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Abstract. Predictive maintenance is a key area that is benefiting from
the Industry 4.0 advent. Recently, there have been several attempts to
use Machine Learning (ML) in order to optimize the maintenance of
equipments and their repairs, with most of these approaches assuming
an expert-based ML modeling. In this paper, we explore an Automated
Machine Learning (AutoML) approach to address a predictive mainte-
nance task related to a Portuguese software company. Using recently
collected data from one of the company clients, we firstly performed
a benchmark comparison study that included four open-source modern
AutoML technologies to predict the number of days until the next fail-
ure of an equipment and also determine if the equipments will fail in
a fixed amount of days. Overall, the results were very close among all
AutoML tools, with AutoGluon obtaining the best results for all ML
tasks. Then, the best AutoML predictive results were compared with a
manual ML modeling approach that used the same dataset. The results
achieved by the AutoML approach outperformed the manual method,
thus demonstrating the quality of the automated modeling for the pre-
dictive maintenance domain.
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Supervised Learning

1 Introduction

The Industry 4.0 phenomenon allowed companies to focus on the analysis of
historical data to obtain useful insights. In particular, predictive maintenance
is a crucial application area that emerged from this context, where the goal
is to optimize the maintenance and repair process of equipments through the
usage of Machine Learning (ML) algorithms [17]. Indeed, some ML studies try to
anticipate the failure of equipments (typically, manufacturing machines), aiming
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to reduce the costs of repairs [4, 6, 11, 16]. Other approaches [2, 3, 5, 19] use ML
algorithms to predict the behavior of the manufacturing process.

Despite all potential Industry 4.0 benefits, many organizations do not cur-
rently apply ML to enhance maintenance activities. And those who do rely
mostly on data science experts, the ML models are tuned manually, often requir-
ing a large number of trial-and-error experiments. In effect, we have only found
one study that applied AutoML for the maintenance domain [18]. Yet, we note
that such study only used synthetic data, which might not reflect the complexi-
ties of real industrial maintenance data. In contrast with the “traditional” ML
expert design approach, in this paper we apply Automated Machine Learning
(AutoML), aiming to automate the ML modeling phase and thus reduce the
data to maintenance insights process cycle. Moreover, we apply AutoML using
real-world data, collected from the client of a Portuguese software company in
the area of maintenance management.

The AutoML was explored for two specific prediction tasks: the number of
days until an equipment fails and if the equipments will fail in a fixed number
of days. We designed a large set of computational experiments to assess the
AutoML predictive performance of four open-source tools. To provide a base-
line comparison, we also measure the best AutoML results with a manual ML
modeling that was made previously by one of the company’s professionals. The
comparison clearly favors the AutoML results, thus attesting the potential of
the AutoML approach for the predictive maintenance domain.

2 Materials and Methods

2.1 AutoML Tools

In this article, we apply and compare four modern open-source AutoML tools,
based on a recent benchmark study performed in [9]. In order to achieve a more
fair comparison, we did not tune the hyperparameters of the AutoML tools.
Table 1 summarizes the main characteristics of the four explored AutoML tools:

Table 1. Description of the AutoML tools.

Tool Framework API Version

AutoGluon Gluon Python 0.2.0
H2O AutoML H2O Java, Python, R 3.32.1.3
rminer rminer R 1.4.6
TPOT Scikit-Learn Python 0.11.7

– AutoGluon is an AutoML toolkit based on the Gluon framework [1]. In
this work, we only considered the tabular data module, which runs several
algorithms and returns a Stacked Ensemble with multiple layers [8].
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– H2O AutoML is the AutoML module from the H2O framework. H2O
AutoML runs several algorithms from H2O and two Stacked Ensembles, one
with the best ML model of each family and another with all models [10,13].

– rminer is a library for the R programming language, focused on facilitating
the usage of ML algorithms [7]. Rminer also provides AutoML functions that
can be highly customized. In this paper, we used the "automl3" template4,
which runs several ML algorithms and one Stacked Ensemble.

– TPOT is a Python AutoML tool that uses Genetic Programming to auto-
mate several phases of the ML workflow [12, 15]. It uses the Python Scikit-
Learn framework to produce ML pipelines.

2.2 Data

The provided data has a large number of datasets related to predictive mainte-
nance, which are detailed in Fig. 1.

Fig. 1. Entities and relationships between the datasets.

4 https://CRAN.R-project.org/package=rminer
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For the context of this work, we assume a tabular dataset composed of the ag-
gregation of several attributes from each entity. Overall, the data includes 2,608
records and 21 input attributes. Each record represents an action (e.g., a work
order) related to one of the company’s equipments (e.g., industrial machine).
Each record includes diverse inputs attributes, such as the tasks performed by
the machine, consumption of material, and meter readings.

The data also includes five target variables for regression or binary classifica-
tion tasks. The regression task target (attribute DaysToNextFailure) describes
the number of days between that record and the failure of the respective equip-
ment. As for the binary classification targets (attributes FailOnxDays), these
describe if the equipment will fail or not in a certain amount of days (e.g., in
three days).

Table 2 details the input and output variables (Attribute), their description
(Description), data type (Type), number of levels (Levels), domain values
(Domain), and example values from one of the records (Example). Half (12)
of the 21 input attributes are categorical. Among these, most present a low
cardinality (e.g., RecordType, Brand). However, some of the attributes present
a very high cardinality (e.g., Part).

2.3 Data Preprocessing

Since several data attributes are of type String, which is not accepted by some
AutoML tools, we opted to encode all String attributes into numerical types.
For the String attributes that presented a low cardinality (five levels or less), we
applied the known One-Hot encoding. Since this method creates one binary col-
umn for each level of the original attribute, we applied a different transformation
for the columns with a higher cardinality.

Indeed, for the categorical variables with more than five levels, we used the
Inverse Document Frequency (IDF) technique [14]. This method is used to con-
vert a categorical column into a numerical column of positive values, based on the
frequency of each level of the attribute. IDF uses the function f(x) = log(n/fx),
where n is the length of x and fx is the frequency of x. The benefit of IDF, when
compared with One-Hot Encoding, is that the IDF technique does not gener-
ate new columns, which is useful for attributes with high cardinality (e.g., the
attribute Part has 161 levels).

The remaining attributes (of Integer and Float types) were not altered be-
cause most AutoML tools already apply preprocessing techniques to the numer-
ical columns (e.g., normalization, standardization). After applying the transfor-
mations, the final dataset had 42 inputs and 5 target columns.

2.4 Evaluation

In order to evaluate the results from the AutoML tools, we adopted a similar
approach to the benchmark developed in [9]. For every predictive experiment,
we divided the dataset into 10 folds for an external cross-validation and adopted
an internal 5-fold cross-validation (i.e., over the training data) to select the best
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Table 2. Description of the equipment maintenance dataset attributes.

Attribute Description Type Levels Domain Example

RecordType Type of record String 5 - Failure
Brand Brand of the equipment String 2 - Rossi
WOType Type of work order String 4 - Corrective
PriorityLevel Priority Level of the work order String 4 - Urgent
Responsible Responsible for the work order String 3 - R4
Employee Employee that performed the action String 12 - E100
TotalTime Duration of the action (in hours) Float 17 [0, 8] 8
Quantity Consumption quantity Float 32 [0, 300] 90
Part Part that was consumed String 161 - T-1073
Meter Meter associated to meter reading String 11 - L-0002
MeterCumulative

Cumulative reading of meter Float 1477 [0, 73636] 22767
Reading
IncrementValue Increment compared to last reading Float 475 [0, 54570] 168
MaintenancePlan Maintenance Plan associated to task String 5 - P-000011
Task Executed task String 5 - T-0001
AssetWithFailure Identification of the equipment String 15 - A577

ParentAsset
Parent equipment of

String 11 - LINHA2
AssetWithFailure

Day Day of the month of the record Integer 31 [1, 31] 4
DayOfWeek Day of the week of the record Integer 7 [1, 7] 6
Month Month of the record Integer 12 [1, 12] 2
Year Year of the record Integer 6 [2015, 2019] 2019
DaysAfterPurchase Age of the equipment (in days) Integer 852 [0, 6309] 4479
DaysToNext Number of Days until the

Integer 1015 [0, 1550] 3
Failure next failure of the equipment

FailOn3Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 3 days

FailOn5Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 5 days

FailOn7Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 7 days

FailOn10Days
Indication whether the equipment

Integer 2 {0,1} 1
will fail in the next 10 days

algorithm and hyperparameters (executed automatically by the AutoML tools).
To evaluate the test set (from external 10-fold validation) predictions we used the
Mean Absolute Error (MAE) (∈ [0.0,∞[, where 0.0 represents a perfect model)
for the regression task and the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) analysis (∈ [0.0,1.0], where 1.0 indicates an ideal
classifier) for the binary classification targets. We also used MAE and AUC for
the internal validation, responsible for choosing the best ML model.

For all four AutoML tools we defined a maximum training time of one hour
(3,600 seconds) and an early stopping of three rounds, when available. The max-
imum time of one hour was chosen since it is the default value for most of the
AutoML tools. We computed the average of the evaluation measures, computed
on the test sets of the 10 external folds, to provide an aggregated value. Addition-
ally, we use confidence intervals based on the t-distribution with 95% confidence
to verify the statistical significance of the experiments. In order to identify the
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best results for each target, we choose the AutoML tool that had the best aver-
age predictive performance (with maximum precision of 0.01). All experiments
were executed using an Intel Xeon 1.70GHz server with 56 cores and 64GB of
RAM.

3 Results

All the experiments were implemented in Python or R (when the tool did not
have a Python API) using the AutoML libraries detailed in Section 2.1. For
each AutoML tool, we executed five experiments, one for each target variable
(DaysToNextFailure and FailOnxDays). Table 3 shows the average external test
scores for all 10 folds and the respective confidence intervals (near the ± symbol).

Table 3. Average results obtained by the AutoML tools (best values in bold).

Target Measure AutoGluon H2O AutoML rminer TPOT

DaysToNextFailure MAE 4.95±0.57 5.53±0.62 8.89±0.75 7.05±0.57
FailOn3Days AUC 0.98±0.02 0.98±0.01 0.95±0.05 0.97±0.03
FailOn5Days AUC 0.97±0.02 0.96±0.03 0.93±0.04 0.96±0.02
FailOn7Days AUC 0.98±0.01 0.98±0.01 0.97±0.03 0.98±0.01
FailOn10Days AUC 0.99±0.01 0.98±0.01 0.98±0.02 0.99±0.01

Overall the best AutoML tool was AutoGluon, which produced the highest
AUC values for the binary classification tasks and the lowest MAE value for
the regression task. For the regression task (DaysToNextFailure), besides Au-
toGluon, the best AutoML tools were H2O AutoML, TPOT, and rminer. The
maximum predictive difference was 3.94 points (days). As for the binary clas-
sification, the predictive test set results are more similar: maximum difference
of 3 percentage points (pp) for FailOn3Days, 4 pp for FailOn5Days, 1 pp for
FailOn7Days, and 1 pp for FailOn10Days. AutoGluon was the best tool for all
four binary classification targets, followed by H2O AutoML and TPOT (best in
two targets each).

Finally, we compare the best AutoML results for each target with the best
result achieved by a human ML modeling (held before this study). For each
target, Table 4 shows the best predictive result and the respective AutoML tool
in rounded brackets. For each AutoML tool, we also show the algorithm that
was most often the leader, across the external folds. For the human modeling, we
show the best obtained result and the used algorithm (also in rounded brackets).

It should be noted that the human modeling used a distinct preprocessing
procedure since it applied the One-Hot encoding to all categorical attributes
(and not IDF for the high cardinality ones, as we adopted for the AutoML
tools). Nevertheless, the comparison clearly favors the AutoML results for all
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Table 4. Comparison between the best AutoML result and human ML modeling result
for each target (best values in bold).

Target Measure Best Results

AutoML Human Modeling

DaysToNextFailure MAE
4.948 68.361

(AutoGluon: Ensemble) (Random Forest)

FailOn3Days AUC
0.979 0.500

(H2O AutoML: GBM) (Random Forest)

FailOn5Days AUC
0.971 0.529

(AutoGluon: Ensemble) (Random Forest)

FailOn7Days AUC
0.982 0.581

(TPOT: Random Forest) (Random Forest)

FailOn10Days AUC
0.988 0.563

(AutoGluon: Ensemble) (Random Forest)

GBM - Gradient Boosting Machine.

predicted target variables. In particular, for the binary classification task, the
human modeling achieved only slightly better results than a random model,
while all AutoML tools achieved results that can be considered excellent (e.g.,
AUC higher than 0.90). For regression, the human modeling achieved an average
error of 68.36 days, while the highest MAE obtained by the AutoML tools was
8.89 (achieved by rminer).

4 Conclusions

Predictive maintenance is a key industrial application that is being increasingly
enhanced by the adoption of ML. Yet, most ML related works assume an expert
ML model design that requires manual effort and time. In this paper, we explore
the potential of AutoML to automate predictive maintenance ML modeling. We
used real-world data provided by a Portuguese software company within the
domain of maintenance management to predict equipment malfunctions.

Our goal was to anticipate failures from several types of equipments (e.g.,
industrial machines), using two ML tasks: regression - to predict the number of
days until the next failure of the equipment; and binary classification - to predict
if the equipment will fail in a fixed amount of days (e.g, in three days). For the ML
modeling and training, we used four recent state-of-the-art Automated Machine
Learning (AutoML) tools: AutoGluon, H2O AutoML, rminer, and TPOT.

Several computational experiments were held, assuming five predictive tasks
(one regression and four binary classifications). For all ML tasks, AutoGluon
presented the best average results among the AutoML tools. The AutoML results
were further compared with a human ML design, performed previously by a
professional of the Portuguese company. The comparison favored all AutoML
tools, which provided better average results than the manual approach by a large
margin. These results confirm the potential of the AutoML modeling, which
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can automatically provide high quality predictive models. This is particularly
valuable for the predictive maintenance domain since industrial data can arise
with a high velocity, thus the predictive models can be dynamically updated
through time, reducing the effort of the data analysis.

In future work, we intend to perform experiments with more AutoML tools
and from the domain of predictive maintenance datasets. In particular, we intend
to experiment with AutoML technologies that can automatically perform feature
engineering and selection tasks.
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