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Abstract  
This paper investigates the pattern of COVID-19 contagion in Portuguese municipalities from March 23rd to April 5th (the 
exponential phase). We have recurred to spatial autocorrelation models to discuss how the conglomeration of highly 
infectious spaces has also contributed to infecting neighbouring municipalities. We have used several indicators for the 
contagion of COVID-19 from the number of infectious individuals to rates of infectious. As explicative variables, additionally 
to spatial proximity, we also considered population density, the share of the elderly population as well as the length of 
municipal perimeter/border. Our results show that highly dense municipalities tended to contaminate close areas. Lengthier 
perimeters also showed a positive effect on the contagious indicators for a given municipality. 
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Explicando o contaxio da COVID-19 nos concellos portugueses usando modelos de 
autocorrelación espacial 

Resumo 
Este artigo investiga o patrón de contaxio da COVID-19 nos municipios portugueses entre o 23 de marzo e o 5 de abril (a fase 
exponencial). Recorremos a modelos de autocorrelación espacial para analizar como a veciñanza de espazos altamente 
infecciosos tamén contribuíu a infectar os municipios próximos. Utilizamos varios indicadores para o contaxio da COVID-19, 
desde o número de individuos infecciosos ata as taxas de infección. Como variables explicativas, ademais da proximidade 
espacial, tamén consideramos a densidade de poboación, a proporción da poboación de persoas maiores e a lonxitude do 
perímetro/fronteira municipal. Os nosos resultados indican que os municipios altamente densos tenden a contaminar áreas 
próximas. Os perímetros máis longos tamén mostraron un efecto positivo nos indicadores contaxiosos para un municipio 
determinado. 
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1. Introduction and motivation  

The first case of a Portuguese citizen infected with COVID-19 was identified on February 22nd, 
2020; this was the case of a citizen employed on a cruise docked off Japan. However, it was only 9 days 
before the first two infected people were registered in Portuguese territory –two cases of 'import' of 
the disease insofar as these cases were associated with visits by these citizens to Valencia and 
northern Italy.  

If on 10/03/2020 the Daily Bulletins of the General Directorate of Health –DGS– (official body for 
making data available in Portugal on the phenomenon) registered 41 positive cases, the evolution of 
cases of the Portuguese infected in the following weeks showed an evolution close to one sigmoid 
function that has been identified in other examples of European countries: 448 (03/17/2020), 2362 
(03/24/2020), 7443 (03/31/2020), and 11730 (04/06/2020).  

Until 03/23/2020, DGS Daily Bulletins disaggregated positive cases (as well as recovered cases        
and fatalities by Basic regions for the application of regional policies (NUTS 2) in the country. As of 
03/24/2020, the referred bulletins started to reveal the aforementioned distribution by municipality. 
Since then, it has been possible to observe the spatial distribution of cases of citizens whose tests for 
the existence of infection by COVID-19 were positive. 

There has been no scientific publication that applied spatial autocorrelation analysis techniques to 
the evolution observed in the Portuguese territory. We consider that such an analysis is necessary for 
three reasons. First, the urgency of the fight against COVID-19. The current pandemic has shown the 
weakness of the various health policy action systems around the globe, as long as an effective vaccine 
has been distributed to the population by December 2020, the most appropriate prophylactic reaction 
has been related to the reduction of contagion networks, by limiting the mobility of the main carriers 
of the virus-humans. Understanding how the dynamics of spatial contagion are associated with the 
dynamics of contagion groups is one of the objectives of this investigation. Second, one of the causes of 
contagion from the earliest researches was associated with social proximity between human beings. 
Therefore, understanding how human densities –both demographic densities (inhabitants per square 
kilometer) and differentiation of age cohorts– requires an analysis of the spatial distribution (Oliva 
Denis & Aldrey Vázquez, 2018). Third, contributing to the delimitation of future epidemic outbreaks, 
as understanding how such outbreaks are concentrated in certain spaces and due to certain variables 
of the groups located in those spaces is an essential step to avoid pandemic shocks like the current 
one. 

The proliferation of the COVID-19 pandemic found spatial analysis techniques to be an important 
resource to support the design of geographic-administrative policies. On the one hand, there is the 
perception that neighboring spaces (even neighboring municipalities in different countries) tend to 
exchange significant demographic flows. Several studies have proved this in a clear way –from tourist 
flows to students, investors, or for consumption purposes. Thus, with the COVID-19 pandemic 
associated with the fluidity of demographic movements, spatial analysis resources made it possible to 
observe the extent to which dimensions such as contiguity help to explain contagion and in the case of 
validation to what extent measures such as border control or sanitary fences are effective in reducing 
contagion rates. Then, studies like Gulyiev (2020) that focused on the initial cases in Wuhan (China) or 
Sun, Matthews, Yang & Hu (2020) in the United States of America, quickly explored some spatial 
regression techniques that validated the hypothesis that, in these countries, spatial contiguity effects 
were significant. Finally, works such as those by Krisztin, Piribauer & Wögerer (2020) have even 
proved the influence of spatial contiguity enhanced by international connections, namely flights, for 
the proliferation of the virus. 

Given the strategic relevance of spatial analysis for pursuing the contagion across Portuguese 
regions, we will consider some explicative dimensions which follow previous research using these 
methods for other countries (Mollalo, Vahedi & Rivera, 2020; Páez, López, Menezes, Cavalcanti &     
Pitta, 2020; or Sannigrahi, Pilla, Basu, Sarkar Basu & Molter, 2020). So, we will consider municipal 
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perimeter, the ageing index and the population density. As we will detail in the respective section, the 
municipal perimeter suggests that larger municipalities (in terms of area) tend to see more people’s 
movements within the surrounding spaces. Additionally, a higher population density also enhances 
these opportunities. Finally, a higher value of the ageing index is associated with a higher proportion 
of aged people which has been found to correlate with higher exposures to the risk of COVID-19 
contagion. 

Mollalo et al. (2020) investigated county-level variations of disease incidence across the continental 
United States, compiling environmental, socioeconomic, topographic, and demographic variables that 
could explain the spatial variability of disease incidence, including the percentage of older adults. 
Similar studies were carried by Mansour, Al Kindi, Al-Said, Al-Said & Atkinson (2021) in Oman, where 
they also concluded that an increase in the number of the elderly is associated with an increased rate 
of disease incidence. 

Páez et al. (2020) investigated the influence of environmental (meteorological) factors, coupled 
with economic and demographic control variables, on the progression of the incidence of COVID‐19 in 
the coterminous provinces in Spain, demonstrating that population density and percentage of older 
adults displayed strong associations with incidence of COVID‐19. Singh & Adhikari (2020) compared 
the age and contact structures of the populations of India, China and Italy, emphasizing the effect these 
have on the spread of an infectious disease, particularly where the prevalence of three-generations 
households is higher as is the case of Portugal Albuquerque (2011). 

Ramírez-Aldana, Gómez-Verjan & Bello-Chavolla (2020) also developed a spatial statistical 
approach to describe how COVID-19 cases are spatially distributed in Iran and tred to socioeconomic 
and climatic predictors for the number of cases, and concluded that the COVID-19 spread was spatially 
correlated, and that provinces with older population structures were the most susceptible to present a 
higher number of COVID-19 cases. 

Cont, Kotlicki & Xu (2020) also observe significant differences in epidemic dynamics across regions 
in England, with higher fatality and contagion levels between regions, pointing to the importance of 
integrating demographic and geographical heterogeneity when modelling the impact of COVID-19, 
noting the particular relevance of elderly populations, where the percentage of symptomatic carriers 
is higher, which causes higher rates of infection, as supported by previous epidemiological evidence 
(Sayampanathan et al., 2020). 

Considering the presented studies, we will consider municipal perimeter, the ageing index and the 
population density as explicative dimensions. As we will detail in the respective section, the municipal 
perimeter suggests that larger municipalities (in terms of area) tend to have more chances of 
exchanging people’s movements with the surrounding spaces. Additionally, a higher population 
density also en-hances these opportunities. Finally, a higher value of the ageing index is associated 
with a greater proportion of old people which has been found as correlated with higher exposures to 
the risk of COVID-19 contagion (Ramírez-Aldana et al., 2020; You, Wu, & Guo, 2020; Zhang & Schwartz, 
2020). 

Although data regarding positive cases used in this study refers only to the first of the three waves 
that already occurred in Portugal, the succeeding waves, replicated the spatial dynamics pattern 
marked by contagion of contiguity municipalities of the initial outbreaks. 

The remaining sections of this work are as follows. Section 3 discusses the materials, data and 
methods used for this research. It also discusses the achieved results. Section 4 concludes the work. 

2. Materials and methods 

2.1. Study area 

The study area is Portugal mainland, a coastal nation in southwestern Europe, located at the 
western end of the Iberian Peninsula, bordering Spain on its northern and eastern frontiers, with a 
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total of 92,225 km2, ranging from 42°09′N to 36°57′N latitude and 6°11′W to 9°30′W longitude. It 
enjoys a Mediterranean temperate climate, with an annual average temperature ranging from 7,5°C in 
January to 22°C in August and an annual average precipitation ranging between 2 mm in the driest 
month (July) and 109 mm in the wettest month (December), the south being warmer and drier than 
the north. 

It is comprised of 278 municipalities, with an estimated total population of almost 9.78 million in 
2018, with a settlement pattern heavily marked by litoralization and metropolization processes 
(Cavaco, 2016) in a bipolar territorial structure anchored in the two metropolitan areas which 
together account for almost 47% of the total population, namely Lisbon with 2.85 million and the 
national capital located in the south, and Porto with 1,72 million in the north. 

2.2. Dataset 

The dataset for this study is composed of epidemic data and auxiliary data. The epidemic data 
mainly includes the total number of daily confirmed cases collected from the situation reports 
published by the Directorate-General of Health (www.covid19.min-saude.pt) from March 3, 2020, but 
containing information on confirmed cases broken down by municipality only from March 23, 2020. 

The auxiliary data for each municipality includes the total population, population density and the 
ageing index (the ratio of the number of persons aged 65 and over to the number of young people aged 
14 or younger), collected from Portugal annual estimates of the resident population in 2018 
(www.ine.pt), total municipal area as well as length of municipal perimeter/border which are given by 
the Directorate-General of Territorial Development (http://www.dgterritorio.pt). 

2.3. Methods 

This research aims to discuss the spatial-temporal patterns of the COVID-19 epidemic from spatial 
patterns of the point prevalence (number of confirmed cases divided by resident population) per 
municipality and per day. Epidemic hotspots can be clustered (spatial clusters) or exist individually 
(spatial outliers) and they are identified using spatial association measures. The most appropriate of 
these measures is Local Moran's I index (Anselin, 1995; Le Gallo & Ertur, 2003). Local Moran’s I is a 
global index of spatial association measures that assess the clustering of spatial data at the local level 
(using local clusters) or globally (using all the available data), used to explore the spatial structure of 
infectious diseases. For example, spatial analysis has been conducted for spatial epidemic dynamics of 
the COVID-19 outbreak in China (Kang, Choi, Kim & Choi, 2020). Given the heterogeneity in spatial and 
epidemic data, autocorrelation analysis tends to show significant local variations, so local Moran’s I 
(Anselin, 1995) is more suitable to explore local autocorrelation or dependency of spatial epidemic 
data. Local Moran’s I at spatial location i can be expressed as: 

 

 𝐼𝑖 =
𝑧𝑖 − 𝑧̅

σ2
∑ [ω𝑖𝑗 (𝑧𝑗 − 𝑧̅)]𝑛 

𝑗=1,𝑗≠𝑖      (1) 

 

where 𝑧𝑖  is the value of the point prevalence 𝑧 at location i; 𝑧̅ is the average value of z with the sample 
number of n; 𝑧𝑗 is the value of the prevalence rate 𝑧 at all the other locations (where j ≠ i); σ2 is the 

variance of point prevalence; and wij is the spatial weight matrix, which defined spatial interaction 
throughout the study regions. In general, ω𝑖𝑗  = 1 if location i and location j were neighbouring (shared 

a common boundary); otherwise, 𝜔𝑖𝑗 = 0. In this study, spatial contiguity was assessed as the first 

order queen's contiguity that defines spatial neighbours as those areas with shared borders and 
vertexes. Significance was tested by comparison to a reference distribution obtained by random 
permutations (Anselin, 1995). This analysis used 999 permutations to determine the differences 
among the spatial units. 

http://www.covid19.min-saude.pt/
http://www.ine.pt/
http://www.dgterritorio.pt/
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A high positive Local Moran's I value implies that the location under study has similarly high or low 
values as its neighbours, thus the locations are spatial clusters. Spatial clusters include high-high 
clusters (high values in a high value neighbourhood) and low-low clusters (low values in a low value 
neighbourhood). In this context, low-low clusters are “low epidemic spots”, while high-high spatial 
clusters can be regarded as “regional epidemic hotspots”. 

A high negative Local Moran's I value means that the location under study is a spatial outlier. 
Spatial outliers are those values that are obviously different from the values of their surrounding 
locations. Spatial outliers include high-low (a high value in a low value neighbourhood) and low-high 
(a low value in a high value neighbourhood) outliers. In epidemics, high-low spatial outliers can be 
regarded as isolated “individual hotspots”. 

Spatial autocorrelation analysis was performed in GeoDa V.1.14.0.4 software (Anselin & Rey, 2014) 
and parametric regressions by StataIC 16.1. 

Figures 1-3 show the different clusters observed throughout the period (Figure 1) or in the first 
date (Figure 2) and in the last recorded day (Figure 3). Figure 2 panels are identified as Moran’s I 
scatterplot. The Moran scatterplots show the relationship between a specific variable (z) and                 
its spatial lag (Wz) and classifies this statistically significant relationship for each municipality into one 
of four possible quadrants. Let us clarify this statistical significance regarding to the statistical 
significance of the estimated z and Wz computed for each municipality. 

 
 

 

Figure 1. Clusters in Portugal following Moran’s I analysis (March, 23 - April, 05). Source: own elaboration. 
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Figure 2. Moran scatterplot (March 23) – Distribution of municipalities 
considering point prevalence (z) and their spatial lag (Wz). Source: own 
elaboration. 

 
 

 

Figure 3. Moran scatterplot (April 05) – Distribution of municipalities 
considering point prevalence (z) and their spatial lag (Wz). Source: own 
elaboration. 

 
 

Therefore, following Figure 1 (at each reported day), our z-variable is point prevalence (observed 
for each municipality) and Wz is a constructed variable giving the point prevalence of the 
surrounding/contiguous neighboring municipalities. The concentration of municipalities in the low-
low cluster is evident (negative values for both z and Wz in Figures 2 and 3). The cases of high-low 
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(positive values for z and negative for Wz) are important because they relate to municipalities with 
social or public institutions which generated local epidemic foci. The cases of low-high are also worth             
analysing because these are municipalities with smaller values for prevalence ratios although these 
places are surrounded by spaces with significantly higher prevalence ratios. Figure 1 thus shows           
a concentration of cases in municipalities with higher incidence rate values; these cases have                          
been concentrated in the north of the country. This situation led to the concentration of cases marked 
in red (high-high) in the north of Portugal in the observed period. These cases were identified              
between the urban areas around Braga (more to the north) and Aveiro (more to the south), which are 
generically referred to as areas of the north coast of Portugal, characterized by higher population 
densities. Reasons were put forward in reports in the daily press or by the National Statistics                     
Institute itself (Instituto Nacional de Estatística [INE], 2020; Neves, 2020). One of the reasons for        
this distribution was the industrial concentration in this area that limited the telework decreed               
for the country (or work at home) on 19th March and driving many industrial employees to maintain                     
the rhythms of work in places where there was no adequate prophylactic distance. In contrast,           
Figure 1 also shows the presence of municipalities identified in blue associated with the least affected                         
areas, being concentrated in the space identified as 'interior of Portugal' (east of 8º W); these 
municipalities were also characterized by being surrounded by other municipalities with low 
incidence rates.  

2.4. Parametric regressions 

After the previous steps, which are the first when analysising spatial data, we intend to include 
exogenous dimensions for explaining the level of contagion observed throughout the Portuguese 
regions. For this purpose, several authors (Anselin, 1992; Anselin & Hudak, 1992) suggest the use of 
parametric regressions. Therefore, we explored spatial error models and spatial lag models. Starting 
from the standard ordinary least squares (OLS) model  

 
𝑌𝑖 = 𝑋𝑖  β + 𝑒𝑖 

 
the spatial error model uses the following identification for the error term  

 
𝑒𝑖 = λ 𝑊𝑖  𝑒𝑖 + 𝑢𝑖  

 
while the spatial lag model recurs to a different identification 

 
𝑒𝑖 = ρ 𝑊𝑖 𝑤𝑗 + 𝑢𝑖 

 
In simple terms, a spatial error model highlights the relevance of the observed residuals in the OLS 

estimation from neighbouring spaces while a spatial lag model highlights the relevance of the 
observations of the dependent variable in the neighbouring spaces. For our cases, the spatial lag model 
will try to explain the distribution of the prevalence variable by adding the prevalence observed in the 
surrounding area; the spatial error model will try to explain the distribution of the prevalence variable 
throughout Portuguese municipalities by adding the statistical residuals observed in the surrounding 
area (usually related to omitted explicative variables). As Anselin (1992) claims, spatial errors indicate 
a violation of the traditional OLS assumption of uncorrelated error terms. In the case of spatial errors, 
this suggests the omission of relevant and spatially correlated covariates/exogenous variables. In the 
case of spatial lags models, the statistical significance of spatial lags indicates the existence of diffusion 
processes, meaning that events in one place increase the likelihood of similar events in neighboring 
places.  
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As Anselin (1992) observed, a further step is to try to test hypotheses able to explain the found 
spatial autocorrelation. In our case, as we want to test some hypotheses regarding the spatial 
distribution of COVID-19 infectious cases in Portuguese municipalities between 23/03/2020 and 
05/04/2020, we need to recur to models like the spatial error model or to the spatial lag model 
(Anselin & Hudak, 1992). We will include the population density  as an explicable variable, following 
Li, Richmond & Roehner (2018), a relevant proxy for the contagious propensity across the spaces 
(Chandra, Kassens-Noor, Kuljanin & Vertalka, 2013; Holko, Mędrek, Pastuszak & Phusavat, 2016; Hu, 
Nigmatulina & Erckhoff, 2013; Kang et al., 2020), the ageing index (because older people have been 
identified as the most infectable cohort in this first wave (Davies et al., 2020; Gao et al., 2020), and         
the perimeter of each municipality (as a proxy for the likelihood of importing infected cases from 
neighbouring areas, which follows Lima et al. (2012). The descriptive stats for these variables are 
available on request. Considering other hypotheses tested for other countries, we also suggest for 
future works the inclusion of other explicative variables such as the industrial concentration, the share 
of industrial production on local income, the average number of people per household, the share of 
students in the population, the number of hospitals and/or care homes in the municipality, the number 
of people daily transported by public vehicles, or the amount of CO2 emissions recorded at each place 
(Gao et al., 2020; Holko et al., 2016). 

For each day in the observed period, our diagnoses observed three tests for spatial error 
dependence (I-Moran, simple Lagrange multiplier, LM, of λ, and robust Lagrange multiplier of λ) and 
two tests for spatial lag dependence (simple Lagrange multiplier of ρ and robust Lagrange multiplier 
of ρ). Independent of the situation observed on the various days, all these tests provided significant 
values (p-value lower than 0.100; full results available on request). YLM tests are relevant for choosing 
an appropriate spatial regression model. Significance of LM(λ) points to a spatial error model, while 
significance of LM(ρ) points to a spatial lag model. The Lagrange multiplier test for spatial dependence 
(LM error test) is based on the estimation of the regression model with spatially autocorrelated errors 
versus an Ordinary Least Squares estimation without spatially autocorrelated errors. In the case of 
statistical significance of the respective parameter (λ), OLS estimation should be abandoned in favour 
of a spatial error model. Spatial dependence in regression models may not be properly described in 
the error. Instead, it may be accounted for by entering a spatial lag Wy in the endogenous variable Y. 
For assessing the relevance of a spatial lag (Wy) for explaining Y (against the null hypothesis of an OLS 
estimation) we shall use a LM test for the spatial lag (ρ). Following the empirical literature on the topic 
(Anselin, 1995; Anselin & Hudak, 1992), it is relevant to use these tests in their robust specification for 
avoiding endogenous influences between the spatial parameters ρ and λ. 

Given the stability of our explicative variables throughout the days (actually, these variables are 
computed annually by the official National Statistics Institute, we only exhibit the spatial error model 
and the spatial lag model for our initial and last dates observed (the full range of estimations are 
available on request). 

The results presented in Table 1 prove that both estimated λ and ρ are significant and positive, 
confirming the relevance of our models to explain the spatial dynamics of COVID-19 prevalence in 
Portuguese municipalities. Providing a clear interpretation, we can state that increasing values of the 
prevalence in neighbouring Portuguese municipalities had led to increases in the prevalence observed 
in a given Portuguese municipality. Additionally, the residuals observed for a certain municipality by 
our error model (the spatial error model, preferable if considering the Wald test, the Lratio test and 
the Lmultiplier test) were also spatially correlated with its neighbouring municipalities’ residuals, 
proving the spatial interlinkages in the observed process. We also observed how relevant certain 
exogenous dimensions are important for explaining the observed dynamics. We conclude that the 
statistical significance of the population density and of the municipal perimeter explain higher 
prevalence.  

Following the Elhorst taxonomy upon Sarrias (2020) –Figure 4–, we have also tested the interest on 
running spatial Durbin models, in which spatially lagged explanatory variables also exert significant 
effects on the dependent variable. However, considering the current set of explanatory variables and 
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through the robust version of the LR tests, we were not able to reject the null hypothesis of a non-
significant ϒ; therefore, we opted for not exhibiting the estimation of the spatial Durbin models here, 
given the expected statistically non-significance of the estimated coefficients for the spatially lagged 
explanatory variables (p-value Day1 = 0.434; p-value Day14 = 0.368). 

 
 

Table 1. Spatial error model and spatial lag model results 

Variables 

Spatial error model  Spatial lag model 

Day 1 
(March 23, 2020) 

Day 14 
(April 5, 2020) 

 Day 1 
(March 23, 2020) 

Day 14 
(April 5, 2020) 

Municipal perimeter 0.0023  
(0.0015) 

0.0084 
(0.0085) 

 0.0021* 
(0.0013) 

0.0113 
(0.0076) 

      

Ageing index -0.0008 
(0.0008) 

-0.0082* 
(0.0044) 

 -0.0002 
(0.0006) 

-0.0034 
(0.0034) 

      

Population density 0.0003*** 
(0.0001) 

0.0017*** 
(0.0006) 

 0.0003*** 
(0.0001) 

0.0013*** 
(0.0004) 

      

Constant 0.3519 
(0.3277) 

5.7251* 
(2.9945) 

 -0.3371867 
(0.2240) 

-1.4229 
(1.3552) 

      

 / ρ 1.21714*** 
(0.1419) 

1.1180*** 
(0.0948) 

 1.1381*** 
(0.1535) 

1.1087*** 
(0.1007) 

      

Log-Likelihood -379.67 -867.96  -379.06 -868.03 
Observations 278 278  278 278 

Diagnostics for spatial dependence 

Wald test 73.523 139.207  54.981 121.180 
Lratio test 48.551 99.988  49.770 99.864 
Lmultiplier test 44.334 192.213  47.776 175.550 

Note: *𝑝 < 0.1, **𝑝 < 0.05, ***𝑝 < 0.01.  
 
 

 

Figure 4. Elhorst taxonomy upon Sarrias (2020). 
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3. Conclusions and further work 

The pandemic known as COVID-19 has so far experienced two waves in most countries and in some 
the presence of a third wave is under observation. The first wave started, for most countries, between 
January 2020 and the end of March 2020. This work is the first study on spatial autocorrelation 
patterns, at the municipal level, observed in the first wave, in Portugal. 

The main conclusions point to municipal contiguity as a determining factor for contagion. Thus, 
municipalities surrounded by other municipalities with high rates of infection ended up being infected 
with high incidence values. This exercise demonstrates the need for mobility limitations in the future 
in order to reduce the rates of contagion of pandemics spread by humans. 

These pioneering results enlarge the current discussion with a need to generate heterogeneous 
national health policies considering the significant variations within each country. Therefore, it is 
important for a more effective direction of the current fight against COVID-19 to consider the spatial 
heterogeneity here highlighted. 

Further models –namely spatial panel data models– shall be considered in more extended empirical 
efforts in this domain. We also intend to enlarge the set of observed variables as soon as available data 
allow it. Namely, we consider it relevant to recur to the number of tests done at each municipality, 
which would allow an extension of these foci, generating a highly correlated control variable with the 
number of cases, but would also drive the analysis to the heterogeneous pattern of test distribution in 
the different Portuguese municipalities throughout the pandemic phases. We also consider the 
insertion of additional explicative variables relevant –as soon as these data become available: we are 
specifically referring to data like commuting or tourist interest which would account for the flow of 
people across the municipal borders to capture the probability of importing the virus. 

As mentioned, we intend, in future work to extend the range of explanatory variables that we use 
here. We have already referred to variables like the industrial concentration, the share of industrial 
production on local income, the average number of people per household, the share of students in the 
population, the number of hospitals and or care homes in the municipality, the number of people 
transported daily by public vehicles, or the amount of CO2 emissions recorded at each place (Gao et al., 
2020; Holko et al., 2016). 

We also intend to test this extended set of variables during the weeks of the different pandemic 
waves observed in Portugal. We intend to do so to the extent that, depending on the various pandemic 
control instruments used, it is unlikely that there will be a limited number of the same variables 
always responsible for the spatial contagion observed between neighboring municipalities in the 
different waves. Thus, we postulate that different variables will have a different capacity for explaining 
spatial autocorrelation in different epidemic waves. 
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