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Abstract

In reductive proof search, proofs are naturally generalized by solutions, comprising all
(possibly infinite) structures generated by locally correct, bottom-up application of inference
rules. We propose a rather natural extension of the Curry-Howard paradigm of representation,
from proofs to solutions: to represent solutions by (possibly infinite) terms of the coinductive
variant of the typed lambda-calculus that represents proofs. We take this as a starting point for
a new, comprehensive approach to proof search; our case study is proof search in the sequent
calculus LJT for intuitionistic implication logic. A second, finitary representation is proposed,
where the lambda-calculus that represents proofs is extended with a formal greatest fixed
point. In the latter system, fixed-point variables enjoy a relaxed form of binding that allows
the detection of cycles through the type system. Formal sums are used in both representations
to express alternatives in the search process, so that not only individual solutions but actually
solution spaces are expressed. Moreover, formal sums are used in the coinductive syntax
to define “decontraction” (contraction bottom-up) - an operation whose theory we initiate
in this paper. A semantics is defined assigning a coinductive lambda-term to each finitary
term, making use of decontraction as a semantical match to the relaxed form of binding of
fixed-point variables present in the finitary system. The main result is the existence of an
equivalent finitary representation for any given solution space expressed coinductively. This
result is a foundation for an original approach to proof search, where the search builds the
finitary representation of the solution space, and the a posteriori analysis typically consisting
in applying a syntax-directed procedure or function. The paper illustrates the potential of
the methodology to the study of proof search and inhabitation problems in the simply-typed
lambda-calculus, reviewing results detailed elsewhere, and including new results that obtain
extensive generalizations of the so-called monatomic theorem.

1 Introduction

Proof theory starts with the observation that a proof is more than just the truth value of a theorem.
A valid theorem can have many proofs, and several of them can be interesting. In this paper, we
somehow extend this to the limit and study all proofs of a given proposition. Of course, who studies
proofs can also study any of them (or count them, if there are only finitely many possible proofs,
or try to enumerate them in the countable case). But we do this study somehow simultaneously:
we introduce a language to express the full “solution space” of proof search. And since we focus on
the generative aspects of proof search, it would seem awkward to filter out failed proof attempts
from the outset. This does not mean that we pursue impossible paths in the proof search (which
would hardly make sense) but that we allow to follow infinite paths. An infinite path does not
correspond to a successful proof, but it is a structure of locally correct proof steps, generated by
the bottom-up application of inference rules (the perspective of reductive proof theory). In other
words, we use coinductive syntax to model all locally correct proof figures. This gives rise to a not
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necessarily wellfounded search tree. However, to keep the technical effort simpler, we have chosen
a logic where this tree is finitely branching, namely the implicational fragment of intuitionistic
propositional logic with a proof system given by the cut-free fragment of the sequent calculus LJT ,
introduced in [Her95] as the typed calculus λ. Actually, we will consider the variant of LJT where
axioms are restricted to atomic formulas, and, since we do not consider the cut rule, the system is
isomorphic to the system of simply-typed long normal forms in lambda-calculus which throughout
this paper we will denote by λ.

Lambda terms or variants of them (expressions that may have bound variables) are a natural
means to express proofs (an observation that is called the Curry-Howard isomorphism) in implica-
tional logic. Proof alternatives (locally, there are only finitely many of them since our logic has no
quantifier that ranges over infinitely many individuals) can be formally represented by a finite sum
of such solution space expressions, and it is natural to consider those sums up to equivalence of
the set of the alternatives. Since whole solution spaces of (possibly infinite) proof trees are being
modeled, we call these coinductive terms forests.

By their coinductive nature, forests are no proper syntactic objects: they can be defined by
all mathematical (meta-theoretic) means and are thus not “concrete”, as would be expected from
syntactic elements. This freedom of definition will be demonstrated and exploited in the canonical
definition (Definition 1) of forests as solutions to the task of proving a logical sequent (a formula
A in a given context Γ). In a certain sense, nothing is gained by this representation: although
one can calculate on a case-by-case basis the forest for a formula of interest and see that it is
described as fixed point of a system of equations (involving auxiliary forests as solutions for the
other meta-variables that appear in those equations), an arbitrary forest can only be observed
to any finite depth, without ever knowing whether it is the expansion of a regular cyclic graph
structure (the latter being a finite structure).

Therefore, a coinductive representation is more like a semantics, a mathematical definition;
in particular, one cannot extract algorithms from an analysis based on it. For this reason, an
alternative, finitary representation of solution spaces is desired, and we develop, for intuitionistic
implication logic, one such representation in the form of a (“normal”, i. e., inductive) typed lambda-
calculus. Besides formal sums (to express choice in the search procedure), this calculus has fixed
points, to capture cyclic structure; moreover, fixed-point variables enjoy a relaxed form of binding,
since cycle structure has to be captured up to the inference rule of contraction.

Our main result is that the forests that appear as solution spaces of logical sequents can be
interpreted as semantics of a typed term in this finitary typed lambda-calculus. For the Horn
fragment (where nesting of implications to the left is disallowed), this works very smoothly without
surprises ([EMP13, Theorem 15]). The full implicational case, however, needs some subtleties to
capture redundancy that comes from the introduction of several hypotheses that suppose the same
formula—hypotheses that would be identified by applications of the inference rule of contraction.
In the finitary calculus, a relaxed form of binding is adopted for the fixed-point variables over which
the greatest fixed points are formed; and the interpretation of such finite expressions in terms of
forests needs, in the full case, a special operation, defined on forests, that we call decontraction
(contraction bottom-up 1). Without this operation, certain repetitive patterns in the solution
spaces due to the presence of negative occurrences of implications could not be matched on the
semantical side. With it, we obtain the finitary representation (Theorem 1).

This result lays the foundation for an original approach to proof search. Given a sequent, proof
search is run once, not to solve a certain problem (e.g. deciding if the sequent is provable), but
to generate the finitary representation of the entire solution space. This representation becomes
thus available for later use (and reuse), in whatever a posteriori analysis we wish to carry out (e.g.
solve a decision or counting problem); and the analysis consists typically in giving the finitary term
representing the solution space to a recursive predicate or function, whose definition is driven by
the syntax of the finitary calculus. The potential of this methodology has been proved elsewhere
[ESMP19, EMP19], in the study of proof search in LJT and the simply-typed λ-calculus. But
here we will offer new results in the same vein, namely extensive generalizations of the so-called

1This operation was called co-contraction in [EMP13].
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“monatomic theorem” [Hin97].
This paper is a substantially revised and extended version of our first workshop paper [EMP13]2

on this topic. Relatively to this work, the main novel aspects of this paper are:

1. The development of a typing system for the untyped finitary system λ
gfp

Σ of [EMP13] (called

λgfpΣ in the present paper). The typing system controls the mentioned relaxed form of binding
of fixed-point variables that allows the detection of cycles in proof search.

2. An in-depth analysis of decontraction. This operation is bound to play a central role in
reductive proof search, but surprisingly has never been properly studied. We lay down in
this paper the basic results of its theory.

3. The revision of the technical details leading to the main theorem of [EMP13] (Theorem 24),
in light of the refinements allowed by the novel typing system, leading to the revised form as
Theorem 1 below.

4. An illustration of the potential that our methodology has in the study of proof search in
LJT and the simply-typed λ-calculus, exemplified with a new extensive generalization of the
monatomic theorem mentioned before.

This third version of our technical report replaces the second version [EMP16] to which two
subsequent journal publications [ESMP19, EMP19] refer. Of course, the intention is that future
readers of these journal articles would rather consult the present version. However, from the
list above, only item 3 is needed for the purpose of getting the necessary background material
for studying the journal papers [ESMP19, EMP19], while the other developments deepen the
understanding of the concepts and thus are a genuine contribution in this technical report.

The paper is organized as follows. Section 2 recalls the system LJT/λ and elaborates on proof
search in this system. Section 3 develops the coinductive representation of solution spaces for
LJT/λ. Section 4 studies the operation of decontraction. Section 5 develops the finitary calculus
and the finitary representation of solution spaces. Section 6 is dedicated to applications to proof
search in LJT and inhabitation problems in λ. Section 7 concludes, also discussing related and
future work.

2 Background

We start by introducing our presentation of the base system λ, of simply-typed long normal
forms in lambda-calculus, which, as mentioned before (and explained later), is in Curry-Howard
correspondence with cut-free LJT [Her95] with axioms enforced to apply only to atoms.

2.1 Simply-typed lambda-calculus, reduced to normal forms

Letters p, q, r are used to range over a base set of propositional variables (which we also call atoms).
Letters A,B,C are used to range over the set of formulas (= types) built from propositional
variables using the implication connective (that we write A ⊃ B) that is parenthesized to the
right. Throughout the paper, we will use the fact that any implicational formula can be uniquely
decomposed as A1 ⊃ A2 ⊃ · · · ⊃ Ak ⊃ p with k ≥ 0, written in vectorial notation as ~A ⊃ p. For
example, if the vector ~A is empty the notation means simply p, and if ~A = A1, A2, the notation
means A1 ⊃ (A2 ⊃ p).

A term of λ (also referred to as a proof term) is either a typed lambda-abstraction or a variable
applied to a possibly empty list of terms. For succinctness, instead of writing lists as a second
syntactic category, we will use the informal notation 〈t1, . . . , tk〉 (meaning 〈〉 if k = 0), abbreviated
〈ti〉i if there is no ambiguity on the range of indices. So, λ-terms are given by the following
grammar:

(terms) t, u ::= λxA.t | x 〈t1, . . . , tk〉
2Note however that in this paper we do not treat separately the Horn fragment, as we do in [EMP13].
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Figure 1: Typing rules of λ

Γ, x : A ` t : B

Γ ` λxA.t : A ⊃ B
RIntro

(x : ~B ⊃ p) ∈ Γ ∀i, Γ ` ti : Bi

Γ ` x〈ti〉i : p
LVecIntro

where a countably infinite set of variables ranged over by letters w, x, y, z is assumed. Note
that in lambda-abstractions we adopt a domain-full presentation (a. k. a. Church-style syntax),
annotating the bound variable with a formula. As is common-place with lambda-calculi, we will
throughout identify terms up to α-equivalence, i. e., names of bound variables may be consistently
changed, and this is not considered as changing the term. The term constructor x 〈t1, . . . , tk〉 is
usually called application. When n = 0 we simply write the variable x. The terms are obviously in
one-to-one correspondence with β-normal “ordinary” lambda-terms, the only difference being the
explicit tupling of argument terms to variables in the λ syntax.

We will view contexts Γ as finite sets of declarations x : A, where no variable x occurs twice.
The context Γ, x : A is obtained from Γ by adding the declaration x : A, and will only be written if
x is not declared in Γ. Context union is written as concatenation Γ,∆ for contexts Γ and ∆ if
Γ∩∆ = ∅. The letters Γ, ∆, Θ are used to range over contexts, and the notation dom(Γ) stands for
the set of variables declared in Γ. We will write Γ(x) for the type associated with x for x ∈ dom(Γ),
hence viewing Γ as a function on dom(Γ). Context inclusion Γ ⊆ ∆ is just set inclusion.

As usual, in this presentation of λ there is only one form of sequent, namely Γ ` t : A. We call
a sequent atomic when A is an atom. (Note however that this contrasts to LJT/λ [Her95] where
two forms of sequents are used, as lists of terms are treated formally.) The rules of λ for deriving
sequents are in Fig. 1. LVecIntro presupposes that the indices for the ti range over 1, . . . , k and
that ~B = B1, . . . , Bk, for some k ≥ 0. Such obvious constraints for finite vectors will not be spelt
out in the rest of the paper.

In the particular case of k = 0, in which (x : p) ∈ Γ is the only hypothesis of LVecIntro, we type
variables (with atoms). In fact, viewed in terms of the system LJT/λ, LVecIntro is a derived rule,
combining logical steps of contraction, left implication, and axiom.

Note that the conclusion of the LVecIntro rule is an atomic sequent. This is not the case in
LJT/λ [Her95], where list sequents can have a non-atomic formula on the RHS. In the variant of
cut-free LJT/λ we adopted, the only rule available for deriving an implication is RIntro. Still, our
atomic restriction will not cause loss of completeness of the system for intuitionistic implication.
This restriction is typically adopted in systems tailored for proof search, as for example systems of
focused proofs. In fact, our presentation of LJT/λ corresponds to a focused backward chaining
system where all atoms are asynchronous (see e. g. [LM09]).

2.2 Reductive proof search for λ

We consider proof search problems given by a context Γ and an implicational formula A. We
express them as logical sequents Γ ⇒ A, corresponding to sequents of λ without proof terms.
Γ⇒ A is nothing but the pair consisting of Γ and A, but which is viewed as a problem description:
to search for proofs of formula A in context Γ. We use the letter σ to communicate logical sequents
but allow ourselves to speak of sequent σ in the interest of a lighter language.

Even though the system λ is a focused sequent calculus, reductive proof search on λ has well
identified points where choices are needed [DP99]. This is readily seen in such a simple setting
as ours, where only implication is considered. Observing the rules in Fig. 1, one concludes that
implications have to be decomposed by RIntro until an atom is obtained; here, in order to apply
LVecIntro, a choice has to be made as to which assumption x is to be picked from the context,
generating a control branching of the process (if there is no x to choose, we mark the choice point
with failure); at each choice, several search sub-problems are triggered, one for each Bi, generating
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a different branching of the process, more of a conjunctive nature.3 In all, a search forest is
generated, which is pruned to a tree, once a choice is made at each choice point. Such trees we call
solutions (of the proof-search problem posed by the given sequent). Sequents with solutions are
called solvable. Since the search forest is a structure where all solutions are superimposed, we also
call it solution space.

Finite solutions are exactly the proofs in λ (hence the provable sequents are solvable); but
solutions need not be finite. For instance, given the sequent σ = (f : p ⊃ p, x : p ⇒ p), we can
apply forever the LVecIntro rule with variable f if we wish, producing an infinite solution. But σ
also has finite solutions, hence is provable. On the other hand, the solvable sequent f : p ⊃ p⇒ p
has a unique infinite solution, hence is not provable.

Example 1 The illustrating examples of this paper are with the following types.

• BOOLE := p ⊃ p ⊃ p, an encoding of the Boolean values as λxp.λyp.x and λxp.λyp.y. This
example illustrates that we obtain different solutions when using the differently labeled (with
x and with y) hypotheses for p. We do not apply the so-called total discharge convention and
stay plainly in the spirit of lambda-calculus.

• INFTY := (p ⊃ p) ⊃ p, which is obviously uninhabited in lambda-calculus (as would be the
type p alone), but, as mentioned before, has a unique infinite solution (see Ex. 2).

• CHURCH := (p ⊃ p) ⊃ p ⊃ p, the type of Church numerals λfp⊃p.λxp.fn〈x〉, n ≥ 0. As
mentioned above, there is also the solution with an infinite repetition of f ’s.

• PEIRCE := ((p ⊃ q) ⊃ p) ⊃ p with different atoms p and q (the Peirce formula, in particular
when reading q as falsity), which is a classical tautology but not one of minimal logic and
therefore uninhabited in lambda-calculus.

• DNPEIRCE := (PEIRCE ⊃ q) ⊃ q, which is provable in minimal logic and therefore inhabited
in lambda-calculus (already studied in [EMP13]).

• THREE := ((p ⊃ p) ⊃ p) ⊃ p, the simplest type of rank 3 (the nesting depth) which has
inhabitants of the form λx.x〈λy1.x〈λy2.x〈· · · 〈λyn.yi〉 · · ·〉〉〉, n ≥ 1 and 1 ≤ i ≤ n. (The types
(p ⊃ p) ⊃ p of x and p of all yk have been omitted for presentation purposes.) Notice that
THREE is PEIRCE with identification of the two atoms. It may be seen as a simplification of
the DNPEIRCE example.

Some of our examples are also covered in Sect. 1.3.8 of [BDS13]. Notice that they write BOOLE
as 12 (their example (i)), CHURCH as 1 → 0 → 0 (their example (iv)) and THREE as 3 (their
example (vii)) in that book. PEIRCE is their example (iii).

The type THREE ⊃ p ⊃ p is example (viii) in Sect. 1.3.8 of the cited book, and is called the
“monster”. Since THREE is PEIRCE with identification of the two atoms p, q, the monster type is
similarly resembling DNPEIRCE, but of rank 4 (while the latter has rank 5). For us, both types are
equally challenging, insofar as both require an infinite supply of bound variables for enumerating
their (normal) inhabitants, which is why we did not include the monster type in our sample of
examples.

3 Coinductive representation of proof search

In this section we develop a coinductive representation of solutions and of solution spaces. This
representation combines two ideas: the coinductive reading of the syntax of proofs, and the adoption
of formal sums (in the case of solution spaces). Formal sums allow the definition of the operation
of decontraction, which will play a crucial role in the relationship to the finitary representation of
solution spaces to be developed in the next section.

3Of course, this is all too reminiscent of or- and and-branching in logic programming. But we are not confined to
the Horn fragment.
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Figure 2: Typing rules of λco

Γ, x : A ` N : B

Γ ` λxA.N : A ⊃ B
RIntroco

(x : ~B ⊃ p) ∈ Γ ∀i, Γ ` Ni : Bi

Γ ` x〈Ni〉i : p
LVecIntroco

3.1 Representation of solutions: the λco-system

We introduce now λco, a coinductive extension of λ. Its expressions are formed without any
consideration of well-typedness and will be the raw syntax that underlie possibly non-wellfounded
proofs, i. e., solutions.

The raw syntax of these expressions is presented as follows

N ::=co λx
A.N |x〈N1, . . . , Nk〉 ,

yielding the terms of system λco (read coinductively, as indicated by the index co)—still with finite
tuples 〈Ni〉i, which is why we will call these expressions rather coterms.

Since the raw syntax is interpreted coinductively, also the typing rules have to be interpreted
coinductively, which is symbolized by the double horizontal line in Fig. 2, a notation that we learnt
from [NUB11]. (Of course, the formulas/types stay inductive.). This defines when Γ ` N : A holds
for a finite context Γ, a coterm N and a type A, and the only difference to the rules in Fig. 1 is
their coinductive reading and their reference to coinductively defined terms. When Γ ` N : A
holds, we say N is a solution of σ, when σ = Γ⇒ A.

Since the coterms are not built in finitary ways from finitary syntax, the notion of equality is
not just syntactic equality. Besides incorporating the identification of terms that only differ in the
naming of their bound variables (“modulo α-equivalence”), we consider as equal terms that finitely
decompose in the same way, which is to say that their successive deconstruction (not taking into
account consistent differences in names of bound variables) according to the grammar must proceed
the same way, and this to arbitrary depth. Thus, the natural notion of equality that we are using
is bisimilarity modulo α-equivalence. Following mathematical practice, this is still written as plain
equality (in type theory, it would have to be distinguished from definitional equality / convertibility
and from propositional equality / Leibniz equality and would be a coinductive binary relation).

Example 2 Consider it∞ := λfp⊃p.N with N = f〈N〉 (this term N exists as an infinitely repeated
application of f). Using coinduction on the typing relation, we can easily show ` it∞ : INFTY, and
hence find a (co)inhabitant of a formula that does not correspond to a theorem in most logics.

As expected, the restriction of the typing relation to the finite λ-terms coincides with the typing
relation of the λ system:

Lemma 1 For any t ∈ λ, Γ ` t : A in λ iff Γ ` t : A in λco.

Proof By induction on t, and using inversion of typing in λ. �

The idea of reading the syntax of lambda calculi coinductively is not new, see for example
[Joa04] with a de Bruijn-style representation (meant to rule out potential problems with infinitely
many or even all variables that occur freely in a term, problems that are immaterial for our study
of terms in a finite typing context). For us, system λco is just a concise means of defining what
solutions are in reductive proof search. However, we now move to original material.

3.2 Representation of solution spaces: the λco
Σ system

We now come to the coinductive representation of whole search spaces in λ.
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Figure 3: Extra typing rule of λcoΣ w. r. t. λco

∀i, Γ ` Ei : p

Γ `
∑
iEi : p

Alts

The set of coinductive cut-free λ-terms with finite numbers of elimination alternatives is denoted
by λcoΣ and is given by the following grammar:

(terms) N ::=co λxA.N |E1 + · · ·+ En
(elim. alternatives) E ::=co x〈N1, . . . , Nk〉

where both n, k ≥ 0 are arbitrary. The terms of λcoΣ are also called forests. If we do not want
to specify the syntactic category (terms or elimination alternatives), we consider them just as
expressions and generically name them T , to reflect their nature as terms in a wide sense.

Note that summands cannot be lambda-abstractions.4 We will often use
∑
iEi instead of

E1 + · · ·+En—in generic situations or if the dependency of Ei on i is clear, as well as the number
of elements. If n = 0, we write O for E1 + · · ·+ En. If n = 1, we write E1 for E1 + · · ·+ En (in
particular this injects the category of elimination alternatives into the category of (co)terms) and
do as if + was a binary operation on (co)terms. However, this will always have a unique reading in
terms of our raw syntax of λcoΣ . In particular, this reading makes + associative and O its neutral
element.

The coinductive typing rules of λcoΣ are the ones of λco, together with the rule given in Fig. 3,
where the sequents for coterms and elimination alternatives are not distinguished notationally.

Notice that Γ ` O : p for all Γ and p.
Since, like the coterms, forests are not built in finitary ways from finitary syntax (although the

number of elimination alternatives is always finite, as is the number of elements of the tuples), their
most natural notion of equality is again bisimilarity modulo α-equivalence. However, in forests, we
even want to neglect the precise order of the summands and their (finite) multiplicity. We thus
consider the sums of elimination alternatives as if they were sets of alternatives, i. e., we further
assume that + is symmetric and idempotent. This means, in particular, that this identification is
used recursively when considering bisimilarity (anyway recursively modulo α-equivalence). This
approach is convenient for a mathematical treatment but would be less so for a formalization on a
computer: It has been shown by Picard and the second author [PM12] that bisimulation up to
permutations in unbounded lists of children can be managed in a coinductive type even with the
interactive proof assistant Coq, but it did not seem feasible to abstract away from the number of
occurrences of an alternative (which is the meaning of idempotence of + in presence of symmetry),
where multiplicity depends on the very same notion of equivalence that is undecidable in general.

As for λco, we just use mathematical equality for this notion of bisimilarity on expressions of
λcoΣ , and so the sums of elimination alternatives can plainly be treated as if they were finite sets of
elimination alternatives (given by finitely many elimination alternatives of which several might be
identified through bisimilarity).

Definition 1 (Solution spaces) The function S, which takes a sequent σ = (Γ ⇒ A) and
produces a forest which is a coinductive representation of the sequent’s solution space, is given
corecursively as follows: In the case of an implication,

S(Γ⇒ A ⊃ B) := λxA.S(Γ, x : A⇒ B) .

In the case of an atom p, for the definition of S(Γ⇒ p), let yi : Ai be the i-th declaration in some

enumeration of Γ with Ai of the form ~Bi ⊃ p. Let ~Bi = Bi,1, . . . , Bi,ki . Define Ni,j := S(Γ⇒ Bi,j).

4The division into two syntactic categories also forbids the generation of an infinite sum (for which n = 2 would
suffice had the categories for N and E been amalgamated).
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Then, Ei := yi〈Ni,j〉j, and finally,

S(Γ⇒ p) :=
∑
i

Ei .

This is more sloppily written as

S(Γ⇒ p) :=
∑

(y: ~B⊃p)∈Γ

y〈S(Γ⇒ Bj)〉j .

In this manner, we can even write the whole definition in one line:

S(Γ⇒ ~A ⊃ p) := λ~x : ~A.
∑

(y: ~B⊃p)∈∆

y〈S(∆⇒ Bj)〉j (1)

with ∆ := Γ, ~x : ~A. The usual convention on bound variables ensures that (x’s are fresh enough so
that) ∆ is a context.

A crucial element (for the succinctness of this definition and the rather structure-oriented further
analysis) is that RIntro is the only way to prove an implication, hence that the leading lambda-
abstractions are inevitable. Then, the extended (finite) context ∆ is traversed to pick variables y

with formulas of the form ~B ⊃ p, thus with the right atom p in the conclusion. And this spawns
tuples of search spaces, for all the Bj , again w. r. t. the extended context ∆. Notice that this is a
well-formed definition: for every sequent σ, S(σ) is a forest, regardless of the result of proof search
for the given sequent σ, and this forest has the type prescribed by σ:

Lemma 2 Given Γ and A, the typing Γ ` S(Γ⇒ A) : A holds in λcoΣ .

In particular, all free variables of S(Γ⇒ A) are declared in Γ.
Let us illustrate the function S at work with some examples.

Example 3 One sees immediately that S(⇒ BOOLE) = λxp.λyp.x+ y.

Example 4 Observe that S(⇒ INFTY) = it∞ (applying our notational conventions, and reflecting
the fact that there is a unique alternative at each sum). In other words, it∞ solves the same
equation as is prescribed for S(⇒ INFTY), and so it is the solution (modulo =).

Example 5 Consider the sequent ⇒ CHURCH. We have:

Church := S(⇒ CHURCH) = λfp⊃p.λxp.S(f : p ⊃ p, x : p⇒ p)

Now, observe that S(f : p ⊃ p, x : p⇒ p) = f〈S(f : p ⊃ p, x : p⇒ p)〉+ x is asked for. We identify
S(f : p ⊃ p, x : p⇒ p) as the solution for N of the equation N = f〈N〉+ x. Using ν as means to
communicate solutions of fixed-point equations on the meta-level, we have

S(⇒ CHURCH) = λfp⊃p.λxp.ν N.f〈N〉+ x

By unfolding of the fixed point and by making a choice at each of the elimination alternatives,
we can collect from this coterm as the finitary solutions of the sequent all the Church numer-
als (λfp⊃p.λxp.fn〈x〉 with n ∈ N0), together with the infinitary solution λfp⊃p.λxp.ν N.f〈N〉
(corresponding to always making the f -choice at the elimination alternatives).

Example 6 We consider now an example without nested implications (in the Horn fragment). Let
Γ = x : p ⊃ q ⊃ p, y : q ⊃ p ⊃ q, z : p, with p 6= q. Note that the solution spaces of p and q relative
to this sequent are mutually dependent and they give rise to the following system of equations:

Np = x〈Np, Nq〉+ z
Nq = y〈Nq, Np〉
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Figure 4: Steps towards calculating S(⇒ DNPEIRCE)

N0 = S(⇒ DNPEIRCE) = λxPEIRCE⊃q.N1

N1 = S(x⇒ q) = x〈N2〉
N2 = S

(
x⇒ PEIRCE

)
= λy(p⊃q)⊃p.N3

N3 = S(x, y ⇒ p) = y〈N4〉
N4 = S(x, y ⇒ p ⊃ q) = λzp.N5

N5 = S(x, y, z ⇒ q) = x〈N6〉
N6 = S

(
x, y, z ⇒ PEIRCE

)
= λy

(p⊃q)⊃p
1 .N7

N7 = S(x, y, z, y1 ⇒ p) = y〈N8〉+ z + y1〈N8〉
N8 = S(x, y, z, y1 ⇒ p ⊃ q) = λzp1 .N9

N9 = S(x, y, z, y1, z1 ⇒ q)

Figure 5: Membership relations

mem(M,N)

mem(λxA.M, λxA.N)

∀i, mem(Mi, Ni)

mem(x〈Mi〉i, x〈Ni〉i)
mem(M,Ej)

mem(M,
∑
iEi)

and so we have
S(Γ⇒ p) = ν Np.x〈Np, ν Nq.y〈Nq, Np〉〉+ z
S(Γ⇒ q) = ν Nq.y〈Nq, ν Np.x〈Np, Nq〉+ z〉

Whereas for p we can collect one finite solution (z), for q we can only collect infinite solutions.

Example 7 Let us consider DNPEIRCE of Ex. 1. When q is viewed as absurdity, PEIRCE is
Peirce’s law, and thus DNPEIRCE can be viewed as double negation of Peirce’s law. We have the
calculation in Figure 4 (where in sequents we omit formulas on the LHS). Now, in N9 observe that
y, y1 both have type (p ⊃ q) ⊃ p and z, z1 both have type p, and we are back at N5 but with the
duplicates y1 of y and z1 of z. Later, we will call this duplication phenomenon decontraction, and
we will give a finitary description of N0 and, more generally, of all S(σ) (again, see Theorem 1).
Of course, by taking the middle alternative in N7, we obtain a finite proof, showing that DNPEIRCE
is provable in λ.

Example 8 For completeness, we describe the beginning of the calculations for THREE (for PEIRCE
see Ex. 9). S(⇒ THREE) = λx(p⊃p)⊃p.x〈λyp.N〉, abbreviating N for S(x : (p ⊃ p) ⊃ p, y : p⇒ p).
Then, N = x〈λzp.N ′〉+ y, with N ′ = S(x : (p ⊃ p) ⊃ p, y : p, z : p⇒ p). We could further unravel
the definition and provide a description of S(⇒ THREE) up to any finite depth, but we prefer a
more symbolic solution in Sect. 5 which exploits decontraction in the same way as for the preceding
example.

We give a membership semantics for expressions of λcoΣ in terms of sets of terms in λco. More
precisely, the membership relations mem(M,N) and mem(M,E) are contained in λco × λcoΣ and
λco × EλcoΣ respectively (where EλcoΣ stands for the set of elimination alternatives of λcoΣ ) and are
given coinductively by the rules in Fig. 5.

Coterms have the types of the forests they are members of.

Lemma 3 (Typing of members) For N ∈ λco, T ∈ λcoΣ , if Γ ` T : A in λcoΣ and mem(N,T )
then Γ ` N : A in λco.

Proof It suffices to show for N ∈ λco, N ′ ∈ λcoΣ , if Γ ` N ′ : A in λcoΣ and mem(N,N ′) then
Γ ` N : A in λco (replacing expression T by term N ′), since from this follows easily the result for
elimination alternatives (replacing T by E ∈ λcoΣ ). Let

R := {(Γ, N,A) | ∃N ′ ∈ λcoΣ ·mem(N,N ′) ∧ Γ ` N ′ : A}

9



By coinduction, to prove that this relation is contained in the typing relation of λco, it suffices to
show that it is closed backward relatively to the rules defining that typing relation—which means,
roughly speaking, that for each element of R there is a typing rule which produces such element
from premisses in R. This is the most fundamental principle of coinduction for coinductively
defined predicates. It exploits that the coinductively defined predicate is maximal among the
post-fixedpoints of the set operator underlying the coinductive definition. In our present application
of the principle, we need to show that for any (Γ, N,A) ∈ R, one of the following holds:

1. A = A0 ⊃ A1, N = λxA0 .N1, and (Γ,x : A0 , N1 , A1) ∈ R;

2. A = p, and there is y : ~B ⊃ p ∈ Γ so that N = y〈Ni〉i, and, for all i, (Γ, Ni, Bi) ∈ R.

Let (Γ, N,A) ∈ R. Then mem(N,N ′) and Γ ` N ′ : A, for some N ′ ∈ λcoΣ . The proof proceeds
by case analysis on A.

Case A = A0 ⊃ A1. By definition of the typing relation, we must have N ′ = λxA0 .N ′1 and
Γ, x : A0 ` N ′1 : A1, for some N ′1; and by definition of mem, we must have N = λxA0 .N1, and
mem(N1, N

′
1), for some N1; therefore, (Γ,x : A0 , N1 , A1) ∈ R, by definition of R.

Case A = p. By definition of the typing relation, we have N ′ =
∑
j

Ej and Γ ` Ej : p, for all

j. Then, by definition of mem, we must have, mem(N,Ej), for some j. Let Ej = y〈N ′i〉i. Again
by definition of mem, N = y〈Ni〉i, with mem(Ni, N

′
i) for all i. Since Γ ` y〈N ′i〉i : p, we must have,

again by definition of the typing relation, y : ~B ⊃ p ∈ Γ and Γ ` N ′i : Bi for all i. Hence, for all i,
(Γ , Ni , Bi) ∈ R, by definition of R. �

Now, we prove that in fact, for any search problem σ = Γ ⇒ A, the members of S(σ) are
exactly the solutions of σ.

Proposition 1 (Adequacy of membership in solution spaces)

1. For N ∈ λco, mem(N,S(Γ⇒ A)) iff Γ ` N : A in λco.

2. For t ∈ λ, mem(t,S(Γ⇒ A)) iff Γ ` t : A in λ.

Proof
We prove the first statement in detail as a further example of coinductive reasoning, the second

statement follows immediately from the first by virtue of Lemma 1.
“If”. Consider the relations

R1 := {(N,S(Γ⇒ A)) | Γ ` N : A}
R2 := {(x〈Ni〉i, x〈S(Γ⇒ Bi)〉i) | (x : B1, · · · , Bk ⊃ p) ∈ Γ ∧ Γ ` x〈N1, . . . , Nk〉 : p}

It suffices to show that R1 ⊆ mem, but this cannot be proven alone since mem is defined simulta-
neously for coterms and elimination alternatives. We also prove R2 ⊆ mem, and to prove both by
coinduction on the membership relations, it suffices to show that the relations R1, R2 are closed
backward relatively to the rules defining the membership predicate, that is:

1. for any (M,N) ∈ R1, one of the following holds:

(a) (M,N) = (λxA.M ′, λxA.N ′), and (M ′, N ′) ∈ R1;

(b) N =
∑
i

Ei, and for some i, (M,Ei) ∈ R2;

2. for any (M,E) ∈ R2, M = x〈Mi〉i, and E = x〈Ni〉i, and for all i, (Mi, Ni) ∈ R1

1. Take an arbitrary element of R1, i. e., take (M,S(Γ⇒ A)) s. t. Γ ` M : A. One of the
following happens:

i) A = A0 ⊃ A1, M = λxA0 .M ′, and Γ, x : A0 `M ′ : A1;
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ii) A = p, and there is y : ~B ⊃ p ∈ Γ so that M = y〈M ′i〉i, and, for all i, Γ `M ′i : Bi.

Case i). Note that S(Γ⇒ A) = λxA0 .S(Γ, x : A0 ⇒ A1). (M ′,S(Γ, x : A0 ⇒ A1)) ∈ R1 needs
to be shown, but this follows from Γ, x : A0 `M ′ : A1.

Case ii). Note that S(Γ⇒ A) =
∑

z:~C⊃p∈Γ

z〈S(Γ⇒ Cj)〉j . So, since y : ~B ⊃ p ∈ Γ, it suffices to

show (M,y〈S(Γ⇒ Bi)〉i) ∈ R2, which holds because y : ~B ⊃ p ∈ Γ and Γ ` y〈M ′i〉i : p (the latter

being a consequence of y : ~B ⊃ p ∈ Γ, and Γ `M ′i : Bi, for all i).
2. Take an arbitrary element of R2. So, it must be of the form (x〈Ni〉i, x〈S(Γ ⇒ Bi)〉i) s. t.

(x : ~B ⊃ p) ∈ Γ and Γ ` x〈Ni〉i : p. From the latter follows Γ ` Ni : Bi, for all i. So, by definition
of R1, (Ni,S(Γ⇒ Bi)) ∈ R1, for all i.

“Only if”. Follows from Lemmas 2 and 3. �

Example 9 Let us consider the case of Peirce’s law that is not valid intuitionistically. We have
(for p 6= q):

S(⇒ PEIRCE) = λx(p⊃q)⊃p.x〈λyp.O〉
The fact that we arrived at O and found no elimination alternatives on the way annihilates the
coterm and implies there are no terms in the solution space of ⇒ PEIRCE (hence no proofs, nor
even infinite solutions).

4 Decontraction

In this section, consisting of three subsections, we introduce and study the decontraction operation
on forests. The main result of this section is Lemma 13, in the third subsection, because of its role
in the proof of Theorem 1—the main theorem of the paper. Lemma 13 shows that decontraction is
the right operation to apply to a solution space T = S(Γ⇒ C) to express the effect on the solution
space of growing the context Γ to an inessential extension Γ′—this growth is made precise below
and denoted by Γ ≤ Γ′. Before, in the second subsection, the more general situation, where T is
any expression in λcoΣ (not necessarily a solution space) is analyzed in Lemma 9, a result that shows
in what sense decontraction witnesses the inversion of the inference rule of contraction. Finally,
inversion of contraction is related to (and follows from) a kind of inversion of substitution, whose
most general form is contained in Lemma 7, to be found already in the first subsection.

The decontraction operation on forests, denoted [Γ′/Γ]N , is defined only when Γ ≤ Γ′. Roughly
speaking, the decontraction effect at the level of forests is to add new elimination alternatives,
made possible by the presence of more variables in Γ′. This effect is best seen in the last clause of
Def. 3 (in Fig. 6) that applies the decontraction operation to a single elimination alternative.

Definition 2 1. |Γ| = {A | there is x s. t. (x : A) ∈ Γ}.

2. Γ ≤ Γ′ if Γ ⊆ Γ′ and |Γ| = |Γ′|.
Notice that |Γ| has only one element for each type occurring in the declarations of Γ. It thus
abstracts away from multiple hypotheses of the same formula.

Definition 3 (Decontraction for forests) Let Γ ≤ Γ′. For T an expression of λcoΣ , we define
[Γ′/Γ]T by corecursion as described in Figure 6. In the last defining clause, A := Γ(z) and
∆z := {(z : A)} ∪ (Γ′ \ Γ). The usual convention on bound variables applies, which requires in the
first clause that the name x is chosen so that it does not appear in Γ′.

The effect of the last clause is to replace the summand z〈Ni〉i with z of type Γ(z) according to Γ
with the sum of all w〈Ni〉i that receive this type according to the potentially bigger context Γ′,
excluding the other variables of Γ but including the case w = z, and to continue the operation
corecursively in the argument terms.5

5In the workshop version [EMP13], we had a more “aggressive” version of decontraction (called co-contraction in
that paper) that did not exclude the other variables of Γ in the last clause, and for which we further added the
binding x : A to Γ and Γ′ in the corecursive call in the lambda-abstraction case. On solutions, these differences are
immaterial, c. f. the example after Lemma 10.
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Figure 6: The decontraction operation on forests

[Γ′/Γ](λxA.N) = λxA.[Γ′/Γ]N

[Γ′/Γ]
∑
i

Ei =
∑
i

[Γ′/Γ]Ei

[Γ′/Γ]
(
z〈Ni〉i

)
= z〈[Γ′/Γ]Ni〉i if z /∈ dom(Γ)

[Γ′/Γ]
(
z〈Ni〉i

)
=

∑
(w:A)∈∆z

w〈[Γ′/Γ]Ni〉i if z ∈ dom(Γ)

Lemma 4 If mem(M,T ) and Γ ≤ Γ′ then mem(M, [Γ′/Γ]T ).

Proof A coinductive proof can confirm the obvious intuition of the effect of decontraction: either
a summand is maintained, with corecursive application of decontraction to the subterms, or it is
replaced by a sum with even extra summands. �

Lemma 5 [Γ/Γ]T = T .

Proof Obvious coinduction for all expressions. �

We formally extend the decontraction data from contexts to sequents σ. (This overloading of
the operation will only be used in the next section.)

Definition 4 (Decontraction for sequents) Let σ = (Γ⇒ A) and σ′ = (Γ′ ⇒ A′).

1. σ ≤ σ′ if Γ ≤ Γ′ and A = A′;

2. if σ ≤ σ′, then [σ′/σ]T := [Γ′/Γ]T .

4.1 Decontraction and substitution

Decontraction is a form of undoing substitution, in the following sense (N ∈ λco):

mem(N, [Γ, x : A, y : A/Γ, x : A][x/y]N) (2)

In fact, we prove a stronger result. Let [x/x1, · · · , xn]N denote [x/x1] · · · [x/xn]N . We will even
allow ourselves to abbreviate x1, · · · , xn by ~x, when variable n is in the context of discourse.

Lemma 6 (Undoing substitution – a general principle) For N ∈ λco, T ∈ λcoΣ ,

mem([x1/x1, · · · , xn]N,T )⇒ mem(N, [Γ, x1 : A, . . . , xn : A/Γ, x1 : A]T ) .

Proof Obviously, it suffices to show the statement with a term N ′ in place of the expression T .
This will follow from R1 below being included in the membership relation with terms as second
argument. Let ∆ := Γ, x1 : A and ∆′ := Γ, x1 : A, . . . , xn : A. Let

R1 := {(N, [∆′/∆]N ′) | mem([x1/~x]N,N ′)}
R2 := {(z〈Ni〉i, z〈[∆′/∆]N ′i〉i) | ∀i, mem(Ni, [∆

′/∆]N ′i) ∈ R1}

We argue by coinduction on membership. The proof obligations named (1)(a), (1)(b), and (2) in
the proof of Proposition 1 are renamed here Ia, Ib, and II, respectively.

Let (N, [∆′/∆]N ′) ∈ R1, hence

mem([x1/~x]N,N ′) . (3)

We have to show that Ia or Ib holds. We proceed by case analysis of N .
Case N = λz.N0. Then mem(λz.[x1/~x]N0, N

′), hence, by definition of membership, we must
have N ′ = λz.N ′0 and

mem([x1/~x]N0, N
′
0) , (4)
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Figure 7: Corecursive equations governing [
∑
~x/x1]

[
∑
~x/x1](λxA.N) = λxA.[

∑
~x/x1]N

[
∑
~x/x1]

∑
i

Ei =
∑
i

[
∑
~x/x1]Ei

[
∑
~x/x1]

(
z〈Ni〉i

)
= z〈[

∑
~x/x1]Ni〉i if z 6= x1

[
∑
~x/x1]

(
x1〈Ni〉i

)
=

∑n
j=1 xj〈[

∑
~x/x1]Ni〉i

hence [∆′/∆]N ′ = λz.[∆′/∆]N ′0. From (4) and definition of R1 we get (N0, [∆
′/∆]N ′0) ∈ R1, so Ia

holds.
Otherwise, that is, if N is not a lambda-abstraction, then the same is true of [x1/~x]N , hence

(3) implies that N ′ =
∑
j

E′j , with

mem([x1/~x]N,E′j) (5)

for some j, hence

[∆′/∆]N ′ =
∑
j

[∆′/∆]E′j . (6)

To fulfil Ib, we need (N,E) ∈ R2, for some summand E′ of (6). From (5) and the definition of
membership we must have N = z〈Ni〉i, for some z, hence

[x1/~x]N = w〈[x1/~x]Ni〉i , (7)

with w a variable determined by z and ~x as follows: if z ∈ {x1, . . . , xn}, then w = x1, else w = z.
Facts (5) and (7) give E′j = w〈N ′i〉i and, for all i,

mem([x1/~x]Ni, N
′
i) , (8)

hence
(Ni, [∆

′/∆]N ′i) ∈ R1 . (9)

Now we will see that z〈[∆′/∆]N ′i〉i is a summand of [∆′/∆]E′j , sometimes the unique one.
There are two cases:

First case: z ∈ {x1, . . . , xn}. Then [∆′/∆]E′j =
∑n
k=1 xk〈[∆′/∆]N ′i〉i, since w = x1.

Second case: otherwise, w = z. Now, by definition of decontraction, z〈[∆′/∆]N ′i〉i is always a
summand of [∆′/∆](z〈N ′i〉i), and the latter is [∆′/∆]E′j since w = z.

Therefore, z〈[∆′/∆]N ′i〉i is a summand of sum (6). Moreover, (N, z〈[∆′/∆]N ′i〉i) ∈ R2 by
definition of R2 and (9). So Ib holds.

Now let (z〈Ni〉i, z〈[∆′/∆]N ′i〉i) ∈ R2. Proof obligation II is fulfilled, as (Ni, [∆
′/∆]N ′i) ∈ R1

holds for all i, by definition of R2. �

Fact (2) follows from the previous lemma by taking n = 2, x1 = x, x2 = y and T = [x1/x1, x2]N .
The converse of the implication in Lemma 6 fails if other declarations with type A exist in Γ.

Example 10 Let Γ := {z : A}, ∆ := Γ, x : A, ∆′ := Γ, x : A, y : A, N := y and T := z. Then N
is a member of [∆′/∆]T , since [∆′/∆]T = z + y, but [x/y]N = x and x is not a member of T .

The result of a decontraction [Γ, x1 : A, · · · , xn : A/Γ, x1 : A]T , where Γ has no declarations
with type A, does not depend on Γ nor A, so it deserves a lighter notation as [x1 + · · ·+ xn/x1]T .
We will even allow ourselves to abbreviate x1 + · · ·+ xn by

∑
~x, when variable n is in the context

of discourse. This particular case of the operation satisfies the equations in Figure 7. For this
particular case, we get a pleasing formula:
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Lemma 7 (Undoing substitution – a tighter result for a special case) For N ∈ λco and
T ∈ λcoΣ ,

mem([x1/x1, · · · , xn]N,T )⇔ mem(N, [x1 + · · ·+ xn/x1]T ) ,

provided xi /∈ FV (T ), i = 2, . . . , n.

Proof “Only if”. Particular case of Lemma 6.
“If”. Let φ(T ) denote the proviso on T . Let

R1 := {([x1/~x]N,N ′) | φ(N ′) ∧mem(N, [
∑
~x/x1]N ′)}

R2 := {(z〈[x1/~x]Ni〉i, z〈N ′i〉i) | ∀i, ([x1/~x]Ni, N
′
i) ∈ R1}

We argue by coinduction on membership and thus obtain the “if” part with T replaced by N ′,
from which the general case immediately follows. The proof obligations named (1)(a), (1)(b), and
(2) in the proof of Proposition 1 are renamed here Ia, Ib, and II, respectively.

Let ([x1/~x]N,N ′) ∈ R1, hence φ(N ′) and

mem(N, [
∑

~x/x1]N ′) . (10)

The proof proceeds by case analysis of N .
Case N = λz.N0, so [x1/~x]N = λz.[x1/~x]N0. By (10) and definitions of membership and

of [
∑
~x/x1]N ′, N ′ = λz.N ′0, hence φ(N ′0) (because z is not one of x2, · · · , xn), [

∑
~x/x1]N ′ =

λz.[
∑
~x/x1]N ′0 and

mem(N0, [
∑

~x/x1]N ′0) . (11)

So ([x1/~x]N0, N
′
0) ∈ R1, by definition of R1, (11) and φ(N ′0), which completes proof obligation Ia.

Case N = z〈Ni〉i. Then [x1/~x]N = y〈[x1/~x]Ni〉i, with y = x1 when z ∈ {x1, . . . , xn}, and

y = z otherwise. From (10) and definitions of membership and of [
∑
~x/x1]N ′, one gets N ′ =

∑
j

E′j ,

hence φ(E′j) for all j, and [
∑
~x/x1]N ′ =

∑
j

[
∑
~x/x1]E′j . In order to fulfil proof obligation Ib, we

need ([x1/~x]N,E′) ∈ R2, for some summand E′ of N ′. From (10) again, we get, for some j,

mem(z〈Ni〉i, [
∑

~x/x1]E′j) . (12)

Let E′j = w〈N ′i〉i, hence φ(N ′i) for all i. We now have two cases:

First case: w = x1. Then [
∑
~x/x1]E′j =

∑n
k=1 xk〈[

∑
~x/x1]N ′i〉i. From (12) we get, for some k,

mem(z〈Ni〉i, xk〈[
∑

~x/x1]N ′i〉i) (13)

hence, for all i,

mem(Ni, [
∑

~x/x1]N ′i) . (14)

From (13), z = xk, hence y = x1. We prove ([x1/~x]N,E′j) ∈ R2, that is (x1〈[x1/~x]Ni〉i, x1〈N ′i〉i) ∈
R2. By definition of R2, we need ([x1/~x]Ni, N

′
i) ∈ R1, for all i. This follows from (14), φ(N ′i) and

the definition of R1.
Second case: w 6= x1. Then [

∑
~x/x1]E′j = w〈[

∑
~x/x1]N ′i〉i. From (12), z = w; from φ(E′j)

and w 6= x1, z /∈ {x1, . . . , xn}. Still from (12), we get again (14) and now ([x1/~x]N,E′j) =
(z〈[x1/~x]Ni〉i, z〈N ′i〉i) ∈ R2 follows as before.

Let (z〈[x1/~x]Ni〉i, z〈N ′i〉i) ∈ R2, hence proof obligation II holds by definition of R2. �

The proviso about variables x2, · · · , xn in the previous lemma is necessary for the “if” implication.
Otherwise, one has the following counter-example: n := 2, N := x2, and T = x2. N is a member
of [x1 + x2/x1]T = x2 but x1 = [x1/x1, x2]N is not a member of T .
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4.2 Decontraction and contraction

Decontraction is related to the inference rule of contraction. By contraction we mean the rule in
the following lemma.

Lemma 8 (Contraction) In system λ the following rule is admissible and invertible:

Γ, x : A, y : A ` t : B

Γ, x : A ` [x/y]t : B .

That is: for all t ∈ λ, Γ, x : A, y : A ` t : B iff Γ, x : A ` [x/y]t : B.

Proof Routine induction on t, using inversion of RIntro and LVecIntro. �

If Γ ≤ Γ′, then, from a proof of Γ′ ⇒ B, we get a proof of Γ⇒ B by a number of contractions.
The following result justifies the terminology “decontraction”.

Lemma 9 (Decontraction and types) Let T be an expression of λcoΣ and Γ′ ∪∆ be a context.
If Γ ∪∆ ` T : B and Γ ≤ Γ′ then Γ′ ∪∆ ` [Γ′/Γ]T : B.

Proof (Notice that we exceptionally consider not necessarily disjoint unions of contexts. This is
immaterial for the proof but will be needed in Lemma 19.) Immediate by coinduction.6 �

In particular, if Γ ` u : B in λ and Γ ≤ Γ′, then indeed Γ′ ` [Γ′/Γ]u : B — but [Γ′/Γ]u is not
guaranteed to be a proof (i. e., a term in λ).

Example 11 Let Γ := {f : p ⊃ p ⊃ q, x : p}, Γ′ := {f : p ⊃ p ⊃ q, x : p, y : p}, and u := f〈x, x〉,
hence Γ ≤ Γ′ and Γ ` u : q. Then, [Γ′/Γ]u = f〈x+ y, x+ y〉, and the given particular case of the
previous lemma entails Γ′ ` f〈x+ y, x+ y〉 : q. The term f〈x+ y, x+ y〉 is no λ-term, but rather
has several members. Due to Lemma 7, these are exactly the (four, in this case) t ∈ λ such that
[x/y]t = u. Thanks to Lemma 8, it follows that each member t of f〈x+ y, x+ y〉 satisfies Γ′ ` t : q.

On the other hand, if T in Lemma 9 is the solution space S(Γ⇒ B) (rather than a mere member
u of it), then [Γ′/Γ]T is indeed the solution space S(Γ′ ⇒ B) — but we have to wait until Lemma
13 to see the proof.

Example 12 Continuing Example 11, by S(Γ⇒ q) = u, we have [Γ′/Γ]S(Γ⇒ q) = f〈x+y, x+y〉.
Lemma 13 will guarantee that f〈x + y, x + y〉 (a term obtained from u by decontraction) is the
solution space S(Γ′ ⇒ q). Thanks to Proposition 1, one sees again that each member of t of
f〈x+ y, x+ y〉 satisfies Γ′ ` t : q.

4.3 Decontraction and solution spaces

The intuitive idea of the next notion is to capture saturation of sums, so to speak.

Definition 5 (Maximal decontraction) Let T ∈ λcoΣ and Γ be a context.

1. Consider an occurrence of x in T . Consider the traversed lambda-abstractions from the root
of T to the given occurrence of x, and let yA1

1 , . . . , yAnn be the respective variables. We call
Γ, y1 : A1 . . . , yn : An the local extension of Γ for the given occurrence of x.

2. T in λcoΣ is maximally decontracted w. r. t. Γ if:

(a) all free variables of T are declared in Γ; and

(b) every occurrence of a variable x in T is as head of a summand x〈Ni〉i in a sum in which
also y〈Ni〉i is a summand (modulo bisimilarity), for every variable y that gets the same
type as x in the local extension of Γ for the occurrence of x.

6With this lemma in place, invertibility in Lemma 8 follows from general reasons. Take N = t in fact (2) and
then apply this lemma and Lemma 3.
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Lemma 10 (Solution spaces are maximally decontracted) Given sequent Γ ⇒ C, the so-
lution space S(Γ⇒ C) is maximally decontracted w. r. t. Γ.

Proof By coinduction. For the variable occurrences that are on display in the one-line formula (1)

for S(Γ⇒ ~A ⊃ p)—that is, for each of the y’s that are head variables of the displayed summands—

the local context is ∆ = Γ, ~x : ~A, and if y1 and y2 have the same type in ∆ with target atom p, both
variables appear as head variables with the same lists of argument terms. For variable occurrences
hidden in the j-th argument of some y, we use two facts: (i) the j-th argument is maximally
decontracted w. r. t. ∆ by coinductive hypothesis; (ii) ∆ collects the variables λ-abstracted on the
path from the root of the term to the root of j-th argument. �

Example 13 Let Γ := {z : p}, ∆ := Γ, x : p, N := λxp.z〈〉 and N ′ := λxp.z〈〉+ x〈〉. The term N
is not maximally decontracted w. r. t. Γ. Intuitively, the sum z〈〉 is not saturated, as it does not
record all the alternative proofs of ∆⇒ p. Hence N cannot be the solution space S(Γ⇒ p ⊃ p) —
the latter is N ′, hence N ′ is maximally decontracted w. r. t. Γ, by the previous lemma. The output
of decontraction [Γ/Γ]N (being N) is not maximally decontracted7. We will be interested mostly in
applying decontraction to already maximally decontracted terms, e. g., solution spaces.

Lemma 11 If |Γ′ \ Γ| and |∆| are disjoint, Γ′,∆ is a context and Γ ≤ Γ′ then [Γ′,∆/Γ,∆]T =
[Γ′/Γ]T .

Proof Easy coinduction. �

The disjointness condition of the previous lemma is rather severe. It can be replaced by maximal
decontraction of the given term.

Lemma 12 If Γ′,∆ is a context, Γ ≤ Γ′ and T is maximally decontracted w. r. t. Γ,∆, then
[Γ′,∆/Γ,∆]T = [Γ′/Γ]T .

Proof By coinduction. The proof then boils down to showing for any subterm z〈Ni〉i of T , if a
w 6= z is found according to the last clause of the definition of decontraction with [Γ′,∆/Γ,∆],
then one can also find w according to the last clause of the definition of decontraction with
[Γ′/Γ]. Assume such a w. Since it comes from the last clause, we have z ∈ dom(Γ,∆) (hence, by
the usual convention on the naming of bound variables, z is even a free occurrence in T ), and
(w : (Γ,∆)(z)) ∈ Γ′ \ Γ. If z ∈ dom(Γ), then we are obviously done. Otherwise, z ∈ dom(∆), and
so (w : ∆(z)) ∈ Γ′ \ Γ. Since |Γ′| = |Γ|, there is (x : ∆(z)) ∈ Γ. Since T is maximally decontracted
w. r. t. Γ,∆, the subterm z〈Ni〉i is one summand in a sum which also has the summand x〈Ni〉i,
and for the latter summand, the last clause of the definition of decontraction with [Γ′/Γ] can be
used with (w : Γ(x)) ∈ Γ′ \ Γ. �

Corollary 1 If Γ′,∆ is a context, Γ ≤ Γ′, then [Γ′,∆/Γ,∆]S(Γ,∆⇒ C) = [Γ′/Γ]S(Γ,∆⇒ C).

Proof Combine the preceding lemma with Lemma 10.8 �

The following main result of this section says that the solution space w. r. t. an inessential
extension of a context is obtained by applying the decontraction operation to the solution space
corresponding to the original context.

Lemma 13 (Decontraction and solution spaces) If Γ ≤ Γ′ then we have S(Γ′ ⇒ C) =
[Γ′/Γ](S(Γ⇒ C)).

7This is in contrast with the definition of co-contraction in [EMP13], which outputs maximally decontracted
terms, e. g., [Γ/Γ]N = N ′ in this case.

8The notion of being maximally decontracted is not essential for this paper. Only this corollary will be used in
the sequel, and it could also be proven directly, in the style of the proof of the following lemma. For this to work
smoothly, the statement should be generalized to: For Γ′,∆,Θ a context and Γ ≤ Γ′, [Γ′,∆/Γ,∆]S(Γ,∆,Θ⇒ C) =
[Γ′/Γ]S(Γ,∆,Θ⇒ C).
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Proof Let R := {(S(Γ′ ⇒ C), [Γ′/Γ](S(Γ ⇒ C))) | Γ ≤ Γ′, C arbitrary}. We prove that R is
closed backward relative to the notion of bisimilarity taking sums of alternatives as if they were
sets. From this, we conclude R ⊆=.

S(Γ′ ⇒ C) = λzA1
1 · · · zAnn .

∑
(z: ~B⊃p)∈∆′

z〈S(∆′ ⇒ Bj)〉j (15)

and

[Γ′/Γ](S(Γ⇒ C)) = λzA1
1 · · · zAnn .

∑
(y: ~B⊃p)∈∆

∑
(w:∆(y))∈∆′y

w〈[Γ′/Γ]S(∆⇒ Bj)〉j (16)

where ∆ := Γ, z1 : A1, . . . , zn : An, ∆′ := Γ′, z1 : A1, . . . , zn : An, and for y ∈ dom(Γ), we set
∆′y := {(y : ∆(y))} ∪ (Γ′ \ Γ), and for y = zi, ∆′y = {(y : ∆(y))}.

From Γ ≤ Γ′ we get ∆ ≤ ∆′, hence

(S(∆′ ⇒ Bj), [∆
′/∆]S(∆⇒ Bj)) ∈ R ,

which fits with the summands in (16) since, by Corollary 1, [∆′/∆]S(∆⇒ Bj) = [Γ′/Γ]S(∆⇒ Bj).
To conclude the proof, it suffices to show that (i) each head-variable z that is a “capability” of the
summation in (15) is matched by a head-variable w that is a “capability” of the summation in
(16); and (ii) vice-versa.

(i) Let z ∈ dom(∆′). We have to exhibit y ∈ dom(∆) such that (z : ∆(y)) ∈ ∆′y. First
case: z ∈ dom(∆). Then, (z : ∆(z)) ∈ ∆′z. So we may take y = z. Second and last case:
z ∈ dom(Γ′) \ dom(Γ). By definition of Γ ≤ Γ′, there is y ∈ dom(Γ) such that (z : Γ(y)) ∈ Γ′.
Since Γ(y) = ∆(y) and z /∈ dom(∆), we get (z : ∆(y)) ∈ ∆′y.

(ii) We have to show that, for all y ∈ dom(∆), and all (w : ∆(y)) ∈ ∆′y, (w : ∆(y)) ∈ ∆′. But
this is immediate. �

Notice that we cannot expect that the summands appear in the same order in (15) and (16).
Therefore, we are obliged to use symmetry of +. It is even convenient to disregard multiplicity, as
seen in the following example.

Example 14 Let Γ := x : p, Γ′ := Γ, y : p, ∆ := z : p, Θ := Γ,∆, Θ′ := Γ′,∆ and C := p. Then
S(Θ⇒ C) = x+ z and S(Θ′ ⇒ C) = x+ y + z. This yields [Θ′/Θ]S(Θ⇒ C) = (x+ y) + (z + y)
and [Γ′/Γ]S(Θ⇒ C) = (x+ y) + z, where parentheses are only put to indicate how decontraction
has been calculated. Taken together, these calculations contradict the strengthening of Lemma 13
without idempotence of +, when the parameters Γ, Γ′, of the lemma are taken as Θ, Θ′, and they
also contradict the analogous strenghtening of Corollary 1 when the parameters Γ, Γ′, ∆, C of the
corollary are as given here.

The summand-wise and therefore rather elegant definition of decontraction is the root cause
for this blow-up of the decontracted terms. However, mathematically, there is no blow-up since we
identify (x+ y) + (z + y) with x+ y + z, as they represent the same set of elimination alternatives.

In the light of Lemma 10, Lemma 13 shows that S(Γ⇒ C), which is maximally decontracted
w. r. t. Γ, only needs the application of the decontraction operation [Γ′/Γ] for Γ ≤ Γ′ to obtain a
term that is maximally decontracted w. r. t. Γ′.

Example 15 (Example 7 continued) Thanks to Lemma 13, N9 is obtained by decontraction
from N5:

N9 = [x : ·, y : (p ⊃ q) ⊃ p, z : p, y1 : (p ⊃ q) ⊃ p, z1 : p / x : ·, y : (p ⊃ q) ⊃ p, z : p]N5 ,

where the type of x has been omitted. Hence, N6, N7, N8 and N9 can be eliminated, and N5 can be
expressed as the (meta-level) fixed point:

N5 = ν N.x〈λy(p⊃q)⊃p
1 .y〈λzp1 .[x, y, z, y1, z1/x, y, z]N〉+ z + y1〈λzp1 .[x, y, z, y1, z1/x, y, z]N〉〉 ,
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now missing out all types in the decontraction operation(s). Finally, we obtain the closed forest

S(⇒ DNPEIRCE) = λxPEIRCE⊃q.x〈λy(p⊃q)⊃p.y〈λzp.N5〉〉

This representation also makes evident that, by exploiting the different decontracted copies of
y, there are infinitely many M ∈ λco \ λ such that mem(M,S(⇒ DNPEIRCE)), in other words,
⇒ DNPEIRCE has infinitely many infinite solutions.

Example 16 (Example 8 continued) Likewise, Lemma 13 shows that, with the notation of
Ex. 8 and omitting the types in the decontraction operation, N ′ = [x, y, z/x, y]N , hence

S(⇒ THREE) = λx(p⊃p)⊃p.x〈λyp.νN.x〈λzp.[x, y, z/x, y]N〉+ y〉

Visibly, the only infinite solution is obtained by choosing always the left alternative, creating
infinitely many vacuous bindings, thus it can be described as λx(p⊃p)⊃p.N0 with N0 = x〈λ p.N0〉
(where is the name of choice for a variable that has no bound occurrences).

We have now seen succinct presentations of the solution spaces of all of the examples in Ex. 1.
Although described with few mathematical symbols, they are still on the informal level of infinitary
terms with meta-level fixed points, but this will be remedied by a finitary system in the next
section.

5 A typed finitary system for solution spaces

In this section we develop a finitary lambda-calculus to represent solution spaces of proof search
problems in λ. The main points in the design of the calculus are:

1. λ is extended with fixed-point variables and formal greatest fixed points, as well as formal
sums;

2. Fixed-point variables stand for spaces of solutions;

3. Fixed-point variables are typed by logical sequents;

4. A relaxed form of binding of fixed-point variables has to be allowed, and controlled through
the typing system.

The calculus is said finitary because its terms are generated inductively; and its terms are called
finitary forests due to the presence of formal sums. There is a semantics of the finitary forests, by
way of an interpretation into forests. The relaxed form of binding is matched, on the semantical
side, by the special operation of decontraction. This is developed in the first subsection, with the
typing system only coming in the second subsection. To each sequent, one can associate a finitary
forest (third subsection) whose interpretation is the forest that represents the solution space of
the sequent: this is our foundational theorem (fourth subsection), showing the completeness of
the semantics w. r. t. those forests that represent solution spaces. The fifth and final subsection
presents a variation of the semantics, that will be useful in the subsequent section of the paper.

5.1 The untyped system λgfp
Σ

The set of inductive cut-free lambda-terms with finite numbers of elimination alternatives, and a
fixed-point operator is denoted by λgfpΣ and is given by the following grammar (read inductively):

(terms) N ::= λxA.N | gfp Xρ.E1 + · · ·+ En | Xρ

(elim. alternatives) E ::= x〈N1, . . . , Nk〉

where X is assumed to range over a countably infinite set of fixed-point variables (also letters Y , Z
will range over them), and where, as for λcoΣ , both n, k ≥ 0 are arbitrary. We extend our practice
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established for λcoΣ of writing the sums E1 + · · ·+En in the form
∑
iEi for n ≥ 0. Also the tuples

continue to be communicated as 〈Ni〉i. As for λcoΣ , we will identify expressions modulo symmetry
and idempotence of +, thus treating sums of elimination alternatives as if they were the set of
those elimination alternatives. Again, we will write T for expressions of λgfpΣ , i. e., for terms and
elimination alternatives.

In the term formation rules, letter ρ appears. It is supposed to stand for “restricted” logical
sequents in that we require them to be atomic, i. e., of the form Γ ⇒ p with atomic conclusion.
Henceforth, this restriction is indicated when using the letter ρ, possibly with decorations. Let
FPV (T ) denote the set of free occurrences of typed fixed-point variables in T , defined with the
expected cases as follows: FPV (Xρ) := {Xρ}, FPV (λxA.N) := FPV (N), FPV (x〈N1, . . . , Nk〉) :=
FPV (N1) ∪ . . . ∪ FPV (Nk). However, in gfp Xρ.

∑
iEi the fixed-point construction gfp binds all

free occurrences of Xρ′ in the elimination alternatives Ei, not just Xρ, as long as ρ ≤ ρ′. To be
precise, the definition is as follows:

FPV (gfp Xρ.E1 + · · ·+ En) :=
( ⋃

1≤i≤n

FPV (Ei)
)
\ {Xρ′ | ρ′ atomic logical sequent and ρ ≤ ρ′}

In fact, the sequent ρ serves a different purpose than being the precise type of bound fixed-point
variables X, see below on well-bound expressions that require at least that only Xρ′ with ρ ≤ ρ′
are free in the body of the gfp-abstraction with binding variable Xρ.

In the sequel, when we refer to finitary forests we have in mind the terms of λgfpΣ . The fixed-point
operator is called gfp (“greatest fixed point”) to indicate that its semantics is (now) defined in
terms of infinitary syntax, but there, fixed points are unique. Hence, the reader may just read this
as “the fixed point”.

We next present a general-purpose interpretation of expressions of λgfpΣ in terms of the coinductive
syntax of λcoΣ (using the ν operation on the meta-level). We stress its general purpose by putting g
as upper index to the semantics brackets. This is for contrast with the special-purpose interpretation
we introduced under the name “simplified semantics” in our subsequent work [ESMP19] and that
will be presented at the end of this Section 5. The general-purpose interpretation of finitary forests
is based on the same ideas as our original interpretation [EMP13] but is more precise on the
conditions that guarantee its well-definedness. (Nonetheless, in the cited paper, no problem arises
with the less precise definitions since only representations of solution spaces were interpreted, see
below.)

We call an expression T trivially regular if FPV (T ) has no duplicates: A set S of typed
fixed-point variables is said to have no duplicates if the following holds: if Xρ1 , Xρ2 ∈ S, then
ρ1 = ρ2. In other words: X does not appear with two different types in S. We do not confine our
investigation to trivially regular expressions, see A for an example where we require more flexibility.

Definition 6 (Regularity in λgfpΣ ) Let T ∈ λgfpΣ . T is regular if for all fixed-point variable names
X, the following holds: if Xρ ∈ FPV (T ) for some sequent ρ, then there is a sequent ρ0 such that,
for all Xρ′ ∈ FPV (T ), ρ0 ≤ ρ′.

Obviously, every trivially regular T is regular (using ρ0 := ρ and reflexivity of ≤ since ρ′ = ρ).
Trivially, every closed T , i. e., with FPV (T ) = ∅, is trivially regular.

As is to be expected, interpretation of expressions of λgfpΣ is done with the help of environments,
a notion which will be made more precise than in [EMP13]. Since interpretations of T only depend
on the values of the environment on FPV (T ), we rather assume that environments are partial
functions with a finite domain. Hence, an environment ξ is henceforth a partial function from typed
fixed-point variables Xρ to (co)terms of λcoΣ with finite domain dom(ξ) that has no duplicates (in
the sense made precise above).

The interpretation function will also be made partial: [[T ]]gξ will only be defined when environment
ξ is admissible for T :

Definition 7 (Admissible environment) An environment ξ is admissible for expression T of

λgfpΣ if for every Xρ′ ∈ FPV (T ), there is an Xρ ∈ dom(ξ) such that ρ ≤ ρ′.
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Figure 8: Definition of general-purpose interpretation

[[Xρ′ ]]gξ = [ρ′/ρ]ξ(Xρ) for the unique ρ ≤ ρ′ with Xρ ∈ dom(ξ)

[[gfp Xρ.
∑
i

Ei]]
g
ξ = ν N.

∑
i

[[Ei]]
g
ξ∪[Xρ 7→N ]

[[λxA.N ]]gξ = λxA.[[N ]]gξ
[[x〈Ni〉i]]gξ = x〈[[Ni]]gξ〉i

Notice that the required sequent ρ in the above definition is unique since ξ is supposed to be an
environment. This observation even implies the following characterization of regularity:

Lemma 14 T ∈ λgfpΣ is regular iff there is an environment ξ that is admissible for T .

Proof Obvious. �

We have to add a further restriction before defining the interpretation function:

Definition 8 (Well-bound expression) We call an expression T of λgfpΣ well-bound iff for any

of its subterms gfp Xρ.
∑
iEi and any free occurrence of Xρ′ in any Ei, ρ ≤ ρ′.

According to our definition of FPV , an expression that is not well-bound has a subterm N :=
gfp Xρ.

∑
iEi such that FPV (N) contains some Xρ′ that “escapes” the binding because ρ ≤ ρ′

does not hold. Finitary forests we will construct to represent search spaces therefore ought to be
well-bound, and this will be strengthened in Lemma 18 to a question of typability.

Definition 9 (General-purpose interpretation of finitary forests as forests) For a well-

bound expression T of λgfpΣ , the interpretation [[T ]]gξ for an environment ξ that is admissible for T
is given by structural recursion on T in Figure 8. Notice that the case of gfp uses the extended
environment ξ ∪ [Xρ 7→ N ] that is admissible for Ei thanks to our assumption of well-boundness.
(Moreover, by renaming X, we may suppose that there is no Xρ′ in dom(ξ).). The meta-level
fixed point over N is well-formed since every elimination alternative starts with a head/application
variable, and all occurrences of N in the summands are thus guarded by constructors for elimination
alternatives, and therefore the fixed-point definition is productive (in the sense of producing more
and more data of the fixed point through iterated unfolding) and uniquely determines a forest, unlike
an expression of the form ν N.N that does not designate a forest and would only come from the
syntactically illegal term gfpXρ.Xρ.

We better not use the shorthand [[·]]gξ with the placeholder for the expression from λgfpΣ to be
interpreted since the question of admissibility of ξ depends on the actual argument T .

The interpretation [[T ]]gξ only depends on the values of ξ for arguments Xρ for which there is a

sequent ρ′ such that Xρ′ ∈ FPV (T ). In more precise words, the interpretations [[T ]]gξ and [[T ]]gξ′
coincide whenever ξ and ξ′ agree (already w. r. t. definedness) on all typed fixed-point variables Xρ

for which there is a sequent ρ′ such that Xρ′ ∈ FPV (T ).
If T is closed, i. e., FPV (T ) = ∅, then the empty function is an admissible environment for T ,

and the environment index in the interpretation is left out, hence the interpretation is abbreviated
to [[T ]]g. Anyway, the interpretation of a closed T does not depend on the environment.

If no Xρ′ occurs free in
∑
iEi for any sequent ρ′, we allow ourselves to abbreviate the finitary

forest gfp Xρ.
∑
iEi as

∑
iEi. Thanks to our observation above on the dependence of [[T ]]gξ on ξ,

we have [[
∑
i

Ei]]
g
ξ =

∑
i

[[Ei]]
g
ξ .
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Figure 9: Typing system for λgfpΣ

(X : ρ) ∈ Ξ ρ ≤ ρ′ = (Θ′ ⇒ p) Θ′ ⊆ Γ

Ξ cΓ ` Xρ′ : p

for all i, Ξ, X : ρ cΓ ` Ei : p ρ = (Θ⇒ p) Θ ⊆ Γ

Ξ cΓ ` gfp Xρ.
∑
iEi : p

Ξ cΓ, x : A ` N : B

Ξ cΓ ` λxA.N : A ⊃ B
(x : ~B ⊃ p) ∈ Γ for all i, Ξ cΓ ` Ni : Bi

Ξ cΓ ` x〈Ni〉i : p

5.2 Typing system for λgfp
Σ

A typing system for λgfpΣ is defined in Figure 9. The main desiderata for this typing system have
been Lemma 19, that the interpretation of finitary forests as forests preserves types, and Lemma 21,
that a finitary representation of the solution space (that can be found) has the original sequent as
type—for details see below.

The typing system for λgfpΣ derives sequents Ξ cΓ ` T : B. The first context Ξ has the form
−−−→
X : ρ, so fixed-point variables are typed by atomic sequents. The first typing rule in Figure 9
implies that fixed-point variables enjoy a relaxed form of binding.

The context Ξ is such that no fixed-point variable name X occurs twice (there is no condition
concerning duplication of sequents). So, Ξ can be (and will be) seen as a partial function, and Ξ,
when regarded as a set of typed fixed-point variables, has no duplicates. If Ξ is empty, then we
write Γ ` T : B instead of Ξ cΓ ` T : B.

Lemma 15 (Weakening) If Ξ cΓ ` T : B, Ξ ⊆ Ξ′ and Γ ⊆ Γ′ then Ξ′ cΓ′ ` T : B.

Proof Obvious since, for the Ξ argument, there is only look-up, and for the Γ argument, weakening
is directly built into the rules concerning fixed-point variables and goes through inductively for the
others. �

Lemma 16 If Ξ cΓ ` T : B then the free term variables of T are in dom(Γ).

Notice that the free term variables of XΓ⇒p are dom(Γ) and that dom(Γ) enters the free term
variables of gfpXΓ⇒p.

∑
iEi.

Proof Induction on T . �

Lemma 17 If Ξ cΓ ` T : B and Xρ′ ∈ FPV (T ) then there is a sequent ρ such that (X : ρ) ∈ Ξ
and ρ ≤ ρ′.

Proof Induction on T . �

Corollary 2 If Ξ cΓ ` T : B, and ξ is a partial function from typed fixed-point variables Xρ to
(co)terms of λcoΣ with domain Ξ, then ξ is an environment, and it is admissible for T .

As a consequence of the last lemma, we obtain by induction on T :

Lemma 18 (Typable terms are well-bound) If Ξ cΓ ` T : B then T is well-bound.

Proof Induction on T . �

Definition 10 (Well-typed environment) An environment ξ is well-typed w. r. t. context Γ if
for all XΘ⇒q ∈ dom(ξ), Θ ⊆ Γ and Γ ` ξ(XΘ⇒q) : q (in λcoΣ ).
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Lemma 19 (Interpretation preserves types) Let Ξ cΓ ` T : B in λgfpΣ and ξ be a well-typed
environment w. r. t. Γ with dom(ξ) = Ξ. Then Γ ` [[T ]]gξ : B in λcoΣ . In particular (for empty Ξ), if

Γ ` T : B in λgfpΣ , then Γ ` [[T ]]g : B in λcoΣ .

Proof Induction on T , using Lemma 9 in the base case of a fixed-point variable and using an
embedded coinduction in the case of a greatest fixed point. �

5.3 Finitary representation of solution spaces

Solution spaces for λ can be shown to be finitary, with the help of the finitary representation
mapping F(σ; Ξ), which we introduce now.

Definition 11 (Finitary representation) Let Ξ :=
−−−→
X : ρ be a vector of m ≥ 0 declarations

(Xi : ρi) with ρi = Θi ⇒ qi where no fixed-point variable name occurs twice. The definition of

F(Γ⇒ ~A ⊃ p; Ξ) is as follows:
If, for some 1 ≤ i ≤ m, p = qi, Θi ⊆ Γ and |Θi| = |Γ| ∪ {A1, . . . , An}, then

F(Γ⇒ ~A ⊃ p; Ξ) := λzA1
1 · · · zAnn .Xρ

i ,

where i is taken to be the biggest such index.9 Otherwise,

F(Γ⇒ ~A ⊃ p; Ξ) := λzA1
1 · · · zAnn .gfp Y ρ.

∑
(y: ~B⊃p)∈∆

y〈F(∆⇒ Bj ; Ξ, Y : ρ)〉j

where, in both cases, ∆ := Γ, z1 : A1, . . . , zn : An with a context z1 : A1, . . . , zn : An of “fresh”
variables (not occurring in Γ or any Θi), and ρ := ∆⇒ p. In the latter case, Y is tacitly supposed
not to occur in Ξ (otherwise, the extended list of declarations would not be well-formed).

Notice that, in the first case, the leading lambda-abstractions bind variables in the type superscript
ρ of Xi, and that the condition Θi ⊆ Γ—and not Θi ⊆ ∆—underlines that the fresh variables
z1, . . . , zn cannot be consulted although their types enter well into the next condition |Θi| =
|Γ| ∪ {A1, . . . , An}, which is equivalent to |Θi| = |∆| (of which only |Θi| ⊇ |∆| needs to be checked).
The first case represents the situation when the solution space is already captured by a purported
solution Xi for the sequent Θi ⇒ p with the proper target atom, with all hypotheses in Θi available
in Γ and, finally, no more formulas available for proof search in the extended current context ∆
than in Θi. Hence, the purported solution Xi only needs to be expanded by decontraction in order
to cover the solution space for ρ (as will be confirmed by Theorem 1). That F indeed is a total
function will be proven below in Lemma 20.

In the sequel, we will omit the second argument Ξ to F in case Ξ is the empty vector of
declarations (m = 0 in the definition).

Note that, whenever one of the sides of the following equation is defined according to the first or
second case, then so is the other, and the equation holds (of course, it is important to use variables
zi that are fresh w. r. t. Ξ):

F(Γ⇒ ~A ⊃ p; Ξ) = λzA1
1 · · · zAnn .F(Γ, z1 : A1, . . . , zn : An ⇒ p; Ξ)

Example 17 (Examples 7 and 15 continued) We calculate the finitary forest representing
the solution space for the twice negated Peirce formula A := DNPEIRCE, writing A0 for PEIRCE.
The successive steps are seen in Fig. 10 where we continue with the omission of formulas in the
left-hand sides of sequents. For brevity, we do not repeat the sequents associated with the fixed-point
variables. The names of intermediary terms are chosen for easy comparison with Example 7. The

9In the original definition [EMP13, Definition 22 of function N ], the need for this disambiguation was neglected,
with an insufficient extra condition that no sequent occurs twice among the ρi.
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Figure 10: Steps towards calculating F(⇒ DNPEIRCE)

F(⇒ A) = λxA0⊃q.N ′1
N ′1 = gfp Xx⇒q

1 .x〈F(x⇒ A0;X1)〉
F(x⇒ A0;X1) = λy(p⊃q)⊃p.N ′3

N ′3 = gfp Xx,y⇒p
2 .y〈F(x, y ⇒ p ⊃ q;X1, X2)〉

F(x, y ⇒ p ⊃ q;X1, X2) = λzp.N ′5
N ′5 = gfp Xx,y,z⇒q

3 .x〈F(x, y, z ⇒ A0;X1, X2, X3)〉
F(x, y, z ⇒ A0;X1, X2, X3) = λy

(p⊃q)⊃p
1 .N ′7

N ′7 = gfp Xx,y,z,y1⇒p
4 .

y〈F(x, y, z, y1 ⇒ p ⊃ q;X1, X2, X3, X4)〉+ z+
y1〈F(x, y, z, y1 ⇒ p ⊃ q;X1, X2, X3, X4)〉

F(x, y, z, y1 ⇒ p ⊃ q;X1, X2, X3, X4) = λzp1 .N
′
9

N ′9 = Xx,y,z,y1,z1⇒q
3

fixed-point variables X1, X2 and X4 thus have no occurrences in F(⇒ A), and, as announced
before, we will omit them in our resulting finitary forest

F(⇒ DNPEIRCE) = λxPEIRCE⊃q.x〈λy(p⊃q)⊃p.y〈λzp.N ′5〉〉
with

N ′5 = gfp Xx,y,z⇒q
3 .x〈λy(p⊃q)⊃p

1 .y〈λzp1 .X
x,y,z,y1,z1⇒q
3 〉+ z + y1〈λzp1 .X

x,y,z,y1,z1⇒q
3 〉〉 ,

still omitting the formulas in the left-hand sides of the sequents.

Example 18 For the other examples, we have the following representations.

• F(BOOLE) = λxp.λyp.x+ y.

• F(INFTY) = λfp⊃p.gfp Xf :p⊃p⇒p.f〈Xf :p⊃p⇒p〉.

• F(CHURCH) = λfp⊃p.λxp.gfp Xρ.f〈Xρ〉+ x with ρ := f : p ⊃ p, x : p⇒ p.

• F(PEIRCE) = λx(p⊃q)⊃p.x〈λyp.O〉 (using O for the empty sum under the omitted gfp).

• F(THREE) = λx(p⊃p)⊃p.x〈λyp.gfpY ρ1 .x〈λzp.Y ρ2〉+ y〉 with ρ1 := x : (p ⊃ p) ⊃ p, y : p⇒ p,
ρ2 := x : (p ⊃ p) ⊃ p, y : p, z : p⇒ p, hence ρ1 ≤ ρ2.

Notice that for INFTY, CHURCH and THREE, the presentation of the solution spaces had already
been brought close to this format thanks to cycle analysis that guided the unfolding process, and
Thm. 1 below ensures that this works for any sequent.

Strictly speaking, Definition 11 is not justified since the recursive calls do not follow an obvious
pattern that guarantees termination. The following lemma spells out the measure that is recursively
decreasing in the definition of F .

To this end, we introduce some definitions. Given a finite set A of formulas

Asub := {B | there exists A ∈ A such that B is subformula of A} .

We say A is subformula-closed if Asub = A. A stripped sequent is a pair (B, A), where B is a finite
set of formulas. A stripped restricted sequent additionally has that A is an atom. If σ = Γ⇒ A,
then its stripping |σ| denotes the stripped sequent (|Γ|, A). We say (B, A) is over A if B∪{A} ⊆ A.
There are size(A) := a · 2k stripped restricted sequents over A, if a (resp. k) is the number of
atoms (resp. formulas) in A.
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Lemma 20 (Termination of F) For all sequents σ and vectors Ξ as in Definition 11, the finitary
forest F(σ; Ξ) is well-defined.

Proof As in the definition, we consider a sequent σ of the form Γ⇒ C with C = ~A ⊃ p. Let us
call recursive call a “reduction”

F(Γ⇒ ~A ⊃ p;
−−−−−−−→
X : Θ⇒ q) F(∆⇒ Bj ;

−−−−−−−→
X : Θ⇒ q, Y : ρ) (17)

where the if-guard in Def. 11 fails; ∆ and ρ are defined as in the same definition; and, for some
y, (y : ~B ⊃ p) ∈ ∆. We want to prove that every sequence of recursive calls from F(Γ⇒ C; Ξ) is
finite.

Observe that the context of the first argument to F is monotonically increasing during any
sequence of recursive calls: in the reduction, one passes from Γ to its extension ∆ by fresh variables.
Since only fresh variables are added to Γ, this means that whenever for some i, Θi is not a subset
of Γ in the original call to F , this will hold of all the further contexts occurring in the recursive
calls. In other words, the if-guard in Def. 11 fails forever, hence Xi will not enter the result of the
computation. Therefore, without loss of generality, we may assume that for all i, Θi ⊆ Γ. Trivially,
this condition is then inherited to the recursive calls: for 1 ≤ i ≤ m, Θi ⊆ Γ ⊆ ∆, and Θm+1 = ∆
which is the context in the new first argument of F .

In the original definition [EMP13, Definition 22 of function N ], it was required that no sequent
occurs twice among the Θi. Of course, if ρj = ρi with j < i, then the first case of the definition of
F will not take into account Xj : ρj (since the biggest i with the required properties is chosen),
hence it will never be taken into account. Therefore, without loss of generality, we may assume
that all ρi are different.

But we can do better: Since we may already assume that for all i, Θi ⊆ Γ, we infer from
|ρj | = |ρi| with j < i that the first case of the definition of F will not take into account Xj : ρj
(for the same reason as before). Therefore, without loss of generality, we may assume that all the
stripped (restricted) sequents |ρi| are different, in other words, size(Ξ) = m, where m ≥ 0 is the
length of vector Ξ and size(Ξ) is the number of elements of |Ξ| and |Ξ| := {|ρ| : ρ ∈ Ξ}. Also this
condition is inherited to the recursive calls: Since Θi ⊆ Γ for all i, if |ρ| = |Θi| for some i ≥ m,
the first clause of Def. 11 would have applied, but we assumed to be in the recursive case. As
a consequence of this extra assumption, the first clause of the definition will never be with two
possible indices i out of which the biggest would have to be chosen.

Let A := (|Γ| ∪ {C, q1, . . . , qm})sub. By our assumptions, the strippings of σ and all ρi are over
A. In particular, m ≤ size(A).

We will now show that for sub-formula closed A, if the strippings of σ and all ρi are over A, then
this also holds for the arguments F is called with in the recursive call: |∆| = |Γ|∪{A1, . . . , An} ⊆ A
since ~A ⊃ p ∈ A and A is subformula-closed. For the same reason p ∈ A. Bj is a subformula of
~B ⊃ p and ~B ⊃ p ∈ |∆| because (y : ~B ⊃ p) ∈ ∆, for some y.

Since in subsequent recursive calls, the strippings of the arguments are all over A, we continue
to have m′ ≤ size(A) for all subsequent lengths m′ of the second argument of F . Of course, this
is a fixed bound on the recursion depth which is therefore finite. Put differently, termination is
guaranteed since the measure size(A)−m ≥ 0 strictly decreases. �

In particular, we have justified the definition of F(σ) for all sequents σ.
Notice that yet more detailed invariants could be established above (under the same restrictions

we were allowed to ask for without loss of generality): Θ1 ⊆ . . . ⊆ Θm would also be preserved
under reduction, as well as that the last Θm is Γ, unless m = 0. Yet another invariant is that all qi
are in |Γ|sub. All of them can be trivially initiated with empty Ξ and thus are observed in F(σ).

Also notice that, while the growing size of Ξ is our argument for termination, an implementation
for calculating F(σ) would rather not store all of Ξ in its recursive calls: as soon as a reduction
occurs where |∆| is a strict superset of |Γ|, it is clear that the if-case of Def. 11 can never apply
for some element in Ξ in the recursive calculation of F(∆⇒ Bj ; Ξ, Y : ρ), so (the old) Ξ does not
need to be stored in those further recursive calls.

The main objective of the typing system in Section 5.2 is attained by the following result:

24



Figure 11: Part (iii) of first main case in proof of Theorem 1

LHS = λzA1
1 · · · zAnn .[[X∆⇒p

i ]]gξΞ (by definition)

= λzA1
1 · · · zAnn .[(∆⇒ p)/ρi]ξΞ(Xρi

i ) (by definition and (*) above)

= λzA1
1 · · · zAnn .[(∆⇒ p)/ρi]S(ρi) (by definition of ξΞ)

= λzA1
1 · · · zAnn .S(∆⇒ p) (by Lemma 13 and (*))

= RHS (by definition)

Lemma 21 (Finitary representation is well-typed)

Ξ cΓ ` F(Γ⇒ C; Ξ) : C .

In particular, Γ ` F(Γ⇒ C) : C.

Proof By structural recursion on the obtained finitary forest F(Γ ⇒ C; Ξ). Notice that the
context weakening built into the gfp rule in Fig. 9 is not needed for this result (i. e., Θ and Γ of
that rule can always agree). �

Corollary 3 (Finitary representation is well-bound) F(σ; Ξ) is well-bound, and F(σ) is
closed.

Proof Use Lemma 18 for the first part. Notice that this is needed to argue that free fixed-point
variables of F(σ; Ξ) have necessarily names that occur in Ξ. But we can just apply Lemma 17 for
empty Ξ to obtain the second part. �

5.4 Equivalence of representations

Now, we establish the result on the equivalence of the coinductive and inductive representations
of the solution spaces. For this, we need that forests are identified not only up to bisimilarity,
because of the rather rough way decontraction operates that takes identification up to symmetry
and idempotence of the sum operation for the elimination alternatives for granted. The proof below
is a revision of the proof of [EMP13, Theorem 24] in the light of the new notion of environments
and their admissibility w. r. t. a term, but with the help from the typing system for finitary forests.

Theorem 1 (Equivalence) For any sequent σ, [[F(σ)]]g = S(σ).

Proof For a vector Ξ =
−−−→
X : ρ satisfying the requirements in Definition 11, the mapping ξΞ obtained

by setting ξΞ(Xρi
i ) := S(ρi) is an environment. By Cor. 3, F(σ; Ξ) is well-bound. Moreover, using

Cor. 2, we have that ξΞ is admissible for F(σ; Ξ). Therefore, [[F(σ; Ξ)]]gξΞ is well-defined. We will

show that [[F(σ; Ξ)]]gξΞ = S(σ) – whose right-hand side is independent from Ξ, and thus also its
left-hand side.

The theorem follows by taking for Ξ the empty vector, since by convention the empty environment
is omitted from the notation for the general-purpose interpretation. (Anyway, by Cor. 3, F(σ) is
closed and thus its general-purpose interpretation does not depend on an environment.)

The proof is by structural induction on the term F(σ; Ξ). As in Definition 11, let σ = Γ⇒ ~A ⊃ p
and ∆ := Γ, z1 : A1, . . . , zn : An. We will again assume that ρi is given as Θi ⇒ qi.

Case p = qi and Θi ⊆ Γ and |Θi| = |∆|, for some 1 ≤ i ≤ m, which implies ρi ≤ (∆⇒ p) (*).
The proof of this case is completed in Figure 11.

The inductive case is essentially an extension of the inductive case in [EMP13, Theorem 15] for
the Horn fragment. In this other case, we calculate as follows.

LHS = λzA1
1 · · · zAnn .N∞, where N∞ is the unique solution of the following equation

N∞ =
∑

(y:
−→
B⊃p)∈∆

y〈[[F(∆⇒ Bj ; Ξ, Y : ρ)]]gξΞ∪[Y ρ 7→N∞]〉j (18)
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where ρ := ∆ ⇒ p. Now observe that, by inductive hypothesis (applied to the subexpressions
F(∆⇒ Bj ; Ξ, Y : ρ) of F(σ; Ξ)), the following equations (19) and (20) are equivalent.

S(ρ) =
∑

(y:
−→
B⊃p)∈∆

y〈[[F(∆⇒ Bj ; Ξ, Y : ρ)]]gξ(Ξ,Y :ρ)
〉j (19)

S(ρ) =
∑

(y:
−→
B⊃p)∈∆

y〈S(∆⇒ Bj)〉j (20)

By definition of S(ρ), (20) holds; since ξ(Ξ,Y :ρ) = ξΞ ∪ [Y ρ 7→ S(ρ)] and because of (19), S(ρ) is

the solution N∞ of (18). Therefore LHS = λzA1
1 · · · zAnn .S(ρ), and the latter is RHS by definition

of S(Γ⇒ ~A ⊃ p). �

Corollary 4 F(σ; Ξ) is regular.

Proof By Lemma 14, F(σ; Ξ) is regular since ξΞ in the proof above is admissible for it. �

See A for an even stronger result than regularity.

Corollary 5 For every M ∈ λco, mem(M, [[F(σ)]]g) iff mem(M,S(σ)).

Proof Obviously, membership is not affected by bisimilarity (modulo α-equivalence and our
identfications for the sum operation). �

The equivalence theorem may be seen as achieving completeness for the finitary representation
of solution spaces: every solution space is the semantics of some finitary forest. Such completeness
cannot be expected at the level of individual solutions. Take, for instance, Γ = x0 : p ⊃ p, . . . , x9 :
p ⊃ p. Then S(Γ⇒ p) is the forest N such that N = x0 < N > + · · ·+ x9 < N >, one of whose
members is, say, the decimal expansion of π.

Although solution spaces may have irrational members, they have “rationality” as a collection,
since essentially—not taking into account contraction phenomena—they are generated by repeating
infinitely a choice from a fixed menu. It is this “rationality” that can be expressed by finitary
forests.

5.5 Special-purpose semantics

With the equivalence theorem above, the general-purpose semantics in form of interpretation [[T ]]gξ
for finitary forests T and suitable environments ξ has demonstrated its usefulness. However, when
it comes to verifying properties of logical sequents through our approach, the “full” solution spaces
given by S(σ) play an important role.

In fact, when inspecting the proof of Theorem 1 we observe that the considered environments
all have form ξΞ, always mapping fixed-point variables Xρ to full solution spaces S(ρ)—this even
true for the extended environment ξΞ ∪ [Y ρ 7→ N∞], as comes out of the proof that N∞ = S(ρ) by
using equations (18), (19) and the definition of S.

This motivates the more radical step of not only mapping all free fixed-point variables to
“their” solution space, but any occurrence, free or bound. This gives rise to the special-purpose
semantics that was mentioned in Section 5.1. To recall from above, we introduced it under the
name “simplified semantics” in [ESMP19, Def. 15].

Definition 12 (Special-purpose interpretation of finitary forests as forests) For an ex-

pression T of λgfpΣ , the special-purpose interpretation [[T ]]s is an expression of λcoΣ given by structural
recursion on T :

[[Xρ]]s = S(ρ) [[λxA.N ]]s = λxA.[[N ]]s

[[gfp Xρ.
∑
i

Ei]]
s =

∑
i

[[Ei]]
s [[x〈Ni〉i]]s = x〈[[Ni]]s〉i
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Note that the base case profits from the sequent annotation at fixed-point variables, and the
interpretation of the gfp -constructor has nothing to do with a greatest fixed point. Of course, this
may be “wrong” according to our understanding of a (greatest) fixed point. So, we have to single

out those expressions in λgfpΣ for which this interpretation serves its special purpose.

Definition 13 (Proper expressions) An expression T ∈ λgfpΣ is proper if for any of its subterms

T ′ of the form gfp Xρ.
∑
i

Ei, it holds that [[T ′]]s = S(ρ).

For proper expressions, the special-purpose semantics agrees with the general-purpose semantics
we studied before – for the special case of environments we used in the proof of the equivalence
theorem. Of course, this can only make sense for expressions which have that previous semantics,
in other words for well-bound and regular expressions.

Lemma 22 (Lemma 22 in [ESMP19]) Let T be well-bound and ξ be an admissible environment
for T such that for all Xρ ∈ dom(ξ): ξ(Xρ) = S(ρ). If T is proper, then [[T ]]gξ = [[T ]]s.

Corollary 6 For well-bound, closed and proper T , [[T ]]g = [[T ]]s.

The corollary is sufficient for our purposes since F(ρ) is not only well-bound and closed, but also
proper, which is the more difficult part of the following result.

Lemma 23 (Equivalence for [[·]]s – Theorem 19 in [ESMP19]) Let σ be a sequent and Ξ as
in Def. 11.

1. F(σ; Ξ) is proper.

2. [[F(σ; Ξ)]]s = S(σ).

In particular, [[F(σ; Ξ)]]s is independent of Ξ, and this conforms with the initial motivation for the
special-purpose semantics, as described above, that leaves no room for different interpretations of
“purported solutions” Xi (cf. our discussion right after Def. 11).

6 Application: analysis of proof search

Given a (proof-)search problem, determined by a given logical sequent, one is usually interested in
its resolution10 (the finding of the solution), what is searched for is a finite solution (a proof), and
the unique analysis done of the problem is the one that results from the success or failure of the
search—the given sequent is or is not provable. In addition, since one wants a finite solution, a
layer of algorithmic control (failure and loop detection, followed by backtracking [How97]) has to
be added to the purely logical structure of the search. Finally, this mix of bottom-up proof-search
and control is a generic recipe for decision procedures for the logic at hand.11

How does this picture change, given the representations of proof search developed before? First,
we may separate all the above concerns relating to proof-search problems: we may postpone control
considerations, by giving prominence to solutions rather than proofs; and we may separate analysis
from resolution: resolution is just one possible analysis one can make of the representation of the
whole collection of solutions that we have at our disposal. Second, we obtain decision procedures
just by doing analysis of representations of solution spaces, that is, without “running” the search
again: the search is run only once, to generate the finitary representation of the solution space.
Third, the decision algorithms are syntax-directed, recursive procedures, driven by the syntax of
the finitary calculus, avoiding the mentioned mix of bottom-up proof search and ad hoc algorithmic
control.

10This word here is of course not to be taken in its well-known, technical sense.
11See for instance the textbook proof of decidability of propositional intuitionistic logic in [SU06]. Already

Gentzen’s proof of decidability for the same logic [Gen69] is based on algorithmic control of proof search; however,
in his case, deductive proof search is employed.
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Figure 12: EFP and NEFP predicates, for P satisfying the proviso: P ⊆ exfin ◦ S and P decidable.

P (σ)

EFP (Xσ)

EFP (N)

EFP (λxA.N)

EFP (Ej)

EFP (gfpXσ.
∑
iEi)

∀i, EFP (Ni)

EFP (x〈Ni〉i)

¬P (σ)

NEFP (Xσ)

NEFP (N)

NEFP (λxA.N)

∀i, NEFP (Ei)

NEFP (gfpXσ.
∑
iEi)

NEFP (Nj)

NEFP (x〈Ni〉i)

In this section we give an indication of how the approach to proof search described and justified
in the previous sections, and with the characteristics identified above, can be applied, in the context
of implicational logic and the simply-typed lambda-calculus, to give new answers to well-known
problems about proof search, like decision and counting problems (Subsection 6.1), to pose and
solve new problems (Subsection 6.2), and to generalize known theorems (Subsection 6.3). The
material in Subsection 6.3 is new, while the material sketched in the other subsections was detailed
elsewhere [ESMP19, EMP19].

6.1 New solutions for old problems

Our finitary representation of solution spaces F(σ) allows new syntax-directed solutions for
inhabitation and counting problems in simply-typed λ-calculus, as shown in detail in [ESMP19].
Here we briefly illustrate these new solutions.

Given a sequent σ = (Γ⇒ A), let I(σ) denote the set of (η-long β-normal) inhabitants of A
relative to context Γ in λ, i. e., I(σ) := {t ∈ λ | Γ ` t : A in λ}. For T ∈ λcoΣ , let Efin(T ) denote
the finite extension of T , i. e., Efin(T ) = {t ∈ λ | mem(t, T )}. Observe that, due to Prop. 1.2 and
Theorem 1,

I(σ) = Efin(S(σ)) = Efin([[F(σ)]]g).

The inhabitation problem in simply-typed λ-calculus can be formulated as the problem “given
sequent σ, is the set I(σ) nonempty?” (as is well-known, the answer to this question does not
depend on whether all λ-terms are considered or only the β-normal ones or even the η-long
β-normal terms). Our solution to this problem starts by defining two predicates exfin and nofin on
expressions in λcoΣ (Fig. 5 of [ESMP19]), which are complementary (exfin(T ) iff nofin(T ) does not
hold [ESMP19, Lemma 20]), and capture emptiness of the set of inhabitants (nofin(T ) iff Efin(T ) is
empty [ESMP19, Lemma 21]). Next, we define companion predicates EFP and NEFP on expressions

in λgfpΣ that are parameterized by a predicate P on sequents satisfying the proviso: P ⊆ exfin ◦ S
and P decidable. The syntax-directed definitions of the two predicates are recalled in Fig. 12.
Again these predicates are complementary (EFP (T ) iff NEFP (T ) does not hold [ESMP19, Lemma
22]), and the syntax-directedness of their definitions allows to immediately conclude that they are
decidable. Then, the following holds:

Lemma 24 (Deciding the existence of inhabitants in λ – Theorem 24 of [ESMP19])

1. For any T ∈ λgfpΣ well-bound, proper and closed, EFP (T ) iff exfin([[T ]]s).

2. EF∅(F(σ)) iff exfin(S(σ)) iff I(σ) is non-empty.

3. The problem, “given σ, is I(σ) non-empty” is decided by deciding EF∅(F(σ)).

Summing up, the inhabitation problem of simply-typed lambda-calculus can be decided by first
computing F(σ), and then traversing its structure to decide EF∅(F(σ)). The result allows definitions
of sharper versions of the predicates EF and NEF that are still decidable: EF? := EFP EF

∗
and

NEF? := NEFP EF
∗

for P EF
∗ := EF∅ ◦ F (which meets the proviso of Fig. 12 thanks to Lemma 24.2 and

decidability of EF∅(F(σ))). The main result on these predicates is Lemma 27 of [ESMP19] that,
without any condition on T , we have EF?(T ) iff exfin([[T ]]s).
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Figure 13: FFP and NFFP predicates, for P satisfying the proviso: P ⊆ finfin ◦ S and P decidable.

P (σ)

FFP (Xσ)

FFP (N)

FFP (λxA.N)

∀i, FFP (Ei)

FFP (gfpXσ.
∑
iEi)

∀i, FFP (Ni)

FFP (x〈Ni〉i)
NEF?(Nj)

FFP (x〈Ni〉i)

¬P (σ)

NFFP (Xσ)

NFFP (N)

NFFP (λxA.N)

NFFP (Ej)

NFFP (gfpXσ.
∑
iEi)

NFFP (Nj) ∀i, EF?(Ni)

NFFP (x〈Ni〉i)

An easy consequence (that also uses Lemma 24.2) for EF? we need in this paper, is that,
if N = gfpXρ.

∑
iEi with N proper (but not necessarily closed), then EF?(N) is equivalent to

EF∅(F(ρ)).
A second consequence needed for this paper makes use of Lemma 23.2 (more precisely, the

remark immediately after the lemma): for all sequents σ and declarations Ξ and Ξ′, EF?(F(σ; Ξ))
iff EF?(F(σ; Ξ′)), which can in particular be used for empty Ξ′.

Following the same steps, but making use of the already obtained decidable predicates EF? and
NEF?, a syntax-directed solution can be construed also for the not so well-known problem “given a
sequent σ, is I(σ) finite” (studied for example in [BY79, Hin97]). So, we define complementary
predicates inffin and finfin on expressions in λcoΣ such that finfin(T ) iff Efin(T ) [ESMP19, Figure 7,
Lemmas 28 and 29]. Then we define the companion, complementary predicates FFP and NFFP on

expressions in λgfpΣ , parameterized by a predicate P on sequents satisfying the proviso: P ⊆ finfin◦S
and P decidable. Again, to appreciate the syntax-directedness of these definitions we recall them
in Fig. 13.

Lemma 25 (Deciding type finiteness in λ – Theorem 33 of [ESMP19])

1. For any T ∈ λgfpΣ well-bound, proper and closed, FFP (T ) iff finfin([[T ]]s).

2. FF∅(F(σ)) iff finfin(S(σ)) iff I(σ) is finite.

3. The problem, “given σ, is I(σ) finite” is decided by deciding FF∅(F(σ)).

One can then also define [ESMP19, Def. 35] sharper versions of the predicates FF and NFF that are
still decidable: FF? := FFP FF

∗
and NFF? := NFFP FF

∗
for P FF

∗ := FF∅ ◦ F (which meets the proviso of
Fig. 13 thanks to Lemma 25.2 and decidability of FF∅(F(σ))). A generalization of this construction
for other notions of finiteness is found in [EMP19, Def. 4.17]. However, we will not even make use
of FF? in the remainder of this paper.

In [ESMP19], we show that the decision of finiteness of simple types can be supplemented with
a syntax-directed procedure to count the number of inhabitants (when there are finitely many of
them). This is done through a counting function #(T ). In its finitary version (defined only for

a subset of λgfpΣ – the so-called head-variable controlled expressions – but big enough to contain
all the finitary representations of solution spaces F(σ)), #(T ) has the following extremely simple
definition:

#(Xσ) := 0 #(gfpXσ.
∑
iEi) :=

∑
i #(Ei)

#(λxA.N) := #(N) #(x〈Ni〉i) :=
∏
i #(Ni)

Then the following instance of [ESMP19, Theorem 42] is obtained:

Lemma 26 (Counting theorem) If I(σ) is finite then #(F(σ)) is the cardinality of I(σ).

6.2 New questions asked and answered

The “finiteness” of a simple type A usually means the finiteness of the collection of its inhabitants
(the meaning taken in the previous subsection). However, as shown in [EMP19], this concept of
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finiteness is just an instance of a “generalized” concept of finiteness that emerges when a simple
type is viewed through its solution space, and solutions are taken as first-class citizens. This
generalization encompasses other rather natural concepts of “finiteness” for simple types, such
as, finiteness of any solution of A (i. e., the collection of all solutions of A contains only (finite)
λ-terms), or finiteness of the solution space itself (i. e., the forest S(⇒ A) is a finite expression),
and one may ask how these concepts relate, or whether the new concepts are still decidable.

The generalized concept of finiteness is defined through a parametrized predicate finΠ on
expressions in λcoΣ , where the parameter Π is again a predicate on expressions in λcoΣ [EMP19,
Figure 5]. Exploring this concept, one may conclude that: finiteness of the solution space implies
finiteness of all solutions, which in turn implies (much less obviously) finiteness of the collection
of inhabitants [EMP19, Proposition 3.1]. Following the methodology explained in the previous
subsection to decide exfin(S(σ)) and finfin(S(σ)), also the generalized finiteness predicate finΠ(S(σ))
is shown to be decidable (for Π subject to some mild conditions) [EMP19, Theorem 4.3]. This,
in particular, implies decidability of the two alternative concepts of finiteness of simple types
described above.

An ingredient needed to establish decidability of finΠ(S(σ)) is a separate result establishing
decidability of the predicate nosol(S(σ)), which holds when σ has no solution (finite or infinite)
[EMP19, Theorem 4.2]. This result also has a different application, the definition of the pruned
solution space of a sequent - the one where branches leading to no solution are chopped off. Then,
the following version of König’s lemma for simple types holds: a simple type has an infinite solution
exactly when the pruned solution space is infinite [EMP19, Theorem 4.5].

6.3 New results from old ones

It happened to us that, when trying to prove a well-known theorem with our tools, a generalization
of the results suggested itself. The theorem is one by Ben-Yelles [BY79] (see also Hindley’s book
[Hin97, Theorem 8D9]) about monatomic types, i. e., types where only occurrences of a single atom
are allowed.

Definition 14 (Infinity-or-nothing)

1. We say T ∈ λgfpΣ has the infinity-or-nothing property (abbreviated as T is i.o.n.) if EF?(T )
implies NFF†(T ), where NFF† := NFFP† with P† := NEF∅ ◦ F . (Note that P† meets the
required proviso of Fig. 13: (i) we already observed that NEF∅ ◦ F is decidable; (ii) P†(σ)
implies finfin(S(σ)) (thanks to Lemmas 24.2 and 25.2, this is equivalent to the obviously true
requirement: I(σ) empty implies I(σ) finite).

2. Sequent σ is an i.o.n. sequent if F(σ) is an i.o.n. finitary forest.

3. A is an i.o.n. type if ⇒ A is an i.o.n. sequent.

As a first simple observation, we have that N i.o.n. implies λxA.N i.o.n. (the abstraction case of
EF? can be inverted, and there is a matching abstraction case for NFF†). We remark that every Xρ

is i.o.n., since EF?(X
ρ) and NFF†(X

ρ) both boil down to EF∅(F(ρ)) (due to the complementarity
of the two predicates in Fig. 12). Of course, this exploits the uncanonical setting with P† as
parameter to NFF. Had one taken NFF? =NFFFF∅◦F instead (as introduced after Lemma 24 above),
the implication would have been equivalent to the wrong implication that I(ρ) non-empty implies
I(ρ) infinite. Also notice that the definition of T i.o.n. for finitary forests that are not closed
(where fixed-point variables Xρ are the extreme case) is rather of a technical nature (to be used to
get proofs by induction through). Since the parameters for the predicates do not play a role for

well-bound, proper and closed expressions of λgfpΣ (by Lemma 24.1 and Lemma 25.1), we have that
for those T , T is i.o.n. iff EF∅(T ) implies NFF∅(T ).

The name of the property just introduced is justified by the following result.

Lemma 27 Let σ be i.o.n. Then I(σ) is either empty or infinite, in other words: if I(σ) is
non-empty, then it is infinite. Similarly for an i.o.n. type A.
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Proof If I(σ) is non-empty, then by Lemma 24.2, EF∅(F(σ)). By monotonicity of EF in its
parameter, we get EF?(F(σ)). Since σ is i.o.n., this gives NFF†(F(σ)). Since NFF is antitone in its
parameter, we get NFF∅(F(σ)), hence Lemma 25.2 and the complementarity of the predicates in
Figure 13 yield infinity of I(σ). �

We now identify sufficient conditions with syntactic flavor for the i.o.n. property. The first
one is over finitary forests and concerns occurrences of variables: roughly, in a sum, we need to
see an alternative that does not consist of a “shallow” variable, i.e. a naked variable with empty
tuple, and that the tuple components correspond to solution spaces of inhabited sequents (when
representing solution spaces) among which one recursively satisfies the same criterion.

Definition 15 (Deep finitary forests, sequents, and types)

1. An expression T in λgfpΣ is called deep if this can be derived by the following inductive
definition:

• A typed fixed-point variable Xρ is deep.

• λxA.N is deep if N is deep.

• gfpXρ.
∑
iEi is deep if EF∅(F(ρ)) implies that there is a deep summand Ei.

• x〈N1, . . . , Nk〉 is deep if EF?(Nj) for all 1 ≤ j ≤ k, and Nj is deep for some 1 ≤ j ≤ k
(hence k > 0 and the head variable x can be considered as being deeply inside).

2. A sequent σ is called deep if F(σ) is a deep finitary forest.

3. A type A is called deep if ⇒ A is a deep sequent.

Theorem 2 (Deep sequents/types are i.o.n.) Every deep sequent σ is an i.o.n. sequent. Hence,
every deep type A is an i.o.n. type.

Proof We have to prove that for every sequent σ, F(σ) deep implies F(σ) i.o.n. More generally,
we prove for every sequent σ and vector Ξ of declarations as in Def. 11: if F(σ; Ξ) is deep, then it
has the i.o.n. property. The proof is by induction on the structure of the finitary forest F(σ; Ξ).

In case the if-guard in the definition of F holds, F(σ; Ξ) is a possibly multiply lambda-abstracted
fixed-point variable Xρ, thus a deep finitary forest. As argued after Definition 14, Xρ is i.o.n., and
lambda-abstractions preserve this property. Hence, F(σ; Ξ) is i.o.n.

Otherwise, we use the symbols of Def. 11, but abbreviate by N the outer fixed-point expression,
headed by gfpY ρ, with ρ = ∆ ⇒ p (where ∆ = Γ, z1 : A1 · · · zn : An), so that F(σ; Ξ) =
λzA1

1 · · · zAnn .N . By assumption, F(σ; Ξ) is deep, hence so is N . Therefore: if EF∅(F(ρ)), then there

is a deep summand E relative to some (y : ~B ⊃ p) ∈ ∆. We want to show that F(σ; Ξ) is i.o.n.
Assume EF?(F(σ; Ξ)). Then also EF?(N). We have to show that NFF†(F(σ; Ξ)). Since F(σ; Ξ) is
proper, so is its subexpression N . By the “easy consequence” mentioned after Lemma 24, we get
EF∅(F(ρ)) from EF?(N). Therefore, there is a deep summand E := y〈F(∆⇒ Bj ; Ξ, Y : ρ)〉j . To
show NFF†(F(σ; Ξ)), it suffices to show NFF†(E). Let Nj := F(∆⇒ Bj ; Ξ, Y : ρ) for all j. Since
E is deep, we have EF?(Nj) for all j, and there is j∗ s. t. Nj∗ is deep. Nj∗ is a sub-expression of
F(σ; Ξ), hence the induction hypothesis applies, by which Nj∗ is i.o.n., hence also NFF†(Nj∗). By
definition of NFF, we obtain NFF†(E), as desired. �

We will now identify a class of deep types: this is our second example of a syntactic restriction
that guarantees the i.o.n. property.

Let A = ~A ⊃ p. We say p is the target atom of A and that the ~A are the argument types of A.
Let σ = (Γ⇒ A), with Γ = {x1 : C1, · · · , xn : Cn}. Put Aσ := ~C ⊃ ~A ⊃ p (the order of the Ci’s
does not matter). In particular, if σ is ⇒ A, then Aσ = A.

Definition 16 (Generalized triple negation) 1. Let us say that a type of the form A ⊃ p
is a negation at p and that a type of the form (A ⊃ p) ⊃ p is a double negation at p.
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2. We introduce the notion of generalized double negation at p: this is any type of the form
~B ⊃ p with non-empty ~B so that each of the argument types Bi has target atom p.

3. A type A = ~A ⊃ p is called a generalized triple negation (abbrev: g.t.n.) if one of the
argument types Ai is a generalized double negation at p.

4. A sequent σ is a g.t.n. if Aσ is a g.t.n. (this is indifferent to the order of context formulas
used for defining Aσ).

For example p ⊃ p and (q ⊃ p) ⊃ p ⊃ p are generalized double negations at p. As examples of
g.t.n.’s, we mention (p ⊃ p) ⊃ p (only an infinite solution) and (p ⊃ p) ⊃ p ⊃ p (infinitely many
inhabitants corresponding to the natural numbers).

Lemma 28 (Sequents/types with generalized triple negation are deep) If σ is a g.t.n.,
then σ is deep. Hence, every g.t.n. type A is deep.

Proof Assume that σ is a g.t.n. We will prove more than only that σ is deep, i. e., F(σ) is deep.
More generally, we prove for every vector Ξ of declarations as in Def. 11 that F(σ; Ξ) is deep. The
proof is by induction on the structure of the finitary forest F(σ; Ξ).

In case the if-guard in the definition of F holds, F(σ; Ξ) is a possibly multiply lambda-abstracted
fixed-point variable Xρ, thus a deep finitary forest, so we do not need the assumption that σ is a
g.t.n.

Otherwise, we use the symbols of Def. 11, but abbreviate by N the outer fixed-point expression,
so that F(σ; Ξ) = λzA1

1 · · · zAnn .N . By assumption, σ is a g.t.n., and this means Aσ is a g.t.n.,
but we can assume that Aσ is the same formula as Aρ, for ρ := ∆ ⇒ p, as usual. By definition
of generalized triple negation, there is a double negation at p among the formulas of ∆. Let
(y : ~B ⊃ p) ∈ ∆ be the corresponding association with non-empty ~B and so that each of the
argument types Bj has target atom p. Let Nj := F(∆⇒ Bj ; Ξ, Y : ρ) for all j. In order to have
that F(σ; Ξ) is deep, we need that N is deep. We therefore assume that EF∅(F(ρ)) and show that
the summand E := y〈Nj〉j is deep. We even show for all j that Nj is deep and that EF?(Nj)

holds. Since ~B is non-empty, this in particular yields a j∗ s. t. Nj∗ is deep. Fix some j. Nj is
a sub-expression of F(σ; Ξ), hence the induction hypothesis applies and gives that Nj is deep
provided ∆ ⇒ Bj is a g.t.n., but this is obvious since the target atom of Bj is still p, and the
double negation at p among the formulas of ∆ is still available. It remains to show EF?(Nj). From
the assumption EF∅(F(ρ)) and Lemma 24.2, we get an inhabitant of ρ = ∆ ⇒ p. By vacuous
lambda-abstractions, this gives an inhabitant of ∆ ⇒ Bj (again because the target atom of Bj
is p). By virtue of the same theorem, this gives EF∅(F(∆⇒ Bj)). By monotonicity of EF in its
parameter, this can be weakened to EF?(F(∆ ⇒ Bj)), and by the “second consequence” of the
main result on EF? mentioned after Lemma 24, this is equivalent to EF?(Nj). �

Theorem 3 (G.t.n.’s are i.o.n.) Let A be a generalized triple negation. Then A has either 0 or
infinitely many inhabitants.

Proof Immediate consequence of Theorem 2 and Lemmas 27 and 28. �

We now obtain the theorem by Ben-Yelles [BY79] ([Hin97, Theorem 8D9]) about monatomic
types. The original proof and the textbook proof were as a consequence of a more difficult result
called Stretching Lemma. But here we see the theorem about monatomic types is just an instance
of the more general phenomenon captured by our Theorem 3.

Corollary 7 (Monatomic inhabitation) Let A = ~A ⊃ p be a monatomic type. If A is flat,

that is, each Ai is p, then A has exactly n inhabitants where n is the length of ~A. Otherwise, A
has either 0 or infinitely many inhabitants.

Proof The first case is immediate (this includes the case when n = 0). The second case is an
instance of Thm. 3: for monatomic types A, A is a g.t.n. iff A is non-flat. �
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7 Final remarks

Contribution. We are developing a comprehensive approach to reductive proof search that is
naturally integrated with the Curry-Howard isomorphism: the lambda-terms used to represent
proofs are seen co-inductively in order to capture (possibly infinite) solutions of search problems.
But this Curry-Howard representation is just a convenient definition of the structures generated by
proof search. An effective analysis has to be conducted in an accompanying, equivalent, finitary
representation, which may be seen as the main technical contribution. The role of formal sums also
stands out, specially in connection with the new operation of decontraction. Finally, the design of
the finitary calculus is noteworthy, with its combination of formal sums, fixed points, and a relaxed
form of fixed-point variable binding, capable of cycle detection through the type system.

This infrastructure was put to use in the study of proof search, as detailed elsewhere [ESMP19,
EMP19]. A brief indication of the results there obtained was given in Section 6, together with a
fresh example of the infrastructure at work in obtaining a generalization of a well-known theorem.
Our approach has proved so far to be robust, comprehensive, and innovative. Robust because
we could rely on it to obtain many results about proof search, including the benchmark results
about decidability of inhabitation. Comprehensive because with the approach we were able to
address a wide range of questions, from decision and counting problems to so-called coherence
theorems, which is unusual if not unprecedented in the literature. Innovative because we obtained
new solutions for old problems, but we were also led to investigate and solve new problems, like
those stemming from the consideration of solutions instead of just proofs, and to obtain new results
when trying to prove old ones, like in the case of monatomic inhabitation. As detailed in Section 6,
the innovative aspect of our applications and solutions can be summarized in these characteristics:

1. Separation of concerns;

2. Run the proof search only once;

3. Syntax-directedness;

4. Solutions and solution spaces as first-class citizens.

In order to test the comprehensiveness of our approach, we have already successfully applied it
to the case of full intuitionistic propositional logic as described in [EMP20] (actually even via a more
elaborate polarized intuitionistic logic [Esp17]), developing coinductive and finitary representations
of the solution spaces, establishing their equivalence and obtaining decidability of inhabitation in a
form that is analogous to the predicate EF∅ ◦ F of Lemma 24 (and that thus factors through a
recursive predicate on finitary expressions). As we anticipated, and similarly to this paper, the
main theorem, establishing the equivalence of representations, rests on the subformula property of
the object logic. In the present paper, we preferred to explore a simple case study (proof search
in LJT ) in order separate the complexities of the proposed approach for proof search from the
complexities of the object logic.

Related work. In the context of logic programming with classical first-order Horn clauses, the
use of co-inductive structures is seen in [KP11], in order to provide a uniform algebraic semantics
for both finite and infinite SLD-resolutions. This line of work has seen more recently important de-
velopments [FKSP16, BKL19], offering a proof-theoretic treatment through a framework extending
uniform proofs [MNPS91] to coinductive uniform proofs, which, in particular, is capable of dealing
with coinductive Horn clause theories. However, unlike in our coinductive approach to proof search,
in the mentioned line of work there are no first-class objects representing solution spaces, and
a Curry-Howard representation of proofs or solutions as lambda-terms is either absent [BKL19]
or only partial [FKSP16]. In [PR04] we find a comprehensive approach to proof search, where
the generalization of proofs to searches (or “reductions”) is accounted for semantically. Parigot’s
λµ-calculus is used to represent proofs in classical and intuitionistic sequent calculus, but no
indication is given on how such terms could represent searches.

In Sect. 1.3.8 of [BDS13] we find a list of types, for each of which the set of inhabitants is
described through an “inhabitation machine”. This list covers among others all our examples
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in Ex. 1 with the exception of INFTY and DNPEIRCE. We invite the reader to compare those
descriptions in graphical presentation in the cited book with our succinct presentations of the
solution spaces worked out in Sect. 3 and Sect. 4 (see Exs. 3, 5, 9, and 16). While our expressions
do not display the types of the subexpressions, they are explicit about when a variable gets available
for binding (in their example (vii), their variable x, that corresponds to our y in Ex. 16, looks
as if it was available from the outset), and our expressions are even more explicit about the
generation process for new names (the book speaks about “new incarnations”) using standard
lambda abstractions and the decontraction operator. While our presentations of solution spaces in
Sect. 3 and Sect. 4 are still on the informal level of infinitary terms with meta-level fixed points,
and for that reason may seem far from a “machine” for the generation of inhabitants, the finitary
expressions we obtained in Ex. 17 and Ex. 18 with the machinery of Sect. 5 compare in the same
way with the inhabitation machines of [BDS13] and are proper syntactic elements and can thus
qualify as “machine” descriptions of the process of obtaining the inhabitants (and even the infinite
solutions—notice that infinite solutions are not addressed at all in the description of inhabitation
machines in [BDS13]).

The work [SDB15] also studies mathematical structures for representing proof search, and can
partly be seen as offering a realisation of the intuitive description of the inhabitation machines
in [BDS13]. Similarly to our work, [SDB15] handles search for normal inhabitants in the simply-
typed lambda-calculus. However, the methods of [SDB15] are very different from ours. Their
methods come from automata and language theory, and proof search is represented through
automata with a non-standard form of register, as a way to avoid automata with infinite alphabets,
and still meet the need for a supply of infinitely many bound variables in types like DNPEIRCE
or the “monster” type (cf. our discussion after Example 1). Unlike in our work, infinite solutions
are not a concern of the approach in [SDB15], but this approach is concerned with computational
complexity and is capable of obtaining the usual PSPACE bound for the decision of the inhabitation
problem.

Besides the approach just mentioned, the literature offers a rich variety of other approaches
to handle the search space determined by a type and its collection of inhabitants and to address
inhabitation, counting or enumeration problems in simply-typed lambda-calculus or extensions of
it [BY79, Hin97, TAH96, DJ09, WY04, BD05, BS11]. We briefly consider these approaches below.

To the best of our knowledge, [BY79] (nicely revisited in [Hin97]) is the first work to address
the question of enumerating all inhabitants (in long normal form) of a simple type. (Next we refer
to the presentation of the approach in [Hin97, 8C]). The approach is very different from ours, since
it does not explicitly build a structure representing the full collection of inhabitants of a type.
Instead, it develops an iterative search algorithm, that takes a type and may run forever, and at
each stage produces a finite collection of normal form schemes (lambda-terms with meta-variables),
so that any inhabitant of the type can be extracted from one of these schemes.

Context-free grammars are used in [TAH96] to represent the collection of inhabitants (in
long normal form) of a simple type. Although (finite) context-free grammars suffice to capture
inhabitants obeying the total discharge convention (forbidding multiple variables with the same
type, or, in the logical reading, forbidding multiple assumptions of the same formula), an infinite
grammar is required to capture the full set of inhabitants (due to the potential need for a supply of
infinitely many bound variables, as alluded to above when relating to [SDB15]). Grammars are also
used in [DJ09] to enumerate in two stages all inhabitants of a type in simply-typed lambda-calculus
(and in certain fragments of system F). The first stage builds a context-free grammar description
of the collection of schemes of a given type. (Schemes are the proof terms of a so-called sequent
calculus with brackets LJB, where assumptions in the context are unnamed, thus following the total
discharge convention.) In a second stage, an algorithm extracts the full collection of inhabitants of
a type from its schemes.

The work [WY04] develops algorithms for counting and enumerating proofs in the context
of full propositional intuitionistic sequent calculus LJT. These algorithms are based on a direct
representation of the search space of a sequent via directed graphs. (Roughly speaking, a sequent
corresponds to a vertex that has outgoing edges to vertices with that sequent and a rule that
applies to it (bottom-up), and the latter vertices have outgoing edges to the sequents resulting
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from the bottom-up application of the rule.) Even if the version of LJT considered there only
allows proofs obeying the total discharge convention (context sequents are sets of formulas), and
this is crucial to guarantee the finiteness of the graph representation, this is the only work we are
aware of that addresses counting and enumeration of proofs for full intuitionistic propositional logic.
As already mentioned, our recent work [EMP20] shows that the coinductive approach developed
in this paper is also applicable to full intuitionistic propositional logic. Op. cit. only treats the
problem of type inhabitation. However, we anticipate that, in particular, decision of the finite
inhabitation problem and the attainment of a simple counting function can be achieved along the
lines summarized in Sec. 6.1 (for the implicational fragment), a direction we would like to explore
in the future (alongside with other directions specified below).

[BD05] is an extensive study of inhabitation in simply-typed lambda-calculus through the
formula-tree proof method, establishing new results and new proofs, in particular, in connection
to uniqueness questions. The method relies on a representation of types as labelled trees called
formula trees (where each label identifies a primitive part of the type), from which proof trees are
derived, and in turn allow the extraction of all inhabitants (in long normal form) of the type. This
extraction also involves two stages: the first stage generates a context-free grammar representation
of the inhabitants in so-called standard form (imposing restrictions on the use of variables in the
spirit of the total discharge convention); then, the second stage extracts finitely many inhabitants
from each standard inhabitant (if any), producing the full collection of inhabitants of the type. The
question of uniqueness of inhabitation in simply-typed lambda-calculus is also addressed in [BS11].
This work uses yet a very different tool: game semantics. Connecting typings with arenas and
inhabitants with winning strategies for arenas, inhabitation questions can be recast in terms of game
semantics. For example, [BS11] offers a new characterization of principal typings in simply-typed
lambda-calculus through games. Actually, in [AB15] one can find precise connections between
this game semantics approach and the formula-tree proof method for addressing inhabitation in
simply-typed lambda-calculus.

Since the above-mentioned work [BY79, Hin97, TAH96, DJ09, WY04, BD05, BS11] is concerned
with inhabitation (finite solutions) only, naturally they do not share with us the goal of having
a mathematical representation of the full solution space, and a treatment of infinite solutions.
Another distinctive feature of our work is that, as we stay within the lambda-calculus paradigm,
we can profit from its binding mechanism, and avoid the need to restrict to inhabitants under
total discharge convention, or the need for a two-stage process to capture the full collection of long
normal forms. Our representation of the entire space of solutions as a first-class citizen of a finitary
lambda-calculus immediately offers the possibility of its structural analysis, and allows a new take
on a wide range of questions related to inhabitation in simply-typed lambda-calculus, as explained
in Section 6.

Only seemingly related work. Logics with fixed points or inductive definitions, as for
example in [San02], admit infinite or “circular” proofs, which are infinite “pre-proofs” enjoying an
extra global, semantic condition to ensure that only valid conclusions are allowed. In addition,
the proofs of these logics have alternative (sometimes equivalent) finite representations as graphs
with cycles (e. g., trees with back edges). Despite superficial similarity, bear in mind the several
differences relatively to what is done in the present paper: first, there is the conceptual difference
between solution and proof; second, in our simple object logic, proofs are the finite solutions (hence
trivially filtered amongst solutions), and therefore infinite solutions never correspond to globally
correct reasoning; third, fixed points are not present in the object logic, but rather in the finitary
calculus, which works, at best, as a meta-logic.

Future work. We would like to profit from the finitary representation of a solution space to
extract individual solutions. As suggested in Section 2.2, this can be done by pruning the solution
space, an operation already studied in [EMP19] but only for coinductive representations (with the
specific goal of obtaining the version of König’s Lemma for simple types mentioned in Section 6.2).
We expect unfolding of fixed points to play also a fundamental role in the process of extraction of
individual solutions. These ingredients should provide a base for the accounting of algorithmic
control in proof search through rewriting.
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We would like to further test the comprehensiveness of our coinductive approach to proof
search on other logical or type-theoretical settings. For example, it could be interesting to test
our methodology on classical logic, for which there is already work in the context λµ-calculus
[DZ09], or on the challenging setting of intersection types, whose general inhabitation problem
is undecidable, but where relevant decidable fragments have been identified [BKR14, DR17]. Of
course, it will be interesting and important to test also our coinductive approach in the context
of first-order logic. Recall that coinductive structures are already employed in [BKL19] to give
a proof-theoretic account of Horn clauses (even for coinductive theories), but the attainment of
representations of solutions and of entire solution spaces with a rich collection of properties (like
the one seen in this paper for intuitionistic implication) is likely to pose new questions.
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A Technical appendix on regularity of finitary terms

In Section 5, we insisted that we do not confine our investigation to trivially regular terms. This is
directly imposed by Definition 11, as we will see next.

Example 19 (A not trivially regular term) Assume three different atoms p, q, r, and set Γ :=
y1 : q ⊃ p, y2 : (r ⊃ q) ⊃ p, x : r and Ξ := X : Γ⇒ q. Then Definition 11 yields

F(Γ⇒ p; Ξ) = gfp Y Γ⇒p.y1〈XΓ⇒q〉+ y2〈λzr.XΓ,z:r⇒q〉

Fixed-point variable X occurs free in this expression with two different sequents as types, hence the
expression is not trivially regular.

Definition 11 even leads us to consider trivially regular terms with regular but not trivially
regular subterms, hidden under a greatest fixed-point construction:

Example 20 (Hidden irregularity) Consider the following modification of the previous exam-
ple: add the binding y : p ⊃ q to Γ. Then, the above calculation of F(Γ⇒ p; Ξ) comes to the same
result. And we calculate

F(Γ⇒ q) = gfpXΓ⇒q.y〈F(Γ⇒ p; Ξ)〉

Hence, X with two different sequents as types has to be bound by the outer fixed-point operator.

The following notion may be of further use:
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Definition 17 (Strong regularity in λgfpΣ ) An expression T in λgfpΣ is strongly regular, if all
subexpressions of T (including T ) are regular.

We can even strengthen Corollary 4.

Corollary 8 F(Γ⇒ C; Ξ) is strongly regular.

Proof Regularity is already expressed in Corollary 4. Concerning the regularity of the subex-
pressions, lambda-abstraction does not influence on regularity, and in the recursive case of the
definition of F(Γ⇒ C; Ξ), the same ξΞ,Y :σ is admissible for all the occurring subterms, hence also
for the summands that are bound by the gfp operation. �
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