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Background 

Furanocoumarins are polyphenolic compounds produced in plants as secondary 

metabolites and with several therapeutic activities. Furanocoumarins such as 

xanthotoxin and bergapten are known to be used in several severe and difficult to treat 

cases of vitiligo and psoriasis. However, they are also the first line of treatment for 

diseases such as mycosis fungoides, the most common type of cutaneous T-cell 

lymphoma. Moreover, several clinical trials are ongoing to assess their potential to treat 

other disorders such as Crohn’s disease or graft versus host disease [1]. 

Furanocoumarins are obtained from plant extraction with low yields and purities, since 

they accumulate in low amounts in plants, in an expensive and environmentally 

unfriendly process. Therefore, more sustainable and profitable methods need to be 

developed to obtain these interesting compounds in higher amounts and purities. In this 

work, we explore the use of microorganisms to produce these compounds using 

synthetic biology approaches. 

 

 

Methods 

Our previous know-how, acquired during the study of curcuminoids heterologous 

pathway in Escherichia coli [2-7], was used to design the furanocoumarins biosynthetic 

pathway. This pathway has the first two steps in common with the curcuminoids 

pathway. Herein, as a proof-of-concept we designed a biosynthetic pathway to produce 

psoralen, a known furanocoumarin and the first one from furanocoumarins pathway. 

The biosynthetic pathway involves six enzymes: tyrosine ammonia lyase (TAL), 4-

coumarate-CoA ligase (4CL), coumaroyl-CoA 2’-hydroxylase (C2’H), 

prenyltransferase (PT), marmesin synthase (MS) and psoralen synthase (PS) (Figure 

1). The genes were cloned in pET28 containing glutathione S-transferase (GST) tag and 

Duet plasmids from Novagen that are suitable for the expression of pathways 

containing several enzymes. In a first approach, each gene of the pathway was cloned 

in a single plasmid to evaluate the activity of each enzyme separately. In vivo and in 

vitro assays were performed according to available literature [8-10]. Heterologous 

protein expression was evaluated through sodium dodecyl sulphate–polyacrylamide gel 

electrophoresis (SDS-PAGE).  
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Figure 1: Biosynthetic pathway for furanocoumarins production in Escherichia coli. 4CL, 4-coumarate-

CoA ligase; C2’H, coumaroyl-CoA 2’-hydroxylase; MS, marmesin synthase; PS, psoralen synthase; PT, 

prenyltransferase; TAL, tyrosine ammonia lyase. 

 

 

Results 

C2’H was successfully expressed (Figure 2) and active although mostly present in the 

insoluble phase. Therefore, in a first approach, two of the enzymes used in 

curcuminoids biosynthetic pathway (TAL from Rhodotorula glutinis and 4CL from 

Arabidopsis thaliana) were combined with C2’H from Ipomoea batatas to produce the 

umbelliferone coumarin in vivo. This combination of enzymes allowed to obtain 127 

µM of umbelliferone in 18 h, while the directed supplementation of coumaric acid led 

to the production of 240 µM. The supplementation of caffeic acid and ferulic acid also 

originated escoletin and scopoletin coumarins, respectively, but with lower titers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Protein gel showing the expression of coumaroyl-CoA 2’-hydroxylase (C2’H) from Ipomoea 

batatas in pET28-GST (glutathione S-transferase) and pRSDduet-1. T0 – before protein induction, T6 – 

6 h after protein induction. Expected sizes: C2’H – 40.4 kDa, GST+C2’H – 66.1 kDa.  
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Next, codon-optimized PT from Pastinaca sativa, MS from Ficus carica and codon 

optimized PS from Ammi majus were evaluated in vitro. PT and MS were not visible in 

protein gels. Regarding PS, although the heterologous protein expression was observed 

(Figure 3 - left), the protein size was not the expected. In addition, none of the three 

enzymes demonstrated any in vitro activity. Therefore, PT, MS and PS proteins were 

engineered to remove the N-terminal amino acids representing potential transit peptides 

related to plastid localization that can affect protein solubility. However, truncated 

enzymes were also not visible in the protein gels and did not present any activity. 

Regarding PS, that is a cytochrome P450 enzyme (CYP450), was also engineered to 

replace the potential transit peptide (corresponding to 48 aa) for other N-terminal 

sequences known to improve CYP450s solubility. However, the expression in soluble 

phase did not improve neither the in vitro activity. In Figure 3 (on the right) it is shown 

an example of the protein gel after PS N-terminal replacement. The PS N-terminal was 

replaced by Banes sequence that corresponds to N-terminus of bovine steroid 

hydroxylase P450. The protein was highly expressed in the insoluble phase.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Protein gel showing the expression of psoralen synthase (PS) from Ammi majus in pET28-

containing GST (glutathione S-transferase) (gels on the left) or truncated PS with Barnes sequence 

(MALLLAVF) upstream expressed in pET28 without GST (gel on the right). T0 – before protein 

induction, T6 – 6 h after protein induction. Expected sizes: GST+PS - 82 kDa, Barnes+PS – 52 kDa. PS 

appears to have a smaller size than expected when expressed with GST. When expressed with Barnes 

sequence, PS size appears correct but a smaller unidentified band is also observed. 

 

 

Currently, the co-expression of chaperones (namely, the GroESL system) to facilitate 

furanocoumarins folding is being evaluated. Moreover, as PS is a CYP450 enzyme and 
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E. coli does not contain an endogenous monooxygenase system, a CYP450 reductase 

will be also co-expressed. In addition, PT from Petroselinum crispum, a PT that 

demonstrated higher substrate affinity and catalytic activity in E. coli, and XimD, a 

protein with MS activity, recently identified in Streptomyces xiamenensis bacteria [11] 

are also being used for the construction of the biosynthetic pathway. 

 

Conclusion 

The construction of the furanocoumarins biosynthetic pathway in microorganisms is 

still in an early stage. The first steps of the pathway related to coumarins production 

have been successfully constructed in microorganisms. However, so far, the enzymes 

specific of the furanocoumarins’ pathway (PT, MS and PS) demonstrated low solubility 

and activity when expressed in E. coli. The expression of these enzymes in a eukaryotic 

microbe such as Saccharomyces cerevisiae should be considered. In addition, the use 

of enzymes identified in microorganisms, such as XimD or aromatic PTs, that are able 

to perform the same reactions as plant enzymes but are more soluble, might be an 

excellent alternative to assemble the whole biosynthetic pathway in microorganisms.  
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