module is similar to that of the interactor. The state is defined by
a set of variables. The variable action was introduced to hold the value of the action
that led into the present state. Because this variable is an enumerated type, we cannot
have parametrised actions. To overcome this limitation we can explode parametrised
actions into a set of actions, one per parameter value.

INIT defines the initial state of the module and was generated from axiom 1 in
the interactor. TRANS defines the behaviour of the module and is generated from the
axioms of the interactor, excepting those defining the initial state. Axioms of type

���+ -T������	=
I�O]�&
are translated into

pre & next(action)=ac & next(post)

and ored together with the stuttering formula:

next(action)=nil & POSTnil

Note that the intuitive translation would be:

(pre & next(action)=ac) -> next(post)

However, this would allow next(post) to hold even if the pre-condition and action
did not. Because we are assuming that axioms specify all possible behaviours, we use
the first translation instead.

The fairness condition shown is a default condition and can be overridden in the
interactor definition (see below).

Note that the modality (visible) has not been included in the module. At this stage
the modalities are not directly represented in the SMV code and have to be taken into
account informally during the verification process.

Besides the clauses shown in the example, our interactor notation allows for three
additional clauses:

– importing — allows one interactor to reuse the state and behaviour of another
interactor, in SMV this is done by simply repeating the code in the new module;

– fairness — this clause allows the definition of a fairness expression to be used by
SMV;

– define — enable us to give names to expressions as can be done in SMV, the names
can then be used instead of the corresponding expressions.

Multiple interactors So far, we have only considered the one interactor situation. Now
we will see how to compose interactors and how to model their communication.

Interactors are organised in a hierarchy, where one interactor (the parent) can have
other interactors (the children) as part of its state.

Parents can access the state of children using the notation:

��^0CEN?F`_E�O&<&(�*CaL
)Q&'+
By convention, a parent should only access attributes that have an appropriate modality.

Parents can also send actions to their children, either explicitly:

��^0CEN=F�_ bOc�Y�d eIU 1f���
or implicitly, by imposing conditions on the next state of the child. Consider the follow-
ing excerpt:

interactor H �GCED
attributesH �OCEN�J,B7CED�F��GB
...
axiomsg ����
h-iUWV*XWY
Z H �OCEN�_ H ��
�
,+�F,[

...

The axiom effectively implies that, if
g ����
 is true and the window H �OCEN is not mapped,

then an action to map it must be performed.
In order to translate these hierarchies of interactors into SMV, we use the notion of

module. So each interactor will be a module in SMV, and we demand that an interactor
named main exists.

In SMV, if a module is declared a process, then it progresses independently from
other modules in the system. This would allow for the different interactors in the sys-
tems to progress independently of each other (modulo their interactions). For this to
work, however, the modules must be completely independent. In our case, because par-
ents can influence the behaviour of their children, there is no guarantee that the modules
will be independent (in fact its very unlikely that they will) so declaring modules as
processes has no effect. That is the reason why explicit stuttering had to be introduced
through the use of the nil action.

Finally, in order to test properties of the specification a new clause was introduced:
test. It can only be declared in the main interactor, and it is used to specify a CTL
formula whose validity is to be verified by SMV.

4 An example

In this section we will show how the ideas presented above can be applied in practice.
We will use as example an e-mail client. The basic requirements of the client are that:

– it should be able to receive mail messages;
– it should announce new mail to the user;

– it should allow the user to compose and send mail messages;
– it should work within a windowing environment.

For the purpose of this discussion, we will focus on whether or not the user is made
aware of new mail. Following the ideas put forward in section 2, we will take a fish-
eyed view of the system, and we will build models that concentrate on what is relevant
for the issues at hand. Although the example will be kept very simple, we feel that it is
still representative at two levels.

– it shows how, by focusing on a specific view of the system, we can build models
that are simple but nevertheless relate to features of the overall design;

– it also shows how SMV, in conjunction with the interactors compiler, can be used
to analyse multiple interactor specifications, and discuss the relative merits of al-
ternative design options2.

As we consider that the e-mail client is to be used in a windowing environment, a
way is needed to represent the windows on the screen. Because we are only concerned
with visibility issues, we will build our models of windows around the following infor-
mation:

– whether the window is mapped on the screen — when a window is mapped it
becomes present on the screen until it is unmapped;

– whether the window is visible on the screen — a window might be mapped but
hidden by another window;

– if the window has new information being displayed — a window is considered to
have new information from the moment that it is updated until the information is
seen by the user.

Were we to be interested in a different aspect of the system, the set of attributes
to include in the specification would be different. In the context of our interest, the
interactors representing windows have the following attributes:

attributesH ��
�
I+�FKJML��%�ON=+��GDj C�]*CaL�N?+kJ�L��%�ON?+��GDD�+�B7CED%l��mJML��%�ON=+��OD
For each of these attributes, actions to set and unset them are introduced:

actionsH ��
nP
)QD H ��
�P�^QCaF�+�P�]�^,�OBoP
)%
,F��G&'+�P�]
+�+
D
The complete definition of the window interactor can be seen in appendix A.

Two mechanisms for announcing new mail were considered. We will now describe
the specification and analysis performed for each of them.

2 Note that we are not saying we will be able to perform all types of analysis this way. The
possibility of using different formalisms and different verification tools, as appropriate, is one
of the advantages of building specialised models.

Using a simple mail agent window The first possibility considered was to put infor-
mation regarding the new message(s) in the mail client window. This can be done in
a number of different ways. For the analysis that we want to perform, however, we do
not need to know exactly how it is done, so we will use the simple window interactor
described above (see also appendix A).

In order to represent the interplay between the e-mail window and other windows
on the screen, the specification considers two windows:

– H �GCEN — the e-mail client window;
– �O&p^I+
��] — represents all other possible windows in the screen.

The only axiom that is needed states that, unless both windows are mapped, visi-
bility can only change explicitly (see appendix B). Once the specification is complete,
we can start to explore it. The first test is done just to increase our confidence in the
soundness of the specification:q�r

Z H �GCEN�_ H ��
�
,+�Ftsu�O&p^I+
��]�_ H ��
�
,+�F,[
it simply verifies if we can have both windows mapped (thus verifying that the finite
state machine is not empty - note that initially both windows are unmapped). Next we
try to see if after a new message arrives that information is available to the user:v;w Z H �OCENx_ bOc*Y�d e,Uo1y)%
,F��G&'+oz H �OCEN�_ j C�]*CaL
N=+G[
The answer to this test is no and we get the following counter example3:

state 1.1: state 1.2:
others.mapped = 0 mail.newinfo = 1
mail.newinfo = 0 mail.action = update
mail.visible = 0
mail.mapped = 0

What this shows is that if the e-mail window is not visible when the new message
arrives, then the user has no way of knowing about this new message.

This prompts us to think about the next mechanism we will consider: using a pop
up window to announce new mail. But first, we do another test: what happens when the
e-mail window is visible and a new message arrives? Will the window still be visible?v;w Z H �OCENx_ j C�]*CaL
N=+{z vn| Z H �GCEN�_ bOc�Y�d eIU 1u)%
IF��O&x+ z H �GCENx_ j C�]*CaL�N=+�[}[
The answer here is that it is possible that the user might not be able to notice the new
message, as some other window might hide the e-mail window.

Using a pop-up window Having identified a problem with the previous approach, we
now try to devise a new design that might solve it. We will consider introducing a pop
up window to warn about new mail.

A pop up window is defined as a window which is mapped every time it is up-
dated. Thus, the behaviour of the)%
,F��G&'+ event is redefined (at present, redefining the
behaviour of an event is still done is a rather clumsy manner, future versions of the
compiler are expected to allow for a better syntax):

3 Note that only attributes of the state that change are shown. Also, we stripped the counter-
example of irrelevant attributes.

interactor
I��
�)%

importingB7CED�F��GB~�?FG) HtH��Q�)%
IF��O&x+
	
actions)%
,F��G&'+
axioms� bOc*Y�d e,U 1�FG) HtH���=)%
,F��O&x+4	<U%V�X%Y
Z H ��
�
,+�FM[�s�UWV*XWY
Z�D�+�B7CED%l���[}s�U%V�X%Y
Z j C�]*CaL
N=+G[
The main specification now includes three windows:

– H �GCEN — the e-mail main window;
– �ON=+
�*& — the pop up window;
– �O&p^I+
��] — all other possible windows in the system.

Whenever a message is received, H �GCEN and �GN=+��*& alike must be updated. This is
expressed by the following axiom:

H �OCEN�_ bOc*Y�d e,U 1y)%
,F��G&'+o�>�ON?+��*&�_ bOc*Y�d e,Uo1y)%
,F��G&'+
Additionally, if the user resets the e-mail client, the alert window must be reset:

H �GCEN�_ bOc*Y�d eIU 1�]
+�+�DKz � �ON=+
�*&�_?D�+
B7CED4l��
The complete specification is presented in appendix C. Once the specification is

complete, we can repeat the same tests as previously. First we check the three windows
can be mapped: q�r

Z H �OCEN�_ H ��
�
,+�Fksu�G&E^,+���]#_ H ��
�
I+�F~sf�ON=+
�*&�_ H ��
�
,+�FM[
Once again this serves only to enhance our confidence in the specification itself.

The first real test is whether the pop up window becomes visible when a new mes-
sage arrives: v;w Z H �OCEN}_ bOc�Y�d eIU 1u)%
IF��O&x+ z>�GN=+
�*&�_ j C�]*CaL�N?+G[
In this case the answer is yes.

This step accomplished, we can increase our demands upon the system. One thing
is the alert window to become visible, another is for the user to see it. To test that the
window will always be visible until the user sees it, we test that it can only disappear
by direct action of the user (that is, the user has to see it before it goes away):v7w Z H �OCENx_ bOc*Y�d eIU{1y)%
,F��O&x+ozv �?Z��ON?+��*&4_ j C�]*CaL�N=+�su�ON=+
�*&�_?D�+
B7CED4l��0[���Z��GN=+
�*&
_ bOc*Y�d eIU�d�U ��]
+�+�D�P
)QD H ��
��W[x	E[
Unfortunately in this case the answer is no, and the counter example shows us that some
other window might hide the alert window before the user gets a chance to see it.

From this analysis we can conclude that this approach, although better than the
previous one, still does not guarantee that the arrival of new messages will be noticed
by the user. A similar analysis could now be carried out for the case where an icon
showing the state of the mail box is always present in the desktop, or for the case where
the pop up window cannot be hidden by another window.

Discussion In terms of the example, from the previous discussion we can conclude
that, if we want to maximize user awareness regarding the arrival of new mail, we must
use some kind of permanent window displaying the status of the mail box. This is not
a terribly ground breaking or surprising result. In fact, we could easily reach the same
conclusion by simply thinking about the problem in some sort of informal way. The
hope is that the same kind of analysis applied to more interesting (non trivial) examples,
might allow us to reach conclusions about the systems that are not so obvious.

The example, however, does not illustrate all the aspects of the matter. In this case,
we are only using model checking. The properties we are interested in regard reacha-
bility questions, so model checking is the appropriate tool. Were we, for instance, to
consider how the list of messages is kept sorted by date, model checking would prob-
ably not be the right tool. In that case we would have to use a theorem prover. That,
however, does not have any implications in the analysis performed above, as the speci-
fications used in each case would be independent.

Another aspect to consider when choosing what type of mechanism to use in order
to announce new main, is whether a permanent icon will produce screen clutter. This
analysis is outside the scope of the present specification (probably of the technique).
Nevertheless, if some (probably) psychological study regarding desktop clutter can be
carried out, we may then combine its results with the results of the present analysis to
make a choice.

5 Conclusions

We have argued that using verification in (interactive) systems development is more
than just checking whether the specification of the system has all the required proper-
ties. Global specifications tend to be too complex for verification, and different types
of properties ask for different proof styles/techniques (hence, different specification
styles). In this context, we propose that a number of partial models/specifications of the
system should be built, allowing for the most appropriate verification technique to be
used in each case.

Changing the focus from a global specification into partial, property oriented, spec-
ifications can also give a number of additional advantages: we can have greater confi-
dence in that we are checking properties which are relevant to the system (not only of
its specification); the specifications to verify become simpler; we can think of reusing
proofs on systems with similar requirements.

Furthermore, the properties we want of the system must be considered during de-
sign. The development and verification of partial models can then be used as an aid to
decision making. In the paper, we present a simple case study where verification is used
to inform a design decision.

In order for this type of approach to be feasible, we will need an ensemble of verifi-
cation tools tailored to work with our specifications. We present an interactor compiler
which is being developed as part of a wider study on the applicability of different tech-
niques to the verification of interactor specifications. The compiler allows for specific
type of interactors to be checked by SMV and is used in the example.

Although we think that the use of verification as an aid to development helps in
making verification more usable and useful, a number of problems remain open.

The interactor notation accepted by the compiler has a number of restrictions. We
need to apply it to real life systems in order to access its potential. Although the sheer
size of a system might not be a problem (the use of interactors should allow the specifi-
cations to scale up well), the restrictions on the variables and on the specification of be-
haviour limit the expressiveness of the approach. Another point to consider is whether
it is possible to include the modality annotations in the SMV generated code. At the
moment they have to be taken into account informally.

The use of theorem provers has not been addressed in this paper, but suitable rep-
resentations of interactor specifications have to be developed that can be verified with
that type of tool.

At the methodological level, the use of multiple models raises the questions of con-
sistency and veracity. In [12] it is argued that consistency can be exploited in benefit of
the development process, and that, regarding veracity, this problem is not exclusive of
a multiple models approach to development.

Finally, in the example we looked at a very simple system property. In more realistic
applications, what should guide the use of verification? In what areas should we apply
it, and what are the roles of notions like tasks, mode of interaction, or modality of
interaction? We envisage that some form of task model, or scenario driven design (cf.
[11]) might be useful here.

Acknowledgements

We wish to thank the anonymous reviewers for their comments. José Campos is sup-
ported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) under grant PRAXIS
XXI/BD/9562/96.

References
1. Gregory D. Abowd, Hung-Ming Wang, and Andrew F. Monk. A formal technique for auto-

mated dialogue development. In Proceedings of the First Symposium of Designing Interac-
tive Systems - DIS’95, pages 219–226. ACM Press, August 1995.

2. F. Bodart and J. Vanderdonckt, editors. Design, Specification and Verification of Interactive
Systems ’96, Springer Computer Science. Springer-Verlag/Vien, June 1996.

3. Peter Bumbulis, P. S. C. Alencar, D. D. Cowan, and C. J. P. Lucena. Validating properties of
component-based graphical user interfaces. In Bodart and Vanderdonckt [2], pages 347–365.

4. Jos é C. Campos and Michael D. Harrison. Formal verification of interactive systems: A
review. In Harrison and Torres [15], pages 109–124.

5. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, April 1986.

6. Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Mandayam Srivas. A tuto-
rial introduction to PVS. Presented at WIFT’95: Workshop on Industrial-Strength Formal
Specification Techniques, April 1995. http://www.csl.sri.com/sri-csl-fm.html.

7. Bruno d’Ausbourg, Guy Durrieu, and Pierre Roche. Deriving a formal model of an interac-
tive system from its UIL description in order to verify and to test its behaviour. In Bodart
and Vanderdonckt [2], pages 105–122.

8. A. M. Dearden and M. D. Harrison. Risk analysis, impact and interaction modelling. In
Bodart and Vanderdonckt [2], pages 229–247.

9. David J. Duke and Michael D. Harrison. Abstract interaction objects. Computer Graphics
Forum, 12(3):25–36, 1993.

10. D.J. Duke, P.J. Barnard, J. May, and D.A. Duce. Systematic development of the human
interface. In Asia Pacific Software Engineering Conference, pages 313–321. IEEE Computer
Society Press, December 1995.

11. Bob Fields, Michael D. Harrison, and Peter Wright. THEA: Human error analysis for re-
quirements definition. Technical Report YCS 249, Department of Computer Science, Uni-
versity of York, Heslington, York, YO1 5DD, England, 1997.

12. Bob Fields, Nick Merriam, and Andy Dearden. DMVIS: Design, modelling and validation
of interactive systems. In Harrison and Torres [15], pages 29–44.

13. John V. Guttag, James J. Horning, et al. Larch: Languages and Tools for Formal Specifica-
tion. Texts and Monographs in Computer Science. Springer-Verlag, 1993.

14. M. Harrison, R. Fields, and P. C. Wright. The user context and formal specification in
interactive system design (invited paper). In C. R. Roast and J. I. Siddiqi, editors, BCS-FACS
Workshop on Formal Aspects of the Human Computer Interface, electronic Workshops in
Computing. Springer, September 1996. http://www.springer.co.uk/ewic/workshops/FAHCI/.

15. M. D. Harrison and J. C. Torres, editors. Design, Specification and Verification of Interactive
Systems ’97, Springer Computer Science. Springer-Verlag/Vien, June 1997.

16. C. B. Jones. The search for tractable ways of reasoning about programs. Technical Report
UMCS-92-4-4, Department of Computer Science, University of Manchester, June 1992.

17. K. L. McMillan. The SMV system. Carnegie-Mellon University, draft edition, February 1992.
18. M. Mezzanotte and F. Patern ó. Verification of properties of human-computer dialogues with

an infinite number of states. In C. R. Roast and J. I. Siddiqi, editors, BCS-FACS Workshop
on Formal Aspects of the Human Computer Interface, electronic Workshops in Computing.
Springer, September 1996. http://www.springer.co.uk/ewic/workshops/FAHCI/.

19. Andrew F. Monk and Martin B. Curry. Discount dialogue modelling with Action Simula-
tor. In G. Cockton, S. W. Draper, and G. R. S. Weir, editors, People and Computer IX -
Proceedings of HCI’94, pages 327–338. Cambridge University Press, 1994.

20. Fabio Patern ó. A Method for Formal Specification and Verification of Interactive Systems.
PhD thesis, Department of Computer Science, University of York, 1995.

21. John Rushby. Model checking and other ways of automating formal methods. Position
paper for panel on Model Checking for Concurrent Programs, Software Quality Week, San
Francisco, May/June 1995.

A A Window Interactor specification

interactor B7CED�F��GB
attributesH ��
�
I+�FKJML��%�ON=+��ODj C�]*CaL�N=+tJML��%�ON=+��GDD�+�B7CED%l��mJML��4�GN=+��OD
visibleH ��
�
I+�F j C�]*CaL�N?+{D�+
B7CED4l��
actionsH ��
7P
)QD H ��
�P�^QCaF�+#P
]}^,�OB{P4)%
IF��O&x+#P�]
+�+�D
axioms� 	 � H ��
�
,+�Fks � j C�]�CaL
N=+�s � D�+�B7CED%l��� H ��
�
,+�FS-T� H ��
�	 next Z H ��
�
I+�F�[As next Z j C�]*CaL�N=+�[As next Z�D�+�B7CED%l��#[<1.D�+
B7CED4l��H ��
�
I+�FS-T�=)QD H ��
�	 � next Z H ��
�
,+�F,[�s � next Z j C�]*CaL�N=+�[As next Z�D�+�B7CED%l���[<1.D�+
B7CED4l��

H ��
�
I+�F~s j C�]*CaL
N=+{-T� ^QCaF�+%	 next Z H ��
�
,+�F,[�s � next Z j C�]*CaL�N=+�[s next Z�D�+
B7CED4l��0[<1.D�+
B7CED4l��H ��
�
I+�F~s � j C�]*CaL�N=+{-T��]�^I�GB�	 next Z H ��
�
,+�F,[�s next Z j C�]*CaL
N=+G[s next Z�D�+�B7CED%l��#[<1.D�+
B7CED4l���=)%
IF��O&x+
	 next Z H ��
�
I+�F,[<1 H ��
�
,+�Fks next Z�D�+�B7CED%l��#[D�+�B7CED%l��k-T��]�+�+
D,	 next Z H ��
�
,+�F,[<1 H ��
�
,+�Fts � next Z}D�+
B7CED4l��0[
B Specification of the simple mechanism
interactor H �OCED
attributesH �OCEN�JIB7CED�F��OB�G&E^,+���]{JIB7CED�F��OB
defineH �OCEN ��^I�GD#�#+ j C�]kJ�1 next Z H �OCEN�_ action [nd�Uo� H ��
nP
)QD H ��
nP�]�^I�GBo��G&E^,+���] ��^I�GD#�#+ j C�]kJ�1 next Z��G&E^,+���]�_ action [�d�U � H ��
7P
)QD H ��
�P
]}^,�OBo�
axioms�

How visibility might change...� Z H �OCEN�_ H ��
�
,+�F~s��G&E^,+���]�_ H ��
�
I+�F,[zTZ�Z next Z H �OCEN�_ j C�]�CaL
N=+G[<1 H �GCEN�_ j C�]*CaL
N=+�s next Z��O&p^I+
��]�_ j C�]�CaL
N=+G[<1o�O&p^I+
��]�_ j C�]*CaL
N=+[\� H �OCEN ��^I�GD#�#+ j C�]k�#�G&E^,+���] ��^,�OD#�#+ j C�]O[
C Specification of the pop up window

interactor
,��
�)%

importingB7CED�F��OB~��FO) H�H��0�)%
,F��G&'+4	
actions)%
,F��G&'+
axioms�

action 1oFO) H�Ht��=)%
IF��O&x+
	 next Z H ��
�
I+�F,[�s next Z�D�+
B7CED4l��#[�s next Z j C�]*CaL
N=+G[
interactor H �OCED
attributesH �OCEN�JIB7CED�F��OB�G&E^,+���]{JIB7CED�F��OB�GN=+��*&�JW
,��
�)%

defineH �OCEN ��^I�GD#�#+ j C�]kJ�1 next Z H �OCEN�_ action [nd�Uo� H ��
nP
)QD H ��
nP�]�^I�GBo��G&E^,+���] ��^I�GD#�#+ j C�]kJ�1 next Z��G&E^,+���]�_ action [�d�U � H ��
7P
)QD H ��
�P
]}^,�OBo��GN=+��*& ��^,�OD#�#+ j C�]~J�1 next Z��GN=+
�*&�_ action [nd�U.� H ��
nP4)QD H ��
nP�]�^I�GBo�
axiomsH �OCENx_ action 1.)%
IF��O&x+ �/!0�(�4�W�*_ action 1.)%
IF��O&x+H �OCENx_ action 1\���x�%�3- � !0�a�%�W�*_=D�+�B7CED%l��� Z}Z H �GCEN�_ H ��
�
I+�Ftsu�O&p^I+
��]�_ H ��
�
,+�FM[\�#Z H �GCEN�_ H ��
�
I+�Fts�!0�a�%�W�*_ H ��
�
I+�F,[�#Z��O&p^I+
��]�_ H ��
�
I+�Fts�!0�a�%�W�*_ H ��
�
I+�F,[�[

z3Z}Z next Z H �GCEN�_ j C�]*CaL�N?+G[(1 H �OCEN�_ j C�]�CaL
N=+2s next Z��G&E^,+���]#_ j C�]*CaL�N?+G[(1o�G&E^,+���]#_ j C�]*CaL�N=+s next Z(!0�a�%�W�*_ j C�]*CaL�N=+�[(18!0�a�%�W�*_ j C�]*CaL�N?+[8� H �GCEN ��^,�OD#�#+ j C�]k�#�O&p^I+
��] ��^I�OD0��+ j C�]{�0�ON?+��*& ��^I�GD#�#+ j C�]G[

