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Abstract: The purpose of this study is to explore Artificial Neural Networks (ANNSs) to predict
the compressive and tensile strengths of natural fibre-reinforced Compressed Earth Blocks (CEBs).
To this end, a database was created by collecting data from the available literature. Data relating
to 332 specimens (Database 1) were used for the prediction of the compressive strength (ANN1),
and, due to the lack of some information, those relating to 130 specimens (Database 2) were used
for the prediction of the tensile strength (ANN2). The developed tools showed high accuracy, i.e.,
correlation coefficients (R-value) equal to 0.97 for ANN1 and 0.91 for ANN2. Such promising results
prompt their applicability for the design and orientation of experimental campaigns and support

numerical investigations.

Keywords: Compressed Earth Blocks; natural fibres; reinforcement; compressive strength; tensile
strength; Artificial Neural Networks

1. Introduction

Compressed Earth Blocks (CEBs) are spreading as an innovative construction tech-
nology as they combine the advantages of earthen constructions without neglecting the
sustainability requirements of modern buildings.

CEBs represent the evolution of traditional adobe or rammed earth [1-3]. Their
production process involves a compaction force on the mould (manually operated or using
a hydraulic machine) to obtain a denser and stronger block. Earth is the main component
of the mixture. It guarantees high indoor hygrothermal comfort and a high level of air
quality [4]. Furthermore, the blocks are unfired, which means low embodied carbon and
energy [5-7], and they are entirely recyclable at the end of the life cycle [5,6].

Researchers worldwide are currently facing the problem of overcoming the main
disadvantages of earth-based materials, e.g., durability, dimensional stability, mechanical
strength, etc. To this end, several additives ranging from cement to fibres are commonly
adopted to minimise such issues [7-10]. In particular, natural or synthetic fibres are usually
introduced to (i) reduce excessive swelling and shrinkage phenomena and (ii) improve
blocks” ductility and fracture resistance [7-9,11-17]. Even though this dual role is widely
accepted in the literature, many doubts remain about fibre type, quantity and the chemical
interaction with the soil. The studies mentioned show that the presence of fibres induces a
beneficial effect on blocks up to a certain threshold. When exceeding that limit, there is a
decline in physical and mechanical properties [18]. Such an overload leads the fibres to
be not distributed homogeneously, overlapping themselves and consequently resulting in
a less compact block. This threshold is obviously not unique but depends on numerous
factors such as the aspect ratio (the ratio between length and diameter), the density of
the fibre, its physical composition and surface roughness. Chemical treatments such as
the alkaline treatment proposed by Vodounon et al. [19] also improve the surface of the
fibres within certain duration limits. What emerges is an enormous variability of the
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variables involved. Therefore, a complete knowledge of the rules for the mixture design
has not yet been achieved, making fibre-reinforced CEBs with randomly distributed fibres
a challenging topic that needs to be investigated [20].

In broad terms, researchers agree on the effect produced by fibres in bridging mi-
crofractures, behaving similarly to roots in the ground soil [18]. In 2015, Danso et al. [21]
proved that this bridging function is proportional to fibres” length, i.e., their aspect ratio,
by comparing the response of different blocks reinforced with coconut coir, sugarcane
bagasse and oil palm fibres. In 2016, Aymerich et al. [11] investigated how different lengths
and percentages of hemp fibres influence the fracture resistance and energy absorption
capacity of an earthen material subjected to static and impacted bending load. They demon-
strated that the post-cracking performance is significantly enhanced by increasing fibre
content and length for large displacements, while the mechanism is only marginal for
small displacement.

One can note how the available scientific literature mainly focuses on experimental
analyses to assess the macroscopic mechanical performance of various fibre-reinforced
CEBs [18,19,22-28]. Authors usually investigate the flexural and tensile strengths by three-
point bending and tensile splitting tests, respectively. In general, fibre-reinforced CEBs
demonstrate a more gradual failure than simple units. Such a phenomenon suggests that
the ductility and the fracture resistance of the blocks are improved by introducing fibres.
Still, few attempts have focused on accurately describing the physical interaction between
fibres and matrix. Recently, Danso et al. [29] accomplished a series of experimental tests at
the micro-scale with this purpose. First, the computerised tomography scanning showed
the random distribution of fibres. Second, the optical microscopy and scanning electron
microscopy revealed gaps between fibres and soil matrix, especially in the case of coconut
coir (other fibres used were sugarcane bagasse and oil palm fibres). Further experiments
suggested that these gaps are caused by fibre shrinkage during the drying process and by
the compaction force during the preparation process (result also confirmed from the study
by Taallah and Guettala [23]). However, a complete understanding of the failure has not
yet been achieved. The most widely known issues concern the intrinsic diversity affecting
the raw materials involved in the manufacturing process of the blocks, curing time and
methods, etc. The diverse soils and fibres in nature make each blend practically unique,
and, as a result, their responses are reasonably different. Furthermore, the measured
resistance value depends on the size of samples and test procedures, which revealed poor
standardisation [7].

The literature analysis underlines the effort that the experimental determination of
the mechanical characteristics of these blocks requires. To achieve a reliable and statisti-
cally relevant knowledge of the information sought for the development of each product,
extensive experimental campaigns employing large quantities of resources (e.g., materials,
energy, tools) are needed. Therefore, it is important to use computational tools to predict
some of the characteristics of the blocks. With this purpose, the present study proposes
the use of Artificial Neural Networks (ANNSs), computational systems belonging to the
broader Machine Learning (ML) methods [30]. Their use is widespread in many engineer-
ing research fields [31-46], but not yet in the area of interest. Among the few studies found
that are related to this topic, ANNs were used in 2017 by Ongpeng et al. [47] to optimise
the mixture design of CEBs containing rice straw, and in 2016 by Sitton et al. [34] to obtain
a rapid soil classification for use in CEBs.

Unlike those studies, the primary objective of this research is to generate two ANN
models devoted to predicting the uniaxial compressive strength and tensile splitting
strength of various natural fibre-reinforced CEBs. To enhance the potential of this building
technology, it also aims to initiate a more organic and stimulating discussion on the topic
through the use of advanced computational tools and the creation of a common database.

The methodology adopted consists of the following main steps: (i) data collection,
(ii) modelling of the ANNSs, and (iii) performance evaluation of the generated networks. In
particular, the second phase includes three sub-steps: (ii.a) data processing, (ii.b) definition
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(i) Data
collection

of the ANNSs architecture, and (ii.c) training of the networks. Each network can be re-trained
several times until attaining an acceptable prediction accuracy. Once the desired model
is obtained, the network is saved and used with new, unknown data for the prediction
purpose (iv). Figure 1 provides a graphical visualisation of the proposed workflow.

(ii.a) Data _’ (ii.b) Definition of _’ (iii.c) Training of (iii) Evaluation of (iv) Using

processing i thearchitecture { | the networks the performance the models

. N T _______________ L ; |

(ii) Modeling the ANNs

Figure 1. Schematic representation of the proposed workflow.

This paper is organised as follows. Section 2 briefly frames the artificial intelligence
family and summarises the ANN theory; Sections 3 and 4 focus on the data collection and
modelling of the ANNSs; Section 5 discusses the performance of the ANNs. Finally, some
key conclusions are reported in Section 6.

2. Artificial Neural Networks: Theoretical Background

In computer science, ML is a subcategory of artificial intelligence (Figure 2). The
concept behind ML is to train computers, through examples, to recognise attributes [48].
ANNSs are supervised ML models, generally used to predict a continuous output as a
function of some inputs (regression).

UNSUPERVISED MACHINE LEARNING

SUPERVISED MACHINE LEARNING

Classification

COMPUTER ARTIFICIAL
SCIENCE INTELLIGENCE Regression

Linear Regression (LR)
Decision Tree (DT)
Support Vector Regression (SVR)

@ @

.

[..]
Artificial Neural Network (ANN)

.

Figure 2. Computer science subcategories.

A generic ANN, i.e., a multi-layer perceptron network [30], is characterised by two
fundamental elements, the architecture and the learning technique. The term architecture
refers to the main structure: the input layer, the hidden layer(s), and the output layer,
where neurons are located. The information moves from the input layer to the output
layer in a feed-forward way [30]. Thus, neurons belonging to a layer are connected to the
subsequential layer in only one direction with no cycles or loops; the path is linear.

Figure 3 shows the scheme of a generic network with R input variables and S neurons.
Accordingly, p is the input vector, W is the weight matrix of S X R size, b is the bias vector
of size S, f is the activation function, and a is the output vector of length S.
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Figure 3. Scheme of a generic ANN of S neurons, adapted by [30].

The back-propagation algorithms represent the most popular learning techniques
on function approximation problems [30]. These algorithms compare the output with
the target, sending the resulting error back to adjust the weight assigned to each neuron
connection [30,49]. This process is looped until the error is minimised within a specific
range in which the target and output values converge. The back-propagation algorithms
can only be applied on networks with differentiable activation functions.

The general network n of Figure 3 can be expressed by Equation (1), in which W is the
weight matrix applied to the input vector p, and b is the bias vector.

n=Wp+b €))

The actual output a depends on the chosen activation function f, or transfer func-
tion [30], which can be either linear or non-linear. In multi-layer neural networks trained
using the back-propagation algorithm, a commonly used activation function is the log-
sigmoid function (2):

1
— . 2
l1+em @

The advantage of this transfer function is that it is differentiable and can take any
inputs, squashing the outputs into the range 0-1 [30]. One can note that an ANN without
the activation function is simply equivalent to a regression model, which just tries to
approximate data distribution with a straight line. In many cases, a straight line is not
sufficient to properly represent the problem.

In contemporary literature, many authors have used ML models, simply based on
datasets, to estimate the material strength as a function of the mixture [33,36,43,46,50-52],
for example. Indeed, similar issues are currently addressed in other fields of material
science and engineering, such as fibre-reinforced concrete, lightweight concrete, recycled
coarse aggregate concrete, construction and demolition waste concrete, just to name a
few. These materials have in common the extreme variability of the characteristics of
the components: fibre type, aggregate dimensions, recycled material provenience, etc.
The virtue of ML is that it allows precisely considering datasets of several independent
variables, and the outcomes produced are not affected by the heterogeneity of the features.
The computational approach is based on a learning phase during which the network is
trained with known experimental results.

ANN: s are considered highly effective in fitting functions, and the literature produced
in the past two decades demonstrates that a relatively simple ANN can adapt to any
practical problem. However, despite the spreading use of ML algorithms, no applications
for CEBs have been identified. This represents a substantial gap in research as the entire

a=f(n)
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understanding of the behaviour of Earth-based materials, just like concrete, is hindered by
the heterogeneity of the raw materials on which they are based.

3. Data collection

ML algorithms requires the use of extensive databases to guarantee adequate model
generation. A suitable database must be composed of a set of independent variables (fea-
tures), and the corresponding values of the dependent variables that have to be predicted
(targets). The quality of the initial database affects the predictive ability of the model.
Therefore, data collection and post-processing are the most crucial stages of the whole
process.

In this study, the database was created by collecting data arising from the available
literature. At first, all available information relating to the observations were retained (even
in text form). Then, only those common to all studies were considered. Unfortunately, the
lack of data did not allow a single database to predict both the compressive and tensile
strength. Table 1 qualitatively summarises the features assessed in the research works
considered in the present study.

Table 1. Physical and mechanical properties assessed within the literature works considered.

Study Ref Type of Fibre Dry Density Water Compressive Tensile Flexural "ll":ellt:;flse
Used Absorption Strength Strength Strength Strength
Coconut coir ° ° .
[53] Sugarcane bagasse ° .
Oil palm fibres ° . .
[22] Banana fibres . .
[54] Banana fibres ° ° .
[55] Pig hair °
[19] Pineapple leaves . . .

Hence, from total data relating to 332 specimens (Database 1) used to predict the
compressive strength, only those relating to 130 specimens (Database 2) have been used to
predict the tensile strength (Table 2).

Table 2. Overview of the two databases 1.

Database 1 Database 2
Features’ matrix X! = [332 x 7] X2 = [130 x 5
Target vector t! = [332 x 1] t? = [130 x 1]

! In the notation used: scalars are indicated with small italic letters (xjki,. ..), vectors are indicated with small

bold letters (xjk, ...), and matrices are indicated with bold capital letters (XX, ...). The letter k represents the k-th
database, j represents the j-th feature vector, and i represents the i-th feature of that vector.

3.1. Database 1

Database 1 has been used for the prediction of the compressive strength of fibre-
reinforced CEBs. It is composed of 332 experimental data extracted by six studies: 130 spec-
imens including (separately) coconut coir, sugarcane bagasse, and oil palm fibres [53]; 70
specimens including banana fibres [22,54]; 36 specimens including pig hair fibres [55]; and
96 specimens including treated pineapple fibres [19]. Unfortunately, concerning the data
extracted from the study by Lejano et al. [55], the tensile strength value of the pig hair was
missing. Therefore, to obtain a complete data set, it was assumed to be equal to 99 MPa,
according to Araya-Letelier et al. [56].

The seven adopted independent variables (features) are clay content (x}), optimum
moisture content (x}), cement content (x}), fibre content (x}), fibre length (xi), fibre
tensile strength (x}), and specimen’s age (x}). The dependent variable is the compressive
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strength (y!), measured through the uniaxial compressive strength test. Table 3 provides
the descriptive statistics of this database.

Table 3. Descriptive statistics of the features of Database 1.

Feature Vectors U.M. Mean St. Dev. Min. Max.
X} Clay content Y% 0.23 0.09 0.08 0.35
x% OoOMC Y% 0.20 0.08 0.10 0.31
x}; Cement content % 0.03 0.03 0.00 0.07
xi Fibre content Y% 0.01 0.02 0.00 0.05
Xz Fibre length mm 42.33 22.01 0.00 100.00
xé Fibre tensile strength MPa 218.16 227.73 0.00 751.95
X5 Specimen’s age Days 20.96 6.51 7.00 28.00

Target vector

t! Compressive strength MPa 2.80 1.47 0.33 6.30

Clay plays a key role in the workability and plasticity of the mixture, defining the
quality of the blocks produced. Delgado and Guerriero [57] recommended a minimum
clay content of 5% and a maximum between 10% to 22%. Among soils included in this
database, clay content varies from 8% to 35%.

The OMC (optimum moisture content), obtained by the Proctor test [58], represents
the water needed to achieve the maximum soil compaction and, therefore, the ultimate dry
density [59]. This optimal value is even more important if one considers the presence of
cement, the mineral binder commonly used to stabilise CEBs.

Even though it is usually recommended not to exceed the 5% threshold [19], the
cement percentage ranges from 0% to 7% by weight in this database. According to general
prescriptions [2], cement content increases with clay content. However, it is more effective
with leaner or sandy soil due to chemical interactions occurring with mineral components.

The presence of cement requires slow and constantly wet curing and drying process.
Indeed, the best results in terms of quality of blocks are generally achieved after 28 days.
Blocks included in this database are cured for 7, 14, 21, and 28 days.

Finally, with reinforcement purpose, several fibre types, content (0-5%), length
(0-100 mm), and tensile strength (0-751.95 MPa) are used in CEBs included in this database.

A graphical representation of the relationship between each feature included in
Database 1 and the corresponding compressive strength value is presented in Figure 4.

3.2. Database 2

Database 2 has been used for the prediction of the tensile strength of fibre-reinforced
CEBs. It comprises 130 experimental data collected from the study by Danso et al. [53]
including (separately) coconut coir, sugarcane bagasse, and oil palm fibres.

The five adopted features are clay content (x}), fibre content (x3), fibre length (x3),
fibre density (xj), and fibre tensile strength (x3). The dependent variable is the tensile
strength (y?), measured through the tensile splitting test. Table 4 provides the descriptive
statistics of this second database.

Unlike Database 1, in Database 2, the influence of some variables was not considered
relevant due to the low variability range. For example, among the data available, cement
content was always equal to zero, or the OMC and age were the same for all the specimens
considered. Therefore, those features were removed. Likewise, in both databases, specimen
sizes, water content, gravel, and sand and silt content were also removed.
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Figure 4. Relationship between each of the features of Database 1 (clay content (a), OMC (b), cement content (c), fibre

content (d), fibre length (e), fibre tensile strength (f), age (g)) and the corresponding compressive strength values.

Table 4. Descriptive statistics of the features of Database 2.

Feature Vectors U.M. Mean St. Dev. Min. Max.
xi Clay content % 0.22 0.08 0.14 0.30
X5 Fibre content % 0.01 0.00 0.00 0.01
x% Fibre length mm 51.69 22.69 0.00 80.00
X Fibre density kg/m3 658.46 218.16 0.00 810.00
x% Fibre tensile strength MPa 92.00 50.58 0.00 152.50

Target vector
t? Tensile strength MPa 0.29 0.03 0.22 0.37

Figure 5 reports the relationship between each of the features included in Database 2

and the corresponding tensile strength values

The histograms reported in Figure 6 show the two distributions of the target values:
on the left, uniaxial compressive strength, and on the right, tensile splitting strength. One
can note how the distribution of the compressive strength values is skewed slightly on the
left, while the tensile strength distribution is normal.
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Figure 5. Relationship between each of the features of Database 2 (clay content (a), fibre content (b), fibre length (c), fibre
density (d) and fibre tensile strength (e)) and the corresponding tensile strength values.
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Figure 6. Histograms of the target values: (a) uniaxial compressive strength; (b) tensile splitting strength.

4. Modelling of the ANNs

In this section, the modelling strategy of the ANNSs is presented. As expressed in the
workflow of Figure 1, the first step of the second phase consists of data processing. This step
includes data analysis, scaling, and division into the three datasets (training, validation,
and testing set). Then, the procedure followed for the definition of the architecture of the
two networks is explained and thoroughly described. Finally, the training of the networks
is performed.

4.1. Data Processing

Data collected and shown in Figures 4-6 are heterogeneous, as they include several
units of measure and vary in a different range of values (see Tables 3 and 4). It has already
been mentioned in Section 3 that this situation does not limit the application of ML methods;
instead, it represents a likely scenario. However, such data cannot be used in a rough
way as those with a wider range of values would influence the expected final result more.
Therefore, assigning the same weight to all data is needed for a fair comparison. This
procedure is called feature scaling.

In this study, each feature was scaled using the normalisation technique according to
Equation (3):

x; — min(x;)
max(x;) — min(x;)

®)

Xnorm =

where x; is the i-th feature to be transformed, min(x;) and max(x;) are the minimum and
the maximum values assumed by that specific feature into the database.

To prevent multicollinearity problems, the relationship between normalised features
included in the same database is shown in Figure 7. Unlike the previous graph, all the
features are compared here to ensure their complete independence.

Figure 7a confirms the absence of correlation between the variables belonging to
Database 1. Similarly, the scatterplot matrix reported in Figure 7b shows the poor connec-
tion between the features included in Database 2.
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Figure 7. Scatterplot matrix: relationship between the normalised features of (a) Dataset 1 and
(b) Dataset 2.

After completing the analysis and scaling stages, each database was randomly divided
into three datasets. In both cases, 70% was used for training, 15% for validation, and 15%
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for model testing. The training set usually represents the most considerable portion of
the database since it is needed to train the network. On the other hand, the validation
set serves to evaluate the model ability to generalise the problem. Specifically, the back-
propagation algorithm performs continuous iteration loops to reduce the gap between
the target value and the predicted output. The training phase is interrupted when the
model stops improving (constant errors). Finally, the testing set is used as an independent
measure of network performance.

4.2. Definition of the Networks Architecture

As mentioned above, ANNSs consist of the input layer, hidden layer(s), and output
layer. The number of layers and their size (number of neurons) define the architecture
of the network. Even though the definition of this architecture is arbitrary, the choice of
the number of neurons in the hidden layer is a delicate phase that requires some essential
iterations to avoid the generation of underfitted or overfitted models.

Referring to Database 1, Figure 8 represents the trend of the root means square error
(RMSE, Equation (4)) of the training and validation sets as a function of the number of
neurons in the hidden layer. In this case, a variable number of neurons ranging from 0 to
140 is sufficient to adequately show the error trend.
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Figure 8. Trend of the RMSE of the training (blue) and validation (orange) datasets within Database 1.

In Equation (4), n is the number of the p-th neurons in the hidden layer, ¢; is the i-th
target value, and y; is the i-th predicted output.

Figure 8 represents two opposite situations. At the beginning of the graph, for a
number of neurons in the hidden layer between 0 and 5, the RMSE of the training and
validation set is high (about 0.6) due to the poor capability of the model to depict the
input-target relationship. This situation reflects an underfitted model because the chosen
architecture is insufficient to represent the complexity of the data provided. As the number
of neurons increases, the RMSE of the validation set grows, diverging from the RMSE of the
training set. As a result, the model becomes overfitted, which means that the high variance
does not allow it to generalise the problem properly. Over 40 neurons, the model correctly
predicts the compressive strength values included in the training set (low error), but not
those included in the validation set (high error). Hence, such a model will not adapt to the
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new unknown data for which it was built. It can be seen that a highly complex model does
not always work better than a simple model.

According to this strategy, the point at which the RMSE of the validation set is
minimum was chosen as the optimal number of neurons for ANN1 (prediction of the
compressive strength). Namely, the lowest RMSE is equal to 0.265 for 33 neurons. An
identical strategy was used for ANN2, in which the lowest RMSE is equal to 0.008 for
35 neurons (Figure 9).

RMSE of the training set
RMSE of the validation set
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Figure 9. Individuation of the optimal number of neurons in the hidden layer corresponding to the minimum RMSE for (a)

ANNT1 and (b) ANN2.

The architecture defined for the two networks is a two-layer feed-forward network
with a sigmoid transfer function in the hidden layer and a linear transfer function in the
output layer (Figure 10).

[332x7] | ®_. % _.@—\ OUTPUT
10 O Fe
| —— @_/ [1x332]

HIDDEN (33 NEURONS)

Figure 10. Cont.
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Figure 10. Defined architecture for the two networks: (a) ANN1 and (b) ANN2.

4.3. Training of the Networks

Once the architecture is defined, the Levenberg—Marquardt back-propagation algo-
rithm is used to train the networks. For the specific case, this algorithm shows better
performance (fastest convergence) than the Gauss—Newton or steepest descent algorithms
since it represents an hybrid method that combines the advantages of the two previously
mentioned ones [38,49].

The coding was performed in MATLAB® R2019a. The pseudocode of the developed
algorithm is reported in Figure 11.

> Import the data
> Normalise the data (feature scaling)
> Define the architecture of the network
> Train the ANN model
> Evaluate the performance of the model
> Visualise the predictions of the model
> Face (eventually) problems of underfitted or overfitted models
If the trained network is not satisfactory:
> Optimise the number of neurons in the hidden layer
> Select the optimal number of neurons in the hidden layer
> Re-train the model
> Accept the model
> Validate the model
> Test the model
> Use the model for some predictions (func: y = net(x))

Figure 11. ANN pseudocode.

Once the accuracy and performance of the built network was verified, it was saved
and reused to predict unknown outputs from new features.

5. Evaluation of the Performance

In this section, the performances of the two generated networks are evaluated by
analysing (i) the error trend and (ii) the accuracy of the predicted outcomes.

5.1. Error Trend

The performance of the trained models can be assessed through the evaluation of the
mean squared error (MSE), accordingly to Equation (5):

n

MSE = % Y (ti— i) ®)
iz
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Mean Squared Error (mse)

where 7 is the number of the p-th neurons, t; is the i-th target value, and y; is the i-th
predicted output. Unlike the RMSE (Equation (4)), the MSE formula does not have the
square root; hence, the error can also assume negative values.

The graphs of Figure 12 indicate at which iteration (epoch) the validation phase reaches
the lowest MSE value, i.e., the best performance. The convergence occurs at epoch 16,
with the MSE equal to 0.16687 for ANN1, and epoch 5, with the MSE equal to 0.00016 for
ANNZ2. The figures also confirm that the ANN models are correctly working since the
MSEs trend of the training set is lower than those of the validation and testing sets which
are reasonably similar.

) Best Validation Performance is 0.16687 at epoch 16 , Best Validation Performance is 0.00016119 at epoch 5
10 : 100
Train Train
Validation Validation
i =———Test e Test
Best E 10_2 Best
3
: wi
: g 10’
: o
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Figure 12. Performance of the trained networks: (a) ANN1 and (b) ANN2.

Error histograms are presented in Figure 13. The error ranges from —1.451 to 1.796 for
ANNT1 and from —0.032 to 0.025 for ANN2. Analysing the first one (Figure 13a), outliers at
the extreme sides of the graph are negligible. Most of the data used for training, validating,
and model testing are centred in the histogram, close to the zero-error line. In the case of
Figure 13b, the errors are instead more widely distributed within the interval. However,
it should be noted that, in proportion to the values assumed by the tensile strength, the
corresponding error values are acceptable.

5.2. Prediction Accuracy of the Compressive Strength (ANN1)

The first neural network (ANN1), trained with Database 1 to predict the compressive
strength, showed sufficient accuracy. Figure 14 shows how the correlation coefficients
(R-values) between output values and targets are very high: 0.98 for the training set, 0.95
for the validation set, 0.97 for the testing set, and 0.98 for the total response.

The dashed line represents the ideal relationship between the predicted and target
values, and the solid line represents the real regression line (the most suitable between the
predicted and target values).

It is worth noting that while the training set regression indicates the model ability to
interpolate data, the validation set regression suggests the model ability to generalise the
problem. Therefore, once the model correctly maps the features—targets relationship within
the database (which must significantly represent the problem), it can be used with new
unknown features to make some predictions.
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5.3. Prediction Accuracy of the Tensile Strength (ANN2)

The second neural network (ANN?2), trained with Database 2 for the prediction of the
tensile strength, has also shown promising results. The correlation coefficients between
output values and targets are still very high: 0.92 for the training set, 0.90 for the validation
set, 0.92 for the testing set, and 0.91 for the total response (Figure 15).
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Figure 15. Linear regression between tensile strength target values and ANN2 actual outputs.

The general correlation coefficients found in both cases, Rann1 = 0.98 and Ranne = 0.91,
still demonstrate the efficacy of neural networks applied to the search problem of fit-
ting functions.

6. Conclusions

The purpose of this study was to generate two Artificial Neural Networks (ANNSs) to
predict the compressive (ANN1) and tensile strengths (ANN2) of natural fibre-reinforced
CEBs. Despite the growing use of Machine Learning (ML) algorithms in engineering
problems, few applications involve CEBs [34,47].

To train the ANNSs, two databases were created by collecting data from five literature
works [19,22,53-55]. In particular, data relating to 332 specimens were used to predict the
compressive strength (Database 1) and data relating to 130 specimens were used to predict
the tensile strength (Database 2). The developed networks showed sufficient prediction
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accuracy, i.e., R-values equal to 0.97 for ANN1 and 0.91 for ANN2. Building on these
encouraging outcomes, the following conclusions can be drawn:

ANNs may be widely used within the scope of CEB optimisation to orient experimen-
tal campaigns and support numerical investigations. The possibility of executing many
analyses in a short time represents valuable support to facilitate the development of a
new durable and sustainable construction material, opening new opportunities for
both researchers and practitioners.

The database used covers a range of values that reproduce the most commonly
obtained laboratory results. It does not classify the fibres on the basis of their original
natural source (type of plants or animals) but on the basis of their physical and
mechanical characterisation (density, length, tensile strength). This approach does
not affect the predictive capabilities of the proposed model, as both the compressive
and tensile strength of fibre-reinforced CEBs with type of fibres not included in the
database can still be deduced from the ANNSs as long as the characteristics entered fall
within the available ranges.

The prediction accuracy of the networks depends on the data sets used, and it would
be advantageous to enhance and enrich it by providing new and increasingly variable
data. To this end, a complete dataset should include mixture proportion (wt.%)
comprising all components used (soil, as a composition of gravel, sand, silt and clay,
cement, or other kinds of stabiliser, water, fibres, etc.), type of fibres, their length,
tensile strength and chemical treatment, specimens’ size, age, etc. Such a list can be
clearly extended with additional features according to the necessities.

Future developments should be aimed at continuing the experimentation on blocks,
collecting new data and further investigating the mechanisms that regulate the effect
of fibres in the earth matrix. In this regard, it is essential to point out the importance
of carefully and adequately designing experiments through, for example, the Design
of the Experiments (DoE) methods. This would mitigate many problems related to
uncertainty, and the approach to studying this promising construction technology
would be better defined, allowing the scientific community to collaborate in creating
an appropriate physical model.

In addition to the mere prediction of the resistance values, ML algorithms can af-
terwards be used to optimise the design of the mixtures. In fact, it is well known
that in the experiment-based approach, the user can rarely control all the variables,
almost never reaching the optimal performing option. Especially in the case of new
materials to be placed on the market, multi-objective optimisation problems are often
faced, posing objectives that can also be in contrast with each other: compliance with
regulatory standards, production costs, environmental impact, etc. To benefit from the
support of Al, future studies should define variables, objectives, and constraints to
ensure that the problem is correctly addressed.

This study can be considered as an attempt to develop a predictive model, as the

available data are scarce. On the other hand, it represents only the first step towards
elaborating a more sophisticated modelling strategy, moving towards the development
of increasingly reliable computational tools capable of capturing and satisfying multiple
needs to support decision makers.
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