
Object Detection with RetinaNet on Aerial
Imagery: the Algarve Landscape?

C. Coelho(�)[0000−1111−2222−3333], M. Fernanda P. Costa[0000−0001−6235−286X],
L.L. Ferrás1[0000−0001−5477−3226], and A.J. Soares[0000−0003−4771−9859]

Centre of Mathematics
University of Minho, Campus de Gualtar 4710–057 Braga, Portugal

ceciliaeduarda58@gmail.com,mfc@math.uminho.pt, luislimafr@gmail.com,

ajsoares@math.uminho.pt

https://www.cmat.uminho.pt/

Abstract. This work presents a study of the different existing object
detection algorithms and the implementation of a Deep Learning model
capable of detecting swimming pools from satellite images. In order to
obtain the best results for this particular task, the RetinaNet algorithm
was chosen. The model was trained using a customised dataset from Kag-
gle and tested with a newly developed dataset containing aerial images
of the Algarve landscape and a random dataset of images obtained from
Google Maps. The performance of the trained model is discussed using
several metrics. The model can be used by the authorities to detect ille-
gal swimming pools in any region, especially in the Algarve region due
to the high density of pools there.

Keywords: Computer Vision · Neural Networks · Deep Learning · Ob-
ject Detection · RetinaNet.

1 Introduction

The main objective of this work is to detect swimming pools from satellite im-
ages, especially in the Algarve region. Due to the high density of pools that exist
in this Portuguese region, some may be illegal and actively contribute to tax
avoidance. Based on the work developed in [4] and [18], the Deep Learning (DL)
methods are the most suitable to perform this type of detection.

In [4], both two-stage and single-stage DL algorithms were studied and com-
pared. The two-stage group includes Convolutional Neural Networks (CNN) [12],
Region-based CNN (RCNN) [13], Fast RCNN [14] and Faster RCNN [15]. These
algorithms showed very high performance on the proposed task, but very high
computational cost and slow prediction speed, due to a first stage that extracts
the objects of an image, followed by a second stage in which these objects are
classified.

? Supported by FCT – Fundação para a Ciência e a Tecnologia, through projects
UIDB/00013/2020 and UIDP/00013/2020 of CMAT-UM.



C. Coelho, M. Fernanda P. Costa et al.

The single-stage group includes You Only Look Once (YOLO) [16], Single-
Shot Detector (SSD) [17] and RetinaNet [1]. These algorithms classify the entire
image and are faster than two-stage detectors. The remarkable speed of YOLO
makes it to be preferred for real-time detection at the expense of accuracy [16]. In
comparison with YOLO, SSD is slower but its approach improves the detection
of objects of different sizes, in an image. The common problem of YOLO and SSD
is the presence of class imbalance when the target images have high background
presence, resulting in low positive classifications, as in the case of swimming
pools [1]. The RetinaNet algorithm has been presented in the literature [1] to
address class imbalances and improve detection of smaller objects, achieving a
performance comparable with two-stage algorithms, but with the speed of single-
stage algorithms.

Since satellite images are characterised by the presence of a massive amount
of background, and objects can have different scales, one can conclude, based
on the studied DL methods, that the RetinaNet method seems to be the most
appropriate to solve the problem proposed in our study.

Having these ideas in mind, in this work we present the development of three
RetinaNet models capable of detecting swimming pools in satellite images with
high accuracy.

After this Introduction, the paper is organised as follows. The RetinaNet
method is briefly described in Section 2. Then, to obtain and test the RetinaNet
models, we created four datasets that are presented in Section 3, one for training
and three for testing. The three RetinaNet models are trained and the results
obtained with the testing datasets are presented and discussed in Section 4. The
work ends with the main conclusions presented in Section 5.

2 RetinaNet

The RetinaNet algorithm is a single-stage detector that brought two new im-
provements over YOLO and SSD, namely Focal Loss [1] and Feature Pyramid
Network [2], allowing it to match the performance of two-stage detectors without
sacrificing speed.

To address possible class imbalances between the background class and the
class under investigation, RetinaNet uses a modified version of the cross-entropy
function called Focal Loss,

FL(p, y) = −
∑
t

yt(1− pt)γ log pt (1)

where t is the class index, yt the class label such that yt = 1 if the object belongs
to class t and yt = 0 otherwise,

pt is the predicted probability of the object being of class t and γ ∈ [0, 5]. As
suggested by the authors [1], a value of γ = 2 was used in our work.

The Focal Loss function defined in (1) gives lower importance to easily clas-
sified examples by using the modulating factor, γ, associated with a new term,



Object Detection with RetinaNet on Aerial Imagery: the Algarve Landscape

(1 − pt). In this way, easily classified examples, i.e. with high prediction prob-
ability (above 0.6) receive a value close to zero, resulting in very little or no
learning, and the focus is on hard classified examples [1].

Multiple scale image processing can be used to detect objects with different
scales in a single image, but is computationally expensive and time consuming.

As anticipated above, RetinaNet uses a backbone architecture called Feature
Pyramid Network. This is a feature extractor that generates multiple multiscale
feature maps, focusing on both accuracy and speed [2].

Several algorithms can be used as extractors, and the ResNet was chosen in
this work. The ResNet architecture allows to add layers without compromising
accuracy [8]. Therefore, different network depths were analysed to determine the
one that gives the best results. Specifically, we analysed the following ResNet
architectures, namely ResNet50, ResNet101 and ResNet150 with 50, 101 and
150 layers respectively [9].

In summary, the RetinaNet architecture, shown in Figure 1, consists of: (a)
a bottom-up path with a backbone network called Feature Pyramid Network,
which computes multiple feature maps at different scales of an entire image; (b)
a top-down path that upsamples feature maps from higher pyramid layers and
associates equally sized top-down and bottom-up layers through lateral connec-
tions; (c) a classification subnetwork responsible for object classification; (d) a
regression subnetwork to improve bounding box estimation [2].

Fig. 1. RetinaNet network architecture composed of four main components: a) bottom-
up pathway; b) top-down pathway; c) classification subnetwork; d) regression subnet-
work; adapted from [2].

The RetinaNet also includes several algorithms to optimise the weights, i.e.
the parameters, of the neural network, allowing for customisation. By default,
RetinaNet uses Adaptive Moment Estimation (Adam) as it has been shown to
be quite efficient in training neural networks [3].

3 Datasets

Four datasets were created in this work. One dataset for training, denoted byDtr,
and three datasets for testing, denoted by Dtest1, Dtest2, Dtest3, respectively. The



C. Coelho, M. Fernanda P. Costa et al.

proposed testing datasets are composed of images with increasing difficulty for
swimming pool detection. In particular, Dtest1 is constructed based on a dataset
from Kaggle and consists of images similar to those used in the training dataset.
Moreover, Dtest2 consists of Google Maps images from the Algarve region, in
Portugal. This region was chosen because of the high density of swimming pools
in this area. Finally, Dtest3 consists of images with swimming pools and similar
looking objects taken from Google Maps. These testing datasets are used to
illustrate the performance differences among the three RetinaNet models.

3.1 Training Dataset - Dtr

A new dataset for training swimming pool detection models was created from
a dataset retrieved from Kaggle. The original dataset contains 3748 training
satellite images with bounding box annotations and labels for classifying cars
(labelled 1) and swimming pools (labelled 2). The images are of the RGB type
and have 224× 224 pixels [11].

For each training image that contains objects of one of the classes, car
or swimming pool, there is a corresponding file in XML format (EXtensible
Markup Language) written in the PASCAL Visual Object Classes (PASCAL
VOC) structure that contains important information, such as the file name of
the corresponding image, the size of the image, the recognised object class and
the coordinates of the bounding box. An example of an annotation file from the
training dataset is the following:

<?xml ve r s i on =”1.0”?>
<annotation>

<f i l ename >000000012. jpg</f i l ename>
<source>

<annotation>ArcGIS Pro 2.1</ annotat ion>
</source>
<s i z e>

<width>224</width>
<height >224</height>
<depth>3</depth>

</s i z e>
<object>

<name>2</name>
<bndbox>

<xmin>149.53</xmin>
<ymin>196.11</ymin>
<xmax>193.97</xmax>
<ymax>224.00</ymax>

</bndbox>
</object>
<object>

<name>2</name>
<bndbox>

<xmin>120.24</xmin>



Object Detection with RetinaNet on Aerial Imagery: the Algarve Landscape

<ymin>212.77</ymin>
<xmax>158.87</xmax>
<ymax>224.00</ymax>

</bndbox>
</object>

</annotation>

From this example of the annotation file, we can see that the image has
two pools represented by the two object sections with class label 2 and the
coordinates of the bounding boxes.

Since in this work only the detection of swimming pools was of interest, it
was necessary to discard the information related to the car class. Therefore, as
a first step, a Python script (Py1 ) was developed to remove from the dataset
the images and the annotation files that contained only cars. The script Py1
implements the following strategy.

Open each training annotation file and do:

– Count the number of objects of each class, pool (denoted by 2) and car
(denoted by 1);

– If there are only objects of class car, then delete the image and annotation
file.

For samples with both classes, the car objects annotation data must be re-
moved. Therefore, as a second step, another Python script (Py2 ) was developed
to implement the following steps.

Open each training annotation file and for each object block do:

– If the label is 1, then exclude the object block.

After applying Py1 and Py2 scripts to the complete training dataset of Kag-
gle, the new training dataset Dtr was obtained. Dataset Dtr contains a total of
1993 training images with their corresponding XML annotation files.

However, the RetinaNet algorithm requires a single annotation file in Comma-
Separated Values (CSV) with a specific format. Therefore, in a third step, an-
other Python script (Py3 ) was implemented to perform the conversion by ex-
tracting the information from the XML files and merging all objects, one per
line. The required format for each line is:

path/ to / image . jpg , x1 , y1 , x2 , y2 , c lass name

After the conversion, an example of some rows from the new CSV annotations
file is:

000000012. jpg , 1 4 9 . 5 3 , 1 9 6 . 1 1 , 1 9 3 . 9 7 , 2 2 4 . 0 0 , pool
000000012. jpg , 1 2 0 . 2 4 , 2 1 2 . 7 7 , 1 5 8 . 8 7 , 2 2 4 . 0 0 , pool
000000014. jpg , 2 1 1 . 7 1 , 1 5 6 . 4 1 , 2 2 4 . 0 0 , 1 9 6 . 1 6 , pool



C. Coelho, M. Fernanda P. Costa et al.

3.2 Testing Dataset from Kaggle - Dtest1

The dataset Dtest1 was created based on a testing dataset from Kaggle containing
2703 satellite images without any kind of annotation files [11]. Therefore, in order
to compare and analyse the performance of the three RetinaNet models, it was
mandatory to annotate all testing images. Thus, a Python script (Py4 ) was
developed to help with this task by reading the coordinates of mouse clicks as
bounding box coordinates and extracting the data inherent to the image, i.e. size
and filename, and writing an XML annotation file for each image. After obtaining
the XML files, it is known that the Dtest1 contains 2703 satellite images with
a total of 620 swimming pools distributed over 524 images. These images are
similar to those used to create the Dtr training dataset.

3.3 Testing Dataset from Algarve’s Region - Dtest2

A new dataset was created with images from the Algarve region taken from
Google Maps. We point out again that this region has been chosen essentially
for several reasons. First, the main objective of this work is to detect illegal
swimming pools, and the Algarve region has a high density of swimming pools.
Second, there is a large amount of noise in this area, namely semi-hidden swim-
ming pools and similar looking objects, which makes the problem much more
interesting.

To speed up the process of sequentially capturing these sample images, a
Python script (Py5 ) was also developed in view of automating the process by
cutting a large image into smaller images, and allows full-screen printouts of the
software to be obtained manually. When using this script, one can choose the
number and type of divisions or images, which can be all of the same size or of
a random size.

To analyse the performance of the training models in a variety of scenarios
mimicking real-world use of satellite imagery, both equal and random size im-
agery were considered. Therefore, after applying Py5, the script Py4 was applied
to create the corresponding XML files for each image.

The new test dataset Dtest2 is a collection of 289 images of different sizes,
zoom percentages and image quality. In total, 298 swimming pools are dis-
tributed among 172 examples, the others being negative examples with absence
of swimming pools. Some selected examples are shown in Figure 2. It can be
seen that the images of Dtest2 were intentionally not carefully selected. The goal
of using Dtest2 was to make more difficult the task of finding swimming pools
by the training models in real case scenarios.

3.4 Testing Dataset from Google Maps - Dtest3

In order to examine the limitations of the trained models in depth, a few cropped
images were carefully selected from Google Maps. These images were taken at
different zoom percentages and from areas with different image quality. The eight
images selected to create this test dataset are shown in Figure 3.



Object Detection with RetinaNet on Aerial Imagery: the Algarve Landscape

Fig. 2. Algarve’s landscape dataset examples in scale. The various samples have dif-
ferent zoom percentages, sizes and image quality.

These images were carefully selected because they have objects that closely
resemble swimming pools, and also swimming pools with an unusual appearance.
This selection was made with the intention of fooling the detectors and quanti-
fying their possible limitations. Below are the characteristics of each image:

– image 1 - 433× 340 pixels, presence of a lake and a blue tag;

– image 2 - 442 × 258 pixels, encloses two swimming pools and a pool look-
alike glass structure;

– image 3 - 298 × 241 pixels, a pool without one of the most common char-
acteristics, the blue colour;

– image 4 - 100× 118 pixels, very small and high zoom image;

– image 5 - 366× 270 pixels, unusual swimming pool body;

– image 6 - 1351× 1364 pixels, very high-quality 3-dimensional picture with
two pools and a basketball court;

– image 7 - 1099 × 1333 pixels, the same court as in image 6 and a green
swimming pool;

– image 8 - 732× 613 pixels, the basketball court seen in images 6 and 7 but
with higher zoom percentage.

To generate the XML annotation files for each of these images, the script
Py4 was applied. The new test dataset Dtest3 thus contains a total of 8 images
with their corresponding XML annotation files.



C. Coelho, M. Fernanda P. Costa et al.

Fig. 3. Eight test images taken from Google Maps with different sizes and resolutions.
The images are numbered in yellow on the top right corner.

4 Training and Testing of RetinaNet Models

In this section, we present the training parameters and metrics used to analyse
the performance of the three trained RetinaNet models with different backbone
architectures, namely the ResNet50, ResNet101 and ResNet150, using the testing
datasets Dtest1, Dtest2 and Dtest3. For each trained model, in order to calculate
the metrics accuracy, precision, sensitivity and specificity, confusion matrices,
with values of True Negative (TN), True Positive (TP), False Negative (FN)
and False Positive (FP), had to be created. In addition, Type I and Type II
errors were also calculated following the ideas in [5].

– True Positive (TP): The expected and the predicted values are positive
(meaning that, there is a swimming pool in an image and the model identified
it). For each swimming pool correctly detected by the model, 1 is added to
the TP value;

– True Negative (TN): The expected and the predicted values are negative
(meaning that, there are not swimming pools in an image and the model
does not detect any in the image). For each image correctly classified as not
having pools, 1 is added to the TN value;

– False Positive (FP): The predicted value is positive but the expected is
negative (meaning that, there is not a swimming pool in the image but the



Object Detection with RetinaNet on Aerial Imagery: the Algarve Landscape

model identifies a part of the image as one). For each pool detected but not
being one, 1 is added to the FP value;

– False Negative (FN): The predicted value is negative but the expected
is positive (meaning that, there are swimming pools in the image but the
model is not able to detect them). For each object, wrongly classified as
being a swimming pool, 1 is added to the FN value.

4.1 Training

The three RetinaNet models were trained using the training dataset presented
in section 3. It is well known that deep neural networks have a large number of
unknown parameters that are used to learn different features and map the input
to the desired output. Therefore, the task of finding the optimal values for all
these parameters, i.e. weights, requires a huge labelled training dataset. This
can lead to a huge computation time and requires the use of supercomputers.
To overcome this problem, one can use the weights of similar pre-trained models
as a starting point for training the three RetinaNet models with ResNet50,
ResNet101, and ResNet150, see [6] and [7].

Nowadays, there are several neural network models trained using the Ima-
geNet dataset (a project that provides a dataset consisting of a large collection
of images with human annotations created by academics, containing more than
14 million images of more than 20000 classes and bounding box annotations for
1 million images). The weights learned by some neural networks, e.g., ResNet,
InceptionV3, MobileNet, etc., are available to the community for download and
use in Keras, Tensorflow, and in other deep learning libraries.

In this work, we used the weight files of pre-trained ResNets available in
Keras using ImageNet as initial weights for training the three RetinaNet models
with ResNet50, ResNet101, and ResNet150. We recall that the total number of
weights to be initialised and optimised in these backbone models is 25636712
in ResNet50, 44707176 in ResNet101, and 60419944 in ResNet150 [10]. We used
the RetinaNet algorithm options by default, with the following exceptions: i)
three different depth ResNet backbone architectures, by default ResNet50; ii)
initialisation of the weights using the weight files available in Keras; iii) a stack
size of 1; iv) a learning rate of 10−5 for the optimisation algorithm, by default
Adam; v) a maximum number of iterations of 500. We note that using a batch
size of 1 means that each time an image traverses the entire network, the weights
are updated by the Adam algorithm.

The RetinaNet algorithm requires two Comma-Separated Values (CSV) files
with specific formats as input data. A CSV file with the annotations developed
with the script Py3, and a CSV file in class mapping format with the labels
corresponding to the classes. The mapping file must contain the target classes
and a corresponding ID number (starts at 0), one per line. In our case, the CSV
mapping file looks as follows:

pool , 0



C. Coelho, M. Fernanda P. Costa et al.

Thus, after preprocessing the training dataset Dtr, the three RetinaNet mod-
els were trained with ResNet50, ResNet101 and ResNet150. As with the training
dataset, a CSV file containing the annotations, developed using the Py3 script,
and a CSV file in class mapping format were also used for training. The training
was performed in a PC Intel Core i5-8365U Processor, CPU 4.10GHz, with 8GB
RAM and integrated graphics. Note that, the usage of a dedicated graphics card
would drastically reduce training time, allowing to further train the networks in
search of even better weights approximations.

In the next subsections, the validation of the trained models is performed
using the developed test datasets Dtest1, Dtest2 and Dtest3.

4.2 Results Obtained with Dtest1

As expected, the results obtained with the dataset Dtest1 are excellent for the
three considered architectures, see Table 1. It can be seen that the accuracy of
each model is high and remarkably close, about 0.95, indicating that the classi-
fiers are correct in most cases. All RetinaNet models have high precision, above
0.95, suggesting that an image labelled as positive is indeed positive, as con-
firmed by the low number of false positives in the table. Also, type I and II
errors are small and very close to each other, indicating low false positive and
false negative numbers, respectively. The model using a ResNet152 backbone ar-
chitecture is better at detecting the class under study, showing lowest number of
false negatives, but the performance differences between the three architectures
are insignificant.

Table 1. Confusion matrix values and computed evaluation quantities for each of the
trained models when using Dtest1

.
TP TN FP FN Accuracy Precision Sensitivity Specificity Type I Type II

ResNet50 471 2200 18 149 0.9412 0.9632 0.7600 0.9919 0.0081 0.2400

ResNet101 480 2285 7 140 0.9495 0.9856 0.7742 0.9969 0.0031 0.2258

ResNet152 503 2241 6 117 0.9571 0.9882 0.8113 0.9973 0.0027 0.1887

The results are good due to the large number of elements in the dataset and
also to the fact that the testing images are similar to the training images.

To illustrate the difficulties of each model in detecting swimming pools, two
tests are now performed, considering the more complex datasets Dtest2 and
Dtest3.

4.3 Results Obtained with Dtest2

The Algarve landscape dataset was given to all RetinaNet models and the ob-
tained results are shown in Table 2.



Object Detection with RetinaNet on Aerial Imagery: the Algarve Landscape

Table 2. Confusion matrix values and computed evaluation quantities for each of the
trained models using the Algarve’s landscape dataset.

TP TN FP FN Accuracy Precision Sensitivity Specificity Type I Type II

ResNet50 131 63 161 167 0.3716 0.4486 0.4396 0.2813 0.7187 0.5604

ResNet101 154 97 83 144 0.5251 0.6498 0.5168 0.5389 0.4611 0.9461

ResNet152 276 112 29 22 0.8838 0.9049 0.92617 0.7943 0.2057 0.07383

It is important to keep in mind that there are a total of 298 swimming pools
in the dataset and that the images represent the worst case scenario of the
models. From Table 2, we can see that none of the three models were able to
detect the entirety of the positive examples, see the table column True Positive,
TP, with the ResNet152 model having by far the highest number of correct
detections. Impressively, the ResNet152 model has a high sensitivity value, which
means that no swimming pool passes unnoticed, which is also indicated by the
low error of type II. This is a very important result, as inspecting an object
incorrectly classified as a swimming pool causes less losses than overlooking an
illegal construction. The models with a ResNet50 and ResNet101 have such low
performance results that they should not be considered for real swimming pool
detection. On the other hand, the model with a ResNet152 shows very high
accuracy and precision, indicating that the classifier is correct in most cases and
if an object is labelled as positive, it is indeed positive. This conclusion is also
recognised by the number of false positives reported, corroborated by the lowest
type I error.

From this analysis, it can be concluded that the RetinaNet model using
ResNet152 backbone architecture outperforms by far the other models using
ResNet50 and ResNet101 and shows high performance results. This means that
the RetinaNet with a ResNet152 can be used in practise without hesitation.

4.4 Results Obtained with Dtest3

The results obtained with the three RetinaNet models are detailed and discussed
in depth below.

Model using ResNet50 The images in Figure 3 were fed to the RetinaNet
model using a ResNet50. Objects detected as swimming pools were enclosed by
a blue bounding box, as shown in Figure 4.

Some comments concerning the results obtained for each image are listed
below:

– image 1 - The model did not detect a swimming pool, although the image
contains a lake and a blue sign;

– image 2 - As expected, two swimming pools were detected and the glass
structure did not fool the model;

– image 3 - The model could not detect the unclean swimming pool;



C. Coelho, M. Fernanda P. Costa et al.

Fig. 4. Eight test images from Google Maps with different sizes and resolutions. The
objects detected by RetinaNet+ResNet50 are surrounded by blue boxes. The images
are numbered in the upper right corner.

– image 4 - Several swimming pools were detected instead of one. This can
be explained by the very low resolution and size of this image;

– image 5 - Again, three detections were made for a single pool. The confusion
can possibly be explained by the unusual shape;

– image 6 - The model recognised the swimming pools and did not confuse
the basketball court with a swimming pool;

– image 7 - Similar to image 3, the unclean pool was not recognised. This
could explain why the lake in image 1 was not detected. Also, the previously
unrecognised yard (image 6) was classified as a pool this time. The difference
between the images suggests that the model is sensible to the zoom;

– image 8 - The test performed on this image supports the statement pre-
sented in the previous point. The higher zoom helped to fool this model.

Model using ResNet101 The images in Figure 3 were fed to the RetinaNet
model built on top of a ResNet101. The detected pools were enclosed by a blue
bounding box, as shown in Figure 5.



Object Detection with RetinaNet on Aerial Imagery: the Algarve Landscape

Fig. 5. Eight test images from Google Maps with different sizes and resolutions. The
objects detected by RetinaNet+ResNet101 are surrounded by blue boxes. The images
are numbered in the upper right corner.

Some comments concerning the results obtained for each image are listed
below:

– image 1 - The model did not detect a swimming pool, although the image
contains a lake and a blue sign;

– image 2 - The model failed to detect a swimming pool, performing worse
than the ResNet50 model for this image;

– image 3 - The model was unable to detect the unclean swimming pool;

– image 4 - Multiple swimming pools were detected instead of one. Again,
this can be explained by the very low resolution and size of this image;

– image 5 - Similar to the previous model, three detections were made for
a single swimming pool. The confusion could be explained by the unusual
shape;

– image 6 - The model recognised the swimming pools and did not mistake
the basketball court by a swimming pool;

– image 7 - All objects were correctly classified. The only difference between
this image and image 3 is the quality. Image 7 has higher quality and 3-
dimensional textures;

– image 8 - The higher zoom percentage had no effect on detection.



C. Coelho, M. Fernanda P. Costa et al.

Model using ResNet152 Finally, the images in Figure 3 were passed to the
RetinaNet model built on top of a ResNet152. The detected swimming pools
were enclosed by a blue bounding box, as shown in Figure 6.

Fig. 6. Eight test images from Google Maps with different sizes and resolutions. The
objects detected by RetinaNet+ResNet152 are surrounded by blue boxes. The images
are numbered in the upper right corner.

Some comments concerning the results obtained for each image are listed
below:

– image 1 - The model did not detect a swimming pool, although the image
contains a lake and a blue sign;

– image 2 - The ResNet152 model was able to correctly classify the objects
in this image;

– image 3 - The unclean pool was correctly detected;
– image 4 - Unlike the previous models, the swimming pool in this image was

not detected;
– image 5 - Unlike the ResNet50 and ResNet101 models, the ResNet152 model

correctly detected a single pool in this image;
– image 6 - It correctly identified the pools and was not fooled by the blue

basketball court;



Object Detection with RetinaNet on Aerial Imagery: the Algarve Landscape

– image 7 - Both the pool and the court were correctly classified;
– image 8 - As seen before, the basketball court did not fool the model.

The results obtained with the three models are now summarised.

– The models with ResNet50 and ResNet101 are not able to detect unusually
coloured pools, green as in the tested examples;

– The results show that the model with ResNet50 is sensitive to the zoom
of the image, indicating a wrong classification of objects when the zoom
percentage is high;

– Classification of exceptionally small images is difficult for the model with
ResNet152.

The model with the best performance was RetinaNet with a ResNet152 back-
bone architecture. In fact, it was able to correctly detect all swimming pools,
with the exception of one in the smallest image 4. This result is not surprising,
since the superiority of the model with a ResNet152 has already been shown by
the results with Dtest2. Also, this last test data set, Dtest2, in addition to the
results with Dtest3, proves that the models with a ResNet50 and ResNet101 are
highly error-prone.

5 Conclusions

The aim of this work was to develop a model capable of detecting swimming
pools in satellite images using a Deep Learning approach. To achieve this, several
object detection algorithms were investigated and compared. The concluding
remarks of this work are:

– We developed a dataset for training, Dtr, and for testing, Dtest1, by modify-
ing an existing one, filtering swimming pool annotations and creating label
files for the testing images. To simulate real-world usage, e.g. by government
agencies, 289 images of the Algarve region, in Portugal, were extracted from
Google Maps resulting in a new dataset, Dtest2. In addition, to closely ex-
amine the limitations of the trained networks, eight cropped images from
Google Maps were carefully selected to fool RetinaNet, Dtest3.

– Three RetinaNet models were trained with the training samples of the mod-
ified dataset, Dtr, each one with a different depth backbone architecture:
ResNet50, ResNet101, and ResNet152. To evaluate the models, the testing
sets (Dtest1, Dtest2, Dtest3) were given to the models and a comparison be-
tween the predictions and the expected values was performed using confusion
matrices that allowed to compute five performance metrics.

– The confusion matrices along with the values of the performance metrics
showed that the RetinaNet model with a ResNet152 backbone architecture is
the best at detecting swimming pools and achieved the highest performance
in all three testing sets. Furthermore, this model was not fooled by the
Dtest3 samples and only showed difficulty in correctly predicting very small
and poor quality images.



C. Coelho, M. Fernanda P. Costa et al.

References

1. Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal Loss for Dense Object
Detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988 (2017)

2. Lin, T., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature Pyra-
mid Networks for Object Detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2117-2125 (2017)

3. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. International
Conference on Learning Representations (2014)

4. Coelho, C.: Machine Learning and Image Processing. Master’s thesis, to appear in
Repositorium, University of Minho, http://repositorium.sdum.uminho.pt (2020)

5. Powers, D.: Evaluation: from precision, recall and F-measure to ROC, informed-
ness, markedness and correlation. Journal of Machine Learning Technologies 2,
37–63 (2011)

6. Zabir, M., Fazira, N., Ibrahim, Z., Sabri, N.: Evaluation of Pre-Trained Convo-
lutional Neural Network Models for Object Recognition. International Journal of
Engineering & Technology 7(3), 95–98 (2018)

7. Salahat, E., Qasaimeh, M.: Recent advances in features extraction and description
algorithms: A comprehensive survey. In: Proceedings of the IEEE International
Conference on Industrial Technology, pp. 1059–1063 (2017)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778 (2016)

9. Keras RetinaNet, https://github.com/fizyr/keras-retinanet. Last accessed 4 May
2021

10. Keras Applications, https://keras.io/api/applications. Last accessed 4 May 2021
11. Swimming Pool and Car Detection, https://www.kaggle.com/kbhartiya83/swimming-

pool-and-car-detection. Last accessed 4 May 2021
12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
13. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-

rate object detection and semantic segmentation. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
pp.580–587 (2013)

14. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE international conference
on computer vision, pp.1440–1448 (2015)

15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence 39(6), 1137–1149 (2015)

16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 779–788 (2016)

17. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C., Berg, A.: SSD:
Single shot multibox detector. In: European conference on computer vision, vol.
9905, pp. 21–37. Springer, Cham (2016)

18. Coelho, C., Costa M., Ferrás L., Soares A.: Development of a machine learning
model and a user interface to detect illegal swimming pools. In: SYMCOMP 2021
5th International Conference on Numerical and Symbolic Computation Develop-
ments and Applications, pp. 445–454. Évora (2021)


