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Abstract. This work presents a numerical method for the solution of
two coupled distributed-order fractional differential equations, that ap-
pear in the pure tangential flow of fluids modelled by the Distributed-
Order Viscoelastic Model. We prove the solvability of the method, and,
perform numerical simulations of relaxation tests.
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1 Introduction

The word polymers comes from the Greek poly, meaning “many,” and mere,
meaning “parts,” because the macromolecules of these compounds are formed
by joining several units of small molecules called monomers.

Polymers were not invented by man, they already existed in nature. Some
examples of macromolecules that have been used by man for thousands of years
are in cotton, wool, silk, animal hooves, ivory and starch (which is found in
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vegetables and in the form of grains from seeds and roots of various plants, such
as: Potato, wheat, rice, corn and cassava).

With the industrial revolution, the need to understand the behaviour of such
complex materials increased, and several researchers began to develop experi-
ments and theoretical models to understand this behaviour.

In the literature one can find several differential and integral models that
can mimic the behaviour of complex material (such as polymers) under different
deformations [1–10]. Each model has its own advantages and disadvantages when
compared to others.

Recently, the research group devised a generalised viscoelastic model based
on distributed-order derivatives of the Caputo type [11]. The model is able to
fit well experimental rheological data obtained in the linear regime for food
products (that behave as critical gels [12]).

To better understand the model behaviour, one can derive either analytical
solutions or numerical methods. Since analytical solutions are difficult to obtain
for such complex models (they are restricted to limited flows and geometries),
numerical methods seem to be the only and best choice.

In this work we develop a numerical method for the solution of the 1D tran-
sient Couette flow of a Distributed-Order Viscoelastic Model (DOVM). The
method is based on finite differences [8, 13].

The remaining of this work is organised as follows. In Section 2 the DOVM
is introduced together with some basic definitions. The governing equations are
presented in Section 3. Section 4 is devoted to the development of a numerical
method and its validation. The numerical results are presented in Section 5. The
work ends with the conclusions in Section 6.

2 The Distributed-Order Viscoelastic Model (DOVM)

In order to introduce the DOVM, some basic definitions are needed first.

Definition 1. The single order fractional derivative in the Caputo sense
(0 < α < 1) is given by [14]:

C
0 D

α
t f (t) =

1

Γ (1− α)

t∫
0

(t− t′)−α df

dt′
dt′. (1)

Definition 2. The Caputo Distributed-Order Fractional Derivative (C0 Dt)
of a general function f is given by:

C
0 Dtf(t) =

∫ 1

0

c(α)C0 D
α
t f (t) dα =

∫ 1

0

c(α)
1

Γ (1− α)

t∫
0

(t− t′)−α df

dt′
dt′ dα

(2)
where the function c(α) (acting as weight for the order of differentiation) is such

that c(α) ≥ 0 and

∫ 1

0

c(α) dα = C > 0 ([15], [16]).
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The function c(α) is used to represent mathematically the presence of multi-
ple memory formalisms. If c(α) = δ(α− β), where δ() is the delta Dirac function,

then (2) reduces to the Caputo derivative C
0 D

β
t f (t).

The Distributed-Order Fractional Viscoelastic Model (DOVM) is given by

σ (t) =C
0 Dtγ(t). (3)

were C0 Dt is the distributed-order derivative of the Caputo type, σ(t) is the stress
and γ(t) the strain or deformation.

The model can be seen as the classical Boltzmann model,

σ (t) =

∫ t

0

G(t− t′)dγ(t′)

dt′
dt′ (4)

with the relaxation modulus G(t) given in the form:

G (t) =

∫ 1

0

c(α)

Γ (1− α)
t−α dα. (5)

Fore more details on the derivation of the DOVM model please consult the
reference [11].

3 Governing Equations for a 1D Transient Couette Flow

In fluid mechanics, Couette flow refers to the laminar flow of a viscous fluid
in the space between two parallel planes (plates), one of which is moving relative
to the other (Fig. 1).

The top wall is pulled with a certain velocity u(t,h)

Liquid viewed as infinitesimally thin layers

top wall

bottom wall

Small portion of liquid between two solid walls

The liquid is at rest!

1- Each layer is dragging the layer below due to viscosity;

2- The top and bottom layers are attached to the walls (no 

slip condition).

y

h

x

u(t,h)

Fig. 1. Illustration of a Couette flow. A certain velocity u(t, h) is imposed at the resting
upper wall. As this wall moves along time, the displacement information travels along
the different layers of fluid until it reaches the bottom wall. Note that these layers are
merely illustrative.
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The flow is driven by the drag force acting on it. This type of fluid is named
after Maurice Marie Alfred Couette, a physics professor at the French University
of Angers in the late 19th century.

The equations governing the 1D transient Couette flow are obtained from a
simplification of the Navier-Stokes equations, together with an extra equation
for the stress, given (in this case) by the DOVM. Note that we consider a small
transient deformation, so that the DOVM (which is not invariant [9]) can be
used (only invariant models can be used for large deformations).

We saw before that the stress was only a function of time, because, it was
being measured at a specific point in space. In the 1D case, the stress σ(t, y)
and velocity u(t, y) (that is obtained from the rate of deformation dγ(t)/dt [9])
also vary in space (along y). In this particular flow, the stress has more than
one component, being the one of interest denoted by σxy (shear stress). The
governing equations are given by:

ρ

(
∂u(t, y)

∂t

)
=
∂σxy(t, y)

∂y
(6)

σxy (t, y) =

∫ t

0

G(t− t′)∂u(t′, y)

∂y
dt′ (7)

were ρ is the fluid density, and, it was assumed that only tangential movement
exists. The velocity profile is given by (u, v) = (u, 0). This means that, for a fixed
t, we can only see changes in velocity when moving in the transverse direction.

To solve this system of equations we do the following. First, we substitute
(7) into (6), resulting in an integro-differential equation for the velocity:

ρ

(
∂u(t, y)

∂t

)
=

∂

∂y

(∫ t

0

∫ 1

0

c(α)

Γ (1− α)
(t− t′)−αdα∂u(t′, y)

∂y
dt′
)
. (8)

Second, with the velocity profile obtained from solving (8) we can easily calcu-
late the stress from (7). (8) can be rewritten by changing the integration and
differentiation order. This results in the following system of integro-differential
equations that will be solved numerically:

ρ

(
∂u(t, y)

∂t

)
=

∫ 1

0

c(α)

Γ (1− α)

∫ t

0

(t− t′)−α ∂
2u(t′, y)

∂y2
dt′dα (9)

σxy (t, y) =

∫ 1

0

c(α)

Γ (1− α)

∫ t

0

(t− t′)−α ∂u(t′, y)

∂y
dt′dα (10)

4 Numerical Method

This Section is dedicated to the discretisation and numerical solution of equa-
tions (9) and (10). To test the convergence of the method we analyse the precision
of the numerical scheme by comparing the numerical results with generalised an-
alytical solutions.
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4.1 Discretisation of the Velocity and Shear stress Equations

We will now derive a numerical method for the solution of the system (9)-(10),
with boundary and initial conditions of Dirichlet type:

u(t, 0) = 0, u(t, h) = φh(t), 0 < t < T, (11)

u(0, y) =
∂u(0, y)

∂t
= 0, σx,y(0, y) = 0, y ∈ [0, h], h > 0 (12)

Note that the viscoelastic fluid is at rest and fully relaxed at t = 0−.
Numerically, we need to obtain an approximation for all the operators (time

and spatial derivatives). For that, we consider a uniform space mesh on the
interval [0, h], defined by the gridpoints yi = i∆y, i = 0, . . . , N , where ∆y = h

N .
For the discretisation of the fractional time derivative we also assume a uniform
mesh, with a time step ∆t = T/S and time gridpoints ts = s∆t, s = 0, 1, ..., S.

At t = ts the integral on the right-hand side of the momentum equation can
be written as, ∫ 1

0

c(α)

Γ (1− α)

∫ ts

0

(ts − t′)−α
∂2u(t′, y)

∂y2
dt′dα

=

∫ 1

0

c(α)

Γ (1− α)

s−1∑
j=0

∫ tj+1

tj

(ts − t′)
−α ∂2u(t′, y)

∂y2
dt′dα

(13)

for s = 1, ..., S. We define usi as the approximation of u(ts, yi), i = 1, ..., N −
1, s = 1, ..., S. The following approximation is considered for the integration in
time:∫ tj+1

tj

(ts − t′)
−α ∂2u(t′, y)

∂y2
dt′ ≈

uj+1
i+1 − 2uj+1

i + uj+1
i−1

(∆y)2

∫ tj+1

tj

(ts − t′)
−α

dt′

=
uj+1
i+1 − 2uj+1

i + uj+1
i−1

(∆y)2
∆t1−αdsj(α)

1− α
(14)

with dsj(α) = (s− j)1−α − (s− (j + 1))1−α.

This results in the following discretized equation:

ρ
∂u(t, y)

∂t
=

∫ 1

0

F (α)dα (15)

with

F (α) =
c(α)∆t1−α

Γ (2− α)(∆y)2

s−1∑
j=0

(uj+1
i+1 − 2uj+1

i + uj+1
i−1 )dsj(α). (16)

A simple first order approximation for the time derivative, and the use of
the midpoint rule to approximate the integral in the interval [0, 1] considering
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the gridpoints αl = (l − 1/2)∆α, l = 1, ..., P , ∆α = 1/P , leads to the following
discretized velocity equation:

ρ
usi − u

s−1
i

∆t
= ∆α

P∑
l=1

M(αl)

= ∆α

P∑
l=1

c(αl)∆t
1−αl

Γ (2− αl)(∆y)2

s−1∑
j=0

(uj+1
i+1 − 2uj+1

i + uj+1
i−1 )dsj(αl)

(17)

for i = 1, ..., N − 1 and s = 1, ..., S (for each time step we need to solve a system
of equations).

After solving each system of equations, an approximation of velocity at time
and space mesh points is known, and, the evolution shear stress equation, equa-
tion (10), can be easily obtained for the same time and space mesh points using:

σxy
s
i = ∆α

P∑
l=1

c(αl)∆t
1−αl

2Γ (2− αl)∆y

s−1∑
j=0

(uj+1
i+1 − u

j+1
i−1 )dsj(αl) (18)

where σxy
s
i is the approximation of σxy(ts, yi), i = 1, ..., N − 1, s = 1, ..., S.

4.2 Solvability

In the matrix form, (9) writes:

AUs = ρUs−1 +

s−2∑
j=0

BjU
j+1 +

s−2∑
j=0

Cj , s = 1, 2, ..., S (19)

where

U j = [uj1, u
j
2, ..., u

j
N ]T , (20)

Bj =



2Q −Q
−Q 2Q Q
−Q 2Q Q
. . .

. . .
. . .

−Q 2Q Q
−Q 2Q



, (21)

with

Q = ∆α∆t

P∑
l=1

c(αl)∆t
1−αl

Γ (2− αl)∆y2
dsj(αl). (22)
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Cj is given by,

Cj =



0
0
...

Qφh(tj+1)


. (23)

A is a tridiagonal matrix

A =



ρ+ 2M −M
−M ρ+ 2M −M

−M ρ+ 2M −M
. . .

. . .
. . .

−M ρ+ 2M −M
−M ρ+ 2M


with

M ≡M(∆α,∆t,∆y) = ∆α∆t

P∑
l=1

c(αl)∆t
1−αl

Γ (2− αl)(∆y)2
. (24)

A is a strictly diagonal dominant matrix and therefore the system is uniquely
solved.

4.3 Validation

To assess the robustness of the numerical method, we developed a non-smooth
analytical solution (for the velocity equation), by imposing a certain velocity
profile, through the inclusion of correcting source terms, f(t, y).

We consider the following problem:


ρ
∂u(x, t)

∂t
−1

0

Γ (5/2− α)

Γ (1− α)

∫ t

0

(t− s)−α ∂
2u(x, t)

∂y2
ds =

x3 log(t)− 6
√
π(t− 1)tx

2
√
t log(t)

u(0, y) = 0, 0 < y < h

u(t, 0) = 0, u(t, L) = t1/2h3 0 < t ≤ 1

(25)
with analytical solution u(t, y) = t1/2y3.

To evaluate the accuracy of the numerical predictions, we define:
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ε∆t,∆y = max
k=1,...,N−1

|u (ti, yk)− unum (ti, yk)| , i = 1, 2, ..., S (26)

Fig. 2 shows the 3D plot of the analytical solution and the results obtained
numerically for h = 0.1, t = 0.5, ∆α = 0.1, ∆t = 0.01 and ∆y = 0.002. This
resulted in ε∆t,∆y = 1.40337×10−6. For a courser mesh with ∆α = 0.2, ∆t = 0.1
and ∆x = 0.02 we still obtained a small error ε∆t,∆y = 1.41838× 10−5.

We can therefore conclude that the numerical method converges easily to the
singular analytical solution, illustrating the robustness of the numerical scheme.

(a) (b)

y

Analytical Solution

u(t,y)

u(t,y)

y

t

t = 0.5

Numerical Solution

Fig. 2. (a) 3D plot of the analytical solution given by u(t, y) = t1/2y3. (b) Comparison
between the analytical and numerical solutions for h = 0.1, t = 0.5, ∆α = 0.1, ∆t =
0.01 and ∆y = 0.002 (ε∆t,∆y = 1.40337 × 10−6).

5 Numerical Results

One way to experimentally characterise viscoelastic fluids is to perform a relax-
ation test, i.e., we impose a step displacement given by γ = γ0H(t − a) (with
H(t) the Heaviside function) and measure the stress response to this deforma-
tion. At time t = a we impose a constant deformation, and we observe that the
stress relaxes until it becomes zero (Fig. 3).

To mimic the step-strain test illustrated in Fig. 3, the upper wall suddenly
starts moving at t = 0+ with a tangential velocity given by,

u (t, h) =
∆wall

ψ
√
π
e
− (t−td)

2

ψ2 . (27)

and then stops (after a period of ∆texp ≈ 50 ms). Then we observe how the
tangential stress in the fluid relaxes.
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0 a

0 [0, [t a t a= Time (t)



Constant Deformation

Stress Relaxation

1t t= 2t t=

Time (t)

(0)
0

Fig. 3. Stress relaxation of a viscoelastic material after a step displacement.

As ψ → 0, the velocity converges to the Dirac delta function multiplied by
the displacement of the upper wall, ∆wallδ(t) (assuming td = 0). The need for

the delay time, td, comes from the initial condition du(0,h)
dt = 0. This step-strain

is illustrated in Fig. 4.
Fig. 4 (a) shows the initial and final state of the deformation. After 50 ms

the upper wall stops moving (the displacement is ∆wall). Fig. 4 (b) shows the
variation of the upper wall velocity along the 50 ms. For this case we considered
a deformation (γ0 = ∆wall/h) of 100%.

Dwall

t=0 s t=50 ms

t [s]

velocity of the upper wall [m/s]

(a) (b)

Fig. 4. Step displacement. (a) Initial and final state of the deformation. After 50 ms
the upper wall stops moving (the displacement is ∆wall). (b) Variation of the upper
wall velocity along the 50 ms. The deformation (γ0 = ∆wall/h) is 100%, ψ = 0.003 and
the delay (td) is 0.025 seconds.

5.1 Case Study

After some preliminary experiments with the step-strain problem, the trade-
off between simulation time and accuracy resulted in a mesh size of ∆t =
2×10−3, ∆y = 2.5×10−3 and ∆α = 0.1. Note that these parameters are dimen-
sional and not scaled with the relaxation of the fluid. This happens because the
DOVM represents an infinite set of relaxations weighted by the function c(α).
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Fig. 5 shows the stress relaxation test in a narrow gap Couette cell following
a sudden straining deformation (the upper wall moves) for γ0 = 100%, ψ = 0.003
and td = 0.025 seconds.

We have considered different c(α) functions in order to understand the influ-
ence of this weighting function on the relaxation of the DOVM.

0

5

10

15

20

25

30

0 0.05 0.1 0.15 0.2

Series1

Series2

Series3

s
x

y
[P

a]
(b)(a)

t [s]

g =100%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

Series1

Series2

Series3

𝑐 𝛼 = Γ(2.5 − 𝛼)

𝑐 𝛼 = 1

𝑐 𝛼 = 𝛼

𝛼

𝑐 𝛼 = Γ(2.5 − 𝛼)

𝑐 𝛼 = 1

𝑐 𝛼 = 𝛼

Fig. 5. (a) Three different functions c(α). (b) Stress relaxation test in a narrow gap
Couette cell following a sudden straining deformation (the upper wall moves) for γ0 =
100%) and different functions c(α).

As expected, for the case c(α) = α we obtained a higher rate of relaxation
when compared to c(α) = 1 or c(α) = Γ (2.5 − α) (Fig. 5 (a) and (b)). This
happens because for c(α) = α we attribute smaller weights to low values of α
(elastic behaviour) and bigger weights to high values of α (Newtonian behaviour
- instantaneous relaxation) (Fig. 5 (a)). The model with c(α) = 1 also presents
a higher rate of relaxation when compared to the model with c(α) = Γ (2.5−α)
(see the inset in Fig. 5 (b)).

These results allow one to conclude that the implementation of the numerical
method is physically correct, and that the new DOVM allows for a broader
spectrum of relaxations, when compared to the classical viscoelastic models.

6 Conclusions

A new numerical method for solving the 1D Couette flow of a Distributed-Order
Viscoelastic Model has been developed. We proved the solvability of the numeri-
cal scheme and analysed its convergence considering a non-smooth solution. The
numerical method was used to study the relaxation of fluids (governed by the
DOVM) under a step-strain.

This prototype numerical scheme can be improved by considering high order
approximations in its derivation. This is an ongoing work, where we also analyse
the convergence and stability of the fully discretized family of numerical schemes
for this kind of problems.
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14. Caputo, M.: Elasticità e Dissipazione, Zanichelli, Bologna, Italy (1969)
15. Gorenflo, R., Luchko, Y., Stojanovic, M.: Fundamental solution of a distributed

order time-fractional diffusion-wave equation as probability density. Fract. Calc. &
Appl. Anal. 16, 297–316 (2013)

16. Mainardi, F., Pagnini, G., Mura, A., Gorenflo, R.: Time-fractional diffusion of
distributed order. J. Vib. Control 14, 1267–1290 (2008)


