Magnetoliposomes based on magnetic/plasmonic nanoparticles loaded with tricyclic lactones for combined cancer therapy

Irina S. R. Rio¹, Ana Rita O. Rodrigues¹, Juliana M. Rodrigues², Maria-João R. P. Queiroz², R. C. Calhelha³, Isabel C. F. R. Ferreira³, Bernardo G. Almeida¹, Ana Pires⁴, André M. Pereira,⁴ João P. Araújo,⁴ Elisabete M. S. Castanheira^{1,*} and Paulo J. G. Coutinho^{1,*}

- ¹ Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ² Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ³ Mountain Research Centre, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- ⁴ IFIMUP Instituto de Física dos Materiais, Universidade do Porto, R. Campo Alegre, 4169-007 Porto, Portugal.

Supplementary Material

Modeling of Nile Red absorption spectra

A set of absorption spectra of the dye Nile Red, at several temperatures, were globally fitted to a sum of eight Gaussian functions and a dispersive background, as follows:

$$g_{j}(\lambda) = \frac{1}{\sigma_{j}\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\lambda-\lambda_{max,i}}{\sigma_{j}}\right)^{2}}$$

$$Abs(\lambda, T_{i}) = A_{disp}(\lambda, T_{i}) + A(T_{i}) \sum_{j=1}^{8} f_{j}g_{j}(\lambda)$$

$$A_{disp}(\lambda, T_{i}) = A_{offset}(T_{i}) + \frac{A_{d}(T_{i})}{(\lambda/100)^{4}}$$

$$f_{1}(T_{i}) = \sin^{2}\left(a_{1} + b_{1} \times \left(\frac{T_{i}-T_{0}}{T_{0}}\right) + c_{1} \times \left(\frac{T_{i}-T_{0}}{T_{0}}\right)^{2}\right) ; T_{0} = 21 \text{ °C}$$

$$f_{j}(T_{i}) = \left(1 - \sum_{k=1}^{j-1} f_{k}\right) \sin^{2}\left(a_{j} + b_{j} \times \left(\frac{T_{i}-T_{0}}{T_{0}}\right) + c_{j} \times \left(\frac{T_{i}-T_{0}}{T_{0}}\right)^{2}$$

$$j = 2, 3, ..., 7$$

$$f_{8}(T_{i}) = \left(1 - \sum_{k=1}^{j-1} f_{k}\right)$$

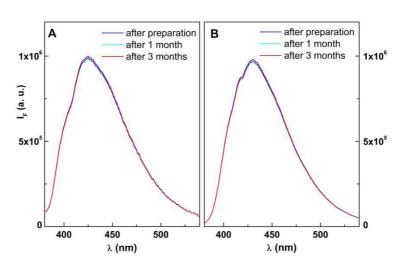
In order to control the fitting procedure, the parameters of the Gaussian functions were constrained as follows:

$$\lambda_{max,j} = (\lambda_{max,j})_{min} + [(\lambda_{max,j})_{max} - (\lambda_{max,j})_{min}]\sin^2(m_j)$$

(o) = (o) min + [(o) max + (o) min] of (o))								
j	1	2	3	4	5	6	7	8
$\left(\lambda_{max,j}\right)_{min}$	510	520	530	540	550	560	575	590
$\left(\lambda_{max,j}\right)_{max}$	520	530	540	550	560	575	590	630
$(\sigma_j)_{min}$	5	5	5	5	5	5	5	5
$\left(\sigma_{j}\right)_{max}$	50	10	10	40	10	40	50	50

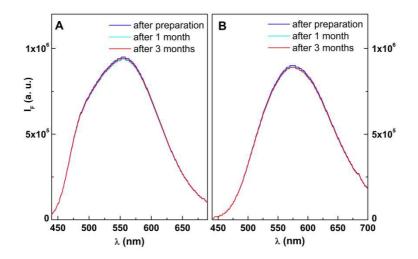
 $\sigma_j = (\sigma_j)_{min} + [(\sigma_j)_{max} - (\sigma_j)_{min}]\sin^2(s_j)$

The global fitting procedure for each set of absorption spectra with varying temperature consists on minimizing the following quadratic error sum:

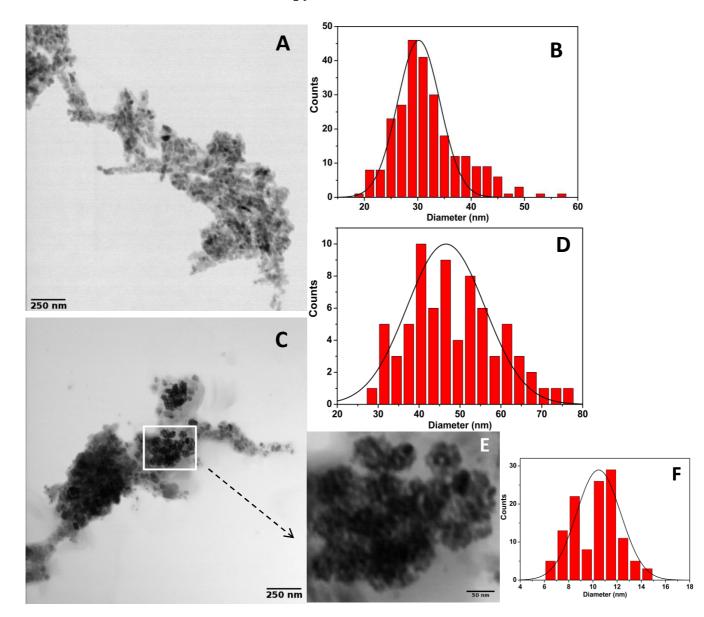

$$ErrorSum = \sum_{i=1}^{n_T} \sum_{l=1}^{n_\lambda} w_l (Abs(\lambda_l, T_i) - Abs_{experimental}(\lambda_l, T_i))^2$$

where w_l is a weight at each wavelength of absorption. It was taken as 1, except in the region 520-570 nm, where a value of 50 was used. This procedure ensures a good fit where the spectrum has more features.

The parameters that are varied in order to reach a minimum in the *ErrorSum* are *A*_{offset} and *A*_d for each absorption spectrum; *a*₁ to *a*₇; *b*₁ to *b*₇; *c*₁ to *c*₇; *m*₁ to *m*₈ and *s*₁ to *s*₈.

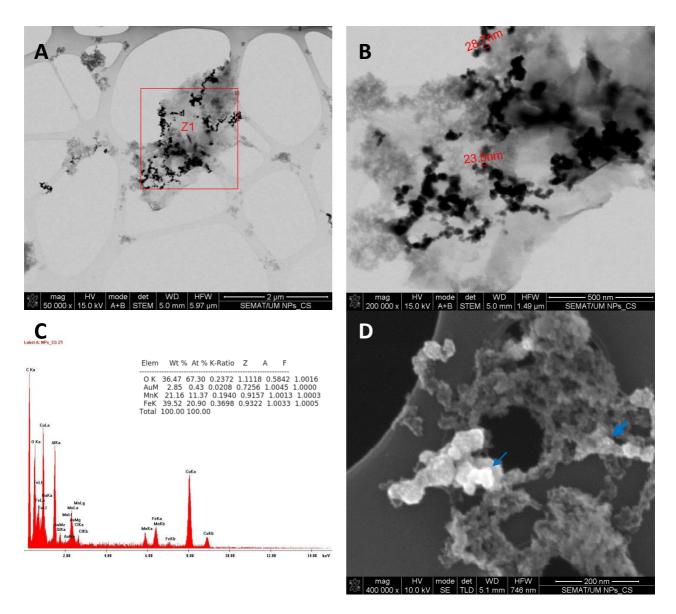

We used six temperatures, so that each absorption spectrum is fitted with an average of $2 + (3\times7 + 2\times8)/6 = 8.17$ parameters. This is equivalent to two parameters for the dispersive background and between 2 and 3 Gaussian functions (5 to 8 parameters).

For the case of the fitting of spectra obtained as a function of irradiation time, the fitted parameters are *Aoffset*, *Ad* and *Ti* for each irradiation time.



Photophysical stability of compound solutions

Figure S1. Fluorescence emission spectra of compound **1** in chloroform (**A**) and ethanol (**B**) (as examples), immediately after solution preparation and after 1 and 3 months of storage.


Figure S2. Fluorescence emission spectra of compound **2** in ethyl acetate (**A**) and acetonitrile (**B**) (as examples), immediately after solution preparation and after 1 and 3 months of storage.

Transmission electron microscopy (TEM)

Figure S3. (A) Transmission Electron Microscopy image of core/shell nanoparticles and (B) corresponding histogram. (C) Transmission Electron Microscopy image of decorated nanoparticles and (D) corresponding histogram. (E) Expansion of image C (white square) and (F) corresponding histogram.

Scanning electron microscopy – transmission mode (STEM) and EDS analysis

Figure S4. (**A**) and (**B**) Scanning electron microscopy images in transmission mode (STEM) of core/shell nanoparticles. (**C**) EDS spectrum of region Z1 from figure (**A**). (**D**) TLD image.