O.438. Prevalence and control of Shiga toxin-producing E. coli: from diversity in dairy cattle to phage therapy

Carla Dias¹, Andressa Ballem², Ana Pinto³, Gonçalo Almeida², Pablo Fuciños⁴, Carina Almeida², Maria José Saavedra^{3,5}, Filipe Silva⁵, José Almeida⁵, Jorge Azevedo⁵, Maria José Gomes⁵, <u>Hugo Oliveira</u>¹

¹Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Braga, Portugal
²National Institute for Agrarian and Veterinary Research (INIAV), Vila do Conde, Portugal.
³Veterinary Science Department, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
⁴International Nanotechnology Laboratory (INL), Braga, Portugal
⁵Animal Science Department, and Animal Science Research Center (CECAV), University of Trás-os-Montes

and Alto Douro (UTAD), Vila Real, Portugal

Shiga toxin-producing E. coli (STEC) strains are important foodborne pathogens worldwide, transmitted from ruminant to humans through contaminated food. Their control is still a challenge as most E. coli in nature are commensal and, thus, controlling strategies should target only pathogenic strains/serotypes. Bacteriophages (bacterial viruses) can cope with this challenge by allowing a tailored intervention. We performed an epidemiological study of STEC at 21 milk farms across the Northern region of Portugal and evaluated the potential of bacteriophage therapy to control the well-known O157 STEC serotype. From 409 dairy cattle analyzed, STEC strains were more prevalent in heifers (45 %) than in lactating cows (16 %). STEC isolates with several stx1 and stx2 subtypes were identified and they belonged to 73 different O:H serotypes. Regarding bacteriophage therapy evaluation, an O157-specific phage (CBA120), was tested in vitro and in vivo. The bacteriophage reduced STEC in contaminated ruminant fluids of rumen and intestine (>4 logs) as well as STEC biofilms adhered with intestinal mucosa (>2 logs). Moreover, bacteriophage treatments significantly reduced E. coli O157:H7 numbers (1 log) in artificially contaminated sheep, comparatively with the mockedtreated group. Overall, results suggest the potential use of bacteriophages to control STEC in vivo.

Acknowledgement

This study was supported by project PhageSTEC (POCI-01-0145-FEDER-029628) funded by FEDER through COMPETE2020 (Programa Operacional Competitividade e Internacionalização) and by National Funds thought FCT (Fundação para a Ciência e a Tecnologia).