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Abstract

This work aims to improve the numerical methodologies of geomechanical parameters eval-

uation in rock masses. In particular, the assessment of strength and deformability parameters

in underground structures is addressed. In this task, innovative methodologies were developed

and validated using real data from the Venda Nova II hydroelectric scheme.

In an underground work, the geomechanical parameters are continuously evaluated in differ-

ent stages. Three main levels were defined in which this evaluation has to be carried out. Level

1 is correspondent to the preliminary design stage where the geomechanical parameters values

estimation has to be made, in many cases, based on scarce and uncertain information. Level 2 is

concerned with the parameters updating when new information about the rock mass is available

which can happen in both design and service stages. Level 3 identifies the parameter values

used in the constitutive models using observation results from the construction and/or service

stages to perform inverse calculations. In each level, a certain amount of data concerning the

rock mass is available therefore different approaches were carried out.

In relation to level 1, a large database of geotechnical information was gathered and explored

using Data Mining techniques. The goal was to develop simple and reliable models for the

geomechanical characterisation in order to be used mainly in the preliminary project stages.

In what concerns level 2, a consistent and mathematically valid framework was developed,

based on Bayesian probabilities, which is particularly suited to deal with the quantification of

uncertainty. The application to real data from in situ tests performed by LNEC in the scope

of the Venda Nova II project allowed validating the developed methodologies.

In the scope of level 3, different classical and new optimisation algorithms were investigated

in the scope of underground works back analysis. Besides, an innovative algorithm - an evolution

strategy - was used together with a 3D model of the powerhouse caverns of the Venda Nova II

complex for the back analysis of the deformability modulus and in situ stress state. The results

were compared with the solution provided by an optimisation software based on traditional

algorithms.
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Resumo

Este trabalho pretende contribuir para melhorar as metodologias numéricas de avaliação de

parâmetros geomecânicos em maciços rochosos. Em particular, é abordada a problemática do

cálculo de parâmetros de resistência e deformabilidade em obras subterrâneas. Para levar a cabo

esta tarefa foram desenvolvidas metodologias inovadoras que foram posteriormente validadas

utilizando dados reais do complexo hidroeléctrico da Venda Nova II.

Numa obra subterrânea os parâmetros geomecânicos são continuamente avaliados em dife-

rentes fases. Assim, foram definidos três ńıveis principais, nos quais esta avaliação deve ser

executada. O ńıvel 1 é correspondente à fase preliminar do projecto onde a estimativa dos

parâmetros geomecânicos é executada, em muitos casos, baseada em informação escassa afec-

tada por um elevado ńıvel de incerteza. O ńıvel 2 está relacionado com a actualização do valor

dos parâmetros quando estão dispońıveis novos dados relativos ao maciço rochoso o que pode

acontecer durante a fase de projecto de execução e/ou serviço. O ńıvel 3 identifica os valores

dos parâmetros utilizados nos modelos constitutivos utilizando resultados de observação prove-

nientes das fases de construção e/ou serviço. Em cada ńıvel existe uma determinada quantidade

de dados relativos ao maciço rochoso tendo-se, por isso, levado a cabo diferentes abordagens.

Relativamente ao ńıvel 1 foi reunida uma grande base de dados de informação geotécnica

que foi explorada e analisada utilizando técnicas de Data Mining. O objectivo foi desenvolver

modelos simples e fiáveis para o cálculo dos parâmetros geomecânicos de forma a possibilitar a

sua utilização principalmente na fase preliminar do projecto.

No que concerne ao ńıvel 2 procedeu-se ao desenvolvimento de uma metodologia consistente

e matematicamente válida, baseada em probabilidades Bayesianas, que é particularmente apro-

priada para lidar com a quantificação da incerteza relativamente ao valor dos parâmetros. A

metodologia desenvolvida foi validada pela sua aplicação a dados resultantes de medições de

campo efectuadas pelo LNEC no âmbito do projecto da Venda Nova II.

No âmbito do ńıvel 3 foram testados diferentes técnicas de retroanálise em obras sub-

terrâneas. Foi também utilizado um algoritmo inovador (estratégia evolutiva) em conjunto

com um modelo 3D das cavernas principais do complexo da Venda Nova II, para a identi-

ficação do módulo de deformabilidade do maciço rochoso e do estado de tensão. Os resultados

foram comparados com a solução obtida utilizando um programa de optimização baseado em

algoritmos tradicionais.
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Resumé

Ce travail représente une contribution à l’amélioration des méthodologies numériques d’

évaluation de paramètres géomecaniques dans les massifs rocheux. La problématique du calcul

de paramètres de résistance et de déformabilité dans les ouvrages souterrains est abordée. Des

méthodologies innovantes, validées en utilisant des données réelles du complexe hydro-électrique

Venda Nova II, ont été développées.

Dans un ouvrage souterrain, les paramètres géomécaniques sont évalués lors des différentes

phases. Ainsi, trois niveaux ont été définis dans lesquels cette évaluation doit être exécutée.

Le niveau 1 correspond à la phase préliminaire du projet où l’estimation des paramètres

géomécaniques est, dans de nombreux cas, basée sur des informations insuffisantes affectées

d’un niveau élevé d’incertitude. Le niveau 2 est rapporté à la mise à jour de la valeur des

paramètres lié au fait que de nouvelles données relatives au massif rocheux sont disponibles qui

peut être dans la phase du project et dans la phase de service. Le niveau 3 identifie les valeurs

des paramètres à utiliser dans les modèles constitutifs utilisant les résultats de l’observation

dans la phase de construction et la phase de service. Pour chaque niveau, il existe des données

relatives au massif rocheux, différentes approches ont donc été mises en oeuvre.

Relativement a le niveau 1, une base de données d’informations géotechniques a été col-

lectée et analysée en utilisant une technique de Data Mining. L’objectif étant de développer

des modèles simples et fiables pour le calcul des paramètres géomécaniques utilisables princi-

palement dans la phase préliminaire du projet.

Dans le contexte du niveau 2, on a été développée une méthodologie basée sur des prob-

abilités Bayésiennes, qui sont particulièrement appropriées au traitement de la quantification

de l’incertitude relative à la valeur des paramètres. La méthodologie développée a été validée

par application à des données réelles relatives à des essais in situ réalisés par le LNEC dans le

contexte du projet Venda Nova II.

Pour le niveau 3, ont été expérimentés différents algorithmes d’optimisation. En outre,

une stratégie évolutive a été utilisé conjointement avec un modèle numérique 3D des cavernes

principales du complexe de Venda Nova II, pour l’identification du module de déformabilité

du massif rocheux et de l’état de contraintes. Les résultats ont été comparés avec la solution

obtenue en utilisant un programme d’optimisation basé sur des algorithmes traditionnels.

vii



viii



Symbols

Abbreviations

3D Three dimensions

AI Artificial Intelligence

ANN Artificial Neural Network

c’ Effective cohesion

CG Conjugate gradient optimisation algorithm

CI Confidence Interval

CRISP-DM Cross-Industry Standard Process for Data Mining

D Disturbance factor for the Hoek-Brown strength criterion

DDM Data-Driven Models

DM Data Mining

E Deformability modulus of the rock mass

Ei Elasticity modulus of the intact rock

ES Evolution Strategy

GA Genetic Algorithm

GSI Geological Strength Index

H Depth

H-B Hoek-Brown failure criterion

HRMR Hierarchical Rock Mass Rating

K0 Ratio between the horizontal and vertical effective stresses

KDD Knowledge Discovery in Databases

LFJ Large Flat Jack test

LNEC Portuguese National Laboratory of Civil Engineering

MAD Mean Absolute Deviation

MCMC Markov Chain Monte Carlo

MSE Mean Squared Error

PLT Plate Load Test

Q Q-system index

QTBM Variant of the Q-index for the TBM tunnelling behaviour prediction

ix



x

Abbreviations

QN Quasi-Newton optimisation algorithm

R2 Determination coefficient

RQD Rock Quality Designation

RMSE Root Sum Squared Error

RMR Rock Mass Rating

RST Random Set Theory

SEMMA Sample, Explore, Modify, Model, and Assess

SD Steepest Descent optimisation algorithm

SFJ Small Flat Jack test

SSE Sum Squared Error

STT Strain Tensor Tube test

TBM Tunnel Boring Machine

Greek letters

ε1 First stopping criterium for the evolution strategy algorithm

ε2 Second stopping criterium for the evolution strategy algorithm

φ′ Effective friction angle

γ Volumic weight

µ Mean

ν Poisson coefficient

σ Standard deviation

σ2 Variance

σc Unconfined compressive strength of the intact rock

σh Horizontal effective stress



Contents

Chapter 1 – Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Approach and scope of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 – Methodologies for Geomechanical Parameters Evaluation in Rock

Masses 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Laboratory and in situ tests in rock mechanics . . . . . . . . . . . . . . . . . . . 12

2.3 Empirical rock mass classification systems . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 RMR system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Q system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 GSI system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.5 Correlations between parameters and indexes . . . . . . . . . . . . . . . . 38

2.4 Highly heterogeneous rock masses . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Chapter 3 – Knowledge Discovery in Databases and Data Mining 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Knowledge Discovery in Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Models and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Decision trees and rule induction . . . . . . . . . . . . . . . . . . . . . . . 63

Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xi



xii

Chapter 4 – New Models for Geomechanical Characterisation Obtained Using

DM Techniques 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Data understanding and preparation . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Modelling and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 RMR index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Q index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.3 Friction angle (φ′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.4 Cohesion (c’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.5 Deformability modulus (E) . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3.6 The Hierarchical Rock Mass Rating (HRMR) . . . . . . . . . . . . . . . . 110

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 5 – Updating of Geomechanical Parameters Through Bayesian Prob-

abilities 119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Bayesian Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.2 Bayes theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.2.3 Choice of a prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.4 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Normal data with unknown mean (µ) and known variance (σ2) - the

Jeffreys prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Normal data with unknown mean (µ) and known variance (σ2) - the

conjugate prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Normal data with unknown mean (µ) and unknown variance (σ2) - the

Jeffreys prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Normal data with unknown mean (µ) and unknown variance (σ2) - the

conjugate prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.5 Posterior simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Application of the Bayesian framework to update E in a rock mass . . . . . . . . 134

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.2 Statistical analysis of the data . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3.3 Updating of E considering unknown mean (µ) and known variance (σ2) . 138

5.3.4 Updating of E considering normal data and unknown mean (µ) and vari-

ance (σ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



xiii

5.4 Alternative updating methodology using the Weibull distribution . . . . . . . . . 148

5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4.2 The Weibull distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.4.3 The proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Chapter 6 – Application of Inverse Methodologies in Underground Structures159

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2 Main components and methods of inverse analysis . . . . . . . . . . . . . . . . . 162

6.3 Use of classical and new optimisation algorithms in inverse analysis applied to

underground structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.4 Application of gradient optimisation algorithms to a verification problem . . . . 173

6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4.2 Numerical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4.3 Used back analysis techniques . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4.4 Obtained results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5 Application of Evolution Strategies (ES) to analytical verification problems . . . 189

6.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.5.2 Evolution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.5.3 Obtained results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Chapter 7 – Venda Nova II Powerhouse Complex - Back Analysis of Geome-

chanical Parameters 203

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.2 Analysis of geotechnical information along the hydraulic circuit of Venda Nova II 205

7.3 The underground powerhouse complex . . . . . . . . . . . . . . . . . . . . . . . . 210

7.4 Numerical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.4.1 Description of the developed models . . . . . . . . . . . . . . . . . . . . . 214

7.4.2 Analysis of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.5 Back analysis of geomechanical parameters . . . . . . . . . . . . . . . . . . . . . 223

7.5.1 Used optimisation techniques . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.5.2 Validation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235



xiv

Chapter 8 – Conclusions 239

8.1 Summary and main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8.2 Future developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Chapter 9 – References 247

Annex I – Histograms of the numerical variables used in the DM process 267

Annex II – Correction for φ′ and c’ due to H and D 279

Annex III –Computed stresses and displacements for the 3D model of Venda

Nova II 285



List of Figures

Chapter 1 – Introduction 1

1.1 Scheme of a generic methodology for rock mass characterisation. . . . . . . . . . 3

1.2 Outline and organisation of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 – Methodologies for Geomechanical Parameters Evaluation in Rock

Masses 7

2.1 Approximate involved volumes for different tests. . . . . . . . . . . . . . . . . . . 13

2.2 Scheme of two methods for the in situ deformability evaluation: a) Plate Load or

Jacking test (with two types of possible measurements layout) and b) Goodman

Jack test (adapted from Palmstrom and Singh (2001)). . . . . . . . . . . . . . . . 15

2.3 Scheme of the methodology for rock formations deformability characterisation. . 17

2.4 Scheme of a PLT layout (Sousa et al., 1990). . . . . . . . . . . . . . . . . . . . . 18

2.5 Equipment for sliding test in discontinuities of LNEC . . . . . . . . . . . . . . . 19

2.6 3D laser scanner for measuring the topography of joint surface (Fardin et al.,

2001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Scheme for the calculation of the RMR index. . . . . . . . . . . . . . . . . . . . . 23

2.8 Scheme for the calculation of the Q and QTBM indexes . . . . . . . . . . . . . . . 26

2.9 Relation between Qc, the velocity of P seismic waves and E (Barton, 2004). . . . 28

2.10 Variation of m with the Q value (Barton, 2004). . . . . . . . . . . . . . . . . . . 29

2.11 Chart for the GSI estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.12 Examples of typical flysch: a) thick bedded blocky sandstone and b) sandstone

with thin siltstone layers (Marinos and Hoek, 2001). . . . . . . . . . . . . . . . . 41

2.13 GSI chart for heterogeneous rock masses such as flysch (Marinos and Hoek, 2001). 42

2.14 Histogram of the GSI obtained by a probabilistic methodology (Miranda, 2003) . 44

2.15 Survey of heterogeneous granite formations by boreholes (Medley, 1999). . . . . . 45

2.16 Mixed face conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.17 Model used for homogenisation method: ‘a’ is the radius of the inclusion; ‘b’ is

radius of the matrix; and ‘c’ is volume fraction (Chammas et al., 2003). . . . . . 49

Chapter 3 – Knowledge Discovery in Databases and Data Mining 51

3.1 Modelling in civil engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xv



xvi

3.2 Number of journal publications in the DM and in this area related with engi-

neering and geotechnics (source ISI Web of Knowledge) (Cortez, 2007). . . . . . 55

3.3 Phases of the KDD process (Fayyad et al., 1996). . . . . . . . . . . . . . . . . . . 56

3.4 Classification example with rock mass classification data. . . . . . . . . . . . . . 59

3.5 Stages of the CRISP-DM process (Chapman et al., 2000) . . . . . . . . . . . . . 61

3.6 Stages of the SEMMA methodology (Bulkley et al., 1999) . . . . . . . . . . . . . 62

3.7 Example of a decision tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Human neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 Scheme of an artificial neuron configuration. . . . . . . . . . . . . . . . . . . . . . 66

3.10 Sigmoid activation function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.11 Scheme of a multi-layer network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Chapter 4 – New Models for Geomechanical Characterisation Obtained Using

DM Techniques 75

4.1 Histogram of the RMR variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Alternative definitions for the deformability of a rock mass. . . . . . . . . . . . . 83

4.3 Histogram of class frequencies in the database. . . . . . . . . . . . . . . . . . . . 85

4.4 Workflow used for the DM tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Relative importance of the attributes for the prediction of the RMR variable. . . 88

4.6 Computed versus Predicted RMR values for the regression model with parame-

ters P3, P4 and P6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Real versus Predicted RMR values for regression model with parameters P3, P4

and P6 and considering the transformation of RMR. . . . . . . . . . . . . . . . . 91

4.8 Computed versus Predicted Q values for regression models using all attributes

(a) without logarithmic transformation and (b) with logarithmic transformation. 93

4.9 Relative importance of the attributes for the prediction of the log Q variable. . . 94

4.10 Computed versus Predicted logQ values for regression model with parameters

Jr/Ja, SRF and Jn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.11 Real versus Predicted log Q values for regression models with (a) parameters

Jr/Ja and Jn and (b) parameters Jr/Ja, Jn, P3, P4 and P6. . . . . . . . . . . . . 96

4.12 Relative importance of the attributes for the φ′ prediction. . . . . . . . . . . . . . 97

4.13 Computed versus Predicted φ′ values for regression model with data set 3. . . . . 98

4.14 Real versus Predicted φ′ values for regression model for data set 2. . . . . . . . . 99

4.15 Computed versus Predicted φ′ values for regression model with data set 3. . . . . 99

4.16 Relative importance of the RMR weights in the prediction of φ′. . . . . . . . . . 100



Contents xvii

4.17 Computed versus Predicted tanφ′ values for regression models with (a) parame-

ters P1 to P6 and (b) parameters P1, P4 and P6. . . . . . . . . . . . . . . . . . . 101

4.18 Computed versus Predicted tanφ′ values for the correlation with E. . . . . . . . . 102

4.19 Computed versus Predicted c’ values for regression models which use all at-

tributes (a) without logarithmic transformation and (b) with logarithmic trans-

formation of the target variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.20 Relative importance of the attributes for the lnc’ prediction. . . . . . . . . . . . . 104

4.21 Computed versus Predicted c’ values for regression models for (a) data set 2 and

(b) data set 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.22 Relative importance of the RMR classification weights for the c’ prediction. . . . 106

4.23 Computed versus Predicted c’ values for regression model with data set 4. . . . . 106

4.24 Computed versus Predicted lnE values for regression model with the RMR and

Q parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.25 Relative importance of the attributes for the lnE prediction. . . . . . . . . . . . . 108

4.26 Computed versus Predicted values for (a) correlation with RMR and (b) corre-

lation with P3, P4 and P6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.27 The HRMR system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.28 Relative importance of the parameters in the HRMR system. . . . . . . . . . . . 114

Chapter 5 – Updating of Geomechanical Parameters Through Bayesian Prob-

abilities 119

5.1 The decision cycle (Haas and Einstein, 2002). . . . . . . . . . . . . . . . . . . . . 120

5.2 Scheme of the updating process for the deformability modulus during the con-

struction of an underground structure. . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3 Scheme of the overall updating process (adapted from Faber (2005). . . . . . . . 125

5.4 Cross-section of the Venda Nova II powerhouse complex caverns. . . . . . . . . . 135

5.5 Scheme of the performed calculations for the Bayesian updating. . . . . . . . . . 136

5.6 Histograms of E calculated from the empirical systems application data: (a) raw

data (b) logarithmic transformation. . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.7 Histograms of E from the LFJ tests: (a) raw data (b) logarithmic transformation.138

5.8 Posterior probability density functions for the mean value of E for both types of

distributions using Jeffreys prior. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.9 Posterior probability density functions for the simulated values of E for the both

types of distributions using Jeffreys prior (inferred values for the population). . . 140

5.10 Prior and posterior probability density functions for the mean value of E. . . . . 141



xviii

5.11 Prior and posterior probability density distributions for E considering the normal

distribution (inferred values for the population). . . . . . . . . . . . . . . . . . . 142

5.12 Posterior probability density distributions for E considering the Jeffreys and

conjugate priors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.13 Posterior probability density distributions for E for the normal and lognormal

case using Jeffreys prior (inferred values for the population). . . . . . . . . . . . . 144

5.14 Prior and posterior probability density functions for the mean value of E. . . . . 147

5.15 Prior and posterior probability density functions for E (inferred values for the

population). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.16 Posterior probability density functions for E (inferred values for the population). 148

5.17 Scheme of the alternative Bayesian updating scheme. . . . . . . . . . . . . . . . . 153

5.18 Weibull distributions for the simulated populations. . . . . . . . . . . . . . . . . 154

Chapter 6 – Application of Inverse Methodologies in Underground Structures159

6.1 Scheme of the forward and back analysis (adapted from Sakurai (1997)) . . . . . 160

6.2 Typical topology of a smooth-shaped error function (adapted from Lecampion

et al. (2002)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.3 Optimisation of three parameters (Gref , φ′ and K0) in a excavation problem

using a GA (Levasseur et al., 2007). a) Initial population; b) Sixth population;

c) Eleventh population; d) Nineteenth population. . . . . . . . . . . . . . . . . . 167

6.4 Excavation sequence and field instrumentation of the Estanygento-Sallente pow-

erhouse cavern (Ledesma et al., 1996). . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5 Tunnel and field instrumentation layout (Swoboda et al., 1999). . . . . . . . . . . 170

6.6 Approach to back analysis developed by Sakurai et al. (2003). . . . . . . . . . . . 171

6.7 Scheme of the back analysis procedure using gradient optimisation algorithms. . 174

6.8 Adopted models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.9 Convergence of the identification process considering two steps for the finite

difference calculation for the case of 50%(−) deviation. . . . . . . . . . . . . . . . 180

6.10 Error function values during the identification process for two different deviations.182

6.11 Topology of the error function on the identification of E and K0 of using three

measurements. (a) 3D view (b) Plan view. . . . . . . . . . . . . . . . . . . . . . . 183

6.12 Comparison between the algorithms in terms of efficiency. . . . . . . . . . . . . . 185

6.13 Evolution of the error function values during the identification process for the

three algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.14 Topology of the error function on the identification of c′ and φ′ for the case of

using two measurements. (a) 3D view (b) Plan view. . . . . . . . . . . . . . . . . 188



Contents xix

6.15 Evolution of the c′ and φ′ values during the identification process using the SD

algorithm together with different number of available measurements. . . . . . . . 188

6.16 Scheme of the back analysis procedure using the ES algorithm. . . . . . . . . . . 190

6.17 Evolution stages of the (µ/ρ + λ)-ES algorithm (Costa and Oliveira, 2001). . . . 193

6.18 Topology of the error function on the identification of E and σH for the analytical

case in elasticity and using two measurements. (a) 3D view (b) Plan view. . . . . 195

6.19 Topology of the error function on the identification of c′ and φ′ for the analytical

case in elasto-plasticity (no-yielding) and using two measurements. (a) 3D view

(b) Plan view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.20 Topology of the error function on the identification of c′ and φ′ for the analytical

case in elasto-plasticity (with yielding) and using three measurements. (a) 3D

view (b) Plan view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Chapter 7 – Venda Nova II Powerhouse Complex - Back Analysis of Geome-

chanical Parameters 203

7.1 General perspective of the power reinforcement scheme (adapted from Plasencia

(2003)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.2 Scheme of the underground works composing the Venda Nova II complex (adapted

from (Lima et al., 2002)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.3 Geological-geotechnical zones along the hydraulic circuit (adapted from Plasencia

(2003)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.4 Histograms of the E values obtained by the dilatometer tests (a) normal distri-

bution (b) lognormal distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.5 Location and comparison between the results of the SFJ and STT tests. . . . . . 208

7.6 Pictures of the powerhouse complex caverns during excavation. . . . . . . . . . . 211

7.7 Powerhouse complex geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.8 Cross-sections of the monitoring plan. . . . . . . . . . . . . . . . . . . . . . . . . 213

7.9 Displacements evolution measured by extensometers EF5 and EF11. . . . . . . . 213

7.10 3D mesh developed for the Venda Nova II powerhouse complex. . . . . . . . . . . 215

7.11 Displacement contours for the 3D model in the last excavation stage. . . . . . . . 217

7.12 Displacement contours and vectors for the 2D (upper image) and 3D models . . . 218

7.13 Computed displacements near (a) the wall and (b) arch of the main cavern. . . . 218

7.14 Comparison between computed and measured displacements in the last excava-

tion stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.15 Computed versus real displacements for (a) the 2D and (b) 3D models. . . . . . 220

7.16 Absolute error histograms for (a) the 2D and (b) 3D models. . . . . . . . . . . . 221



xx

7.17 Computed minimum stresses (negative values translate compression). . . . . . . . 221

7.18 Plastic zones at the last excavation stage. . . . . . . . . . . . . . . . . . . . . . . 222

7.19 Stresses in the fiber sprayed concrete. . . . . . . . . . . . . . . . . . . . . . . . . 222

7.20 3D visualisation of the shear strain contours for the last non-equilibrium state. . 223

7.21 2D visualisation of the shear strain contours and velocity vectors. . . . . . . . . . 224

7.22 Topology of the error function on the identification of E and K0 for the validation

study using only the displacements measured after the first stage. (a) 3D view

(b) Plan view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.23 Comparison between the observed measurements and the computed values with

the initial and optimised set of parameters obtained by SiDolo in the first iden-

tification attempt. (a) Absolute values (b) Error values. . . . . . . . . . . . . . . 229

7.24 Comparison between the observed measurements and the computed values with

the initial and optimised set of parameters obtained by SiDolo in the second

identification attempt. (a) Absolut values (b) Error values. . . . . . . . . . . . . 230

7.25 Comparison between the observed measurements and the computed values with

the initial and optimised set of parameters obtained by the evolution strategy

considering ε1 and ε2 equal to 10−7. (a) Absolute values (b) Error values. . . . . 231

7.26 Comparison between the observed measurements and the values computed using

a) the initial set of parameters and b) the optimised set of parameters. . . . . . . 232

7.27 Topology of the error function for the plastic model of Venda Nova II powerhouse

complex. (a) 3D view (b) Plan view. . . . . . . . . . . . . . . . . . . . . . . . . . 232

7.28 Topology of the error function for the elastic model of Venda Nova II powerhouse

complex. (a) 3D view (b) Plan view. . . . . . . . . . . . . . . . . . . . . . . . . . 234

Chapter 8 – Conclusions 239

Chapter 9 – References 247

Annex I – Histograms of the numerical variables used in the DM process 267

Annex II – Correction for φ′ and c’ due to H and D 279

II.1 Variation of φ′ with a) D and b) H. . . . . . . . . . . . . . . . . . . . . . . . . . . 280

II.2 Variation of c’ with a) D and b) H. . . . . . . . . . . . . . . . . . . . . . . . . . . 280

II.3 Correction factor chart for φ′ concerning D . . . . . . . . . . . . . . . . . . . . . 281

II.4 Correction factor chart for φ′ concerning H . . . . . . . . . . . . . . . . . . . . . 282

II.5 Correction factor chart for c’ concerning D . . . . . . . . . . . . . . . . . . . . . . 283

II.6 Correction factor chart for c’ concerning H . . . . . . . . . . . . . . . . . . . . . . 283



List of Figures xxi

Annex III –Computed stresses and displacements for the 3D model of Venda

Nova II 285

III.1 Adopted mesh for the 3D model of the Venda Nova II powerhouse complex . . . 285

III.2 Total displacements for cross-section 1. . . . . . . . . . . . . . . . . . . . . . . . . 286

III.3 Minimum stresses for cross-section 1. . . . . . . . . . . . . . . . . . . . . . . . . . 287

III.4 Maximum stresses for cross-section 1. . . . . . . . . . . . . . . . . . . . . . . . . 288

III.5 Total displacements for cross-section 2. . . . . . . . . . . . . . . . . . . . . . . . . 289

III.6 Minimum stresses for cross-section 2. . . . . . . . . . . . . . . . . . . . . . . . . . 290

III.7 Maximum stresses for cross-section 2. . . . . . . . . . . . . . . . . . . . . . . . . 291



xxii



List of Tables

Chapter 1 – Introduction 1

Chapter 2 – Methodologies for Geomechanical Parameters Evaluation in Rock

Masses 7

2.1 In situ and laboratory tests for intact rock and rock formation characterisation. . 13

2.2 Dilatometer test versus Plate Load test - advantages and disadvantages. . . . . . 15

2.3 Evaluation of large scale tests needs (Sousa et al., 1990). . . . . . . . . . . . . . . 16

2.4 Analytical expressions for the calculation of E based on the RMR value. . . . . . 23

2.5 Analytical expressions for the calculation E based on the Q value. . . . . . . . . 27

2.6 Analytical expressions for the calculation E based on the GSI value. . . . . . . . 38

Chapter 3 – Knowledge Discovery in Databases and Data Mining 51

3.1 Confusion matrix for two classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 4 – New Models for Geomechanical Characterisation Obtained Using

DM Techniques 75

4.1 Initial attributes of the database . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Expressions used for the calculation of E. . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Comparison between calculated and measured values of E. . . . . . . . . . . . . . 82

4.4 Comparison between the number of times the expressions were calculated with

the number of times the result was within the considered interval. . . . . . . . . 84

4.5 List of attributes added to the original database. . . . . . . . . . . . . . . . . . . 84

4.6 Results for the models considering all the attributes and the most important

ones for the RMR prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Results for the multiple regression model considering parameters P3, P4 and P6

and using the transformed form of the target variable. . . . . . . . . . . . . . . . 91

4.8 Comparison of the main results between the regression models which use RMR

and RMR2 as target variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9 Results for the models considering all the attributes and the most important

ones for the Q coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.10 Results for the models considering the Jr/Ja, Jn and Jr/Ja, Jn, P3, P4, P6

attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xxiii



xxiv

4.11 Results for the models using the different data sets for φ′ prediction. . . . . . . . 97

4.12 Results for the models developed for tanφ′ prediction. . . . . . . . . . . . . . . . 101

4.13 Results for the models using the different data sets for c’ prediction . . . . . . . . 104

4.14 Results for the models which use the RMR and Q coefficients. . . . . . . . . . . . 107

4.15 Results for the models which use the RMR and only some few parameter. . . . . 109

4.16 Performance measures for the HRMR system. . . . . . . . . . . . . . . . . . . . . 113

Chapter 5 – Updating of Geomechanical Parameters Through Bayesian Prob-

abilities 119

5.1 Distribution parameters for the initial values of E (GPa). . . . . . . . . . . . . . 136

5.2 Distribution parameters for the values of E obtained by the LFJ tests (GPa). . . 137

5.3 Posterior estimates of the mean value of E considering Jeffreys prior (GPa). . . . 139

5.4 Prior and posterior estimates of the mean value of E considering the conjugate

prior (GPa). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5 Posterior distributions considering Jeffreys prior . . . . . . . . . . . . . . . . . . 143

5.6 Posterior estimates of the mean value of E (GPa) . . . . . . . . . . . . . . . . . . 144

5.7 Prior and posterior distributions considering the conjugate prior. . . . . . . . . . 145

5.8 Prior and posterior estimates of the mean value of E (normal distribution) (GPa).146

5.9 Prior and posterior estimates of the mean value of E (lognormal distribution)

(GPa). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.10 Mean and standard deviation of the Weibull parameters and determination co-

efficient from the Weibull analysis fitting (GPa). . . . . . . . . . . . . . . . . . . 154

5.11 Parameters of the Weibull fit for the simulated population values (GPa). . . . . . 154

5.12 E values for different reliability levels (GPa). . . . . . . . . . . . . . . . . . . . . 155

Chapter 6 – Application of Inverse Methodologies in Underground Structures159

6.1 Computed values for the elastic calculation. . . . . . . . . . . . . . . . . . . . . . 175

6.2 Computed values for the plastic calculation . . . . . . . . . . . . . . . . . . . . . 175

6.3 Results of the identification process of E with two displacement measurements. . 179

6.4 Results of the identification process of E and K0 with two displacement mea-

surements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.5 Results of the identification process of E and K0 with one horizontal and one

vertical displacement measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.6 Results of the identification process of E and K0 with three and four displacement

measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



List of Figures xxv

6.7 Results of the identification process of E and K0 with one stress and one dis-

placement measurements using the SD algorithm . . . . . . . . . . . . . . . . . . 184

6.8 Results of the identification process of E and K0 with one stress and one dis-

placement measurements using the QN algorithm . . . . . . . . . . . . . . . . . . 184

6.9 Results of the identification process of E and K0 with one stress and one dis-

placement measurements using the CG algorithm . . . . . . . . . . . . . . . . . . 185

6.10 Results of the identification process of c′ and φ′. . . . . . . . . . . . . . . . . . . 187

6.11 Characteristics of the verification problems. . . . . . . . . . . . . . . . . . . . . . 189

6.12 Adopted combinations of measurements and parameters for the evaluation of the

ES algorithm in back analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.13 Results of the identification of E with two measurements in the elastic case. . . . 194

6.14 Results of the identification of E, σH and ν with three measurements in the

elastic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.15 Results of the identification of E, c′ and φ′ and with two measurements in the

elasto-plastic case with no-yielding. . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.16 Results of the identification of c′ and φ′ with three measurements in the elasto-

plastic case with yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Chapter 7 – Venda Nova II Powerhouse Complex - Back Analysis of Geome-

chanical Parameters 203

7.1 Statistical analysis of E in GPa obtained by the dilatometer tests. . . . . . . . . 207

7.2 Statistical analysis of Vp and Vs obtained by the ultrasound tests. . . . . . . . . . 208

7.3 Statistical analysis of σc and Ei obtained by the laboratory compression tests . . 209

7.4 Statistical analysis of shear tests on discontinuities results. . . . . . . . . . . . . . 209

7.5 Geological-geotechnical zoning of the rock mass . . . . . . . . . . . . . . . . . . . 212

7.6 Characteristics of the four main families of discontinuities (Plasencia, 2003). . . . 212

7.7 Adopted construction stages for the 3D numerical model. . . . . . . . . . . . . . 216

7.8 Mean displacements and errors for situation a) and b). . . . . . . . . . . . . . . . 219

7.9 Results of the validation studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

7.10 Results of the identification processes using SiDolo. . . . . . . . . . . . . . . . . . 228

7.11 Results of the identification processes using the ES algorithm. . . . . . . . . . . . 230

Chapter 8 – Conclusions 239

Chapter 9 – References 247

Annex I – Histograms of the numerical variables used in the DM process 267



xxvi

Annex II – Correction for φ′ and c’ due to H and D 279

Annex III –Computed stresses and displacements for the 3D model of Venda

Nova II 285



Chapter 1

Introduction

1.1 Background

The prediction of rock formations behaviour due to changes in the stress/strain field caused

by the excavation of an underground structure is a complex issue. The main reason for such

complexity is mainly related with the uncertainties concerning the rock mass characterisation.

Beyond a certain discontinuities density, the rock mass can be approximated as a continuous

medium with average properties. In this case, the behaviour of the rock mass is controlled

not only by the properties of the intact rock but also by the discontinuities characteristics

(both geometrical and mechanical), groundwater conditions, between others. Also, micro and

macro-scale heterogeneities may have a significant impact on their behaviour.

The evaluation of geomechanical parameters is normally carried out by means of laboratory

and in situ tests. In the specific case of rock formations they can be complemented by indirect

methodologies like the empirical rock mass classification systems (Bieniawski, 1989; Hoek et al.,

2002; Barton et al., 1974). The advantages and limitations of each methodology are well known.

In the case of laboratory tests the stress/strain distribution and boundary conditions are well

defined. However, there are difficulties on obtaining undisturbed samples. Besides, these type

of tests raise representativeness issues related to the sample size compared with the formation

which is necessary to reproduce. In the case of in situ tests, these drawbacks are reduced, but,

in the other hand, the stress/strain distribution, is not well known. The empirical methods

application is relatively simple and straightforward and their use is widespread. Nevertheless,

they present several limitations mostly related to their empirical base.

Recently, developments on both testing equipments and instruments were achieved allow-

ing a more thorough characterisation of the geotechnical materials behaviour. For instance,

deformability characteristics can now be assessed in laboratory for very small strain levels in-

teresting the serviceability of the geotechnical structures (Gomes Correia et al., 2004). The

1
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empirical systems were also object of several updates and improvements during the years.

However, the potentialities of the available numerical tools have exceeded the capability of

accurately characterise the geotechnical materials.

Ground properties behaviour can, nowadays, be numerically translated by a hide range of

constitutive models ranging from the simple elastic isotropic to complex coupled and multiscale

ones. Pre and post failure behaviour, dilation, damage, creep and strain-hardening/softening

are only some of the aspects covered by currently available constitutive models. However,

there are high uncertainties related to the evaluation of strength and deformability properties

even for the simplest ones (Einstein, 2006). This fact hinders the definition of a standard

methodology to obtain characteristic values for these properties. Concerning this subject,

Eurocode 7 (Eurocode, 2004) is very general and only provides guidelines. It establishes that the

choice of characteristic values for the properties of soils and rocks should be supported by the

results of laboratory and in situ tests. It also mentions that the determination of characteristic

values should also be based in experience (engineering judgment) and to the project inherent

risk. Concluding, this code establish that the characteristic value of a property should be

understood as a cautious estimate of the mean value that the property can assume. In this

context, the definition of design parameters, even though these guidelines, is still a subjective

and user-dependent exercise involving a great deal of uncertainties.

1.2 Approach and scope of the work

The goal of this work is to improve the way strength and deformability parameters are obtained

in the several phases of an underground work project and considering different levels of available

geotechnical data.

Figure 1.1 presents a generic methodology for the rock mass characterisation normally used

in large geotechnical projects. It starts with a preliminary research based on geological data

and some tests in order to define an initial geotechnical model which is used to support the

decision about location, orientation and other generic issues. Afterwards, a more thorough

characterisation is carried out and the previous results can be updated with this new data to

form a geotechnical model of the interested formations. These updated parameters are used in

numerical modelling and geotechnical design. During construction, stresses and displacements

can be monitored. This observational data can be used to re-evaluate the established geotech-

nical model by back analysis. In this overall methodology, geomechanical parameters have to

be assessed in three levels considering completely different conditions of available geotechnical

data, i.e. knowledge about the rock mass. In the next items, a succinct outline of the problem

in each level and the research approach are presented.
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Figure 1.1: Scheme of a generic methodology for rock mass characterisation.

• Level 1 : The number and type of tests performed in geotechnical site investigation is

related with the importance of the work, the inherent risk and budget issues. In small

projects, normally, only a few or even no tests are carried out and the parameters are

set based on local experience and conservative engineering judgment. However, in large

geotechnical projects, a great amount of data is produced and used to establish near-

homogeneous geotechnical zones. This information could be important not only for the

analysed project but to smaller ones where only scarce geotechnical information is avail-

able. Currently, this data is analysed using simple statistical tools which can not take

full advantage of the knowledge that can be embedded in such databases. Nowadays,

there are automatic tools, from the fields of artificial intelligence and pattern recognition

for instance, which allow to have a deeper understanding of large and complex databases

exploring and discovering potential embedded knowledge (Hand et al., 2001). In the ini-
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tial project stages information is scarce to allow defining an accurate geotechnical model.

In this context, it is intended to gather a large database of geotechnical data and use

these innovative tools to analyse and induce new and useful knowledge. The main goal

is to develop new, simple and reliable models to predict geomechanical parameters values

mainly in the initial stages of design.

• Level 2 : The collection of geomechanical information is a complex and dynamic process.

In large geotechnical projects, several geotechnical survey campaigns can be carried out

in different project stages. This way, as new information is available, it is necessary to

update the geotechnical model. However, this is not a straightforward process since tests

have different characteristics and reliability levels. Once more, this is a process based on

judgment and experience. It lacks a systematic and mathematically valid process, which

considers also the important contribution of experience, to deal with this problem and

use new information to update the model parameters in a process to reduce uncertainties.

It is believed that this problem can be treated within the scope of Bayesian (subjective)

probabilities (Bernardo and Smith, 2004). In this context, it is intended to develop a

generic Bayesian framework that allows geomechanical parameters to be updated in a

proper mathematical sense and apply it to a real case.

• Level 3 : The observation of the geotechnical structures real behaviour during construc-

tion, namely by monitoring stresses and displacements, allow to update the geomechanical

parameters to values closer, in mean terms, to the real ones (Gioda, 1980; Ledesma et al.,

1996). In this process, called back analysis, the parameters of the geotechnical model

are adjusted in order to match, under a certain tolerance, the monitored and predicted

measures. Many times, this process is carried out by means of ‘hand adjustment’ or using

a method that searches within all (or almost) the parameters space. These methods can

be very time-consuming (specially when complex computational models are used) and

the best set of parameters may not be reached. Mathematical tools from the classical

optimisation field are available to perform this task. Recently, new algorithms based on

artificial intelligence, in particular evolutionary computation (like genetic algorithms and

evolution strategies), have appeared as a good alternative surpassing some limitations

of the previously mentioned techniques (Holland, 1975; Rechenberg, 1994; Schefel, 1995;

Costa, 2007). In this sense, it is important to better characterise the application domain

of these techniques (advantages, drawbacks and application limits) for the case of geome-

chanical parameters identification. It is intended to carry out this task using verification

problems of a tunnel excavation. Afterwards, the innovative algorithm based on evolution

strategies will be applied to a real case study.
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Concluding, the idea for this thesis was not to concentrate the research effort on a small

topic but to enhance the geomechanical parameter evaluation in different stages using inno-

vative numerical methodologies. This motivated a broader treatment of the subject and the

development of several research topics that deserved to be addressed. It can be understood that

the complete solution to all of these issues is not achieved but relevant and original contributions

were accomplished and many basis for future research were established.

All the data used in this thesis was gathered from the Venda Nova II hydroelectric scheme

courtesy of EDP (Electricity of Portugal) company. This large underground project is com-

posed by important underground works built in a predominantly granitic rock mass. This

data provided the basis for the developed methodologies and their posterior application and

validation.

1.3 Outline of the thesis

The present thesis is composed by eight chapters organised as schematised in Figure 1.2.

Figure 1.2: Outline and organisation of the thesis.
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Following this introduction, part of Chapter 1, a comprehensive literature review on the

subject of strength and deformability parameters determination in rock masses is presented in

Chapter 2. The current state-of-the-art regarding this subject is presented with special emphasis

to the advanced methodologies and highly heterogeneous rock masses characterisation.

The work developed after this Chapter falls into three different blocks of chapters and

form the backbone of the thesis. Each block addresses one of the issues raised in the previous

section. This approach allows treating the different problems independently in order to reach

an acceptable solution for each one of them with an integrated view. Every block starts with an

outline of the problem being addressed and a concise state-of-the-art. Because of the innovative

aspects of some of the used techniques their main issues are described.

Block 1 is composed by Chapters 3 and 4. The first is related with recent techniques

concerning the exploration of knowledge embedded in large and complex databases commonly

known as Knowledge Discovery in Databases and Data Mining. The main tasks, methods,

models and techniques are presented and explained. In the last, a case study is developed and

presented. A large database of geotechnical information was gathered and organised. This

database was then explored using the mentioned techniques in order to develop new alternative

methods to obtain geomechanical parameters in the early stages of design.

Block 2 is composed only by Chapter 5 where the fundaments of Bayesian probabilities

are presented. Issues like Bayes’ theorem, the choice of proper prior distributions and Bayesian

inference are explained. Bayesian frameworks are developed for the updating of the geomechan-

ical parameters considering different levels of uncertainties. An application of these frameworks

is carried out considering the updating of the deformability modulus in an underground work.

Chapters 6 and 7 form the last block. Chapter 6 concerns the main components and methods

of back analysis in geotechnical problems. Classical and new optimisation algorithms are pre-

sented and applied in verification problems considering different circumstances in order to check

their performance. In Chapter 7 the Venda Nova II underground project is described. Numeri-

cal models for the powerhouse complex are developed in 2D and 3D. Its structural behaviour is

analysed and compared with the observed data. Finally, a new optimisation algorithm based on

evolution strategies is used to back analyse geomechanical parameters considering the observed

behaviour of the structure, in terms of displacements, in the different construction stages. Its

performance is compared with an optimisation software based on classical algorithms.

Finally, conclusions from the conducted research are drawn in Chapter 8 and some rec-

ommendations for future work are outlined. It is believed that the original contributions and

innovative aspects of this thesis are a step forward in the subject of geomechanical parameters

evaluation intending to be a contribution to a closed form solution for the problem.



Chapter 2

Methodologies for Geomechanical

Parameters Evaluation in Rock

Masses

2.1 Introduction

Due to the natural variability of the rock formations, the geotechnical properties evaluation is

one of the issues with largest uncertainty degree. This fact is a consequence of the complex

geological processes involved and to the inherent difficulties of geomechanical characterisation.

In the last years, the evaluation of geomechanical parameters, in both rock and soil forma-

tions, has gone through some changes and developments which are due to several factors.

• New instruments and equipments for in situ and laboratory tests which allow a higher

accuracy in the evaluation of both materials and formations behaviour.

• The improvement of the empirical rock mass classification systems and geomechanical

parameters quantification.

• The development of more powerful numerical tools which allow performing backanalysis

in complex models.

• Improvement of the monitoring techniques providing higher accuracy in the observed

measurements.

• New probabilistic methodologies for rock mass characterisation.

• Development of innovative tools based on Artificial Intelligence (AI) techniques for deci-

sion support.

7
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In the case of rock formations, the calculation of the geomechanical parameters is mainly

carried out through in situ and laboratory tests and also by the application of empirical method-

ologies such as the RMR (Bieniawski, 1989), GSI (Hoek et al., 2002) and Q (Barton et al., 1974)

systems.

Rock formations may present discontinuous, heterogeneous and anisotropic characteristics.

This way, in situ tests for the evaluation of geomechanical parameters are, in large scale,

influenced by the tested volumes. The rock masses may only be considered homogeneous at a

large scale, therefore, it might not be economically sustainable to perform tests in a significant

volume. However, insufficient test volumes may cause scale effects, namely at the strength level,

and higher dispersion in the deformability results (Cunha and Muralha, 1990).

The in situ tests for the deformability characterisation, like the Large Flat Jack (LFJ) test,

are normally carried out by applying a load in a certain way and measuring the correspondent

deformations in the rock mass. The tests for the strength characterisation are yet not fully

satisfactory and are normally materialised through shear or sliding tests in low strength sur-

faces (Rocha, 1971). However, these tests are time consuming and expensive and the strength

parameters determination is normally carried out indirectly by means of the Hoek and Brown

(1980) strength criteria (H-B) associated with the GSI. Even though the limitations of this

approach, it has been extensively used in projects developed in rock masses and have been

through several changes and updates. For instance, Hoek et al. (2002) presented an important

update of the criterion expressions and introduced a disturbance factor (D) to account with

degradation due to blasting and stress relaxation. Douglas (2002) presented new expressions in

order to contemplate rock types and formations for which the initial criterion did not present

a satisfactory performance.

Laboratory tests interest a relatively small rock volume and, consequently, it is necessary to

perform a considerable number of tests in both the rock material and discontinuities surfaces,

in order to contemplate the variability in the obtained geomechanical parameters. Laboratory

tests like the determination of the uniaxial compressive strength, the point-load and sliding of

discontinuities tests are also very important for the empirical classification systems application.

In the cases where the rock masses present time-dependent properties, namely due to creep

and expansibility phenomena, more specific laboratory and in situ tests are necessary (Rocha,

1971; Wyllie, 1992).

As it was referred, the preliminary calculation of the geomechanical parameters can be

carried out also using the empirical classification systems. These systems consider, between

others, properties like: the strength of the rock, density, condition and orientation of the

discontinuities, groundwater conditions and the stress state. To the evaluated properties a

numerical measure is given and, subsequently, a final geomechanical index is obtained by the
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application of a numerical expression associated with the system. The result allows classifying

the rock mass in a certain class which is associated to important information for design like

construction sequences, support needs and geomechanical parameters.

The most widely used systems are the RMR, Q and GSI. The last one can not be formally

considered a classification system since it was developed mainly to the calculation of the H-B

failure criterion strength parameters. However, because of its simple application characteristics,

normally it is used as a classification system as well. For the deformability evaluation there

are several analytical solutions relating the deformability modulus (E) with geomechanical

coefficients. These expressions should always be used considering their application limits. As

it was already referred, the determination of strength parameters is normally carried out using

the H-B and the Mohr-Coulomb criteria based on the results of the GSI application.

The development of the QTBM system (Barton, 2000), starting from the Q system, allows the

prediction of several parameters related to the excavation in TBM tunnels, and also constitutes

an important development for the characterisation of geomechanical parameters. It is also worth

mentioning also the development of a new empirical system specially for the characterisation

of volcanic rocks (Menezes et al., 2007).

In highly heterogeneous rock formations the geomechanical characterisation becomes more

complex. The deterministic definition of the parameters and zoning are very difficult or even

impossible tasks. In this context, alternative characterisation methodologies have been proposed

that combine, in different ways, probabilistic tools, in situ and laboratory tests, numerical

methods, application of the empirical systems and monitoring data.

The monitoring of the structures allows, among other things, the validation and calibration

of the geotechnical models. This is a main issue for understanding the mechanisms that rule

the formations and the geotechnical structures behaviour. Through the comparison between

predicted and observed measurements, the assumed hypotheses and the geomechanical model

reliability can be assessed. In this particular aspect, back analysis techniques are important

for they allow, through formally appropriate mathematical techniques, to obtain the model

parameters based in the real behaviour of the structure. This information can then be used to

update the geotechnical model reducing the uncertainties.

In the design and construction of underground structures, experience plays an important

role. The fundamental reason lies in the difficulty of gathering enough geological-geotechnical

information to correctly evaluate the geomechanical behaviour of the rock mass. Therefore,

there are indubitable advantages in congregating the experience and knowledge of one or several

specialists in a specific field of knowledge. New tools of computer sciences, namely those based

on AI, can play an important role in the generation of calculation means that make possible

the inclusion of that experience and knowledge (Russell and Norvig, 1995).
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Specialised knowledge can be easily implemented once it possesses a very well established

area of application and a context of concepts and rules to be applied for the resolution of

a specific problem. One of the branches of AI are the expert systems that began to be de-

veloped in the 80’s. Starting from a properly structured and validated knowledge base, they

develop processes of reasoning simulation to present recommendations seeking the resolution to

a given problem. These systems are normally used for decision support in a limited domain of

knowledge.

In the 90’s the trend shifted to the development of intelligent systems that learn from

the data or use hybrid approaches. There are several techniques in the AI field. Artificial

neural networks (ANN), genetic algorithms (GA) and evolutive strategies (ES), support vec-

tor machines are only some examples. Methodologies of Knowledge Discovery in Databases

(KDD) or Data Mining (DM), in the scope of intelligent systems development, use different AI

techniques together with tools from statistics, machine learning, pattern recognition, between

others. Some of these techniques and methodologies are used in this thesis and will be described

more thoroughly in the next chapters.

The necessary input parameters for the development of numerical models are generally

imprecise. The high uncertainty degree associated with the determination of these parameters

may lead to erroneous results if their values are treated as deterministic. Rock properties values

used for design purposes are affected by several sources of uncertainties (Popescu et al., 2005).

• Inherent random heterogeneity or spatial variability.

• Measurement errors.

• Statistical errors, for instance, due to small sample sizes.

• Uncertainty in transforming the test results in proper geomechanical properties.

There is no agreement about what method should be used to account with these uncer-

tainties, in particular for geotechnical problems where usually information is scarce and may

contain high uncertainty levels. Currently, there are many techniques to deal with uncertainty

in the scope of reliability analysis. Some of these techniques are: probability and random set

theories, fuzzy sets and stochastic analysis. Some of them can be used together forming hybrid

methodologies to solve a specific problem.

Advanced probabilistic approaches to safety and reliability are common nowadays and

started to be already used into practical applications and code making (Rackwitz, 2000). Prob-

ability theory has been extensively and successfully used in reliability analysis and is the most

used technique to deal with uncertainties. In opposition to the traditional frequentist probabil-

ity view, it is also possible to use subjective probability methodologies. Using Bayes theorem
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and considering suitable assumptions on uncertainties statistics, it is possible to combine dif-

ferent sources of information like the opinion from experts and results from in situ tests.

Random Set Theory (RST), even though providing a poorer model than in the probabilistic

approach, provides an appropriate framework to deal with uncertainty specially in the cases, as

it happens often in rock mechanics, when information about the geomechanical properties is not

point-valued but varies within a certain range. In these cases RST allows to calculate (Tonon

et al., 2000): upper and lower bound of the probability of occurrence of a certain outcome; and

for a fixed value of probability, the interval of values of a given rock mass parameter.

Information regarding a rock mass is affected by ”dissonance” and ”non-specificity” or

”imprecision” which are sub-classes of ”ambiguity”. RST allows treating the problem of ”am-

biguity” as opposed to ”vagueness” which is properly formalised by the concept of fuzzy set.

The theory of fuzzy sets, also known as possibility calculations, is an alternative to model

uncertainties and provide conservative bounds for probability. Fuzzy sets allow to compute

the membership function of a certain system from the membership functions of the uncertain

variables (Peschl and Schweiger, 2003).

A realistic consideration is that the strength and deformability parameters distribution

within a rock or soil formation is random. These random heterogeneities can be modelled

probabilistically using stochastic field theory. Geomechanical properties are considered as ho-

mogeneous non-Gaussian (since they can not assume negative values) random fields and the

Monte Carlo method is used for the stochastic analysis.

The random fields approach starts with the generation of several random fields based on: i)

the probabilistic distributions assumed for the parameters; ii) the correlation length concerning

the distance for which there are significant differences in the material properties; iii) the cross-

correlation between the parameters. Each generated random field is a possible realisation of the

geomechanical properties spatial variation and is deterministically computed using the finite

element method. The results of every realisation allows a probabilistic analysis of the formation

behaviour.

Fenton and Griffiths (2003) applied this principle to model a spatially varying shear strength

soil using elasto-plastic finite element analysis to evaluate the effect of spatial variability and

cross-correlation between cohesion (c’) and friction angle (φ′) in bearing capacity. Cohesion

was assumed a lognormal random variable while φ′ was assumed to have a bounded normal

distribution. The authors concluded that the cross-correlation between the parameters have

only minor influence on the stochastic behaviour and that for small variability of the parameters,

results tend to the deterministic solution. However, as variability increases, the mean bearing

capacity becomes significantly lower as the failure surface tends to follow the weakest path.

This means that inherent spatial variability affects the mechanical behaviour of the formations
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in particular in the failure mechanism form. This conclusion highlights the importance of the

randomness consideration for proper design and prediction of the real formations behaviour.

In this chapter, the main methodologies for estimating strength and deformability parame-

ters in rock formations are presented. Aspects related with hydromechanics are not addressed

and are outside the scope of this thesis. The main in situ and laboratory tests are briefly de-

scribed and contextualised in a broader approach of rock mass characterisation. Even though

they are widely known and used, the RMR, Q and GSI empirical systems are presented high-

lighting the most innovative aspects. Emphasis is given to the GSI system for it is the only one

specially developed for an integrated approach of strength and deformability parameters cal-

culation. A section is devoted to the special challenges raised in the characterisation of highly

heterogeneous rock masses. Some methodologies to deal with different types of heterogeneities

are also described.

2.2 Laboratory and in situ tests in rock mechanics

The mechanical characterisation of the rock formations can be carried out through in situ tests

in representative volumes, including the rock material and the main discontinuities, which con-

stitute a reliable source of geomechanical information. However, they are normally expensive,

time consuming and also subjected to errors or uncertainties due to in situ measurements,

blasting damage, test procedure and others that should be taken into account when analysing

the results. A good site characterisation together with an indirect method like the use of em-

pirical classification systems should be used in the assessment of the geomechanical parameters

design values.

The characterisation can also be indirectly carried out through laboratory tests on discon-

tinuity surfaces and in the intact rock material. The main problems are related with sampling

and representativeness of the tests due to the small volume of the samples. This is why it is

recommended that their results should always be calibrated by in situ tests. In Table 2.1, a

summary of the main laboratory and in situ tests for the mechanical characterisation of intact

rock and rock formations is presented.

In what concerns the evaluation of the deformability parameters, the in situ tests can involve

small volumes as in the case of the dilatometer, or large volumes, as in case of the LFJ. In Figure

2.1, approximate values of the involved volumes, reporting mainly to the experience of LNEC,

are presented for some of the most common tests (Cunha and Muralha, 1990).

The in situ tests are performed inside a borehole or inside a gallery or adit excavated for

this purpose. In the case of boreholes they normally involve small volumes of rock mass and

can be grouped in two main types, depending on the way the pressure is applied to the walls
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Table 2.1: In situ and laboratory tests for intact rock and rock formation characterisation.

In situ tests

Static tests in boreholes Load tests

Dilatometer Plate Load Test (PLT)

Pressiometer Goffi Method

Borehole jacks

Compression tests Pressure tests on adits

Uniaxial Chamber pressure method

Triaxial Radial (or Goodman) jack

Tests in opened slots Dynamic tests

Circular jacks

Large Flat Jacks (LFJ) Propagation of seismic waves

Small Flat Jacks (SFJ)

Strain Tensor Tube (STT)

Laboratory tests

Static tests Dynamic tests

Uniaxial, diametral and point load compression Ressonance method

Shear and triaxial Ultrassonic pulse method

Flexural, torsion and uniaxial tension

Sliding of discontinuities

Intact rock tests SFJ STT Dilatometer PLT LFJ
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Figure 2.1: Approximate involved volumes for different tests.

of the borehole (Pinto, 1981; Sousa et al., 1990):

• Application of the pressure through a flexible membrane completely adapted to the walls

of the hole with a rotational symmetrical pressure. In the case of the dilatometer, radial

deformations are measured while for the pressiometer a global volumetric deformation is

considered. The last is more often used for soft rocks and present precision limitations
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since it measures volumes instead of displacements.

• Application of the pressure through rigid plates in two circumference arches (borehole

jacks). They correspond to more complex load situations and, consequently, their inter-

pretation raises larger difficulties.

The tests carried out inside a gallery can involve larger volumes therefore being more rep-

resentative (Figure 2.2). However, they are more expensive and time consuming. The main in

situ tests that can be performed inside a gallery are the following:

• Plate Load or Plate Jacking tests - the load is applied by means of a jack and the rock

displacements are measured at the surface of the rock or in boreholes behind each loaded

area using extensometer anchors.

• Radial (or Goodman) Load tests - a uniform radial pressure is applied in a part of a

gallery or inside an NX size borehole and radial deformations are measured by means of

two transducers. They have larger precision than the plate tests and are able to evaluate

hydromechanical properties and the anisotropy of the rock formation.

• Large Flat Jacks (LFJ) and Small Flat Jacks (SFJ) - the load is applied in the walls of one

or more opened slots. The SFJ test has the additional advantage of allowing to evaluate,

besides the deformability parameters, stress state components.

• Seismic tests between holes or galleries - allow determining the dynamic modulus measur-

ing the S and P waves velocities. The values of these modulus are different from the static

ones due to the differences in time and deformation levels applied to the formation during

the test. Depending on the distance between holes or galleries, they involve considerable

volumes and can be correlated with the results of static tests.

• Biaxial or triaxial in situ tests - rarely used for they involve high costs and have low

accuracy.

When the tests are carried out inside a gallery, the results can be very much affected by

damage due to blasting. The damage is mainly caused by development of cracks, displacements

in joints and changes in the stresses. This effect is particularly important near the surface of the

adit where the displacement measures can take place. In this situation, the results of the test

are normally conservative estimations of the rock mass modulus. Palmstrom and Singh (2001)

stated that when blasting is used to excavate the adit, the measurements should be performed

inside a borehole at a minimum depth of 0.5-0.8 m, i.e outside the damaged zone.
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Figure 2.2: Scheme of two methods for the in situ deformability evaluation: a) Plate Load or Jack-

ing test (with two types of possible measurements layout) and b) Goodman Jack test (adapted from

Palmstrom and Singh (2001)).

During the tests the deformation modulus increase with the applied pressure. This is due

to closure of cracks and joints of the rock mass during the first loading cycle. This is why this

cycle should never be considered when interpreting the results since it can lead to erroneous

conclusions.

There are no universal rules to define which tests should be carried out for a given situation

since every test presents advantages and drawbacks. A good characterisation plan should rely

on engineering experience and the project particular issues. For illustrative purposes, Table 2.2

compares some characteristics of a small scale test (dilatometer) and a large scale test (PLT).

Table 2.2: Dilatometer test versus Plate Load test - advantages and disadvantages.

Dilatometer test Plate Load test

Advantages Disadvantages Advantages Disadvantages

Modulus obtained at

considerable

distances from the

surface

Small volume of rock

mass involved

The load can be

applied in its real

direction

It is slow, expensive

and very difficult to

materialise the test

load

Different geological

conditions are

examined and fast

execution

Only normal

measurements to the

borehole axis are

carried out

Significant volume of

rock mass is involved

The load is only

applied in one

direction

In the cases where the rock masses present high anisotropy levels the tests should be carried
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out in order to define the parameters that characterise that anisotropy. This is normally done by

computing indexes which relate rock properties (for instance the uniaxial compressive strength,

point load strength and longitudinal wave velocity) perpendicular and parallel to planes of

anisotropy (Saroglou and Tsiambaos, 2007).

In some types of rock masses the time-dependent behaviour is an important parameter for

the prediction of the long-term stability in rock engineering. Creep, relaxation and loading

tests at different stress or strain rates can be carried out for rheological experiments (Li and

Xia, 2000). These tests are very difficult to be carried out in situ therefore, to obtain creep and

relaxation laws, normally laboratory tests on intact rock samples are conducted using simple

mechanical or servo-controlled testing machines.

To quantify the deformability of the rock masses, the number of in situ tests should be

rationalised. Typically, a methodology that combines a small number of large scale tests with a

larger number of small scale tests is adopted. The methodology can be resumed in three main

tasks:

• Zoning of the rock mass considering the available geological information, the type of rock

formations and their weathering degree, the main discontinuities and the use of empirical

classification systems.

• For each zone, execution of small scale tests, in boreholes and eventually in galleries. They

should be in enough number to assure a good characterisation of the rock mass. Their

location can be chosen randomly in order to obtain a mean value of the deformability

modulus or in zones in which lower values of this parameter are expected.

• For each zone, execution of a small number of large scale tests due to the involved costs.

The results should be calibrated with the values obtained with the small scale tests. De-

pending on the deformability modulus value, it is considered that three different situations

exist in what concerns the needs of large scale tests as it is indicated in Table 2.3.

• Individual analysis of the most important faults. Carry out representative tests on the

fault filling material.

Table 2.3: Evaluation of large scale tests needs (Sousa et al., 1990).

Situation E (GPa) Large scale tests

I E ≥ 10 Advisable

II 5 ≤ E < 10 Necessary

III 0.1 ≤ E < 5 Necessary with high precision
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Figure 2.3 presents a scheme of the described methodology for the rock mass characterisation

through in situ tests.

Geological data (maps and charts) and gathering
of pre-existent data from other projects

In situ observation of the involved formations

Borehole survey
Geophysical tests

Empirical systems application

Zoning of the rock mass and identification
of major faults

Calculation of the deformability parameters

Small scale tests:
dilatometers

pressiometers...

Identification of the geomechanical parameters
3D distribution associated to the empirical system
application using finite element method techniques

Large scale tests:
flat jack test
plate load test...

Tests on low strength discontinuities surfaces

Figure 2.3: Scheme of the methodology for rock formations deformability characterisation.

In the deformability characterisation tests, the scale effect is mainly translated by the highest

variability in the results of the small scale tests. In order to account with this effect, the number

of tests should be enough to compensate this variability.

If the tests are carried out at randomly chosen sites, the obtained values should present the

same mean and a standard deviation proportional to the square root of a significant dimension

of the tested volume. Figure 2.4 presents the layout of two PLT with 30 and 60 cm diameter

in a highly heterogeneous conglomerate rock mass. As it can be seen, the test with larger

diameter plate includes a larger volume of rock elements with higher rigidity. This fact implies

that the obtained modulus is higher in this case compared with the smaller diameter plate

situation. Deformability modulus values of 621 and 896 MPa for the 30 and 60 cm diameter

plates, respectively, where obtained (Sousa et al., 1990).

For the determination of the rock masses strength parameters, large scale in situ and labo-

ratory tests for the intact rock material and discontinuities can be executed. The main in situ
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Figure 2.4: Scheme of a PLT layout (Sousa et al., 1990).

tests are, normally, sliding or shearing in discontinuities, in the faults filling material and other

low strength surfaces and in the rock mass/structure interfaces. The main goal of this kind of

tests consist on the determination of the strength parameters for the Mohr-Coulomb or Barton

(Barton et al., 1974) criteria. Other tests of smaller use are the triaxial and torsion tests.

One of the main difficulties in performing large scale in situ tests for the strength parameters

evaluation is to apply a load to a large volume of rock mass until it reaches ultimate failure.

Normally, these tests are carried out until a certain stress is applied to the rock mass allowing

to obtain E but without reaching failure. In this context, it is important to point out the

contribution of Singh and Rao (2005) that, based on a extensive experimental study, presented

expressions to predict the strength of the rock mass (σcj).

σcj

σc
=


Ej

Ei




1/gradient

(2.1)

where Ej and Ei are the tangent moduli (tangent) of the rock mass and intact rock, respectively,

and σc is the uniaxial compressive strength of the intact rock. The gradient is a parameter which

is dependent of the type of failure expected for the rock mass. The probable mode of failure

may be assigned depending on the orientation and interlocking of joints. It assumes the values

of 0.56 for splitting and shearing, 0.66 for sliding and 0.72 for rotation. To obtain a rough

estimate of the rock mass strength a mean value of 0.63 can be used. This way, it is possible to

predict the rock mass strength based on Ei and σc that can be easily obtained by laboratory

tests and Ej obtained by in situ tests like the PLT.

The main laboratory tests for the intact rock strength evaluation are: uniaxial compression,

triaxial, diametral, linear (Brazilian test), point load, uniaxial tension, shear and flexural. There

are also special diametral compression tests for the determination of anisotropic materials elastic
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properties. The uniaxial compressive test is often used for the intact rock strength and deforma-

bility characterisation. It allows not only the calculation of the uniaxial compressive strength

but also the deformability modulus since it is possible to obtain all the load-displacement curve.

However, the triaxial test is the most accurate and reliable for this purpose since it simulates

the in situ stress conditions and the adequate stress path. Nevertheless, this test involves more

sophisticated equipment, is more time-consuming and expensive. Another very common test is

the point load in rock samples whose result is, usually, correlated with the uniaxial compressive

strength (Goodman, 1989; Miranda, 2003). The mechanical characterisation of discontinuities

is carried out through sliding, triaxial, shear and torsion tests (Bandis, 1990). In Figure 2.5 the

equipment for discontinuities sliding test of LNEC is presented.

Figure 2.5: Equipment for sliding test in discontinuities of LNEC

In this context, the accurate characterisation of surface roughness of joints at a relevant

scale is very important since it is closely related to the overall behaviour of a rock mass. To

quantify the rock joint surface roughness a great number of parameters have been proposed.

However, this is normally carried out using the joint roughness coefficient (JRC) proposed by

Barton (Barton et al., 1974). The JRC roughness ranges from 0 (smooth) to 20 (rough) and

can be determined by tilt, push or pull tests on rock samples.

It is also possible to characterise geometrically the discontinuities surfaces by means of

laboratory tests using a mechanical system (Silvestre, 1996). The geometry of the discontinuity
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is evaluated in several discrete points and the overall surface can be approximated numerically

using a finite element mesh. More recently, Lanaro et al. (1998) used tree-dimensional laser

scanning for digitising the topography of rock joint surfaces. Fardin et al. (2001) used this

same method to characterise the joint roughness using fractal models investigating also the

scale effects of roughness parameters (Figure 2.6).

Figure 2.6: 3D laser scanner for measuring the topography of joint surface (Fardin et al., 2001).

2.3 Empirical rock mass classification systems

2.3.1 General

With the progressive increase of the underground space use, classification systems of empir-

ical nature were developed to aid design support of underground structures. In the process

of their application, qualitative and quantitative data is collected and organised in order to

obtain indexes which provide descriptive information about the rock mass, support needs and

geomechanical parameters estimation. This process includes core and borehole logging, scanline

surveying, geological structure mapping and rock testing (Cai and Kaiser, 2007). Also, new

technologies, such as digital and laser image processing of fractures and joint roughness can be

used. Miranda (2003) stated that an empirical system should have the following characteristics:

• easily measurable parameters from outcrops, boreholes and tunnels;

• insensitive to variations of the rock mass, robust and repeatable;

• calibrated against test cases representative of the application field;
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• practical and complete including all relevant parameters;

• result in an economic and safe design.

Most of the classification systems were developed based on experience from case histories.

They can be very useful in the preliminary stages of design and during tunnel construction

to quickly obtain a description of the actual ground conditions. Rocha (1976), who developed

the MR empirical system for the calculation of loads in the support systems of tunnels, argued

that the difficulties in the mechanical characterisation of rock masses due to their heterogeneity

justifyed the use of less refined methods for support design. Rock mass classifications are the

most important part of the empirical design methods. In the early stages of a project, the rock

mass classification systems can be applied as an useful tool to establish a preliminary design. At

least two systems should always be applied in order to reduce uncertainty (Bieniawski, 1989). It

is not recommended their use in final design, especially for complex geotechnical structures or

rock mass conditions like swelling or squeezing rock. From the application of the classification

systems three types of outputs can be obtained:

• characterisation of the rock mass expressed as an overall rock mass index considering the

effects of different geological parameters;

• empirical design with guidelines for support needs, method of excavation, stand-up time,

support pressure, etc;

• estimates of rock mass properties like deformability modulus and strength parameters for

a given failure criterion.

The classification of rock masses continues to be a discussion subject. Several new proposals

have being made in the literature and also several papers have been published on their use

and misuse (Bieniawski, 1989; Palmstrom, 1995; Riedmüller and Schubert, 1999; Hoek et al.,

2002; Stille and Palmstrom, 2003; Barton, 2004). The systems present several drawbacks and

intrinsic limitations that should be known by practitioners for their correct use. For instance,

the application of the RMR and Q systems for support design is suited for rock masses with

relatively simple behaviour. However, they are less reliable for squeezing, swelling, and rock-

burst conditions resulting of very high stresses and when failure can be defined by an important

geological structure. Moreover, the ability to consider strain softening and strength anisotropy

is limited. This way, the empirical systems should only be used within the limits of experience

from which their rules have been derived and always calibrated with a good field survey and

tests to the intact rock and rock mass.
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In this context, it is interesting to refer the innovative work developed by Mas Ivars et al.

(2007) in order to overcome the problems of rock mass classification systems. The authors

presented a new approach to better understand and predict the rock mass behaviour called the

Synthetic Rock Mass approach. It is based on the bonded-particle model for rock developed

by Potyondy and Cundall (2004) and involves the construction of a discontinuum 3D sample

of the rock mass composed by spherical particles embedded in a fracture network. The results

can be used as input in large scale continuum models.

In recent years, classification systems have often been used together with analytical and

numerical tools. They are used to obtain parameters to the numerical models consequently

their importance has increased over time.

The empirical systems with wider application for the preliminary calculation of geomechan-

ical parameters are the RMR, Q and GSI systems. They provide a quantitative estimation of

the rock mass quality associated with empirical design rules and quantification of geomechanical

parameters. The advantages of these systems are the large database that support them and

the simplicity of application. They are widely known and their use is widespread. Therefore,

in this text, only the most innovative issues of these systems are presented.

2.3.2 RMR system

The RMR system is based on the consideration of six geological-geotechnical parameters to

which relative weights are attributed. The RMR index value, which can vary between 0 and

100, is then obtained through the algebraic sum of the referred weights (Figure 2.7). The one

due to discontinuities orientation was introduced by Bieniawski (1989) as an adjustment of

the sum of the remaining five. The application of this correction is not straightforward since

a given orientation can be favourable or unfavourable, depending on the underground water

condition. The calculated RMR value allow to classify the rock mass in one of five classes

describing the rock mass condition ranging form ”very poor rock” to ”very good rock”. To

these classes several important informations are assigned like support needs, stand-up time and

range of geomechanical parameters.

The deformability evaluation is carried out using the final RMR index and correlations

developed by several authors. In Table 2.4 some of these expressions are presented. Their limi-

tations, and the ones of the different expressions relating classification indexes and E presented

in this Chapter, were established by the authors and by Miranda (2003) after a comparative

study of the results given by the expressions in the context of the development of a knowledge

based system.

The RMR system also provides a range of values for the Mohr-Coulomb parameters for
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Figure 2.7: Scheme for the calculation of the RMR index.

Table 2.4: Analytical expressions for the calculation of E based on the RMR value.

Expression Limitations Reference

E(GPa) = 10(RMR−10)/40 RMR ≤ 80
Serafim and Pereira

(1983)

E(GPa) = 2 ·RMR− 100 RMR > 50 and σc > 100MPa Bieniawski (1978)

E(GPa) =

√
σc

10
· 10(RMR−10)/40 σc ≤ 100MPa

Hoek and Brown

(1997)

E =
Ei

100
·
�
0.0028 ·RMR2 + 0.9 · e(RMR/22.28)

�
-

Nicholson and

Bieniawski (1997)

E

Ei
= 0.5 · (1− cos(π ·RMR/100)) - Mitri et al. (1994)

E(GPa) = 0.3 ·Hα · 10(RMR−20)/38 σc > 100MPa and H > 50m Verman (1993)

E(GPa) = 0.1 · (RMR/10)3 - Read et al. (1999)

α varies between 0.16 and 0.30 (higher for poorer rock masses); H is depth.

each class. However, the values which are pointed seem to be deeply conservative and research

should be carried out in order to update these intervals.

The system can be represented in matrix form. This is done considering that each parameter

Pi (i = 1 to 6) is composed by two parts, the maximum weight of the parameter and its

percentage evaluation (Castelli, 1992). The maximum values of the RMR system weights are

represented by the following vector wi = [15, 20, 20, 30, 15]. It is assumed that the evaluation
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can be done, quantitatively, in an interval ranging from 0 to 1. The RMRbasic matrix can,

then, be represented as follows:

RMRbasic = [w1; w2; w3;w4; w5].[E1; E2;E3;E4;E5]T = [W ].[E]T (2.2)

where Ei is the quantitative evaluation of the rock mass for the Pi parameter with 0 ≤ Ei ≤ 1.

Then,

Pi = wj .Ej (j = 1, 2, ..., 5) (2.3)

The sixth parameter, that is used as an adjustment parameter to consider the influence of

discontinuities orientation, can be considered in the following way:

P6 = −(P1,or + P2,or + P3,or + P4,or + P5,or) (2.4)

in which,

Pj,or = w′j .Ej,or (j = 1, 2, ..., 5) (2.5)

the Pj,or represent the adjustment parameters for each Pi. The values of the w′j vector are

constant and dependent on the type of work being analysed. In the case of tunnel, for instance,

this value is equal to -12. This way, the vector can be represented by a constant C. The Ej,or are

the quantitative influence of the discontinuities orientation in parameter i with 0 ≤ Ej,or ≤ 1.

In this case, the Ej,or sum can not be greater then 1 so that the value of P6 is kept below

its maximum. The main difficulty of this methodology is the evaluation of the discontinuities

orientation influence in each of the remaining parameters. This way, the adjustment parameter

P6 can be represented by the following matrixes:

P6 = −C.[E1,or; E2,or; E3,or; E4,or;E5,or]T = −C.[Ej,or]T (2.6)

as result,

RMR = RMRbasic + P6 = [W ′].[E]T − [W ].[Ej,or]T (2.7)

Random set theory (RST) can be applied to rock mass classification systems to deal with

the two types of uncertainties related to their application: imprecision and dissonance. When

a rock mass classification system is applied, a range of values for each parameter i is normally

obtained within a lower (δL
i ) and an upper bound (δR

i ) (Tonon et al., 2000). To deal with

imprecision a range for the final index value is obtained using interval analysis. For the RMR

system it is translated by the following expression:
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∆RMR =
[
RMRL, RMRR

]
=

[
6∑

i=1

δL
i ,

6∑

i=1

δR
i

]
(2.8)

Dissonance refers to the fact that different observations generally provide different results, in

this case different values of ∆RMR. After M observations, N intervals ∆RMRi (i = 1, ..., N)

will be available, each one with frequency m (∆RMRi) = ci/M where ci is the number of

occurrences of ∆RMRi. This way, to eliminate dissonance, the expectation value is the interval:

µRMR =

[
N∑

i=1

(
miRMRL

i

)
,

N∑

i=1

(
miRMRR

i

)
]

(2.9)

This random set approach can account for the two uncertainty types present in the appli-

cation of the classification systems. This model is more adapted than probability theory to the

real information that it is possible to obtain in the field by geomechanical survey and experts

opinion.

2.3.3 Q system

The Q system was proposed by Barton et al. (1974) and since then it has been updated and

some innovative concepts in what concerns aspects like supports design have been introduced

(Barton, 2004). It proposes a quality index for the rock mass classification and determination

of support needs. Using this index the rock mass is classified in one of nine different classes

ranging from ”exceptionally poor” to ”exceptionally good”. This system is schematized in

Figure 2.8 (Miranda et al., 2006).

It is important to mention that, in fractured rock masses, the parameters related with the

discontinuities characteristics (Jr and Ja) should refer to the discontinuity family which is more

probable to initiate a failure process.

The Q value can, also, be matricially represented using a logarithmic transformation in the

following sense:

Q =
RQD

Jn
.
Jr

Ja
.

Jw

SRF
⇔ log Q = log RQD + log

1
Jn

+ log Jr + log
1
Ja

+ log Jw + log
1

SRF
(2.10)

This way, log Q can be represented by equation 2.11:

log Q = P ′
1 + P ′

2 + P ′
3 + P ′

4 + P ′
5 + P ′

6 (2.11)

Using the same procedure as for the RMR system, the following matricial formulation is

obtained:
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Figure 2.8: Scheme for the calculation of the Q and QTBM indexes

log Q = [w1; w2; w3; w4; w5;w6].[E1; E2; E3; E4; E5;E6]T = [W ].[E]T (2.12)

P ′
i is calculated using a equation similar to 2.3. The maximum values of the Q system weights

are represented by the vector wi = [2, 0.30, 0.60, 0.13, 0, 0.30].

Some expressions have been presented in order to predict the rock mass strength using

this system. Singh (1997), based on the back analysis of several tunnels, have suggested the

following expressions for rock mass strength:

σcj = 7.γ.Q1/3 (2.13)

where γ is the unit weight of the rock. Barton and Quadros (2002) modified equation 2.13

and included in it the uniaxial compressive strength of the intact rock (σc) and suggested the

following expression:

σcj = 5.γ.


Q.σc

100




1/3

(2.14)

The Q value can also be correlated with E using several analytical expressions. In Table 2.5

some of these expressions are presented.
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Table 2.5: Analytical expressions for the calculation E based on the Q value.

Expression Limitations Reference

E(GPa) = 25 · logQ Q > 1 Barton et al. (1980)

E(GPa) = 10 ·Q1/3
c ; Qc = Q ·σc/100 Q ≤ 1 Barton and Quadros (2002)

E(GPa) = H0.2 ·Q0.36 H > 50m Singh (1997)

E(GPa) = 1.5 ·Q0.6 ·E0.14
i Ei ≤ E and Q ≤ 500 Singh (1997)

E(GPa) = 7 (±3) ·√Q′;Q′ =
RQD

Jn
·
Jr

Ja
not limited Diederichs and Kaiser (1999)

As for the RMR system, the random set theory can also be applied to the Q system. In

this case, to deal with imprecision, and in accordance with interval analysis, the RST approach

is translated by the following equation:

∆Q =
[
QL, QR

]
=


RQDL

JR
n

·
JL

r

JR
a

·
JL

w

SRFR
,
RQDR

JL
n

·
JR

r

JL
a

·
JR

w

SRFL


 (2.15)

With respect to dissonance, and under the same previous assumptions referred for the RMR

system, the expectation value is the interval:

µQ =

[
N∑

i=1

(
miQ

L
i

)
,

N∑

i=1

(
miQ

R
i

)
]

(2.16)

Recently, from the analysis of 145 projects, Barton (2000) established an empirical method-

ology for the performance prediction of TBM tunnelling which operate in rock masses and in

open mode called QTBM . It is an expanded form of the Q system to account for important

parameters in the tunnelling process. The base of the QTBM sub-system consists on the use of a

Q0 index, that is calculated using the same equation as for the Q system with some differences.

They consist on the use of a RQD value obtained in the tunnel axis direction (RQD0) and on

the use of a Jr/Ja ratio (that represents the discontinuities shear strength) related to the most

important family of discontinuities in the tunnelling process. The value of QTBM is calculated

starting from Q0 and including other parameters which are related with the TBM performance

(Figure 2.8).

A key aspect of this system is the comparison between the shear strength produced by the

TBM (F) and an empirical measure of rock mass penetration strength, designated SIGMA,

that is highly orientation dependent. The calculation of this value incorporates (γ) and other

normalised parameter Qc or Qt. This way SIGMA can take one of two different values:

SIGMACM = 5.γ.Q1/3
c (2.17)
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SIGMATM = 5.γ.Q
1/3
t (2.18)

The normalised values of Qc and Qt can be calculated, respectively, by:

Qc = Q0.
σc

100
(2.19)

Qt = Q0.
I50

4
(2.20)

in which I50 is the point load index. SIGMACM should be used when the failure mode of the

rock mass to TBM penetration is mainly compression controlled and SIGMATM when is mainly

by tension (Barton, 2000). In a simpler way, when the discontinuities inclination is favourable

to the excavation (low inclinations), the correct approach consists on using SIGMATM ; when

it is unfavourable (high inclinations), SIGMACM should be used. This approach makes QTBM

orientation dependent. The value of Qc can be correlated with the P seismic waves velocity

and with E by the plot of Figure 2.9.

Figure 2.9: Relation between Qc, the velocity of P seismic waves and E (Barton, 2004).

The fundamental parameters calculated by this methodology for TBM performance evalu-

ation are the penetration rate (PR) and the advance rate (AR). For PR, Barton found a power

increase of penetration with decreasing of QTBM translated by 2.21 in m/hour:

PR ≈ 5. (QTBM )−0.2 (2.21)
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This relation is only valid for QTBM > 1 because in very poor rock masses the penetration

rate is reduced by the operator to avoid problems with the TBM machine. The AR is related

with the PR through equation 2.22:

AR = PR.U (2.22)

where U is the level of utilisation which is time dependent (T) and can also be expressed in

function of Tm. This way equation 2.22 can take a different form:

AR ≈ 5. (QTBM )−0.2 .Tm (2.23)

m is a negative gradient which translates the decelerating average AR as the unit of time

increases and T is the time unit (day, week, month...) for which a medium value of AR,

expressed in hours, is necessary. The mean value of AR decreases with the increase of the

considered time unit. The reason is the successive decline in the U value, corresponding to the

TBM use. This decrease is quantified through the m coefficient. The initial value of the decline

coefficient m (m1) can be estimated through a relation with the Q value (Figure 2.10). The

initial value is modified to consider: the abrasivity of the rock through the CLI coefficient; the

quartz percentage (q); the porosity (n); and the tunnel diameter (d), through equation 2.24.

Figure 2.10: Variation of m with the Q value (Barton, 2004).

m ≈ m1.


d

5




0.20

.


 20

CLI




0.15

.


 q

20




0.10

.


n

2




0.05

(2.24)

The time of excavation of a tunnel segment with a certain length (L) and approximately
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homogeneous characteristics, can be calculated by equation 2.25:

T =


 L

PR




1

1 + m
(2.25)

Some correlations to predict PR and AR based on the RMR index were also developed by

different authors. Sapigni et al. (2002) based on the data of 14 km of TBM tunnels found a

second-degree polynomial relation between PR and RMR. However, due to the very high scatter

of the data, the correlation has a limited use. Innaurato et al. (1991) found a correlation between

PR, the Rock Structure Rating (RSR) (Wickham et al., 1974) and σc:

PR = 40.41 ·σ0.44
c + 0.047 ·RSR + 3.15 (2.26)

where PR is in mm/round and σc in MPa. The RSR is related with RMR by (Bieniawski,

1989):

RSR = 0.77 ·RMR + 12.4 (2.27)

Sapigni et al. (2002) applied this methodology to their database and a poor fit was found.

The probable cause of the low relationship between RMR and tunnelling parameters is the

lack of specific TBM and TBM-rock mass interaction factors in the original RMR formulation.

Several improvements are needed to the conventional RMR system in order to be capable of

predicting TBM performance parameters.

2.3.4 GSI system

The GSI - Geological Strength Index - is a rock mass characterisation system specially developed

to obtain strength parameters. It is the only system which provides an integrated procedure to

estimate the parameters for the H-B and Mohr-Coulomb failure criteria. Using this index it is

also possible to estimate the value of E. This way, it is possible to obtain these parameters based

on geological observations of the rock mass in borehole cores, outcrops, surface excavations and

tunnel faces.

The system uses the qualitative description of two fundamental parameters of the rock mass

namely its structure or blockiness and the discontinuities conditions. The present form of the

GSI system is presented in Figure 2.11 (Hoek and Brown, 1997; Marinos and Hoek, 2001; Hoek

et al., 2002). The authors also extended its application to heterogeneous rock masses which

will be described later in this chapter.
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Figure 2.11: Chart for the GSI estimation.

In the first stages of development, it was proposed to calculate the GSI using correlations

with modified forms of the RMR and Q systems. The authors considered that the groundwater

and discontinuities orientation parameters in RMR and the groundwater and stress parameters

in Q should be dealt explicitly in numerical analysis and, therefore, it was inappropriate to

incorporate them in the estimation of rock mass strength parameters. This way, the proposed

correlations to calculate GSI used RMR’ (RMR without P5 and P6) and Q’ (Q without Jw and

SRF) and are translated by the following equations:

GSI = RMR′ − 5 (RMR ≥ 23) (2.28)

GSI = ln Q′ + 44 (RMR < 23) (2.29)

In a recent publication, Marinos et al. (2005) argued that the use of these correlations is

not recommended for weak and very weak rock masses (GSI < 35) and for those with high

heterogeneity levels. However, the relation with RMR’ is acceptable for reasonable quality rock

masses.
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The GSI system is based on the assumption that the rock mass behaves isotropically and

uses a continuous medium approach. Hence, it should not be used in rock masses which present

a dominant geological structure that clearly defines the behaviour of the rock mass. Also, the

GSI is inappropriate for massive hard rock with discontinuities spaced at distances of similar

magnitude to the dimension of the work under consideration.

A point value deterministic definition of the GSI (or any other empirical system indexes)

for a rock mass in not realistic. In the use of the GSI, a range of values should be assigned

(considering a normal distribution within the range, for instance) instead of a precise number.

Due to the qualitative nature of the inputs, the application of the GSI involves some subjec-

tivity and experience is needed to obtain satisfactory results. Some attempts have been made

in order to reduce the inherent uncertainties by complementing the qualitative descriptions of

the rock mass and discontinuities with easy to obtain quantitative inputs.

Sonmez and Ulusay (1999) presented a methodology to provide a quantitative numerical

basis for evaluating GSI introducing two new parameters to the GSI chart namely, the surface

condition rating (SCR) and structure rating (SR). SR and SCR are calculated based on the

volumetric joint count (Jv) and from input parameters of the RMR system like roughness,

weathering and infilling.

Cai et al. (2004) followed a similar methodology and proposed an approach based on the

concepts of block volume (Vb) and joint condition factor (Jc). The first complements the ge-

ological structure description while the latter complements the discontinuities conditions. Vb

is determined from geometric characteristics of the discontinuities like spacing, orientation and

persistence. On the other hand, the calculation of Jc is dependent on the intrinsic character-

istics of discontinuities. It is obtained by rating joint roughness depending on their large-scale

waviness and small-scale smoothness and by rating alteration depending on weathering and

infilling conditions.

In this quantitative approach, the GSI can be determined by an adapted GSI chart or using

the following equation:

GSI (Vb; Jc) =
26.5 + 8.79 · lnJc + 0.9 · lnVb

1 + 0.0151 · lnJc − 0.0253 · lnVb
(2.30)

Cai and Kaiser (2007) extended this approach in order to cover the residual strength of

jointed rock masses. The main concept is to obtain the peak GSI value from field mapping

and adjust it to the residual GSIr based on the residual block volume (V r
b ) and the residual

joint surface condition (Jr
c ). Once GSIr is obtained, the residual H-B parameters can be

calculated using the abovementioned equations replacing GSI by GSIr. In this case the intact

rock parameters should be kept unchanged. Even though the rock is broken into smaller pieces,
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fracturing and shearing do not weaken the intact rocks.

The reduction from peak to residual GSI, as it happens with the strength parameters, is a

gradual process linked to the post-peak strain softening of the rock mass. Cai and Kaiser (2007)

based on the analysis of some case studies, developed an equation to estimate GSIr from GSI:

GSIr = GSI · exp (−0.0134 ·GSI) (2.31)

These approaches add quantitative measures to the system inputs increasing its objectivity

and turning it less dependent on experience. However, Marinos et al. (2005) argued that, in spite

of the interest of these approaches, they should be used with caution since the quantification

process is limited to rock masses where the quantitative inputs can be easily measured.

As it was referred, given the complexity of the rock masses, composed by a rock matrix

and discontinuities surfaces, the strength quantification can be carried out using the method

developed in the scope of the GSI system. Based on experimental data and through theoret-

ical knowledge of fracture mechanics in rocks, Hoek and Brown (1980) established, for intact

rocks, the H-B strength criterium. Its actual version for rock formations, resulting from the

generalisation of the intact rock criterium, is given by the following expression:

σ′1 = σ′3 + σc ·

mb ·

σ′3
σc

+ s




a

(2.32)

where σ′1 and σ′3 are, respectively, the maximum and minimum effective principal stresses; mb

is the reduced value of the mi parameter which is a constant of the intact rock; and s and a

are parameters that depend on the rock formation characteristics.

Serrano et al. (2007) developed an extension of this failure criterion to three-dimensions in

order to consider the importance of the intermediate principal stress (σ′2) in the failure strength

of rocks. This extension requires the introduction of two new parameters - α and η - and it is

translated by the following expression:

σ′1 − σ′3
σc

=


mb ·

σ′3
σc

+ α ·
(η ·σ′1 − σ′2) · (σ′2 − σ′3)

σ2
c

+ s




a

(2.33)

The new introduced parameters are dependent on the rock type. Triaxial tests pointed to

values between 0.90 and 1.50 for α and 1.1 and 1.4 for η. However, as stated by the authors,

more tests are needed for a better understanding of the new parameters involved. For α=0,

this extension reproduces the Hoek-Brown failure criterion for two dimensions.

When possible, the constants for the intact rock should be determined through the statistical

analysis of a set of triaxial tests carried out according to the ISRM (1981) recommendations.
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The values of the mi parameter can be estimated for different rock types through the data

supplied by Hoek (1994). Douglas (2002) based on the results of an extensive tests database,

stated that the published values for mi by Hoek are not accurate since this value is not related

with the rock type. According to this author, the relation given by the uniaxial compression

and tension strengths is a more reasonable approach for the calculation of this parameter. This

relation was used with success in practical cases for granite formations in the Metro do Porto

project (Normetro, 2001). In this case a correlation between the uniaxial compression and

tension strengths was developed using 40 samples. It presents a determination coefficient (R2)

equal to 0.93 and is translated by the following equation:

σt = 0.062.σc (2.34)

where σt is the tension strength obtained by diametral compression tests. This correlation

indicates that, for a large range of σc values, the tension strength is approximately 6% of that

value.

In spite of the wide application of the H-B criterion it presents some limitations that should

be taken into account. Considering the way how currently is formulated, this criterion does not

correctly evaluate the strength of the rock mass in the transition from intact to weathered rock.

Moreover, it is not valid for soft rocks (when applied to intact rock) since it was developed

for hard rocks and is not adequate to model the intact rock behaviour when subjected to low

confinement stress (Douglas, 2002). These limitations are often unknown or ignored in practice

and the criterion is applied indiscriminately to all rock types in every condition.

Considering these limitations, Douglas (2002) presented a modified H-B criterion based in

an extensive database of tests which, in the case of intact rocks, is expressed by the following

equations:

σ′1 = σ′3 + σc.


mi.σ

′
3

σc
+ 1




a

for σ′3 > −σc/mi (2.35)

σ′1 = σ′3 for σ′3 ≤ −σc/mi (2.36)

Using this modified criterion it is possible to predict the uniaxial compressive and tension

strengths with higher accuracy. The variance of this adjustment is approximately half of the one

given by the original formulation. Using the generalized criterion a relationship was developed

between a and mi:
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ai ≈ 0.4 +
1.2

1 + exp


mi

7




(2.37)

Once the GSI of the rock mass is defined, the parameters of the H-B criterium can be

calculated through the following equations (Hoek et al., 2002):

mb = mi. exp


GSI − 100

28− 14.D


 (2.38)

s = exp


GSI − 100

9− 3.D


 (2.39)

a =
1
2

+
1
6
. (exp (−GSI/15)− exp (−20/3)) (2.40)

where D is a parameter that depends on the disturbance to which the formation was submitted

due to the use of explosives during excavation and to the stress release (Hoek et al., 2002).

This value varies between 0 for undisturbed and 1 for very disturbed rock masses. The authors

provided some orientations for the choice of values for this parameter but there is still relatively

little experience on its use. The value of mb can also be calculated using expression 2.41 (Hoek

and Brown, 1997), valid for GSI > 25:

mb = mi.s
1/3 (2.41)

The H-B failure criterion have been successfully applied for estimating rock mass strength

where block size and discontinuity controlled shear failure dominates ground behaviour. How-

ever, this failure criterion present some difficulties to estimate the strength parameters at the

extreme ends of rock competence scale (Carter et al., 2007). For poorer rock formations

(σc << 15MPa) accuracy is lost because the rock mass behaviour is matrix controlled. In

the case of massive rock masses failure demands the creation of new fractures.

For the low range of GSI values, Carvalho et al. (2007) developed alternative functions to

evaluate the H-B parameters in the transition from rock to soil:

m∗
b =

(mb + (mi −mb) · fT (σc))

(4 · a∗ − 1)
(2.42)

s∗ = s + (1− s) · fT (σc) (2.43)
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a∗ = a + (1− a) · fT (σc) (2.44)

where,

fT (σc) =



1, σc ≤ 500kPa; exp


−

(GSI − 0.5)2

25


 , σc > 500kPa



 (2.45)

For the highest geomechanical quality rock masses, a transition in behaviour occurs between

an inter-block shear dominated rock mass controlled by discontinuities and rock masses which

behaviour is dominated by rock material strength. In this transition, the following procedure

can be used to model the spalling initiation or ”damage threshold” (Martin et al., 1999):

• determine the unconfined compressive strength (σ∗c ) which corresponds to the start of

”systematic cracking” in an uniaxial testing. This can be carried out by means of acoustic

emission or radial strain data and set asp to 0.25;.

• obtain a reliable estimation of tensile strength (T) for instance using the Brazilian test;

• compute the H-B parameters from the following equations:

ssp =


σ∗c

σc




1/a

(2.46)

msp = ssp ·

σc

T


 (2.47)

asp = 0.25 (2.48)

In the transition between discontinuities controlled and massive rock masses the strength

parameters can be computed by the following function:

Xtrans = XGSI + (XGSI −Xsp) · fsp (2.49)

where,

fsp =
1

1 + exp


100 ·


2 +

D

5


−


GSI

60




1/3

−

 σc

34 ·T




1/5



(2.50)
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X ′s represent the values of a, s and m. According to their subscripts, GSI means the conven-

tional calculation while sp corresponds to their value for spalling assessment.

In rock masses with brittle failure lower mb and higher s values then those provided by

the equations 2.38 and 2.39 were necessary to match predictions with observations (Cai et al.,

2004). Martin et al. (1999), based on analysis of underground excavations built in massive

to moderately fractured brittle rocks, proposed the following H-B parameters for this type of

rock mass: mb = 0 and s = 0.11. However, more research is required in order to validate and

fine-tune these values and to define the border between brittle and shear failure.

Douglas (2002) also presented new equations to calculate the H-B parameters considering

very bad quality rock formations:

mb = max



mi.

GSI

100
; 2.5



 (2.51)

mb = min



exp


GSI − 85

15


 ; 1



 (2.52)

ab = ai + (0.9− ai) . exp


75− 30.mb

mi


 (2.53)

Given that in many cases the geotechnical software uses the Mohr-Coulomb strength param-

eters, it is convenient to evaluate the equivalent c’ and φ′ angle to the H-B strength parameters.

This procedure consists in adjusting a line to the curve generated by the H-B criterion balancing

the areas above and below this line for a expected range of stresses considering the work being

analysed. The range of stresses should be within σt,mass < σ3 < σ′3max. The value of σ′3max

should be determined for each specific case. In the case of underground structures the following

expression should be used:

σ′3max

σ′cm
= 0.47.


 σ′cm

γ.H



−0.94

(2.54)

where σ′cm is the rock mass strength and H the tunnel depth. The rock mass strength can be

determined by equation 2.55.

σ′cm = σc.
(mb + 4.s− a. (mb − 8.s)) . (mb/4 + s)a−1

2. (1 + a) . (2 + a)
(2.55)

This way, the equivalent values of the friction angle and cohesion are given by the following

expressions, respectively:
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φ′ = arcsin


 6.a.mb. (s + mb.σ

′
3n)a−1

2. (1 + a) . (2 + a) + 6.a.mb. (s + mb.σ
′
3n)a−1


 (2.56)

c′ =
σc. [(1 + 2.a) .s + (1− a) .mb.σ

′
3n] . (s + mb.σ

′
3n)a−1

(1 + a) . (2 + a) .

√
1 +

(
6.a.mb. (s + mb.σ

′
3n)a−1

)
/ ((1 + a) . (2 + a))

(2.57)

where,

σ′3n =
σ′3max

σc
(2.58)

The GSI value can also be used for an indirect calculation of E of the rock mass. Several

expressions have been presented. In Table 2.6 some of the developed analytical correlations are

presented.

Table 2.6: Analytical expressions for the calculation E based on the GSI value.

Expression Limitations Reference

E =

0
@1−

D

2

1
A ·

s
σc

100
· 10(GSI−10)/40 σc ≤ 100MPa Hoek et al. (2002)

E =

0
@1−

D

2

1
A · 10(GSI−10)/40 σc > 100MPa Hoek et al. (2002)

E(GPa) = 100000 ·
0
@ 1−D/2

1 + exp ((75 + 25 ·D −GSI) /11)

1
A not limited

Hoek and Diederichs

(2006)

E(GPa) = Ei ·
0
@ 1−D/2

1 + exp ((60 + 15 ·D −GSI) /11)

1
A not limited

Hoek and Diederichs

(2006)

E(GPa) = Ei · (sa)0.4 not limited Sonmez et al. (2004)

E(GPa) = Ei · s1/4 not limited Carvalho (2004)

2.3.5 Correlations between parameters and indexes

In literature, several correlations between the RMR and Q indexes can be found (Rutledge and

Preston, 1978; Bieniawski, 1989; Barton, 2000; Yanjun et al., 2007). In spite of the natural

differences between these correlations, a common point is the logarithmic relation between the

two indexes. In this work, and using a large database of the RMR and Q systems application

in a granite rock mass, also a correlation was developed which is translated by the following

equation:
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RMR = 8.4.lnQ + 49.8 (2.59)

This equation resembles the one presented by Bieniawski (1989):

RMR = 9.lnQ + 44 (2.60)

Goel et al. (1995) defined RCR (Rock Condition Rating) as the RMR without considering

the weights correspondent to the intact rock strength and discontinuities orientation; and N

(Rock Mass Number) as the Q without the stress factor (SRF). These indexes can also be used

to indirectly correlate the values of RMR and Q. The authors proposed the following correlation

between RCR and N:

RCR = 8 · lnN + 30 (r = 0.92) (2.61)

It is proposed an alternative correlation which was developed considered the cited database:

RCR = 7.9 · lnN + 44.9 (r = 0.90)1 (2.62)

Tzamos and Sofianos (2007) argued that, since there are parameters which are not com-

mon for the different classification systems, a large scatter should be expected when trying to

correlate them. Therefore, it would be more appropriate to correlate the common parts of the

systems which concern to the rock mass only. This way, they defined the Rock Mass Fabric

Index (F) which is a scalar function of the rock structure and joints condition. Concerning the

RMR, this parameter (FRMR) is then composed by the sum of the weights related to the RQD,

discontinuities spacing and conditions (P2, P3 and P4). In relation to the Q system, FQ is equal

to Q′. The correlation between the two parameters is translated by equation 2.63.

FRMR = 15.lnFQ + 32 (r = 0.96) (2.63)

In the scope of this work, also a correlation was developed between these two parameters

valid for granite rock formations:

FRMR = 7.4.lnFQ + 31.6 (r = 0.90) (2.64)

1It is considered that the correlation coefficient (r) is not the best way to assess the quality of a correlation.

However, it is presented for comparison purposes.
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2.4 Highly heterogeneous rock masses

Rock masses present different levels of heterogeneity. However, in some cases, these hetero-

geneities turn the rock mass extremely difficult to characterise due to their geological, tectonic

and geomechanical complexity. For instance, it is inappropriate and simplistic to use traditional

rock mass classification systems such as the RMR or the Q systems. They were developed for

relatively simple rock masses and fail to adequately determine optimum support requirements,

appropriate excavation methods and geomechanical parameters estimation. This factor raises

several issues with direct impact on the geomechanical properties determination and hinders the

establishment of a proper geotechnical model. This section briefly deals with tools and method-

ologies that have been developed to deal with this type of rock masses in order to obtain a less

uncertain characterisation.

As it has been referred in this Chapter, the traditionally employed tools to obtain parameters

and analyse the data consist of direct (laboratory and in situ tests) and indirect methods

(empirical classification systems). In any case, it is recognised that these methods are insufficient

and do not give adequate answer to the problem of a reliable characterisation of rock masses

with high heterogeneity levels. In this context, different authors are attempting to progress

developing research in different fields of study (Morales et al., 2004):

• Enhancing test methods in order to obtain representative strength and deformability

parameters.

• Studies to adapt and modify geomechanical characterisation systems aimed at better

characterising rock masses in relation to different materials and engineering projects.

• The development of correlations between characteristic geomechanical parameters.

• Use of probabilistic tools to deal with uncertainty related with the geomechanical prop-

erties.

• Development of AI based tools for decision-making support.

• Application of homogenisation techniques.

• Use of state-of-the-art observation and monitoring techniques.

High heterogeneity can be found in many types of rock masses and under several forms.

The GSI has been adapted in order to be applicable on some of the most variable rock masses,

including extremely poor quality sheared rock masses of weak schistose materials (such as

siltstones, clay shales or phyllites) sometimes inter-bedded with strong rock (Figure 2.12). In
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this context, Marinos and Hoek (2001) adapted the GSI system for heterogeneous rock masses

such as flysch, based on the application of the H-B criterion (Figure 2.13). Flysch consists

on alternations of clastic sediments that are associated with orogenesis. Geotechnically, a

flysch rock mass has the following characteristics: high heterogeneity with the presence of clay

materials; tectonic fatigue and sheared discontinuities, often resulting in a soil-like material;

and low permeability due to the presence of clay minerals.

a) b)

Figure 2.12: Examples of typical flysch: a) thick bedded blocky sandstone and b) sandstone with thin

siltstone layers (Marinos and Hoek, 2001).

Determination of the GSI for these rock masses, composed of frequently tectonically dis-

turbed alternations of strong and weak rocks, present some special challenges. The authors

described eight classes of heterogeneous rock units and for each a range of GSI values is sug-

gested. In addition to the GSI values, they considered the selection of the intact rock properties

σc and mi for heterogeneous rock masses, adopting a ”weighted average” of the intact strength

properties of the strong and weak layers.

Different adaptations of the GSI system have been carried out for other types of heteroge-

neous rock masses. Hoek et al. (1998) presented some alterations for very weak and sheared rock

masses. For lithologically varied but tectonically undisturbed rock masses, such as molasses, a

new GSI chart was presented by Hoek et al. (2005).

When dealing with heterogeneities due to weathering, like in granite rock masses, the initial

chart can be used taken into account some specific issues. The GSI values for weathered rock
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Figure 2.13: GSI chart for heterogeneous rock masses such as flysch (Marinos and Hoek, 2001).

masses can be obtained shifting to the right in the GSI chart in relation to the unweathered

rock material. If the weathering has reached the intact rock, which is also very common in

weathered granites, the σc and the mi constant must also be reduced. If the weathering has

penetrated the rock to the extent that the discontinuities and the structure has been lost, then

the rock mass must be assessed as a soil and the GSI no longer applies. In the particular case

of granite weathering profiles characterisation it is important to mention the work developed

by Viana da Fonseca and Coelho (2007). They used drilling parameters of boreholes (advance

rate, thrust penetration, rod torque, rotation rate, water pressure and vibration) to calculate

the Somerton index in order to differentiate weathering degrees.

Some authors, based on the GSI system together with intensive in situ and laboratory

testing, developed local classification systems for specific rock masses (Morales et al., 2004).

In what concerns the underground works, some measures can be adopted to make possible

the fine-tuning of the geotechnical model, for instance: boreholes in the excavation face; use

of geophysical methods; displacements evaluation using the monitoring data; and combinations

between these methods (Moritz et al., 2004). However, the boreholes in the excavation face

and the geophysical methods cause delays due to the temporary stops they compel and can

become expensive. Moreover, boreholes only supply discrete information and the geophysical
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data interpretation is difficult and need to be improved.

In the construction of a tunnel the total excavation time, and consequently its cost, is highly

dependent on the geomechanical formation characteristics. The natural variability of these

formations does not allow these geomechanical parameters to be estimated in a deterministic

way. This way, probabilistic methods can be used, as the Monte Carlo, to obtain the parameters

distribution for areas considered with nearly constant geomechanical characteristics. It becomes

evident that probabilistic distributions that adapt to the elementary properties distributions of

the formation are of primordial importance.

In this context, some probabilistic methods have been developed for tunnels design like

the ones developed by Goricki et al. (2003) and Costa et al. (2003) for the specific case of

heterogeneous volcanic formations. Miranda (2003) developed a similar approach as the latter,

generalising the approach for granite rock formations. The methodology was based in the

calculation of a statistical distribution of the RMR index. Considering the mean value and the

standard deviation of each weight of this classification, and assuming a normal distribution,

the Monte Carlo method was used to generate a thousand random values for each weight.

The obtained values were added to obtain a probabilistic distribution of RMR. Afterwards, a

range of GSI values was obtained through correlations, for the H-B strength parameters and E

calculation. For each geomechanical area the mean and characteristic values (corresponding to

the 5, 50 and 95% percentiles) were considered which allow to cover practically all the variability

of the geotechnical materials. Figure 2.14 presents a histogram of the GSI generated by this

methodology.

For the short term behaviour prediction of the rock mass in the front and around the tunnel,

the evaluation of the 3D displacements from the observed data is very effective (Moritz et al.,

2004). This prediction is possible based on the displacement vector direction evaluation which

relates the vertical and longitudinal displacements. The displacement vector is considered

positive when it points in the excavation direction and negative otherwise.

When a tunnel is being bored in a homogeneous formation the normal direction of the

displacement vector is slightly positive (up to 10o). When a weaker formation approaches the

displacements direction suffers a significant deviation in the positive sense, in other words,

the longitudinal displacement grows significantly while settlement remains almost constant.

After entering in the weak area the displacement vector returns to normal. On the other

hand, if a more rigid formation is approaching the front of the tunnel the displacement vector

inclination changes to negative values and smaller displacements are expected when entering

that formation. When the excavation approaches a more rigid zone the displacement vector

changes from the normal position i.e slightly positive to negative values.

The ”normal” vector orientation is between 8o and 10o against the excavation. Increasing
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Figure 2.14: Histogram of the GSI obtained by a probabilistic methodology (Miranda, 2003)

trends indicate weaker material ahead of the face, while decreasing trends indicate stiffer ma-

terial. If the cross-section displacements are asymmetrical this means that a weaker formation

will first appear on the largest displacements side. Sudden changes in the displacements will

impose high stresses in the support. This estimate allows designers to act proactively in the

adjustment of the excavation and support methods to avoid unexpected events.

In some types of formations frequently occur geotechnical situations without space, litho-

logical and mechanical continuity. They are commonly known as tectonic melanges or block-

in-matrix rocks (bimrocks) and are defined as chaotic, heterogeneous geological mixtures of

blocks, with different types, lithologies and sizes, surrounded by weaker, sheared, finer-grained

rocks and a soil matrix (Button et al., 2004; Wakabayashi and Medley, 2004). Sometimes, as

it happens in granite formations, the soil matrix also presents different weathering degrees in a

metric scale transforming the characterisation system a more difficult process. They are deeply

heterogeneous and very difficult to characterise, since they present a soil matrix with a set of

randomly distributed blocks. In a borehole, the intersection of a rigid boulder can induce that

the bedrock was reached (Figure 2.15). Samples of soil for laboratory testing are also affected

by rock inclusions.

The main geotechnical problem results from the significant spacial variations in rock mass

stiffness and strength, which reduce the confidence of predictions. The heterogeneity of a

melange rock mass demands comprehensive characterisation of the geological, geometrical, me-

chanical and hydraulic properties, even more than in other rock mass types. However, even

when comprehensive investigations are performed, the complexity of the internal block/matrix
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Figure 2.15: Survey of heterogeneous granite formations by boreholes (Medley, 1999).

structure may prevent the geotechnical investigations from yielding sufficiently precise rock

mass models (Button et al., 2004).

The enormous heterogeneity of a melange poses sever engineering problems. In tunnelling,

one of the main construction problems is working with mixed face conditions, in which the

working face contains materials with different excavations characteristics. In this case, the

rock mass behaviour is much more unpredictable and incidents are more possible to occur if

adequate measures are not considered like continuous characterisation of the tunnel face, real-

time monitoring, etc. In the case of the Metro do Porto project (Figure 2.16), developed in a

highly heterogeneous granite rock mass and in urban environment, there were severe problems

in the initial stages of tunnelling related to these heterogeneities, resulting in several delays and

an accident. The solution was to use the TBM in closed mode, i.e. using a support pressure

applied in the TBM front, which allowed the excavation to be carried out with minor problems.

Many times, the presence of rigid inclusions within a soil matrix, even though raising higher

uncertainties in the geomechanical behaviour of the rock mass, enhances the overall strength

and deformability characteristics of the rock mass. However, in practice, geotechnical design is

only based on the soil matrix properties. This simplification can lead to a very conservative or

inappropriate design. As the block volume increases, so does the strength since the shear planes

in the formation have to be tortuous around the blocks. The mechanical properties are affected

by the mechanical properties of the main matrix, volumetric block proportion, distribution of

the block size and block orientation relatively to the shear planes (Wakabayashi and Medley,
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Figure 2.16: Mixed face conditions found during the construction of the Metro do Porto project built

in a highly heterogenous granite rock mass: (a) View of the tunnel face with different weathering degrees;

(b) Cross-section of Bolhão underground station (Babendererde et al., 2004).

2004).

In the case of the existence of boulders or more rigid blocks in the middle of a soft rock or

soil matrix, these should just be considered if their influence is significant. They will be relevant

for the global geomechanical behaviour of the formation if (Medley, 1999):

• the blocks present considerable mechanical contrast with the matrix, for instance, ratio

between φ′ of the block and the matrix higher than 2;

• the size of the blocks is between 5 and 75% of the elementary characteristic dimension or

characteristic engineering length that describes the problem in analysis (tunnel diameter,

thickness of landslide, laboratory rock sample diameter);

• the volumetric proportion of the blocks, or in other words, the ratio between the total

volume of blocks and the formation volume being analysed is between 25 and 75%.

The rock mass strength of block-in-matrix rocks, is mainly governed by the strength con-

trasts between the blocks and the matrix, the sizes, proportion and orientation of the blocks

(Mandrone, 2006). The rock mass behaviour, particularly during tunnelling, is primarily in-

fluenced by the local rock mass strength and, very importantly, by the location and size of

significant blocks. When the existence of these blocks is, in fact, significant for the global

behaviour of the formation, they influence in the following way (Medley, 1999):

• when the volumetric proportion of the blocks is less than 25%, their influence in the

global behaviour of the formation can be ignored and only the properties of the matrix

are considered;

• between 25 and 75%, φ′ and E increase and c’ decreases due to the presence of the blocks;
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• above 75%, the blocks tend to be in contact, and no longer supported by the matrix which

implicates that no increase of strength is verified;

• the global strength of the formation is, normally, independent of the blocks internal

strength;

• shear failure tend to begin in the perimeter of the blocks.

Barbero et al. (2007) stated that, in these formations, the block size distribution is scale

independent, i.e., the laboratory and site size scale behaviour is the same. The authors nu-

merically simulated compression tests on bimrocks to identify strength and deformability laws

to model the material as a homogenised equivalent continuum. The blocks were generated

according to a random process producing samples of block populations with certain statistical

properties. The results showed that both σc and E increase with the block volume proportion

(BVP). The value of E is proportional to the BVP, and can be computed as a simple weighted

mean between the matrix and the blocks properties. Moreover, yielding starts and spreads in

the matrix. Finally, modelling this kind of materials using a continuum model provides a rea-

sonable approach. However, since the mechanical behaviour of bimrocks is a three-dimensional

problem, more calculations are needed to validate these conclusions.

To define heterogeneous formations it is necessary to carry out a more intensive charac-

terisation to: determine the external contacts of the formation (if possible); to determine the

borders of the larger blocks; and to predict the blocks proportion and different lithological units.

Usually, there is no order in the blocks distribution, nevertheless, sub-areas may exist that can

be mapped. These sub-areas can evidence differences in the blocks lithology and number and

type of matrix.

These features of a melange, which are particularly important for the prediction of the rock

mass behaviour during tunnelling, can only be revealed by geotechnical investigations that are

combined with detailed structural-geological analysis and, during excavation, by state-of-the-art

techniques to interpret the results of real-time monitoring.

To interpret and complement the information gathered in the boreholes it can be necessary

to execute trenches. The ratio between the lengths of intersection of all boreholes with the

blocks and the boreholes total length can give a rough estimate of the blocks proportion. The

unidimensional (1D) evaluation of blocks proportion underestimates this value for greater blocks

happening the inverse for the smaller ones. This way, 3D mapping tools have been developed.

Haneberg (2004) showed that there is no solution for the inverse problem of rebuilding the

3D distribution of blocks starting from 1D measurements in boreholes and 2D from outcrops.

The same author stated that, if there is information about the shape, orientation and size
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distribution of the blocks, indirect methods allow to obtain a 3D statistical distribution starting

from 1D and 2D information. These methods use the Monte Carlo method to generate 3D

populations of blocks from which the blocks size distribution is determined and compared with

the observed information.

In the characterisation of heterogeneous formations, dynamic methodologies are gaining

increasing importance. These methods are capable of identifying the dynamic shear modulus

at various depths which can then be related to the static deformation modulus by means of

the elasticity theory which provide a valuable geomechanical mapping or zoning. In particular,

surface analysis of Rayleigh waves allow to obtain this data only requiring access to the surface

and without any boreholes.

The interaction between Rayleigh waves and the heterogeneities allow a good understanding

of the overall deformability characteristics of the formation. By analysing Rayleigh waves

velocities it is possible to study the macroscopic effect of inclusions and provides an insight to

the macroscopic behaviour of the equivalent homogeneous medium.

Chammas et al. (2003) demonstrated numerically that Rayleigh waves are well-suited for

determining the effective shear modulus of a heterogeneous medium. In the simulations, the

heterogeneous medium was composed by a soil matrix and random stiff inclusions modelled

using time-domain finite element simulations. The results showed the dependence of shear

wave velocities on the nature and concentration of inclusions and that Rayleigh waves can

differentiate inclusion sizes, which can serve as valuable information.

Homogenisation techniques can also be used in order to calculate the characteristics of a

homogeneous medium with the same geomechanical behaviour as the heterogeneous one. This

problem is within the scope of the composite material theory and deals with the prediction

of effective or average macroscopic properties of the medium and their connection with the

properties of the individual materials. Most of these techniques, commonly used to predict the

elasto-plastic behaviour of heterogeneous materials, are only valid over quite specific spatial

distributions of the constituent phases (Herve and Zaoui, 1990). They can be applied to peri-

odic media with uniform stress/strain field and periodic cell models and disordered media or

self-consistent schemes. The latter, initially developed by Kröner (1978), can be adapted to het-

erogeneous soils. Their main principle is the translation of the interaction between inclusions,

as well as with the homogenous matrix. One example of this self-consistent schemes is the one

presented by Christensen and Lo (1979). They developed the exact analytical solution based

on elasticity for calculating the effective stiffness of a material with cylindrical inclusions. The

model considers three phases namely: an outer region of equivalent homogeneous material or

”effective medium”, the cylindrical inclusions and a cylindrical ring of matrix material (Figure

2.17).
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Figure 2.17: Model used for homogenisation method: ‘a’ is the radius of the inclusion; ‘b’ is radius of

the matrix; and ‘c’ is volume fraction (Chammas et al., 2003).

Many other homogenisation techniques were developed and can be applied to obtain mean

properties of rock masses that allow a more accurate modelling of such formations (Maghous

et al., 1998; Yufin et al., 2007). However, as it was already referred, the application of these

techniques are limited to rock masses with certain well stablished characteristics, in particular,

regularity of the joints network. In this case, the homogenisation approach provides a potentially

efficient computational tool. In highly heterogeneous rock masses these techniques are obviously

less aplicable.

In spite of these new developments and even carrying out extensive survey campaigns and

tests, still persists considerable uncertainties in design phase regarding high heterogeneities.

These uncertainties request continuous investigations on the formation and permanent updating

of the geological-geotechnical model during construction. This is of fundamental importance to

make possible to adapt the project for the real characteristic of the interested formation.

2.5 Conclusions

In geotechnical design it is very difficult to obtain reliable results without a thorough character-

isation of the involved materials. Due to the formations variability, the geotechnical properties

evaluation is the issue with higher uncertainty degree. Eurocode 7 (Eurocode, 2004) recom-

mends that the characteristic value of a property should be a cautious estimate of its mean

value and that its evaluation should be based also in experience and inherent risk to the work.

In this Chapter, a critical analysis of the different methods to evaluate strength and de-

formability parameters in rock and heterogeneous formations was carried out. The main in situ

and laboratory tests for geomechanical characterisation and the main indirect methods like the
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empirical systems were described. In particular, the most innovative aspects of the RMR, Q,

QTBM and GSI empirical systems were pointed out. It is worth mentioning the innovative

approaches of the RMR and Q systems in what concerns their matrix form and RST approach.

A methodology was defined for the deformability characterisation combining small and large

scale tests. Also, an outline of expressions to compute E was carried out.

An original contribution was given in the development of correlations between rock mass

indexes (RMR-Q, RCR-N and FRMR-FQ) valid for granite rock masses, based on a database of

more than a thousand records.

In heterogeneous rock formations (like granites, flysch and bimrocks), the geomechanical

characterisation is a substantially more complicated task. The current methodologies and the

deterministic definition of the parameters do not conveniently translate their real behaviour.

Research in this area is being developed following different paths and important advances

have been achieved in the last years. However, this is still an open research field since more

work is needed to develop tools to more accurately characterise and predict the behaviour

of highly heterogeneous formations. In this context, some methods specially developed for

the characterisation of higly heterogeneous rock formations were described. Between others,

adaptations of the GSI system, probabilistic tools and geophysical methods can be mentioned.

It is important to point out the fundamental role of the underground structures monitoring

for the validation, calibration and updating of the geotechnical models and of the assumed

hypothesis. In this domain, back analysis techniques are very important for they allow to obtain

the parameters that best translate the observed behaviour based on appropriate mathematical

tools.



Chapter 3

Knowledge Discovery in Databases

and Data Mining

3.1 Introduction

The concept of artificial intelligence (AI), formally initiated in 1956, is related with the attempt

of qualifying the computer with an intelligent behaviour which is understood as the set of

activities that only a human being is capable of fulfil. In the AI domain, in the 70s there was

a great emphasis in expert systems which tried to mimic the expert and served as tools in the

decision making process. The trend shifted in the 90s to the intelligent systems which could

learn directly from the data or use hybrid approaches.

In the current information age, due to the advances in information and communication

technologies, there is an extraordinary expansion of data generation that needs to be stored.

In some areas, this fast-growing amount of data is collected and stored in large and numerous

databases that have exceeded our human ability for comprehension without using computational

tools. As a result, data collected in large databases, which often presents high complexity, is

not properly explored. This data can hold valuable information, such as trends and patterns,

that can be used to improve decision making and optimise processes (Goebel and Gruenwald,

1999).

In the past, two major approaches have been used for this goal: classical statistics, used to

uncover relationships in data, and the use of knowledge from experts. Nevertheless, the number

of human experts is limited and they may overlook important details, while classical statistic

analysis may break down when vast amounts of complex data are available. The alternative is

to use automated discovery tools to analyse the raw data and extract high-level information for

the decision-maker (Hand et al., 2001).

51



52 3.1. Introduction

Due to the awareness of the great potential of this subject there has been an increasing

interest in the Knowledge Discovery from Databases (KDD) and Data Mining (DM) fields that

led to the fast development of electronic data management methods. These terms are often

confused. KDD denotes the overall process of transforming raw data into high-level knowledge

and DM is just one step of the KDD process, aiming at the extraction of useful patterns from

observed data. The knowledge derived through DM is often referred to as models or patterns

and it is very important that this knowledge is both novel and understandable.

DM is a relatively new area of computer science that lies at the intersection of statistics, ma-

chine learning, data management and databases, pattern recognition, AI and other areas. DM

is thus emerging as a class of analytical techniques that go beyond statistics and concerns with

automatically find, simplify and summarise patterns and relationships within large data sets

that have business or scientific value. In other words, it allows finding trends and relationships

between variables characterising systems and processes with the objective of predicting their

future state. A practical and applied definition of DM is the analysis and non-trivial extraction

of data from databases for the purpose of discovering new and valuable information, in the form

of patterns and rules, from relationships between data elements (Fayyad et al., 1996).

There are several DM techniques, each one with its own purposes and capabilities. Examples

of these techniques include Decision Trees and Rule Induction, Neural and Bayesian Networks,

Learning Classifier Systems and Instance-Based algorithms (Lee and Siau, 2001; Berthold and

Hand, 2003). DM is receiving widespread attention in the academic and public literature and

case studies suggest companies are increasingly investigating the potential of DM technology

to deliver competitive advantage. These techniques are widely used in the business field such

as direct target marketing campaigns, fraud detection, and development of models to aid in

financial predictions.

In the civil engineering field, several applications using these techniques have been developed.

The following examples can be mentioned (Solomatine and Dulal, 2003; Quintela, 2005):

• applications to data obtained by structures monitoring to predict their future behaviour;

• use of rainfall data and past river flows to predict the flows and floods;

• application to large construction databases to generate knowledge in order to improve

future planning of construction projects;

• bridge deterioration and behaviour;

• prediction of maximum loads in steal beams.
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Modelling in civil engineering can be carried out following three different approaches (Figure

3.1). It is often based on good understanding of the underlying processes and use ”knowledge-

driven” behavioural models (Bhattacharya and Solomatine, 2005). These simulation models

use techniques like the finite-difference or the finite-element methods. In ”knowledge-driven”

models the observed data is used during the model calibration. Used in a lower extent, the

”expert-driven” models are based on the subjective evaluation of a panel of specialists which

normally provide guidelines to the way the project should be carried out.

Figure 3.1: Modelling in civil engineering.

In contrast, the so-called ”data-driven” models (DDM) are based on the establishment of

a mathematical model to be adjusted to the data. A DDM of a system is defined as a model

connecting the system state variables (input, internal and output variables) with only a limited

knowledge of the details about the behaviour of the system. Probably the simplest DDM is

a linear regression model. Hybrid models combine both types of models and are the current

trend.

Generally speaking, the physically-based ”knowledge-driven” models are more accurate and

general. The problem is that sometimes it is not possible to build reliable models. In such

cases, if the observation data is available, DDM may help. DDM complements the simula-

tion modelling and in some cases could replace it. These models can be developed using DM

techniques.

DDM are already often used in geotechnical engineering in their simpler forms like the



54 3.1. Introduction

correlations between parameters. However, they can constitute a more powerful tool in the

decision support process in geotechnical projects. This can be achieved if the models are

developed using more powerful tools and more complete information.

In large underground geotechnical projects, for instance, a quite considerable amount of

data about the involved formations is produced coming from different sources, namely:

• laboratory and in situ tests;

• application of the empirical classification systems in the case of rock masses;

• monitoring and observation of the structures behaviour;

• data from the Tunnel Boring Machines (TBM);

• data from accidents and unexpected events.

Normally, for schedule reasons, it is difficult for practitioners to properly analyse this data

in order to obtain deeper knowledge concerning the involved formations. The analyses are

normally carried out using statistic tools which do not give adequate response when dealing

with large and complex databases.

Much of this data interest and have significant value to the broad geotechnical engineering

and construction community, as well as for research. Nevertheless, in particular in Europe, all

this data is not properly stored and explored in order to take full advantage of the potentially

embedded knowledge. There is a necessity to define standard ways of creating organised repos-

itories of data (Data Warehouses) in order to simplify its exchange and analysis. With this

kind of structures and using DM techniques it would be easier to induce more complex DDM

that could enhance the comprehension of the structure behaviour and interested formations

and help in the decision making process.

The obtained models could be used in future projects, integrated in empirical or in hybrid

systems in which they are used together with numerical and analytical methodologies. In the

geotechnics field, there are some successful applications of DM techniques to different kinds of

problems.

Bhattacharya and Solomatine (2005) applied Decision Trees, Artificial Neural Networks

(ANN) and Support Vector Machines for classifying sub-surface soil characteristics using mea-

sured data from the Cone Penetration Test. Lehman (2004) identified cause-effect relationships

between specific drilling and construction practices with resulting production levels using ANN

to mine huge volumes of historical field data. Some applications have been developed for soil

slope stability prediction based on field data (Zhou et al., 2002; Souza, 2004; Sakellariou and

Ferentinou, 2005). Guo et al. (2003) developed a model to identify probable failure on rock
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masses bases on ANNs. Also using ANNs Basheer and Najjar (1995) developed a model for

soil compaction control. Klose et al. (2002) applied DM techniques on geological and seismic

data for the prediction of small-scale hazardous geotechnical structures. Hanna et al. (2004)

developed a model for efficiency prediction of pile groups installed in cohesionless soil and sub-

jected to axial loading based on ANNs. Motta (2004) implemented a classification algorithm for

geotechnical risk evaluation and accidents prediction in roads. Rangel et al. (2005) presented

an alternative strategy to evaluate the stability of tunnels during the design and construction

stages. They developed a hybrid system, composed by ANN and neuro-fuzzy networks and

analytical solutions. Suwansawat and Einstein (2006) applied with success ANN for predicting

maximum surface settlement due to tunnelling in soft ground. The authors used data from the

Bangkok Subway Project excavated using earth pressure balance (EPB) shield machines.

In spite of the presented cases, in geotechnical engineering the use of these methodologies is

not yet generalised and the geotechnical community is not aware of their potential applications.

Figure 3.2 presents an overview of the number of journal publications in the areas of DM and in

this area related with engineering and geotechnics since 1996. It clearly shows that, although

the increasing interest in this area even in the broad field of engineering, in geotechnics the

research in this area is still incipient and the field almost unknown.

Figure 3.2: Number of journal publications in the DM and in this area related with engineering and

geotechnics (source ISI Web of Knowledge) (Cortez, 2007).

Due to this almost lack of knowledge concerning these techniques in the geotechnics field,

in this Chapter, the main tasks, methods and techniques of DM and KDD are described. This
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conceptual principles are the basis of the work developed using a large database of geotechnical

data together with these tools in order to develop new and reliable models for geomechanical

characterisation which will be presented in Chapter 4.

3.2 Knowledge Discovery in Databases

Data can be stored in many different types of databases. Data Warehouse is a database archi-

tecture that has recently emerged. It can be described as a repository of clean, aggregated and

organised data from multiple data sources, in order to enhance and support the decision making

process. This structure can be analysed by OLAP (On-Line Analytical Processing) tools, which

are analysis techniques oriented to test a given hypothesis posed by the user or simply to make

random consults. However, this approach which is user dependent, can hinder the establish-

ment of patterns in an ”intelligent” way. Although OLAP tools support complex consults and

multidimensional databases, for a thorough analysis more advanced tools are required. This

overall process of discovering useful knowledge from databases is called Knowledge Discovery

in Databases (KDD). In this process, Data Mining (DM) is a step related to the application

of specific algorithms for extracting models from data (Fayyad et al., 1996). The KDD process

consists in five main steps (Figure 3.3).

• Data selection: the application domain is studied and relevant data is collected from the

database.

• Pre-processing or data preparation: noise or irrelevant data is removed (data cleaning)

and multiple data sources may be combined (data integration). In this step appropriate

prior knowledge can be also incorporated.

• Transformation: data is transformed in appropriate forms for the Data Mining process.

• Data Mining: intelligent methods are applied in order to extract models or patterns.

• Interpretation: results from the previous step are studied and evaluated.

Selection
Pre-

processing
Trans-

formation
Data

Mining
Interpretation/

Evaluation

KnowledgeTarget

Data

Preprocessed

Data

Transformed

Data

Patterns

Data

Figure 3.3: Phases of the KDD process (Fayyad et al., 1996).
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In the data selection phase the main objective is to learn and comprehend the application

domain and selecting the data to be analysed. In the first stage, the fundamental concepts

have to be acquired and the main goals of the process clearly established. This means that,

normally, a multidisciplinary team of specialists is needed. Some cleaning tasks are performed

in this step like removing attributes which are considered to have little influence in the output.

Afterwards, data is selected to limit the search field in order to carry out the process focusing

in the defined goals.

Pre-processing includes the procedures to correct inconsistencies in data to improve its

quality. Among others, the main tasks include removing noise or outliers and mapping missing

values and selection of attributes. Noise can cause problems in the construction of the models.

In certain circumstances, it is useful the use filters to remove the noise from data. Outliers

can be detected using statistical techniques and based on experts knowledge. There are several

techniques to deal with missing values. The most simple imputation method, valid when missing

values affect a small set of data, is simply eliminate the records with missing data. Other

imputation methods consist on filling the missing values by the most common, mean or median

value of the attribute. The different attributes do not influence the results in the same way. It

is necessary to choose the main attributes and eliminate the ones that can hinder the learning

process. This can be done using experts analysis or a priori knowledge, correlations, sensibility

analysis among others.

Data transformation is related with the manipulation of data in order to be in the correct

form for the application of the DM algorithms. For instance, in numerical variables with highly

skewed distributions, a logarithmic transformation can help the learning process.

The DM step includes choosing the most suited algorithms for the type of analysis and

the searching of patterns and models is carried out in a certain figurative type (classification,

regression, rule induction, etc). This step will be analysed in detail later in this Chapter.

The last stage is the interpretation of the discovered patterns possibly using visualisation

tools. Normally, it is necessary to clean the obtained results because superfluous or irrelevant

patterns can be achieved together with important ones. It can be necessary to return to any

of the previous step in an iterative process of correcting options and errors in order to improve

the final results.

After interpretation, the important patterns transform into knowledge that can be used

directly in a decision support process or incorporated in other intelligent systems like the expert

or knowledge based systems.

Even though all steps in the KDD process are important, focus will be drawn on the Data

Mining section which has received most attention in literature and is many times referred as

the KDD process itself.
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3.3 Data Mining

Data Mining (DM) consists in the searching and inference of patterns or models in the data

which can represent useful knowledge. Depending on what kind of patterns to be found, DM

tasks are normally classified into two categories: descriptive and predictive. Descriptive tasks

characterise the general properties of the data while predictive perform inference on data in

order to make predictions (Han and Kamber, 2000). Descriptive models intend to summarise

data in convenient ways to improve its understanding while predictive models aim to forecast

the unknown value of a variable given known values of other variables (Hand et al., 2001). In

the following items the main DM tasks, methodologies, models and techniques will be described.

3.3.1 Tasks

Classification is the process of finding a model (or function) which describes different classes

in data in order to allow associating a new object to a class according to its characteristics.

Normally, the derived model is induced by the classification algorithm based on the analysis

of a training set of data. In other words, classification categorises a certain object into one of

several predefined classes. Each object belongs to a certain class among a pre-defined set of

classes. The objective of the classification algorithm is to find some relation between attributes

and one class in order that the classification process can use that relation to predict the class

of a new and unknown object.

The classification process can be divided in two parts. In the first part, the model is built

describing the characteristics of the classes based on the attributes of a randomly chosen set

of examples from the population (training set). Since the class label of each training example

is known, this process is called supervised learning. In the unsupervised learning, also called

clustering, the class labels are unknown. This technique is used to enhance the understanding of

the database finding embedded patterns which can then be used to categorise new examples. In

the second part, the accuracy of the model is estimated by its application on a testing set which

does not incorporate data from the training set. The accuracy is measured as a percentage of

correctly classified examples. If the model accuracy is considered adequate than it can be used

to classify future cases in which the class is unknown.

Figure 3.4 presents a hypothetical classification example of a rock mass classification system.

It is intended to develop a simpler system only based on the uniaxial compressive strength (σc)

and the Rock Quality Designation (RQD) as classification parameters based on the results of

application of another more complex system. The algorithm is applied over a set of examples

of the classification system (training data) to find the classification rules. Their accuracy is

tested over a different set of examples not used for training (testing data). If the model shows
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acceptable results it can be used to classify new cases.

Training Data

UCS RQD Class Classification Algorithm Classification rules

60 80 Excellent

0.9 50 Fair
1

If UCS>60 ^ RQD>70

Then Class = Excellent

12 60 Good … …

2 40 Fair

… … …

Testing Data New Cases

UCS RQD Class UCS RQD Class

15 55 Good 1 45 Fair

90 72 Excellent … … …

… … …

Figure 3.4: Classification example with rock mass classification data.

Regression is a predictive model, very similar to classification, used for continuous values

(in classification the variables are categorical). In fact, the main difference is the nature of the

response variable which is, in this case, numerical instead of nominal.

The regression process is also very similar. The main difference is the estimation of the

inferred model accuracy. Instead of calculating a percentage of correct classifications, several

error measures between real values of the training set and the predicted ones can be calculated.

The mean squared error (MSE) and the mean absolute deviation (MAD) are only two examples

of these measures. They can be used not only to evaluate the prediction accuracy of a model

but also for choosing between alternative ones.

Regression allows obtaining other important information. Using this technique, it can be

possible to know the relative importance of each parameter in the prediction of the target

variable. This information can be very useful for the comprehension of the physical phenomena

supporting the inferred model. Moreover, regression presents flexibility concerning the input

parameters allowing that empirical and/or specialised knowledge is considered in the models.

For instance, it is possible to consider an input variable that, based on experience, should be in

the model, even though it leads to a small predictive improvement. Inversely, it is possible to

exclude variables which one considers should not appear in the model or lead to a substantially

reduced model complexity in exchange of some predictive accuracy loss. Finally, it is possible
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to explore interaction between input variables in the sense that the influence of one input in

the target variable depends on the values taken by others.

Association or dependencies deal with finding interesting relationships between items of

a given data set. These models describe significant dependencies between variables through the

identification of groups of highly associated data. These dependencies can exist at two levels:

• structural: the model presents locally dependent variables in a graphical way;

• quantitative: the model specifies the strengths of the dependencies using a numerical

scale.

Summarisation supplies a succinct description for the data. It can be used for character-

isation which provides a concise summarisation of the data; and comparison which summaries

and differentiate one set of data from other sets. These two techniques used together form the

concept description, a very important component of DM. A very simple example of summari-

sation could be a histogram or a statistical measure of a certain attribute of data.

Clustering is the process of grouping similar objects into classes. In classification an

object is associated in one of several predefined classes while in clustering the classes must be

determined by the data. It is a kind of learning by observation other than learning by examples

as in classification. Cluster analysis is also referred as unsupervised learning. The clusters are

defined by finding groups in data which presents certain similarities. These similarities are

evaluated by metrics or probability tools.

Data visualisation supports the understanding of complex data relationships. It deals

with displaying, the intermediate or final results, in multiple forms like rules, tables, pie or bar

charts, decision trees and other visual representations. These technologies comprise sophisti-

cated techniques for viewing high-dimensional data and 3D renderings. Visualising the results

in different forms together with interestingness measures help to:

• enhance comprehension of the domain;

• selection of the patterns which represent useful knowledge;

• provide guidelines for further discovery.

3.3.2 Methodologies

The increasing interest on DM led to the necessity of defining standard procedures to carry

out this task. In this context, the two most used methodologies in DM are the CRISP-DM

(Cross-Industry Standard Process for Data Mining) and the SEMMA (Sample, Explore, Modify,

Model, and Assess) which are going to be briefly described.
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The CRISP-DM methodology was developed by a group of companies to respond to this

necessity. It is described as an iterative and interactive hierarchic model which develops in six

phases (Figure 3.5).

• Problem understanding: recognize the objectives and conceive the DM problem and a

preliminary plan to achieve the goals.

• Data understanding: involve data collection and activities to get an insight in data like

inference of data quality, detecting subsets or trends and form hypotheses.

• Data preparation: construction of the final dataset to be modelled from the initial raw

data. This phase includes tasks like data cleaning, data transformation and attribute

selection.

• Modelling: modelling techniques are selected and applied to find patterns within the data.

• Evaluation: assess the induced models and review the previous steps in order to assure

the models accomplish the objectives.

• Deployment: organise the obtained knowledge and make it available in order to be used.

Data

Deployment

Evaluation

Data
Preparation

Modeling

Business
Understanding

Data
Understanding

Figure 3.5: Stages of the CRISP-DM process (Chapman et al., 2000)

The SEMMA methodology was developed by the SAS institute which is a company that

delivers services in the areas of DM and decision support. It is composed by five main stages

(Figure 3.6):
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• Sample: selection of a representative sample from the studied universe.

• Explore: using statistical and visualisation techniques to get an insight on the data in

order to discover tendencies and/or anomalies.

• Modify: proceed with the transformations identified in the previous step if any. An

example of these transformations is the inclusion of new attributes.

• Model: definition and application of the appropriate DM techniques in order to achieve

the objectives of the study.

• Assess: evaluation of the obtained models in order to infer about their performance.

Sample

(Yes/No)

Data

Visualization

Clustering,

Association

Variable

selection,

creation

Data

transformation

ANN
Tree-Based

Models

Logistic

Models

Other

Models

Model

Evaluation

Explore

Modify

Model

Evaluate

Sample

Figure 3.6: Stages of the SEMMA methodology (Bulkley et al., 1999)

3.3.3 Models and techniques

The main issue of the DM task is building a model to represent data. In this step of the KDD

process, learning occurs by adopting a search algorithm for training. This process occurs over

a training set until a given criteria is met. After training, the model is built and its quality is

normally evaluated over a test set not used for training.

There are several different models but there is no universal one to efficiently solve all the

problems (Harrison, 1998). Each one presents specific characteristics (advantages and draw-

backs) which make them better suited in a certain case. This section will present the modelling
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techniques used in this work with exception to the linear and multiple regression which are

widely known.

Decision trees and rule induction

A decision tree is a direct and acyclic flow chart that represents a set of rules distinguishing

classes or values in a hierarchical form. These rules are extracted from the data, using rule

induction techniques, and appear in an ”If-Then” structure, similar to the rule presented in

Figure 3.4, expressing a simple and conditional logic. Source data is splitted into subsets, based

on the attribute test value and the process is repeated in a recursive manner. Graphically they

present a tree structure and are formed by three main components.

• The top node or root that represents all the data.

• Branches which connect nodes. Each internal node represents a test to an attribute while

the branches denote the outcome of the test.

• Leafs which are terminal nodes represent classes or values.

Considering again the previously described example of the hypothetical classification sys-

tem, in Figure 3.7 it is presented a possible classification tree for this case where the different

components are identified. Each path between the root to a leaf correspond to a decision rule.

In this case an example of a decision rule could be:

If σc < 70 and RQD < 50 then class = Bad (3.1)

After a tree is learned it can be used to classify or calculate the value of a new object.

There are two types of decision trees, namely classification and regression trees (Berry and

Linoff, 2000). These two types of trees use the same structure. The only difference is the type

of the target variable. Classification trees are used to predict the class to which data belongs

while regression trees are used to estimate the value of a continuous variable based on induced

mathematical expressions.

The CART algorithm, the acronym for Classification And Regression Trees, developed by

Breiman et al. (1984), is one of the most popular algorithms used for inducing decision trees. It

splits the data using a predictor that can be used several times at different levels. At each stage

data is partitioned so that the cases of the two created subsets are more homogeneous than

the previous one. It grows only binary trees (i.e., trees where only two branches can attach to

a single root or node) so, even though its high flexibility, it can sometimes be unreliable and

computationally slow.
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Figure 3.7: Example of a decision tree.

Other very common algorithm is CHAID (CHi-square and Automatic Interaction Detec-

tion). Developed by Kass (1980) it is one of the oldest algorithms. CHAID is able to grow

non-binary trees. For each potential predictor CHAID merges all values judged to be statis-

tically homogeneous with respect to the target variable and then the best predictor is chosen.

For classification problems it relies on the Chi-square test to determine the best next split at

each step while for regression problems it computes the F-test. The process is repeated until

the tree is fully grown.

Both CART and CHAID algorithms are capable to construct trees which can be applied

to analyse regression or classification problems with good results. Nevertheless, the fully auto-

mated process may result in an overstructured inefficient tree. Moreover, many of the branches

may reflect noise or outliers in the training data. Tree pruning attempts to identify and remove

such branches and simplify the tree, with the goal of improving accuracy on new data.

The greatest benefits of decision trees approach are that they are easy to understand and

interpret. They use a ”white box” model, i.e. the induced rules are clear and easy to explain as

they use a simple conditional logic. Additionally, they can deal with categorical and continuous

variables. The main drawback is that they get harder to manage as the complexity of data

increases leading to a higher number of branches in the tree.

Artificial Neural Networks

Artificial Neural Networks (ANN), developed in the scope of AI, were conceived to imitate the

biological networks of neurons found in the brain. They are formed by groups of connected
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artificial neurons in a simplified but very similar structure to the brain neurons. Like the

biological structures, ANN can be trained and learn from a set of examples to find solutions to

complex problems, recognise patterns and predict future events. The acquired knowledge can

then be generalised to solve new problems. This means that they are self-adaptive systems.

Biological neurons are composed by a nucleus and are connected with millions of other

neurons (Figure 3.8). They receive electrochemical inputs from their neighbours through con-

nections called synapses. The synapses are formed by axons and dendrites. Neurons form

complex, non linear and highly parallel structures.

Figure 3.8: Human neuron.

The principles of ANN were established by McCulloch and Pitts (1943) and have been devel-

oped since. ANN are complex parallel computational structures based on connected processing

units (neurons) organised in layers. Neurons communicate using signals through input/output

connections and each connection has an associated weight. The neuron multiplies each input

with the weight of the associated connection. The total input is the sum of all weighted inputs.

Finally, an activation function is applied in order to relate the input (stimulation) to the out-

put (response) (Sakellariou and Ferentinou, 2005). Figure 3.9 presents a scheme of an artificial

neuron. It is composed by three main elements (Cortez, 2002):

• a set of connections which represent synapses.
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• the neuron which reduce several inputs to one output.

• an activation function which limits the output amplitude of the neuron and introduce a

non-linear component.

Figure 3.9: Scheme of an artificial neuron configuration.

The most used activation function is the sigmoid (Figure 3.10). It is translated by the

following equation:

f(x) =
1

1 + e(−ax)
(3.2)
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Figure 3.10: Sigmoid activation function.
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In an ANN, neurons can be connected and organised in many different ways (Santos and

Azevedo, 2005).

• Fully connected networks: each neuron is connected to all neurons in the net.

• One layer networks: composed by two layers - input and output. The input layer is not

considered because it does not perform any calculations.

• Multi-layer networks: composed by different parallel layers. The first is the input and the

last the output layer. Intermediate ones are called hidden layers (Figure 3.11). This is

the most common type of network.

Figure 3.11: Scheme of a multi-layer network.

The connection structure of neurons in a network is normally called architecture or topology.

There are several architectures, each one with its own potentialities, but the most used is the

multilayer feed-forward (also represented by Figure 3.11). In this type of topology, connections

are unidirectional (from input to output) and there are no connections between neurons in

the same layer forming an acyclic network. On the other hand, in the recurrent topology, the

output neurons can be connected with input ones forming cycles, conferring a spatial and/or

temporal non linear behaviour to the network.

Optimising a network topology is a trial and error process for there is no rule to define a

priori the best topology. The initial values of the weights, which are initialised by the user
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normally with small random numbers, may affect the results accuracy. This way, when the

accuracy of the network is not acceptable, it is common to define a different topology and to

initialise the weights with a different set of values.

The learning process of an ANN is carried out using specific algorithms with very well

defined rules. In this context, there are three main methods, normally called paradigms, where

learning of ANN lies:

• supervised learning;

• unsupervised learning;

• reinforcement learning.

In supervised learning, examples of the inputs together with the correspondent outputs

are used in the training process. This allows the network to learn the patterns embedded in

the examples. During training, the outputs of the network are compared with the real values

resulting in an error measure. This error is used to adjust the weights of the connections in

order to minimise it in an iterative process. This type of learning is typically used for modelling

dynamic systems, and in classification and prediction problems.

In unsupervised learning the outputs are not presented to the network. Learning is carried

out through the identification of certain characteristics within the input data like statistical

regularities and clusters. It is mostly used to discovery non-linear patterns within the data.

Reinforcement learning lies close to the supervised learning with the difference that the

correct answer is not given to the network. Only a warning about if the network answer is

correct is provided. Using this information the network adjusts itself in order to optimise its

efficiency.

Concerning supervised learning, which was used in this work, there are several different

models that have been implemented on ANN. Perceptron networks were the first to be devel-

oped. They are one layered feed forward networks with several inputs and outputs. Perceptrons

are very simple to use however they are only applicable to problems with low complexity.

Back-propagation networks appeared latter as a solution to many of the restrictions in

perceptron type networks and are the most widely used paradigm in supervised learning. They

are a non linear extension of perceptrons and consist in networks where neurons are distributed

in two or more layers. The back-propagation algorithm performs learning in multilayer feed-

forward networks. It is based on the selection of an error function whose value is determined

by the difference between the outputs of the network and the real values. This function is

minimised through the correction of the weights in an iterative process normally using the

steepest descent method (Hush and Horne, 1999). The objective is to move in the ”weight
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space” down the slope of the error function with respect to each weight. The slope is the

partial derivative of the error with respect to the weight. The learning is ended when the

stopping criterion is met. This may be when a sufficiently low error is reached or when there is

a low rate of error change in consecutive iterations. The rule for the adaptation of weights is

called the generalised delta rule.

The training consists in two distinct phases.

• Forward phase: the input vector is given to the network and the weights are fixed.

• Backward phase: the weights are adjusted in accordance with the error which is propa-

gated backwards against the direction of the connections.

Back-propagation networks are powerful learning tools and have been used with success in

several applications. They are able to learn from noisy and highly non linear data and can

recognise different sets of data within a broader data set. Moreover, they do not require any

pre-existing knowledge and statistical models. However, there are some disadvantages that

have to be considered. The computational time during training process can be very high. As

they use a minimisation technique like the steepest descent, convergence can be attained to a

local minimum which is not an issue if a significant number of cases are used for training. The

induced models can perform poorly outside its range of training. Attention may be drawn to

the possibility of overtraining the network. Networks with many hidden nodes have the ability

to ”memorise” the desired output instead of learning the patterns. The problem of how many

hidden neurons to have in a network is still an active research issue. The last and probably the

main drawback is that the models induced by the networks are not comprehensible to the user.

They are known as ”black box” models since they give the answer but do not transmit the

knowledge behind that answer. This way, there is lack of any theoretical basis for validation of

the outcomes produced by the networks. Nowadays, research is ongoing for the development

of algorithms for the extraction of rules from trained neural networks. This factor contributes

toward the usefulness of ANNs in DM.

Model evaluation

After generating the models it is necessary to evaluate their future performance. Normally,

this is carried out applying the model to a set of examples not used to induce it. Holdout

and cross-validation are two common techniques for assessing the models accuracy, based on

randomly-sampled partitions of the data.

In the holdout method data is randomly partitioned into two independent sets, a training

set and a test set. Typically, two thirds of the data are allocated to the training set and the
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remaining to the test set. Nevertheless, there is no theoretical background to support these

values. The training set is used to induce the model whose accuracy is estimated with the test

set. The estimate is pessimistic since only a portion of the initial data is used to derive the

classifier.

In cross-validation, data is randomly partitioned into k mutually exclusive subsets randomis-

ing for each one the cases within the training and test set. Training and testing is performed k

times and the overall error of the model is taken as the average of the errors obtained in each

iteration. The values of k can vary between 2 and n (number of cases) however a commonly

considered value is 10. It allows using all the available cases in training and testing. The

accuracy of this technique involves a considerable computational effort (Cortez, 2002).

There are several evaluation techniques that can be applied to the models depending if it

is a regression or a classification problem. In regression problems the goal is to induce the

model which minimises an error measurement between real values and the ones predicted by

the model. The most used error measurements are the following:

Mean Absolute Deviation = MAD =

∑N
i=1 |ei|
N

(3.3)

Sum Squared Error = SSE =
N∑

i=1

e2
i (3.4)

Mean Squared Error = MSE =
SSE

N
(3.5)

Root Mean Squared Error = RMSE =
√

SSE (3.6)

where N is the number of examples. More than one measurement should be used when eval-

uating the performance of a model since they measure different types of errors. For instance,

MSE penalties the models which commit extreme errors since it uses the square of the distance

between the real and predicted values. Even if the model presents very low errors in most of

the cases the MSE will be high if only in a few cases the error is very high. In the other hand,

the MAD will be relatively low if in most of the times the model presents a good behaviour

even though with some extreme values. This way, these error measurements give different and

complementary perspectives about the behaviour of the induced models.

Another way to evaluate the capabilities of the models is to compute the determination

coefficient (R2) which is very common in many statistical applications. This parameter is a

measure of variability explained by the model but should not be used alone for it can lead to
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wrong conclusions. It varies between 0 and 1 and a value near 1 may mean that the model

explains most of the data.

The observation of the residuals plot against the independent variable or simply a histogram

of errors can help the model performance evaluation and the outlier detection. Non-normality

in an error histogram suggests that the model may not be a good summary description of the

data. In a residual plot against the independent variable there should be no discernible trend

or pattern for a satisfactory behaviour of the model. In fact, an increasing pattern for the

error may mean that the linear relation is not the most suitable for the data. In this case,

for instance, a logarithm transformation of the variables can be tried. If one residual is much

higher than the others it suggests that there is one unusual observation or outlier distorting

the fit. This value should be verified and can be eliminated if there is a concrete or empirical

reason to do it.

For classification problems one of the most used techniques is the confusion matrix (Kohavi

and Provost, 1998). It is used to evaluate the results of a classification indicating the predicted

values versus the correct ones. In the lines are disposed the real classes while in the columns

the predictions performed by the model. In the main diagonal it is indicated the number of

correct guesses while the remaining indicate errors. In Table 3.1 it is presented the confusion

matrix for an example with two classes. In this example the classes are designated as positive

and negative.

Table 3.1: Confusion matrix for two classes

Class Predicted C1 Predicted C2

Real C1 True Positive TP False Negative FN

Real C2 False Positive FP True Negative TN

With this matrix it is possible to calculate important measures for the model evaluation:

Specificity = spec =
TN

TN + FP
× 100% (3.7)

Sensitivity = sens =
TP

TP + FN
× 100% (3.8)

Accuracy = tacc =
TP + TN

N
× 100% (3.9)

Precision = prec =
TP

TP + FN
× 100% (3.10)
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Another way of evaluating classification models is the ROC (Receiver Operating Charac-

teristic) curve. It is appropriate when there are only two classes as in the previous example.

The ROC curve establishes the relation between the specificity and sensitivity of a model. In

the ideal situation the model should have maximum values of these indicators equal to one.

The AUC (Area Under Curve) is a performance measure obtained by the calculation of the

area under the ROC curve. It can assume values from 0 to 1 and can be interpreted as the

probability of a ”true” example, chosen randomly, to be classified as such.

3.4 Final remarks

The vast amounts of data which are produced in the different activity fields can not be ade-

quately explored and analysed using classical tools like statistics. Deeper understanding of data

and relationships or patterns embedded in highly complex databases urge the need of using ”in-

telligent tools” to uncover them and transform it into useful knowledge. The overall process

of the intelligent knowledge discovery in complex databases is called Knowledge Discovery in

Databases (KDD). Data Mining (DM) is only a step of this process related to the application

of the algorithms to induce the models.

DM is a recent field of computer science that is related with several fields like statistics,

machine learning and AI. These tools are currently used in many fields like economics, insurances

and medicine among others. In the particular case of geotechnical engineering, vast quantities of

data are produced associated, for instance, to important underground structures. However, and

in spite of some successful applications which were briefly cited, its use it is not yet widespread.

In civil engineering, modelling is normally carried out by means of ”knowledge-driven”

models through techniques like the finite element methods. In some areas, like in geotechnics,

experience plays an important role mainly in the decision support under uncertainty. In this

case, normally a set of specialists guide the process in what was called ”expert-driven” models.

Finally, the data from the actual and past projects can also be used to guide the decisions

concerning a certain project. This ”data-driven” models are already used in practice at a

certain extent (in the form of correlations, for instance) but the application of DM techniques

could enhance the way the geotechnical data is managed. If standard ways of organising and

exchanging data were defined and followed by the overall geotechnical community, at short term

very large databases of important data should be available and ready to be analysed using these

automated tools. The knowledge that could be inferred from such databases could turn the

”data-driven” models as an invaluable tool in geotechnical projects with direct implications in

reliability, safety and costs.

The main contribution of this chapter is the positioning of this problem and the description
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of the potentialities of the DM tools in the improvement of the ”data-driven” models in geotech-

nics and more specifically in the underground works field. Since it is an area which is not widely

known the fundaments of KDD and DM were presented. The DM step was particularised in

its main features namely tasks, methodologies, models and techniques with especial emphasis

to the ones which are going to be applied in the following Chapter.
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Chapter 4

New Models for Geomechanical

Characterisation Obtained Using

DM Techniques

4.1 Introduction

The evaluation of geomechanical parameters in underground works correspondent to the pre-

liminary stages of design, defined as level 1 of decision in Chapter 1, is normally carried out

based on scarce and uncertain data. The overall methodologies to obtain the parameters at this

point of the project are similar to the ones used in more advanced stages. As stated in Chapter

2, this task can be carried out directly by means of in situ and laboratory tests and indirectly

by the application of empirical methodologies. These methodologies allow obtaining an overall

description of the rock mass and the calculation, through analytical solutions, of strength and

deformability parameters which are determinant in design. The analytical solutions should be

used with caution outside the boundaries of the rock formations based on which they were

developed.

However, in the preliminary stages of design of an underground structure, some data about

the rock mass can be difficult to obtain and it is possible that the complete information for the

empirical systems application may not be available. Moreover, only a limited number of in situ

and laboratory tests are possible to perform.

It is then rational to think that, when a small amount of data from the present project

is available, as it happens in the preliminary stages, geomechanical information concerning

other works, developed in similar rock masses, can help in the task of defining values for

the parameters. It is indubitable that this data exists for instance when large underground

75
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structures are built.

The fundamental question that needs to be addressed is how this data can be used in

a rational way in order to provide some background for future projects. It is believed that

the automated tools of data analysis like DM are capable to help in this task allowing to

develop what was called in the previous Chapter as ”data-driven” models. These tools could

be used to explore the geotechnical information gathered in large and organised databases to

find patterns and models, i.e. to uncover new and useful knowledge embedded in the data. It

is not only a question of applying some tools which can by themselves analyse and interpret

the data substituting the human experts. A KDD process must always be developed or at least

supervised by experts in the field in order to make decision along the process and analyse the

outputs. These tools only allow to more deeply analyse the data which would be very difficult

using classical tools like statistics or through one or even a panel of human experts that could

overlook important details. The knowledge discovered in the process must be explainable at

the light of science and experience and must be always validated before being used in other

applications.

In this work, it is intended to develop an innovative study using DM analysis tools applied

to a database of geotechnical information. The broad goal is to show, in practical terms, the

potentialities of DM techniques in the geotechnics field and how a study of this nature can be

carried out providing a contribute for bridging the gap between the areas of data analysis and

geotechnics. More specifically, it was intended to develop new and reliable alternative regression

and classification models that could be used for geomechanical characterisation of rock masses,

especially when only scarce information is available. The innovative character of the study

implies the existence of some flaws and limitations that will be properly pointed out.

The data used in this study was assembled from the Venda Nova II powerhouse complex

which is an important underground work recently built in the North of Portugal. The interested

rock mass is a granite formation so the conclusions drawn in this study are only applicable to

formations with similar characteristics. The overall DM process was carried out in three main

steps.

• Collect geotechnical data from the Venda Nova II powerhouse complex mainly from the

empirical classification systems application.

• Build and organise a database with the data.

• Explore the data using DM techniques to induce the models.

Concerning the regression models, the main goal was to develop alternative ways for the

prediction of coefficients (RMR and Q) and geomechanical parameters (deformability modulus
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- E; friction angle - φ′; cohesion - c’) (Oliveira et al., 2006). The Mohr-Coulomb strength

parameters were chosen because it is possible to obtain the Hoek-Brown (H-B) parameters

using relatively simple expressions based on the GSI. In fact, the calculation of the Mohr-

Coulomb parameters, from the linearisation of the H-B failure envelope, is more complex and

it was thought that developing models that could simplify this process could be more useful.

These models were expected to have higher accuracy than the existing ones or that they

use less information but maintaining a high predictive accuracy. This last group is the one that

can be more useful in the preliminary design stages in any case where geological/geotechnical

information is limited. Also, it is aimed that the models provide an insight of which parameters

are the most influent on the structural behaviour of the rock mass and find possible physical

explanations. The used DM techniques were multiple regression analysis and ANN.

The RMR system allows classifying the rock masses into five different classes related to

their geomechanical properties. For each class it is possible to obtain support needs, type and

excavation sequence, a range for the geomechanical parameters, stand-up time, among others.

For the classification process, the values of the six weights - P1 to P6 - are needed in order

to compute the RMR, which means that a great amount of geomechanical information has to

be available. As mentioned, this information can be difficult to obtain. All the classification

process is deterministic, since the evaluation of the weight values to the final definition of the

class. This can be a drawback since normally it is only possible to obtain approximate values

of the weights or a possible range for them.

In this context, it was intended to develop an alternative classification scheme that could

overcome the mentioned difficulties. This way, DM classification techniques, particularly deci-

sion trees, were applied to the same database used for the regression models. Decision trees are

branching structures based on split nodes, that test a given feature, and leaves, which assign

a class label. Thus, it was possible to develop a new system based on the RMR which was

called Hierarchical Rock Mass Rating (HRMR). The HRMR does not need the deterministic

calculation of the RMR value to obtain a certain classification to the rock mass. It adapts to the

level of knowledge about the weights used by this system and provides a probabilistically-based

classification with a certain degree of accuracy. Obviously, as more information is gathered the

accuracy of the system increases.

For both regression and classification models the CRISP-DM methodology was applied in

the process of knowledge discovery. In the next sections, the main issues concerning the different

steps of the process are presented as well as the main results and their interpretation.
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4.2 Data understanding and preparation

The available data were mainly applications of the empirical systems and results from labora-

tory (uniaxial compression strength and sliding of discontinuities) and in situ tests (SFJ, LFJ

and dilatometers) (LNEC, 1983, 2003, 2005). Concerning the empirical classification systems

applications, data was dispersed into 110 spreadsheet files. It was necessary to perform data

cleaning tasks by removing duplicated records contained in these files. Data was then organised

and structured in a database composed of 1230 examples and 22 attributes which are described

in Table 4.1.

Table 4.1: Initial attributes of the database

Name of the attribute Description

RQD Rock Quality Designation

Jw Factor related with the underground water

Jn Factor related with the number of discontinuities sets

Jr Factor related with discontinuities rugosity

Ja Factor related with the weathering degree of discontinuities

SRF Factor related with the stress state in the rock mass

Q Rock mass quality index proposed by Barton et al. (1974)

Q’ Altered form of the Q index (Q′ = RQD/Jn · Jr/Ja)

RCU Uniaxial compressive strength (or σc)

P1 Weight related with the uniaxial compressive strength of the intact rock

P2 Weight related with the RQD

P3 Weight related with discontinuities spacing

P4 Weight related with discontinuities conditions

P5 Weight related with the underground water conditions

P6 Weight related with discontinuities orientation

P41 Discontinuities conditions - persistence

P42 Discontinuities conditions - aperture

P43 Discontinuities conditions - rugosity

P44 Discontinuities conditions - filling

P45 Discontinuities conditions - weathering

RMR Rock Mass Rating proposed by Bieniawski (1978)

class Classification of the rock mass based on the RMR value

Some of the variables histograms (in Annex I are reported the histograms of all variables)

presented skewed distributions and others only assumed a few different values. Figure 4.1

presents the histogram of the RMR variable which is one example of a skewed distribution.

This fact can influence the quality of the induced models specially those based on ANN since

this kind of algorithms can learn better the behaviour of normally distributed variables. In some
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cases, a variable transformation (logarithmic, exponential, etc.) helps to increase its normality.

Some preliminary trial calculations pointed out to the improvement of the results when this

transformation was carried out. This way, it was decided to proceed to the transformation of

some variables in order to maximise their normality.

Figure 4.1: Histogram of the RMR variable.

From the attributes of the database it was possible to calculate others including the geome-

chanical parameters. First, the H-B strength parameters were computed and then c’ and φ′

were derived by fitting an average linear relationship to the generated failure envelope which is

formulated in effective stresses (Hoek et al., 2002).

The Mohr-Coulomb parameters derived from the H-B criterion are peak values. For poorer

rock mass conditions the peak and residual parameters can be considered similar, since a per-

fectly plastic post-peak behaviour can be assumed. For average and good rock masses, they

exhibit, respectively, a strain softening and a brittle post-peak behaviour, with associated dila-

tancy which is more pronounced for the last case. For good quality rock masses, a null residual

c’ and a φ′ 25% lower than the peak value can be considered (Hoek, 2001). Alternatively, as

referred in Chapter 2, it is possible to use the formulation proposed by Carvalho et al. (2007)

to obtain the H-B parameters for the extreme ends of the rock competency scale. For aver-

age rock mass conditions it is reasonable to assume that the residual strength parameters can

be obtained using the H-B failure criterion using a reduced GSI value which characterises the
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broken rock mass.

For the calculation of the H-B strength parameters, a comparative study between the meth-

ods proposed by Hoek et al. (2002) and Douglas (2002), described in Chapter 2, was carried

out.

The mean φ′ derived using Douglas formulae (57.2o) is approximately 6% higher than the

value correspondent to the Hoek et al. methodology (53.9o) which means that the difference

in this particular case is not significant. The main difference is found in the c’ values. In

fact, the ones obtained using Douglas method (mean value of 11.6 MPa) are much higher

than those by Hoek et al. which mean value is only about 33% (3.8 MPa) of the mean c’

obtained with Douglas method. Based on experience and empirical knowledge, the computed

values by the methodology developed by Hoek et al. are more reasonable. The reasons for

such difference are outside the scope of this work but it can be related with the fact that

Douglas method was developed mostly to enhance H-B criterion for poor rock mass conditions.

The studied database presents a small number of records concerning this type of rock mass,

therefore, probably Douglas method needs to be fine tuned for better geomechanical properties

rock masses. Thus, in this work, the adopted methodology for the calculation of strength

parameters was the one defined by Hoek et al.

The prediction models for φ′ and c’ were developed considering a reference depth (H) of

350 m (the depth of the main caverns of the powerhouse complex) and a disturbance factor

(D) of 0. To allow a simple and direct transformation of the values predicted by the models

for another conditions (different H and D) a parametric study was carried out. Based on this

study, a generic methodology for transforming the geomechanical parameters for a given H and

D to another different pair of values was developed and then particularised for the DM models.

The generic methodology is based on the application of two correction factors, one for each

parameter, and is described in Annex II along with a calculation example.

The deformability modulus (E) is an important input parameter in any rock mass behaviour

analysis. However, this parameter is not an intrinsic material characteristic since it depends

on other variables, mainly the associated strain level. In fact, there are several different de-

formability moduli that can be defined. The value to use in design should be associated to the

expected level of strains according to the serviceability limit state of the structure.

Generally, there is an agreement that the strains interesting the serviceability of geotechnical

structures ranges from 0.001% to 0.5% (Gomes Correia et al., 2004). Consequently, ground

behaviour from small to medium strains should be accurately characterised. Both soils and

rocks demonstrate an approximate elastic behaviour at very small and small strains and a non-

linear pre-failure behaviour at medium strains. This way, it is very important to define and

identify the type of modulus that will be adopted for design purposes.
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This subject has been an important research issue mostly in the particular case of soil for-

mations and many advances have been reached in the last years. For instance, the development

of high precision deformation measurement devices for the triaxial test, which allow assessing

very small and small strains, can be mentioned. This important improvement provides a more

correct definition of E versus strain levels curve.

However, the question is substantially different in rock formations. The intact rock is not

representative of the overall rock mass deformability behaviour like it happens in a larger

scale with soil samples. To a more correct definition of E considering all factors which govern

the deformation behaviour of the rock mass, large scale in situ tests are needed. They can

be very time consuming, expensive and their reliability can be sometimes doubtful (Hoek and

Diederichs, 2006). Because of these difficulties, back analysis procedures can constitute a source

of reliable information about the rock masses characteristics.

This way, most procedures that can be found in literature to estimate this parameter for

isotropic rock masses, are based on simple expressions related to the empirical systems or other

index values like the RQD (Zhang and Einstein, 2004) and the intact rock modulus (Mitri et al.,

1994; Sonmez et al., 2004; Carvalho, 2004).

Miranda (2003), in the framework of the development of a knowledge based system for the

calculation of geomechanical parameters, carried out a comparative study of these expressions

selecting those which presented best results based on empirical judgment. In the present work,

to calculate E of the granite rock mass, the expressions selected in that comparative study

were used. Complementarily, the results of other expressions found in the meantime were also

studied and it was decided to add to the first selection some other expressions: the one by

Read et al. (1999) and the two proposed by Hoek and Diederichs (2006). The first was chosen

because all exponential equations give poor fits to the experimental data for very good quality

rock masses. This is because of the inadequately definition of the asymptotes and this equation

uses a third power curve to better define them. The expressions by Hoek and Diederichs (2006)

were also added because they are based in a very large database of cases gathered in China

and Taiwan and validated by historical measurements from several countries. Some expressions

use the elasticity modulus of the intact rock (Ei) in order to compute E. That parameter was

not available in a great amount of cases and therefore to estimate Ei a correlation with σc

developed by Miranda (2003) was applied. The used expression together with their limitations

and authors are presented in Table 4.4.

It is important though to define what kind of E these equations lead to. As shown in Figure

4.2, there are several alternative types of E values that can be defined for a specific rock mass.

Most authors have based their expressions on field test data reported by Serafim and Pereira

(1983) and Bieniawski (1978) and, in some cases, by Stephens and Banks (1989). They mostly



82 4.2. Data understanding and preparation

Table 4.2: Expressions used for the calculation of E.

Expression Limitations Reference

E(GPa) = 10(RMR−10)/40 RMR ≤ 80
Serafim and Pereira

(1983)

E(GPa) = 2 ·RMR− 100
RMR > 50 and

σc > 100MPa
Bieniawski (1978)

E =
Ei

100
·
�
0.0028 ·RMR2 + 0.9 · e(RMR/22.28)

�
not limited

Nicholson and

Bieniawski (1997)

E(GPa) = 0.1 · (RMR/10)3 not limited Read et al. (1999)

E(GPa) = 25 · logQ Q > 1 Barton et al. (1980)

E(GPa) = 10 ·Q1/3
c ; Qc = Q ·σc/100 Q ≤ 1

Barton and Quadros

(2002)

E(GPa) = 1.5 ·Q0.6 ·E0.14
i Ei ≤ E and Q ≤ 500 Singh (1997)

E =

0
@1−

D

2

1
A ·

s
σc

100
· 10(GSI−10)/40 σc ≤ 100MPa

Hoek et al. (2002)

(a)

E =

0
@1−

D

2

1
A · 10(GSI−10)/40 σc > 100MPa

Hoek et al. (2002)

(b)

E(GPa) = 100000 ·
0
@ 1−D/2

1 + exp ((75 + 25 ·D −GSI) /11)

1
A not limited

Hoek and Diederichs

(2006) (a)

E(GPa) = Ei ·
0
@ 1−D/2

1 + exp ((60 + 15 ·D −GSI) /11)

1
A not limited

Hoek and Diederichs

(2006) (b)

refer to the secant modulus, typically for deformations correspondent to 50% of the peak load.

It is thought that this deformation is higher than the serviceability levels present in most of the

geotechnical works built in rock masses. This way, it is expected that this expressions typically

provide conservative estimates of E.

To validate the obtained values, the results of a LFJ test (LNEC, 1983, 2003), which allowed

obtaining 160 values of E due to several performed loading/unloading cycles, were compared

with the calculated values of E obtained near the zone where the test took place. Table 4.3

resumes some statistical results of this assessment.

Table 4.3: Comparison between calculated and measured values of E.

E(GPa) - LFJ E(GPa) - calculated

N Mean 95% confidence

interval for the mean

Std.

deviation

N Mean 95% confidence

interval for the mean

Std.

deviation

160 36.9 35.9-37.8 6.1 76 38.5 34.5-42.5 16.6

The mean values of E are very similar. The main difference is the higher variation in the



Chapter 4. New Models for Geomechanical Characterisation Obtained Using DM Techniques 83

Figure 4.2: Alternative definitions for the deformability of a rock mass.

calculated values. This fact can be considered normal since the LFJ tests are much more

accurate for measuring E than the empirically based expressions. Thus, it can be concluded

that the calculated values agree well with those obtained by reliable in situ tests and can be

considered as realistic and precise prediction.

In order to have an insight of the results from the analytical expression application, in Table

4.4 it is presented, for each expression: the number of times it was calculated, the number of

times the result was within a considered reasonable interval (± one standard deviation from

the mean value given by all expressions) and the ratio between these two previous values.

In general, the expressions gave similar results and most of the times they laid within

the considered interval with the exceptions of those proposed by Hoek and Diederichs (2006)

(a) and Bieniawski (1978). Normally, the results of these expressions were lower than the ones

obtained by the described methodology and should be used with caution when analysing granite

formations.

After their calculation, the geomechanical parameters were added to the database along

with other attributes in order to check their possible influence on the models. Globally, 10 new

attributes were added and are presented in Table 4.5.

As it can be observed, some variables are directly dependent on other variables. This way,

it is expected that this dependency will be translated when analysing the most important

parameters for each of the target variables. For instance, φ′ and c’ are computed based on the

H-B parameters which by their turn are directly dependent on the GSI. This way, it is expected

that when analysing φ′ and c’, the GSI value appears as an important parameter. This can

happen with other parameters and caution should be made to distinguish when the importance
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Table 4.4: Comparison between the number of times the expressions were calculated with the number

of times the result was within the considered interval.

Author(s)
Number of times it

was calculated (1)

Number of times within the

considered interval (2)

Ratio (2)/(1)

%

Serafim and Pereira

(1983)
1114 1094 98.2

Bieniawski (1978) 773 447 57.8

Nicholson and

Bieniawski (1997)
1222 1221 99.9

Read et al. (1999) 1222 1180 96.6

Barton et al. (1980)

and Barton and

Quadros (2002)

1215 1055 86.8

Singh (1997) 1209 1088 90.0

Hoek et al. (2002)

(a) and (b)
1223 1223 100

Hoek and Diederichs

(2006) (a)
1229 36 2.9

Hoek and Diederichs

(2006) (b)
1222 1003 82.1

Table 4.5: List of attributes added to the original database.

Name of the attribute Description

RQD/Jn Ratio which represents the compartimentation of the rock mass

Jr/Ja Ratio which represents the shear strength of discontinuities

Jw/SRF Ratio which represents an empirical factor named ”active stress”

logQ Base 10 logarithm of the Q value

logQ′ Base 10 logarithm of the Q’ value

GSI Geological Strength Index proposed by Hoek et al. (2002)

N Altered form of the Q index (N = RQD/Jn · Jr/Ja · Jw)

RCR Altered form of the RMR index (RCR = P2 + P3 + P4 + P5 + P6)

φ′ (D=0) Friction angle for a disturbance factor D equal to 0

c’ (D=0) Efective cohesion for a disturbance factor D equal to 0

of a variable has physical meaning or if it is the result of a calculation dependency.

There were some missing values within the database. It would be possible to apply a

replacement strategy to fill these missing fields like using the most common or the mean value

of the attribute. The replacement strategies should only be used when the elimination of the

records with missing values can have a significant influence on the quality of the results. The

number of records with missing data represent only 2.2% of all the records therefore the choice

was to eliminate them.

The final database was composed of a total of 32 attributes. Only the one related with
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the class of the rock mass was not numerical. The number of cases within the database was

significant and the missing values low.

Almost 60% of the cases in the database were classified as ”class II” considering the RMR

classification system (Figure 4.3) which means that the data is based on the results obtained in

a granite rock mass with an overall good quality. However, and with the exception of ”class V”,

there could be enough cases for the remaining classes (over 100) to consider that the conclusions

drawn out from this study are extensive to these classes also.
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Figure 4.3: Histogram of class frequencies in the database.

More specifically, and considering the histograms of each variable of interest, the main

limitations that should be considered are: high uniaxial compressive strength (σc > 100MPa),

RQD values over 65% and slightly wet to dry rock mass. The models developed in this work

should only be applied to rock masses with similar characteristics.

4.3 Modelling and evaluation

For the regression models, a methodology was established to define sets of attributes to analyse

for each parameter (Oliveira et al., 2006). In general terms, three analysis steps were carried

out.

• Induction of models using all the attributes in the database to analyse which were the

most important for the considered parameter.
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• Induction of models using only a set of the most important attributes.

• Induction of models using a set of easy to obtain attributes or ones which, based on an

empirical evaluation, can be related with the parameter.

The SAS Enterprise Miner software, registered trademark of the SAS Institute Inc., was used

as modelling tool (www.sas.com). It combines statistical analysis with graphical interfaces and

delivers a wide range of predictive models. In the SAS Enterprise Miner the DM tasks are

carried out programming and connecting nodes in a graphical workspace, adjust settings, and

run the constructed workflow. The evaluation of the models was carried out using the results

provided by this software and complementary calculations on spreadsheets. In Figure 4.4 the

workflow used for in this work is presented.

Figure 4.4: Workflow used for the DM tasks.

Each node has a specified role in the process. The node denoted by Work.DM DEF is

responsible for the importation of the data from the database. With the Insight it is possible to

evaluate and analyse the data. It allows the visualisation of histograms and presents the main

statistical parameters. In the Transform Variables node the already mentioned transformations

for the highly skewed data are performed. Data Set Attributes is related with the definition of

the role of each attribute in the induced model, i.e., which attributes are going to be included

and which is the target variable.
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The Data Partition node allows splitting data in training and testing sets for the holdout

method application. In this case, two thirds of the data was used for training and one third for

testing. For each model 10 runs were performed randomising the data within the training and

testing sets. These 10 runs allow validating the relations between the attributes and the target

variable and to evaluate the final model performance. The evaluation is performed calculating

the mean and confidence interval for the error measures obtained for each run. The confidence

interval is computed considering a T-Student distribution since the standard deviation of the

population is unknown and it is better suited for small samples (in this case 10). These statistical

measures define the range of expected errors for future predictions of the final model which is

induced using all the data for training.

The algorithms used for the regression models were multiple regression and ANN. The

Regression and Neural Network nodes allow the application of these algorithms. The applied

ANN was a multilayer feed-forward network with one hidden layer of six neurons. This topology

was decided after some trial calculations which showed that good results could be reached with

this configuration.

Focus was drawn to the multiple regression models because it was intended to obtain the

explanatory physical knowledge behind the models (for instance, which were the main attributes

in the prediction of a certain variable). Moreover, these models are simpler to use and to

implement. The ANNs were used more for comparison purposes. The adopted topology and

number of neurons in the network were not optimised along the several calculations that were

performed and are an open issue for further research. This could enhance the ANN performance

in some cases. For the classification model, a decision tree was applied (Tree node). The

goal was to develop a hierarchical model with different accuracy levels and this type of data

representation revealed to be very well suited for this purpose.

The Assesment node deals with the evaluation of the models. It allows the visualisation

of different plots and graphs, the calculation of error measures and details about the learning

process. The regression models based on multiple regression were evaluated using the measures

MAD and RMSE together with the determination coefficient (R2). For the ANN, only the

RMSE was used due to computational limitations. In fact, the MAD calculation is not per-

formed by the used software. For the multiple regression models, this task was carried out, as

well as the R2 computation, in a post-processing calculation using a spreadsheet. Since it was

not possible to obtain the network outputs in a proper way to be manipulated in a spreadsheet,

the computation of the MAD and R2 for the ANN was not viable.

For the evaluation of the parameters importance in the models, plots of significance levels

were used. For the classification model the assessment was carried out computing the confusion

matrix and from it several different measures for the model evaluation (sensitivity, specificity,



88 4.3. Modelling and evaluation

accuracy and precision).

The Reporter node provides an overview of the overall DM process since the description of

the data until the results. In the following items the main issues and results of the performed

studies will be presented.

4.3.1 RMR index

As it was described, the study of all target variables started considering firstly all the attributes.

This model itself is not relevant for prediction purposes since it uses more information than the

original expression with no profit. This was done to determine, for the linear regression models

and among all the possible attributes, which were the most important in the prediction of this

variable. In Figure 4.5, a plot of the relative importance of the main attributes for the RMR

variable is presented.

Figure 4.5: Relative importance of the attributes for the prediction of the RMR variable.

As it was expected, the main parameters which influence the prediction of RMR are the

ones directly related to its calculation even though P1 appears only in an indirect way in the

form of the unconfined compressive strength (defined as RCU in the plot). It is important to

notice that, among these parameters, the most important are, by far, the ones related with

the discontinuities. In particular, the parameters related with conditions (P4) and orientation
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of discontinuities (P6) are very good predictors of RMR. Moreover, in the scale of relative

importance, the parameters of the Q system also related with discontinuities appear (Jn and

Jr/Ja). These facts point out to the conclusion that, in granite formations, the data related

with the discontinuities is a good predictor of the overall quality of the rock.

It is expected that the RMR value translates the overall condition of the rock mass. If

a certain parameter does not appear to have a considerable importance in the RMR value

prediction, it could mean that indirectly it is not a good predictor of the rock mass conditions.

If in one hand it would be expectable that the parameters related with the discontinuities

conditions, in particular P3 and P4, should be well related with the RMR and the rock mass

conditions, in the other hand the high importance of P6 which is not directly related with the

rock mass state and the low importance of σc appear as strange conclusions. This may have to be

concerned with limitations of the database or even with the RMR system. If these conclusions

are confirmed with a larger database it can be possible to discuss the relative importance given

by this system to the mentioned parameters, at least in granite formations.

Even though these limitations, the next step was to induce models considering only the

previously determined most important parameters, namely: P3, P4 and P6. The obtained

regression model was the following:

RMR = 35.77 + 0.065× P 2
3 + 1.369× P4 + 0.977× P6 (4.1)

In Table 4.6 the results for the regression and ANN models are presented in terms of average

errors, R2 and correspondent t-student 95% confidence intervals. These results are concerned

only with the testing set since these are the ones related with the behaviour of the models when

facing new cases. The results for the models which use all the attributes are presented only for

comparison matters.

Table 4.6: Results for the models considering all the attributes and the most important ones for the

RMR prediction.

All attributes P3, P4 and P6

Regression ANN Regression ANN

R2 MAD RMSE RMSE R2 MAD RMSE RMSE

0.995±
0.001

0.650±
0.050

1.094±
0.073

1.070±
0.070

0.944±
0.005

2.565±
0.083

3.522±
0.169

2.857±
0.114

As it was expected, the models which use all attributes are very accurate. The error measures

are low and R2 is close to 1. Using only the three main parameters, the error significantly

increases. This is because only half of the parameters used in the original expression are
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applied. Nevertheless, the error can be considered low for engineering purposes. Analysing the

MAD and RMSE values a prediction error around 3 is expected. This means that, for instance,

if a rock mass has a ”real” RMR value of 65, a value within [62; 68] will be predicted which

is acceptable. This expression can be useful in the preliminary stages of design or when only

information about discontinuities is available or is reliable.

Considering the RMSE, the ANN slightly outperforms the regression models. Only for the

ones with less attributes the difference can be considered significant. In this case the RMSE

for the ANN is approximately 20% less than the correspondent value of the regression model.

In Figure 4.6 the plot of computed versus predicted RMR values is presented for the simplest

case.
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Figure 4.6: Computed versus Predicted RMR values for the regression model with parameters P3, P4

and P6.

It can be seen that the values lay near a 45 degree slope line which means that the prediction

model shows a good accuracy. However, the deviations between real and predicted values

increase with decreasing rock mass quality. For RMR values below 30-35 the prediction error

increases and the model tends to overestimate the RMR. Above RMR values of around 85

this overestimation trend is also observed. Since the model is based in the discontinuities

characteristics this fact can be explained by the importance loss of discontinuities for poorer

and massive rock masses.

The plot of Figure 4.6 shows a tail with an almost quadratic trend. In order to minimise

this fact a transformation of the RMR variable was performed. Calculations were repeated

using the squared value of RMR and the following regression model was obtained.
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RMR2 = 1036.7 + 7.148× P 2
3 + 166.3× P4 + 116.7× P6 (4.2)

Table 4.7 resumes the results and Figure 4.7 presents a plot of real versus predicted values

for this model.

Table 4.7: Results for the multiple regression model considering parameters P3, P4 and P6 and using

the transformed form of the target variable.

Regression

R2 MAD RMSE

0.954± 0.004 2.179± 0.081 3.172± 0.119
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Figure 4.7: Real versus Predicted RMR values for regression model with parameters P3, P4 and P6

and considering the transformation of RMR.

This transformation led to a slight reduction on the error measurements (approximately 0.4

for each) and confidence intervals and a small increase on R2. In Figure 4.7, a loss of accuracy

for lower RMR values can still be observed. However, this happens with higher significance for

RMR values below 30 and the overestimation trend is no longer observed has in the previous

model. The points are almost equally distributed along the 45 degree slope line which means

that the mean prediction error is close to 0. Table 4.8 summarises the main issues of the

regression models for the two approaches, considering RMR and RMR2 as the target variables.

In a merely statistic point of view, the model which uses RMR2 as the target variable
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Table 4.8: Comparison of the main results between the regression models which use RMR and RMR2

as target variables

RMR RMR2

• Overestimation trend for RMR<35 and RMR>85. • Very good results for RMR>50.

• Good behaviour in a central range of RMR values. • Higher dispersion than previous model

in a central range of RMR values

(35<RMR<50).

• Accuracy lost for poorer rock masses. • For the lower range also accuracy lost with

no specific trend.

presents a better performance since it has lower error measures and higher R2. Also, in this

case the error does not follow a specific trend presenting a mean value close to 0. However, for

design purposes, the conclusion may not be necessarily the same. In fact, the error measures are

very close but when using the model with RMR, one knows that in a certain range of values, an

overestimation trend is expected. When using the other model the expected error is random.

As it was already referred, the Q system related parameters Jn and Jr/Ja are also important

to the RMR prediction. These attributes were added to this model and calculations were again

performed. However, only negligible increased performance was achieved.

4.3.2 Q index

The preliminary runs for the Q variable using all attributes indicated that a variable transfor-

mation would be needed. Figure 4.8 (a) shows a plot of computed versus predicted values for

the regression model and a highly non linear relation can be observed. The performance of this

model was extremely poor resulting, in some cases, in negative values for the value of Q, which

as it is well known, is always positive.

On the other hand, ANN had a very good performance with a mean RMSE value ten times

lower than the correspondent for the linear regression model. This means that the ANN cap-

tured the non-linearity relationship with high accuracy. However, focus was drawn to improve

the linear models. In this context, a variable transformation was implemented to linearise the

relation. It resembles a logarithmic relation and the preliminary runs confirmed that this was

the best suited transformation. This way the target variable turned to be the base 10 logarithm

of Q (log Q) which was already an attribute of the database. Figure 4.8 (b) presents the results
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Figure 4.8: Computed versus Predicted Q values for regression models using all attributes (a) without

logarithmic transformation and (b) with logarithmic transformation.

of the regression model considering this transformation. The results were converted again to a

linear scale in order that both plots could be compared. It is possible to observe an outstanding

improvement in the model performance with the consideration of the transformed form of the

variable.

Table 4.9 shows the results for the models which use all the attributes and the most impor-

tant ones. As it can be observed in Figure 4.9, the most important attributes are the Jr/Ja

ratio (which is a measure of the shear strength of the discontinuities) and the SRF and Jn

variables. The regression model using this variables is translated by equation 4.3:

logQ = 2.00 + 0.47× ln


 Jr

Jn × Ja × SRF 1.07


 (4.3)

Table 4.9: Results for the models considering all the attributes and the most important ones for the

Q coefficient.

All attributes Jr/Ja, Jn and SRF

Regression ANN Regression ANN

R2 MAD RMSE RMSE R2 MAD RMSE RMSE

0.997±
0.000

0.016±
0.001

0.031±
0.003

0.030±
0.003

0.989±
0.001

0.049±
0.002

0.075±
0.004

0.075±
0.005

As it happened for the RMR, the parameters related with discontinuities have a significant

effect on the prediction of this quality index together, in this case, with the parameter related
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Figure 4.9: Relative importance of the attributes for the prediction of the log Q variable.

with the stress state. This point corroborates the previous conclusion that the discontinuities

characteristics are good predictors of the overall rock mass quality.

The lower importance of the RQD (which was already observed for the RMR) can be related

to the unbalanced distribution of this variable. This is translated by a reduced number of cases

correspondent to RQD values lower than, approximately, 65 which hinders the correct evaluation

of the importance of this parameter. There are some balancing techniques but they were not

applied in this case.

In line with what was stated for the RQD, the low importance of the underground water

conditions (Jw) may be related with the almost dry in hydrological conditions. In other con-

ditions this influence could be higher since it is well known that the water conditions strongly

influence the behaviour of a rock mass.

The attribute ”intercept” in Figure 4.9 has no physical meaning. It is related with the

importance of the ordinate value correspondent to a null abscissa in the prediction of target

variable (logQ).

Analysing the values of R2 in Table 4.9 it can be seen that the values are very high for both

models. The error values are low considering that the target variable ranged approximately

from -1.85 to 2.13. Figure 4.11 shows the plot of computed against predicted values and a good

relation can be observed.

Since it was concluded that the parameters related with the discontinuities are very much
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Figure 4.10: Computed versus Predicted logQ values for regression model with parameters Jr/Ja,

SRF and Jn.

related with both studied indexes, two more sets of variables were tested: one using only the

variables Jr/Ja and Jn; and other using these variables together with the parameters related

with the discontinuities of the RMR system (P3, P4 and P6). The latter is justified since once

it is possible to obtain information for the Jr/Ja and Jn variables it is not difficult to deduce

values for P3, P4 and P6. The regression models are translated by equations 4.4 and 4.5 and

the overall results are presented in Table 4.10 and in Figure 4.11.

logQ = 2.17 + 0.57× ln


 Jr

J1.03
n × Ja


 (4.4)

logQ = 1.27 + 0.43× ln


 Jr

J0.95
n × Ja


 + 0.0015× P 2

3 + 0.015× P4 + 0.0094× P6 (4.5)

Table 4.10: Results for the models considering the Jr/Ja, Jn and Jr/Ja, Jn, P3, P4, P6 attributes.

Jr/Ja and Jn Jr/Ja, Jn, P3, P4 and P6

Regression ANN Regression ANN

R2 MAD RMSE RMSE R2 MAD RMSE RMSE

0.908±
0.009

0.149±
0.007

0.214±
0.013

0.204±
0.010

0.933±
0.005

0.128±
0.004

0.184±
0.009

0.152±
0.007

Even though the R2 value is still within acceptable values, for the simpler model the er-

rors significantly increase. This is especially true again for poorer rock mass conditions (lower
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Figure 4.11: Real versus Predicted log Q values for regression models with (a) parameters Jr/Ja and

Jn and (b) parameters Jr/Ja, Jn, P3, P4 and P6.

logQ values). In fact, Figure 4.11 shows high dispersion for logQ values approximately below

-0.5 (Q<0.3 or RMR<35). This is also due to the loss of discontinuities importance for rock

masses with low geomechanical characteristics as discussed before and shows the importance

of the stress parameter consideration. The results also show that the behaviour of the mod-

els is significantly enhanced with the inclusion of the discontinuities parameters of the RMR

system resulting in reduced dispersion and error values. A thorough discretisation about the

discontinuities minimises the lack of information about the stress state parameter.

4.3.3 Friction angle (φ′)

The observation of the most important parameters chart (Figure 4.12) allows concluding that

there is a great amount of variables related to the prediction of this geomechanical parameter.

Several variables present similar importance levels. However, it is important to notice that the

most important ones are: (i) σc, which could be expected since this value is also a strength

measure, and (ii) the Q index (with logarithmic transformation) and other variables related

with the Q system. This fact is unexpected since the Q system is normally used only for

classification matters and not for strength parameters calculation. Nevertheless, the Q index is

very complete and should be used in models for the prediction of geomechanical parameters.

In this context, several sets of parameters were tested, in conformity with the previously

defined criteria, in order to obtain the best prediction models and others that could simplify

the way φ′ is calculated. This way, the data sets which presented the best results were the

following:
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Figure 4.12: Relative importance of the attributes for the φ′ prediction.

• Data set 1: all variables.

• Data set 2: Q; logQ; Q’; logQ’; RMR.

• Data set 3: all RMR parameters (P1, P2, ..., P6).

• Data set 4: RMR parameters P1, P4 and P6.

The results for the different data sets are presented in Table 4.11. The expressions for the

regression models of data sets 2, 3 and 4 are the following:

φ′ = 40.566− 0.398×Q + 0.342×Q′ + 6.726× logQ− 4.853× logQ′ + 0.260×RMR (4.6)

φ′ = 27.143+1.867×P1 +0.184×P2 +0.145×P3 +0.165×P4 +0.246×P5 +0.181×P6 (4.7)

φ′ = 32.146 + 2.123× P1 + 0.229× P4 + 0.211× P6 (4.8)

Table 4.11: Results for the models using the different data sets for φ′ prediction.

Regression ANN

Data set R2 MAD RMSE RMSE

1 0.968± 0.004 0.521± 0.020 1.002± 0.106 0.672± 0.195

2 0.869± 0.012 1.162± 0.043 2.019± 0.154 1.970± 0.502

3 0.965± 0.001 0.600± 0.021 1.051± 0.068 0.807± 0.092

4 0.952± 0.002 0.776± 0.019 1.226± 0.071 2.290± 0.303
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As it was expected, the models which used data set 1 were the most accurate. Nevertheless,

the remaining also present very good predictive performances. Data set 3, which uses all the

RMR parameters, is only slightly outperformed by data set 1. In fact, the error measures and

R2 are very close. The good behaviour of this model is also observed in the plot of computed

versus predicted values (Figure 4.13). For a wide range of values, approximately from 35o to

63o, the prediction capacity is very uniform and reliable since the plotted values lie near the

45o line, even though a small accuracy reduction can be observed for the lower values of φ′.

This range of values covers a great variety of possible weathering states of the granite rock mass

from fresh rock to transition from rock to soil, i.e. excludes only the soil state.
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Figure 4.13: Computed versus Predicted φ′ values for regression model with data set 3.

Data set 2 presented the worst performance. In spite of using information from the RMR

and Q coefficients it was outperformed by the other simpler models. For the case of the φ′,

the use of specific information about the rock mass characteristics presented better results than

using overall quality indexes like the RMR and Q. The plot in Figure 4.14 shows that this

model has worst performance within the range of 35o to 45o approximately, in which absolute

errors up to 10o can be found and should be used with caution in this range. Nevertheless, the

MAD and RMSE values point to a mean expected overall prediction error between 1o and 2o

which is small.

From the RMR parameters, the most important is, by far, the one related with σc (Figure

4.15). This means that in granite rock masses φ′ is closely related with this strength measure

which can be considered expectable. The variables related with the discontinuities conditions
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Figure 4.14: Real versus Predicted φ′ values for regression model for data set 2.

and orientation (P4 and P6, respectively) also appear as good predictors.

Figure 4.15: Computed versus Predicted φ′ values for regression model with data set 3.

Data set 4 uses these three parameters for the prediction of φ′ with very good results (Figure

4.16). Comparing with data sets 1 and 3, the error measures are higher but it has the advantage
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of being very simple since it uses only three parameters. In fact, and considering the MAD and

RMSE values from Table 4.11, the mean expected error for this model, as well as for the cited

ones, is only approximately 1o which can be considered negligible for engineering purposes.
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Figure 4.16: Relative importance of the RMR weights in the prediction of φ′.

The ANN outperformed the regression models for data sets 1 to 3 in terms of the RMSE.

This is especially true for data set 1 where the error was reduced in more than 30%. For

data set 4 the RMSE of the ANN is 87% higher than the one for the regression model. The

ANN performs worst when using less number of parameters. Nevertheless, the RMSE of all the

trained ANN point out to acceptable mean errors for every considered model, which mean that

they present high accuracy in the φ′ prediction.

It was decided to carry out some calculations considering tanφ′ as the target variable because

of its physical meaning. The preliminary runs pointed out to the significant importance of

the GSI which is normal since φ′ is indirectly dependent on this parameter. Moreover, also

with significant importance appear the RMR parameters mainly the one related with σc (P1)

and some parameters related with discontinuities (P4 and P6) as it happened for φ′. This

way, regression models were developed considering all the RMR parameters and a simpler

solution considering only the parameters P1, P4 and P6. The equations obtained for the multiple

regression models were the following:

tanφ′ = 0.245 + 0.070× P1 + 0.010× P2 + 0.012× (P3 + P4) + 0.013× P5 + 0.011× P6 (4.9)

tanφ′ = 0.526 + 0.084× P1 + 0.084× P4 + 0.014× P6 (4.10)
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Table 4.12 and Figure 4.17 present the overall performance of both models.

Table 4.12: Results for the models developed for tanφ′ prediction.

Regression ANN

Data set R2 MAD RMSE RMSE

P1 to P6 0.976± 0.003 0.025± 0.015 0.046± 0.013 0.057± 0.006

P1, P4 and P6 0.953± 0.008 0.045± 0.014 0.062± 0.015 0.070± 0.006
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Figure 4.17: Computed versus Predicted tanφ′ values for regression models with (a) parameters P1

to P6 and (b) parameters P1, P4 and P6.

The results are very similar to those obtained for φ′ with the same sets of parameters. When

using all the RMR parameters, the value of φ′ can be estimated with acceptable accuracy even

though a slight lost of accuracy for the lower values when comparing with the remaining range.

The consideration of only the three most important parameters increases, as expected, the mean

errors but the models have the advantage of being simpler. In both cases, and considering only

the RMSE, the multiple regression models outperformed the ANN in the prediction of the target

variable.

It is also interesting to note the correlation found between tanφ′ and E which is translated

by the following equation:

tanφ′ = 0.772 + 0.287× lnE (4.11)
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This correlation presents a R2 of 0.953. Concerning the error measures the MAD and RMSE

take the values 0.0387 and 0.059. These values translate a performance which is comparable

to the previously presented models being closer to the simpler one. This conclusion can be

corroborated by the plot of computed and predicted values in Figure 4.18. This correlation

presents the intrinsic interest of allowing to evaluate a strength parameter from an estimation

of a deformability parameter and vice-versa.
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Figure 4.18: Computed versus Predicted tanφ′ values for the correlation with E.

Also interesting and simple correlations were found, in this case as it should be expected,

between tanφ′ and the value of GSI from which it is derived. These correlations are translated

by the following equations:

tanφ′ = 0.0181×GSI + 0.5331; R2 = 0.889 (4.12)

tanφ′ = 0.93× lnGSI − 2.1574; R2 = 0.909 (4.13)

4.3.4 Cohesion (c’)

As it happened for the Q index, the preliminary runs for this variable pointed out for the

necessity of a variable transformation in order to enhance the prediction capacity of the models.

After some tests, it was concluded that the logarithmic transformation (lnc’) was the best suited

for this case. Figure 4.19 show the plots of computed versus predicted values for the regression

models which use all attributes with and without the logarithmic transformation. It is clear

the enhancement of prediction capacity using the transformation of the variable. Nevertheless,
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a loss of accuracy for higher cohesion values (approximately above 6 MPa) can still be observed

in this case.
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Figure 4.19: Computed versus Predicted c’ values for regression models which use all attributes (a)

without logarithmic transformation and (b) with logarithmic transformation of the target variable.

Figure 4.20 shows that, as for φ′, a great number of variables have similar importance levels.

GSI appears as the main parameter for c’ prediction. This fact can be considered normal since

GSI is used in the original formulation of the c’ calculation. GSI was not considered for the

development of the new models since the main goal was to develop alternative ones which use

different parameters. This way, several data sets were tested. The ones which presented best

results were similar to those for φ′. It means that these variables are the ones most related with

the geomechanical parameters. Thus, the most accurate data sets were the following:

• Data set 1: all variables.

• Data set 2: Q; logQ; Q’; logQ’; RMR.

• Data set 3: all RMR parameters (P1, P2,..., P6).

• Data set 4: RMR parameters P3, P4 and P6.

In Table 4.13 the main results are presented. The expressions for the regression models of

data sets 2, 3 and 4 are the following:

lnc′ = −0.743 + 0.00099×Q + 0.0394× logQ′ + 0.0298×RMR (4.14)
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Figure 4.20: Relative importance of the attributes for the lnc’ prediction.

lnc′ = −0.906+0.067×P1+0.022×P2+0.027×P3+0.033×P4+0.021×P5+0.022×P6 (4.15)

lnc′ = −0.191 + 0.059× P3 + 0.046× P4 + 0.021× P6 (4.16)

Table 4.13: Results for the models using the different data sets for c’ prediction

Regression ANN

Data set R2 MAD RMSE RMSE

1 0.986± 0.002 0.038± 0.002 0.058± 0.005 0.055± 0.006

2 0.963± 0.002 0.054± 0.002 0.092± 0.004 0.085± 0.006

3 0.973± 0.002 0.054± 0.001 0.078± 0.003 0.043± 0.006

4 0.913± 0.007 0.097± 0.003 0.143± 0.008 0.128± 0.009

The results for data sets 2 and 3 are quite similar in terms of the error measures and R2.

However, Figure 4.21 shows different behaviours in the range of c’ values. For data set 3 the

predicted values show a relatively stable trend until values of, approximately, 6 MPa. For higher

values, a strong accuracy loss is observed and the model tends to make underestimations. On

the other hand, data set 2 shows a higher dispersion than the previous set for values below 6

MPa. For values above this threshold there is also an underestimation tendency which is not

so pronounced. Data set 3 has the advantage of being a simpler model because it requires less

information.

The c’ values ranged from 0.5 MPa to 9 MPa. The apparently high upper bound value is

explained by the consideration, in the calculations, of undisturbed conditions (D=0) and 350m
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Figure 4.21: Computed versus Predicted c’ values for regression models for (a) data set 2 and (b) data

set 3.

depth which translates a high confining stress. In fact, when computing the Mohr-Coulomb

parameters from the H-B strength criterion, by adjusting a line to the curved failure envelope,

the consideration of increasing confining stresses mean higher c’ and lower φ′ values. Moreover,

c’ values around 9 MPa were obtained for almost fresh rock mass with RMR values higher than

85.

The expected error for these regression models is, in linear terms, approximately 0.21 MPa

(≈2.5%) which can be considered acceptable. When using the models, attention should be

paid for the conservative estimation trend for high c’ values. Although the logarithmic trans-

formation, a slight non-linear trend is still observed. This is probably the main reason for the

enhanced behaviour of ANN, especially for data set 3 where the RMSE value is reduced for

almost half of the regression model value.

From data set 3, it was observed that the most important RMR parameters for c’ prediction,

when analysed separately from the remaining variables, were those related to the discontinuities

(P3, P4 and P6) as shown in Figure 4.22. This fact can be considered strange since, as it was

shown if Figure 4.20, the parameter P1 presented a high influence on the prediction of c’, fact

that is also corroborated by engineering practice. Again, the parameter P6 appears with an

overstressed importance which can be, as stated before, due to limitations of the database or

of the RMR system itself.

Nevertheless, data set 4 was created considering only the three abovementioned parameters.

As it was expected, an accuracy loss is observed (Figure 4.23). Again, a non linear trend is

present with an overestimation tendency for the lowest values (<1.1 MPa) and underestimation
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Figure 4.22: Relative importance of the RMR classification weights for the c’ prediction.

for the highest ones (>6.4 MPa). In these ranges, especial care should be used when applying

the model. Still, the average expected error, in linear terms, is about 0.32 MPa (≈3.8%).

Considering the range of c’ values it can be considered that this regression model provides a

reasonable preliminary estimation. It is outperformed by the ANN which presents a RMSE

value about 10% lower.
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Figure 4.23: Computed versus Predicted c’ values for regression model with data set 4.
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4.3.5 Deformability modulus (E)

For the E parameter, as well for the strength parameters, it was intended to induce prediction

models for the values obtained through the previously described methodologies. The models

should use different levels of information in order to allow using them in different design stages.

In this context, the study started developing the most accurate models and then simplifying

them to obtain simpler ones maintaining acceptable accuracy levels.

The preliminary runs for E showed that a logarithmic transformation was necessary (lnE).

This transformation led not only to improved results (even though a minor enhancement was

observed) but the main reason was to avoid the prediction of negative values for poor rock mass

conditions which was observed in some runs for the linear case.

The parameters that produced the most accurate model were the ones directly related with

the geomechanical coefficients, namely the RMR and Q values. This is explained by their use

in most of the analytical expressions that were in the origin of the E values. Moreover, these

indexes assemble a set of important information for the rock mass deformability prediction. The

results are presented in Table 4.14 and the regression model is described through expression

4.17.

lnE = −2.622 + 0.2594×Q0.25 + 0.1185×RMR− 0.00058×RMR2 (4.17)

Table 4.14: Results for the models which use the RMR and Q coefficients.

RMR and Q coefficients

Regression ANN

R2 MAD RMSE RMSE

0.978± 0.001 0.088± 0.004 0.137± 0.009 0.141± 0.016

The results show very high accuracy for the linear regression model that even outperforms

the ANN model in terms of the RMSE. Since lnE ranged from, approximately, -1.57 to 4.22,

the error can be considered negligible for engineering practice. The plot of Figure 4.24 shows

that this high accuracy is stable for all range of values. These models should be used for the E

prediction when a thorough characterisation of the rock mass is available.

Figure 4.25 shows that the most important parameter is the RMR coefficient. In fact,

several simpler linear regression models were tested but the most reliable were the ones based

on this index. A simple correlation between E and RMR using all available data led to very

acceptable results. The expression for this correlation is the following:
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Figure 4.24: Computed versus Predicted lnE values for regression model with the RMR and Q pa-

rameters.

E(GPa) = 3× 10−5 ×RMR3.2388 (4.18)

Figure 4.25: Relative importance of the attributes for the lnE prediction.

When only parameters related to the discontinuities are available (P3, P4 and P6), the

procedure that leads to better results is firstly to calculate the RMR value from equation 4.1
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and then, with equation 4.18, calculate the value of E. In Table 4.15 the results for these two

methods are presented. In these cases there are no confidence intervals since the results were

based in a simple correlation procedure using all data. The error measures, as well as the plots

of real versus predicted values (Figure 4.26), are also presented in logarithmic form for the sake

of comparison with the previous models.

Table 4.15: Results for the models which use the RMR and only some few parameter.

Correlation with RMR Correlation P3, P4 and P6 - RMR - E

R2 MAD RMSE R2 MAD RMSE

linear 0.962 2.357 3.156 0.930 3.120 4.138

logarithmic 0.970 0.116 0.164 0.889 0.192 0.319
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Figure 4.26: Computed versus Predicted values for (a) correlation with RMR and (b) correlation with

P3, P4 and P6.

The correlation with the RMR value presents very good results. The loss of accuracy can be

considered extremely reduced when compared with the previous more complex model. The plot

of real versus predicted values corroborates this conclusion. This correlation has the advantage

of avoiding the Q index evaluation. However, it does not have the statistical validation present

in the previous more complex model.

For the last method, the decreasing accuracy is much more significant especially for E values

correspondent to poorer rock masses (lnE<1 or RMR<34). This fact was expected since the

expression to calculate RMR from P3, P4 and P6 presented the same drawback. This method
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can be used in preliminary studies to obtain a first approach for E or when only information

about the discontinuities is available. It should be used with caution for rock masses with low

geomechanical properties.

It is important to mention that the rock mass presented very closed discontinuities in an

important area. In this case, it was expected that E could be related with the deformability

modulus of the intact rock (Ei). Some values of this parameter were available from the labo-

ratory tests performed by LNEC (1983, 2005). However, their reduced number (in comparison

with the number of records in the database) and difficulties to proceed to a correspondence

between the data of these tests and the records in the database hindered the inclusion of this

information in the process. In the calculation of E, some expressions used Ei and this value

was estimated by means of a correlation with σc. However, it was thought inappropriate to

use this approximation in the overall DM process since it could lead to erroneous conclusions.

Nevertheless, it is thought that, if this information was available, Ei should appear as a very

important parameter in the prediction of E.

4.3.6 The Hierarchical Rock Mass Rating (HRMR)

It was intended to develop an alternative classification system, based on the RMR, that could

adapt to the level of knowledge about the parameters of the rock mass surpassing the determin-

istic definition of the classification weights. It was decided to use a decision tree model which

structure adapts very well to the objectives of this classification problem.

Applying this algorithm to the database it was possible to develop and validate the new sys-

tem. This way, the HRMR is a classification system, with a decision tree configuration, which

uses intervals for the weights of the RMR system to classify the rock mass. It is called hierar-

chical because it uses different levels of knowledge about the parameters and the classification

accuracy is dependent of this knowledge level.

Since the database was gathered in a granite rock mass, the system is more appropriate to

be applied in similar formations. However, the methodology for the development of this system

is general and can be applied to other types of rock masses.

To validate the system and establish its performance, and similarly to what was used for

the regression models, the hold-out method was applied with 10 runs. In each run the data

was randomly partitioned between the training and testing set and the accuracy of the dif-

ferent levels, determined with the testing set, was computed from the confusion matrix. This

allowed defining the overall accuracy for each level with the correspondent T-student intervals.

Moreover, for each level, a cumulative confusion matrix was built considering the results of all

the runs of the hold-out process. It allowed the calculation of particular confusion matrixes for
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each class and consequently determine the sensibility, specificity, precision and accuracy. The

final tree was obtained using all the cases in the database for training.

The HRMR system is presented in Figure 4.27. The decision tree is composed by four

levels of classification. Each level provides the class of the rock mass with different accuracy

degrees. The upper levels of the tree need less information but have lower accuracy occurring

the opposite for the lower levels.

The results of the classification are presented in the rectangular boxes in a similar way

to the RMR system (class I, II,..., V). In the upper part of the box is the class with higher

probability to be the correct one and in the lower part the second most probable. Next to the

class is a percentage. From the cases in the database which obey to the rules that led to the

classification, it is the percentage of cases of that specific class.

In Table 4.16 the overall performance of the HRMR is presented in terms of sensitivity,

specificity, accuracy and precision for each class and level. These measures range from 0 to

100%. A low value of one of the four measures indicates problems with the classifier even if

the remaining are high. The overall accuracy for each level is also presented. It distinguishes

the case when only the most probable class is considered to define accuracy and when the two

classes are considered for this purpose. As it was already referred, the results were computed

over the test set which was not used for training.

As it was expected, the overall accuracy considering only the most probable class, increases

with the number of levels, i.e. as more specific knowledge about the weights is available. The

highest increase is from level 1 to level 2 where accuracy increases almost 6%. The accuracy

increase from level 2 to level 3 is residual (1.4%) while level 4 means a 3.3% enhancement

in relation to the previous level. There is an approximately 10% higher prediction capacity

for level 4 in comparison to level 1. In conclusion, the overall accuracy of the system can be

considered as very acceptable even for level 1.

If the goal is only to have an approximate idea of the class of the rock mass and the

consideration of two classes is enough for some specific purpose, than the different levels have

similar high accuracy levels (approximately 97%).

Analysing the results for each class, again a performance increase is observed for every class

with the number of levels. The class with best performance is clearly class II. It has high values

for the four measures from level one. This is closely related to the high number of cases classified

as class II in the database which is almost 60% of the total number (Figure 4.3). In contrast,

class V has a very low number of cases (13). This way the algorithm has difficulties to learn

its main features and the classification tree performs poorly for this class. In fact, sensitivity

values are very low for class V in every level reaching a maximum value of 54.5% for level 4

which is still a low value. This means that the system has difficulties to classify as class V and



112 4.3. Modelling and evaluation

Figure 4.27: The HRMR system.
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Table 4.16: Performance measures for the HRMR system.

Class Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

Precision

(%)

Overall

accuracy

(%) 1 class

Overall

accuracy (%)

2 classes

I 79.1 99.9 94.1 65.6

II 87.4 84.6 86.2 88.2

Leve l III 60.5 94.1 87.1 72.9 80.0± 1.3 96.8± 0.9

IV 87.1 94.6 93.7 68.6

V 0 100 98.9 0

I 89.2 97.5 96.7 78.6

II 90.7 90.5 90.6 92.6

Leve 2 III 72.0 94.8 90.0 78.4 85.9± 1.1 97.0± 0.4

IV 90.2 95.9 95.3 75.1

V 22.7 100 99.2 100

I 89.2 97.7 96.9 79.9

II 91.3 91.2 91.2 93.1

Leve 3 III 78.0 94.6 91.1 79.2 87.3± 1.4 96.9± 0.6

IV 87.1 97.3 96.1 81.5

V 47.7 99.9 99.3 80.8

I 87.8 99.3 98.3 93.3

II 95.4 92.4 94.1 94.3

Leve 4 III 82.1 95.8 93.0 83.7 90.6± 0.9 96.8± 0.6

IV 88.1 97.7 96.5 83.6

V 54.5 99.9 99.4 82.8

Precision is the percentage of cases which were classified within a certain class and that classification was

correct. Sensitivity or recall is the percentage of cases that belong to a certain class that were classified as

being of that particular class. Specificity is the percentage of cases which were not of that class and were

classified as such. Accuracy is the percentage of correct predictions.

should be used with caution for very poor rock masses. This may not be a decisive issue since

very poor rock masses can be more easily classified as such in practice by experts than other

classes.

Concerning the remaining classes the system presents the best performance for class IV

even though the difference is not relevant. The database has almost twice the cases for class III

than for class IV and a much better prediction performance should be expected for this class

which is not verified. Classes I, III and IV all have more than 100 cases in the database and

this can be a threshold of number of cases to have a satisfactory performance. Classes I and

IV present very good performance measures from level one excepting precision which can only

be considered satisfactory. For class III the main problem is sensitivity for level 1 which is only

about 60%.
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In a decision tree, the top nodes represent the most important data for classification. In

Figure 4.28 the relative importance of each parameter for classification matters (correspondent

to level 4 which is more explanatory) is presented.
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Figure 4.28: Relative importance of the parameters in the HRMR system.

It is interesting to notice that the most important attribute is P4 which appear in the root

node. This fact corroborates the previous conclusions (from the regression models) that the

discontinuities conditions are particularly relevant to explain the conditions of granite rock

masses. The parameters P2 and P3, related with the rock mass fracturing degree, are almost

equally important followed by the parameter related with discontinuities orientation (P6). This

means that the parameters related with the discontinuities are the main predictors of the overall

conditions of the rock mass.

These conclusions are in line with what was observed in the regression models for the

prediction of RMR. In fact, the low importance of the parameter related with σc (P1), does not

necessarily mean that it has a low importance in the overall prediction of the rock mass state.

This fact can be related with limitations of the RMR system and the relative importance given

to this parameter. Moreover, it is also important to mention that the database comes from a

rock mass with high σc values which means that in other conditions the conclusions may be

different.

Another important point is the absence of the parameter related with the underground

water conditions. In fact, as it was observed in the regression models, water has a limited
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influence probably because of the almost dry to slightly wet conditions.

In conclusion, the HRMR system can constitute as an interesting classification tool. It

adapts to the level of knowledge about the rock mass providing a classification with different

accuracy levels. It is based on a large database of cases and was properly validated in statistical

terms. Its performance is very acceptable excepting for class V rock masses. However, at this

development stage, the system has some limitations that were already pointed out which are

related with the original database.

4.4 Conclusions

In the context of rock mechanics, the evaluation of strength and deformability parameters

presents a fundamental importance in underground structures design. This task is carried

out considering the results of in situ and laboratory tests and analytical solutions based on

application of empirical classification systems.

However, in the preliminary stages of design, the decision about the parameters values have

to be performed based on limited data. This way, the use of data from past projects to help

in this task appears as a rational solution for this problem. The application of DM techniques

to well organised data gathered from large geotechnical works like underground structures can

provide the base to the development of important and reliable ”data-driven” models that can

be very useful in future projects. This process must be always supervised by experts in the

field that need to validate the knowledge discovered using these tools.

In this context, an innovative work was carried out considering this idea of using DM tools

to uncover new and useful knowledge in a database of geotechnical data. In particular, it was

intended to develop new models for geomechanical characterisation that could be used mainly

when information about the rock mass is insufficient.

This way, in this Chapter several new models for geomechanical characterisation were pre-

sented. They were developed applying DM techniques to a large database of geomechanical

information gathered from Venda Nova II powerhouse complex. This is an underground struc-

ture built in the North of Portugal in a predominantly granite rock mass.

Regression models for the RMR and Q coefficients, Mohr-Coulomb strength parameters

and E were developed using multiple regression and ANN. In all cases it was possible to induce

accurate and reliable models that can be helpful in the decision-making process for practitioners

and researchers using different sets of parameters. Even though the good performance of the

multiple regression models in many cases they were slightly outperformed by the ANN. Most

of the induced models have the advantage of using less information than the original ones

maintaining high accuracy levels. Moreover, they allowed drawing some conclusions about the
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physical aspects and main phenomena behind the behaviour of granite rock masses.

In what concerns the RMR and Q coefficients, the most important parameters for their

prediction are the ones related with the discontinuities. This means that in good quality granite

formations this data is a very good predictor of the overall quality of the rock masses. The

prediction models loose accuracy for poorer rock formations which lay in the border between

hard-soil and soft rock due to the loss of discontinuities importance.

However, if a relevant importance of the discontinuities on the rock mass conditions predic-

tion was expected, the lack of importance of other important parameters like the ones related

with σc and with the underground water conditions (and also the relative high importance of

parameter P6) may be related with limitations of the database or even of the empirical systems

in particular the RMR.

On the other hand, the Mohr-Coulomb geomechanical parameters are influenced by several

different factors. One main issue is the inclusion of the Q index as one of the most important.

This is especially interesting since this very complete index is not normally taken into account

in the geomechanical parameters calculation.

As it happened for the RMR and Q coefficients, the RMR discontinuities parameters also

appear as good predictors of φ′ and c’. The σc value is also a very good predictor in the

particular case of φ′. This fact is explained since the σc is also a strength measure. The

transformed variable tanφ′ was also considered as a target variable due to its physical meaning.

Similar results were obtained in terms of importance of parameters and in the models accuracy.

It was also possible to develop a correlation between this parameter and E.

To validate the previous conclusion, a more thorough analysis was performed. Additional

calculations were carried out for the same target variables but considering separately the cases

classified as class II (good quality rock mass) and class IV (bad quality rock mass) following

the RMR classification system. The results of this analysis showed that, in fact, for class II, the

discontinuities characteristics appear as the main parameters for the prediction of the different

parameters and indexes. However, when analysing the results for class IV an importance

decreasing of these parameters is observed. In this case, there is no particular parameter that

is clearly more important. The effects are much more random with no prominence of any

parameter. This means that to obtain reliable models for poorer rock masses more parameters

are needed. This explains the accuracy lost of almost every developed model for this type of rock

mass since it was tried that these models were kept simple and with a low number of parameters.

This conclusion corroborates the statement that the developed models should be used with

caution when dealing with granite formations with lower geomechanical characteristics.

In literature, a great number of expressions can be found to compute E. A methodology

was established in order to calculate, from a selected set of expressions, one final value of E
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that could be a reliable estimate. The obtained values were validated by the results of a large

number of E values obtained by a LFJ test. Afterwards, regression models were also developed

for the calculation of this E value.

For classification purposes a new system based on the RMR was developed called Hierarchi-

cal Rock Mass Rating (HRMR). This system tries to overcome some practical problems, namely

in what concerns the difficulties to obtain some of the data needed for the RMR system applica-

tion. As well as for other important classification systems, the RMR needs a precise definition

of several parameters which involve the assembly of a considerable amount of geotechnical in-

formation. Some of this information can be difficult or expensive to obtain in the different

design and construction stages.

The HRMR was developed using the same database as for the regression models and by

applying a decision tree algorithm. It was statistically validated using several performance

measures. It is called hierarchical because it has four levels which provide a classification for

the rock mass. Each level needs a different kind of knowledge about the rock mass, i.e. the

deeper the knowledge the higher the classification accuracy.

The most important parameters in the system are the ones related with the discontinuities

and fracturing degree. The parameter related with σc has a minor contribution and the one

related with the underground water conditions is absent. In conclusion, the main characteristics

of the HRMR are resumed in the following items.

• Does not need the deterministic definition of the weights of the RMR classification but

only a range of values.

• Adaptation to the level of knowledge about the rock mass.

• Mainly uses data concerning discontinuities and fracturing.

• It is based on a large number of cases and a solid statistical validation.

• Presents a good overall performance except in the prediction of poor rock mass conditions

(class V).

However, it is important to point out the application field of the system at this development

stage which is closely related to the limitations of the database. First of all, obviously, it should

only be applied to granite rock masses. The other limitations are more specifically related with

the rock mass characteristics, namely:

• high values of σc (>100MPa);

• RQD values over 65%;
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• Slightly wet to dry rock mass.

Moreover, it presents the already mentioned difficulties of classifying correctly class V rock

masses. To improve the system it is necessary to add more cases to the database that cover

and go beyond these limitations. Other issue that can enhance the system performance is an

effort for optimising the decision tree. This can be carried out by different ways like using non-

binary trees (trees with more than two splits for each test), considering interactions between

the parameters and using other training algorithms. It would be very interesting also to carry

out similar analysis to databases of other types of rock masses.



Chapter 5

Updating of Geomechanical

Parameters Through Bayesian

Probabilities

5.1 Introduction

In the construction of underground works several decisions are carried out under uncertainty.

These uncertainties are related with two major problems, namely the geological/geotechnical

conditions and questions related with the construction itself (advance rates, costs, etc) (Haas

and Einstein, 2002). This Chapter is concerned with the first issue, in particular, the problem

of dealing with uncertainty about the geomechanical parameters values in underground works.

Figure 5.1 represents, in general terms, the decision cycle proposed by Raiffa and Schlaifer

(1964) and Holstein (1974), adapted for engineering purposes, which is also applied to the

underground structures construction. In a first step, parameters are determined and included

in engineering models. Then, based on their results, decisions are made with a given uncertainty

degree. After new information is gathered the knowledge about the analysed problem can be

updated and reused in the models to obtain new results and perform decisions based on less

uncertain data.

The formal assignment of uncertainties and the updating procedure in order to improve the

predictions are two critical aspects of this approach. The first has been already performed in

many areas of geotechnical engineering like landslides (Cruden and Fell, 1997; Hungr et al.,

2005) and tunnelling. In this field, the ”Decision Aids for Tunnelling” can be referred (Einstein

et al., 1999; Einstein, 2004; Min et al., 2005). It is a procedure and a computer code which

allows formalising uncertainties related with geological and construction aspects.

119
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Figure 5.1: The decision cycle (Haas and Einstein, 2002).

However, only a few formal and mathematical consistent updating schemes have been devel-

oped in geotechnics. This is normally carried out using methodologies based on Bayes theorem.

Dershowitz (1992) developed a Bayesian approach to update fracture characteristics with the

results of flow tests. Einstein (1988) used the observation of cracks in pavements to refine

uncertainties concerning surface creep in slopes. Concerning the tunnelling field, Haas and

Einstein (2002) used the Bayesian framework together with a Markov process to update the

mean length of the state of a geotechnical parameter (like ”intense jointing”). Karam (2005)

also used a Bayesian approach in order to update cost in tunnels construction. Concerning the

geomechanical parameters updating it is not known any study to implement a formal updating

framework.

It was already referred in the previous chapters that the geomechanical parameters deter-

mination is an exercise of subjective nature. The inherent uncertainty about their real value

hinders the establishment of a deterministic set of values for the parameters. In practice, for

each geotechnical zone, a range of values is assigned to the parameters based on the geotechni-

cal survey and, in the case of rock masses, often by application of the empirical classification

systems.

In the initial stages, the available information about the rock masses is limited. However, the

construction of geotechnical models is a dynamic process and, as the project advances, it can be

updated as new data is gathered. Data can have different sources each with its own precision and
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accuracy. Data uncertainty involves an objective (frequentist) and subjective component: the

latter is usually dependent on the geotechnical engineer’s experience. Nowadays, a methodology

to consistently treat the problem of geomechanical parameters updating is needed in order to

reduce the uncertainties related to this subject.

The characteristics of the Bayesian methods of data analysis make them well suited for

geotechnical purposes where uncertainty is present at several levels and data is compiled in

different stages and with different properties.

Figure 5.2 presents a general scheme concerning the several stages where an updating pro-

cess can be applied to revaluate the geomechanical parameters (in this case particularly for

the deformability modulus) in an underground work project. In the initial stages, the value

of E can be evaluated based on preliminary research. As the project advances, more geotech-

nical information is gathered from in situ and laboratory tests which can be used to update

the prediction. The geomechanical parameters are used in the numerical models for design

purposes calculating among other things stresses and displacements. During construction, new

information concerning E is obtained from several sources, for instance using data related to

the mapping of the tunnel front and field measurements in back analysis calculations. This

information can be used to update the value of E in a dynamic process that improves the

prediction about the parameter as the quantity of data increases.

In this Chapter, a general Bayesian framework for the geomechanical parameters updating

is presented. By applying this framework, it is shown how data from a preliminary geotechnical

survey can be updated using in situ tests. More specifically, information about E is available by

application of the empirical systems and then it is updated using the results of LFJ tests. Real

data from the Venda Nova II powerhouse complex was used for the updating process (LNEC,

1983, 2003). In this approach E is considered a random variable with a given distribution

function - normal or lognormal. Uncertainty about the parameter is represented by its standard

deviation which can be reduced as more data is obtained. Different levels of initial information

and uncertainty levels were considered and results were compared to evaluate the sensitivity of

the results to prior assumptions.

In order to overcome the problem of choosing of a given probability distribution function

to the data, an alternative Bayesian methodology was developed and tested. It uses the more

flexible Weibull distribution to model the data providing more adaptability and objectivity to

the Bayesian updating procedure. Moreover, it allows the introduction of the reliability concept

in the overall methodology.
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Figure 5.2: Scheme of the updating process for the deformability modulus during the construction of

an underground structure.

5.2 Bayesian Methods

5.2.1 Introduction

Risk and reliability analysis are gaining increasing importance in decision support for civil

engineering problems. Risk management includes the consideration of the uncertainties included

in a given problem and possible consequences. Uncertainties from all essential sources must be

evaluated and integrated into a reliability model. Three types of uncertainties may be identified

Baker and Calle (2006):

• inherent physical variability or uncertainty which can and cannot be affected by human

activities;

• uncertainty due to inadequate knowledge or model uncertainty related with the idealiza-

tion on which the physical model is based;

• statistical uncertainty due to limited information.
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In particular for geotechnical engineering, Einstein and Baecher (1983) distinguished the

following main sources of uncertainty:

• spatial and temporal variability;

• measurement errors;

• model and load uncertainty;

• omissions.

Uncertainties can be represented in terms of mathematical concepts based on probabilistic

theory (Ditlevsen and Madsen, 1996; Einstein, 2006). In many cases it is enough to model the

uncertain quantities using random variables with given distribution functions and parameters

estimated on the basis of statistical and/or subjective information (Faber, 2005). The principles

and methodologies for data analysis that derive from the subjective point of view are often

referred to as Bayesian statistics. Its central principle is the explicit characterisation of all

forms of uncertainty in a data analysis problem. The knowledge about an unknown parameter is

described by a probability distribution which means that probability is used as the fundamental

measure of uncertainty. Bayesian methods are suited for making inferences from data using

probability models.

The Bayesian (subjective) perspective of probability is different from the frequentist which

has been the prevailing one. The frequentist view takes the perspective that probability is

an objective concept while from the Bayesian perspective probability is the individual degree

of belief that a given event will occur (Gelman et al., 2004). Frequentist approach regards a

parameter as a fixed but unknown quantity while Bayesian regards it as having a distribution

of possible values. For the latter, the probability function (p(x)) reflects the degree of belief on

where the true (unknown) parameters may be. If p(x) is very narrow around a certain value

then the confidence about the location of the parameter is high. On the other hand, a flatter

p(x) translate a less certain prior belief on its location.

The methodologies of data analysis that derive from the frequentist view tend to be compu-

tationally simpler and this is one of the main reasons why its use is more widespread. However,

the subjective probability view has been acquiring increasing importance due to the develop-

ment of more powerful computers and algorithms for their processing. Each perspective can be

useful and appropriate in different situations.

Bayesian techniques allow one to update random variables when new data is available using

a mathematical process in order to reduce uncertainties. This process can be carried out in a

sequential way. Therefore, knowledge about the random variable can be consecutively updated
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as new information is gathered. The process can be divided in three steps (Ditlevsen and

Madsen, 1996).

1. Set up a joint probability distribution for all variables consistent with knowledge about

the underlying problem.

2. Calculate the conditional posterior distribution of the variables of interest given new

observed data.

3. Evaluate the fit of the model to the data analysing if the conclusions are reasonable and

how sensitive are the results to the modelling assumption on step 1.

The posterior distribution is sort of a compromise with reduced uncertainty between the

prior information and the one contained in the new data. This compromise is increasingly

controlled by the data as the sample size increases in what is sometimes referred to as asymptotic

theory (Bernardo and Smith, 2004). As it contains prior and new information the posterior is

the updated distribution for the random variable with reduced uncertainty.

5.2.2 Bayes theorem

Frequentist statistics provide methods to analyse and process data to draw conclusions about

a hypothetical population. However, data may not be the only available source of information.

Bayesian methods provide tools to incorporate external information into the data analysis

process (Bernardo and Smith, 2004).

In a Bayesian approach, the data analysis process starts already with a given probability

distribution. Its parameters may be chosen or estimated based on previous experimental re-

sults, experience and professional judgement. This distribution is called prior distribution and

represents the uncertainty about the parameter states. The purpose of the prior is to attribute

uncertainty rather than randomness to the uncertain variable. When additional data becomes

available, the Bayesian data analysis process consists of using it to update the prior distribu-

tion into a posterior distribution. The basic tool for this updating is the Bayes theorem which

weights the prior information with the evidence provided by the new data. Figure 5.3 resumes

this overall process.

If the prior distribution of a parameter Θ, with n possible outcomes (Θ1, ...,Θk), is discrete

and the new information x comes from a discrete model, then the Bayes theorem is translated

by:

Pr(Θ|x) =
Pr(Θi)Pr(x|Θi)∑k
i=1 Pr(Θi)Pr(x|Θi)

(5.1)
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Figure 5.3: Scheme of the overall updating process (adapted from Faber (2005).

where, Pr(Θi) is the prior distribution of the possible Θ values which summarises the prior

beliefs about the possible values of the parameter, Pr(x|Θi) is the conditional probability (or

likelihood) of the data given Θ and Pr(Θi|x) is the posterior distribution of Θ given the observed

data x.

The more usual form of the theorem is in terms of continuous random variables. The prior

and posterior distributions of Θ are represented by density functions, respectively p(Θ) and

p(Θ|x).

p(Θ|x) =
p(Θ)p(x|Θ)∫
p(Θ)p(x|Θ)dΘ

(5.2)

The joint probability distribution of the data and the parameter is given by p(x|Θ) which

is called the likelihood and is defined by:

p(x|Θ) = L(Θ) =
∏

i

p(xi|Θ) (5.3)

It is assumed that the n observation of the data are independent. The integral on equation

5.2 acts as a normalizing constant therefore it can be rewritten as:

p(Θ|x) ∝ p(Θ)p(x|Θ) (5.4)

Summarising, Bayes’ theorem consists of multiplying the prior with the likelihood function

and then normalising (term in nominator), to get the posterior probability distribution, which

is the conditional distribution of the uncertain quantity given the data. The posterior density

summarises the total information, after considering the new data, and provides a basis for
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posterior inference regarding Θ. For Bayesian methods, the likelihood function is the instrument

to pass from the prior density to the posterior via Bayes’ theorem.

5.2.3 Choice of a prior

The choice of a prior is part of the modelling process and it is one of the main issues of the

Bayesian approach. The prior distribution represents a population of possible parameter values

and should include all plausible values.

Several alternatives for the prior are possible, which is a sign of flexibility of the Bayesian

approach. However, it is important to check the impact on the posterior distribution stability

to different choices of priors. If the posterior is highly dependent on the prior, then the data

may not contain sufficient information. On the other hand, if the posterior is relatively stable

over a choice of priors, it means that the data contain significant information.

The parameters of the prior distribution can be chosen or calculated in such a way that the

prior reflects (Faber, 2005):

1. known (initial) observations of the random variables from which estimates of the param-

eters in the prior distribution can be calculated;

2. subjective knowledge on the distribution of the parameters.

It is possible to choose a prior distribution, which reflects a range of situations from very good

prior knowledge (small standard deviation) to reduced knowledge (large standard deviation) or

even no knowledge. In the latter case, the prior is called non-informative. This type of prior is

also often called as reference, vague or flat prior. In this case the prior is simply a constant:

p(Θ) = c =
1

b− a
for a < Θ < b (5.5)

Thus a prior p(Θ) is non-informative if it has a minimal impact on the posterior distribution

of Θ. The posterior is just a constant times the likelihood:

p(Θ|x) ∝ cons× L(x|Θ) (5.6)

Simple Bayesian analysis based on non-informative prior distributions give similar results

to standard frequentist approaches.

The use of non-informative priors is often useful. However, it is necessary to perform the

mathematical work to check that the posterior density is proper and to determine the sensitivity

of posterior inferences to modelling assumptions (Gelman et al., 2004).
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A prior density is called proper if it integrates to unity. The usual non-informative priors

on continuous, unbounded variables - with interest ranges over (0, +∞) or (−∞,+∞) - are

improper since the integral does not exist. This way, a prior p(Θ) is said to be improper if:

∫
p(Θ)dΘ = ∞ (5.7)

An improper prior may result in an improper posterior. It is not possible to make inferences

from improper distributions. This is not necessarily a problem since improper prior distributions

can lead to proper posteriors. It is always necessary to check if the posterior distribution has a

finite integral. Improper priors are often used in Bayesian inference as non-informative priors.

A common form of the reference prior is the Jeffrey’s prior. To define this prior it is first

necessary to define the Fisher information.

I(Θ) = −E


∂2logL(Θ)

∂Θ2


 (5.8)

This is the negative expectation of the second derivative of the log-likelihood. Essentially, it

measures the curvature or flatness of the likelihood function. The flatter the likelihood function

is, the less information it provides about the parameter values. Jeffrey’s prior is then defined

as:

p(Θ) ∝
√

I(Θ) (5.9)

This is always a consistent prior independently of how the parameter is transformed. The

Jeffrey’s rule allows finding prior distributions that are invariant under reparameterisations.

For example, if p(Θ2) ∝ 1/Θ2 then p(Θ) ∝ 1/Θ. Other advantage of this prior is that in most

cases, Jeffrey’s priors are improper priors but posterior distributions are proper.

Specific previous knowledge about the variable can be expressed through an informative

prior. This kind of prior is not dominated by the likelihood, and has an impact on the posterior

distribution. Informative priors must be specified with care. A reasonable approach is to make

the prior a normal distribution.

The property that the posterior distribution follows the same parametric form as the prior

distribution is called conjugacy. Conjugate prior distributions have the practical advantage of

computational convenience. The results obtained by using conjugate prior distributions are easy

to understand and can often be put in analytical form, they are often a good approximation

and they simplify calculations.

The conjugate family is mathematically convenient in that the posterior distribution follows

a known parametric form. If information is available that contradicts the conjugate parametric
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family, it may be necessary to use a more realistic prior distribution (Gelman et al., 2004).

Many common distributions - normal, gamma, Poisson, etc. - are members of the exponen-

tial family. When the density or the probability mass function is in the form of an exponential

family, a conjugate prior can be found.

5.2.4 Bayesian inference

The process of Bayesian inference involves passing from a prior distribution p(Θ) to a posterior

distribution p(Θ|x) using the likelihood function of the data. Because the posterior integrate

information from the data it will be less variable than the prior. The consideration of normal

likelihood, i.e. that data follows a normal distribution, has the computational advantage of

allowing the use of conjugate or uninformative priors which result in proper posteriors. The

central limit theorem helps to justify the use of the normal likelihood and the results are often

perfectly acceptable (Ditlevsen and Madsen, 1996). However, the modelling assumptions should

always be checked analysing the posterior distribution.

In the Bayesian approach the parameters of interest are assumed to follow certain probabil-

ity distributions with one or more unknown distribution parameters. These parameters are also

considered to have given distributions with known prior hyperparameters (distribution param-

eters of the distribution parameters). The hyperparameters are then updated given the data

and will be used to infer to the parameter distribution. The consideration of variable moments

rather than fixed ones intends to incorporate several levels of uncertainty in the model.

The simplest model is the consideration of the parameter mean as an unknown random

variable with known deterministic variance. A more complex approach is the multiparameter

model that involves the consideration of both mean and variance as unknowns. In the developed

Bayesian framework these two models were used to quantify the parameter of interest and

correspondent uncertainty. A normal likelihood was considered together with the Jeffreys and

conjugate priors. This choice was made in order to evaluate the sensitivity of the posterior to

different priors. In this item a synthesis of the priors and posterior for each case is presented

(Ditlevsen and Madsen, 1996; Bernardo and Smith, 2004).

Normal data with unknown mean (µ) and known variance (σ2) - the Jeffreys prior

It can be shown that the Jeffreys prior for (µ) is the improper uniform distribution over the

real space in the sense:

p(µ) ∝ c,−∞ < µ < +∞ (5.10)
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where c is an arbitrary constant. The posterior distribution is proper. After dropping all

constants:

p(µ|X) ∝ exp


−

n

2σ2
(µ− x̄)2


 (5.11)

where n and x̄ are the number and the mean value of the test results, respectively. Therefore,

the posterior distribution of the mean given the data is a normal with mean x̄ and variance σ2.

The posterior Bayes estimates for µ and a (1− α)% confidence interval is given by:

E(µ|X) = x̄ (5.12)

(
x̄± zα/2

σ√
n

)
(5.13)

Normal data with unknown mean (µ) and known variance (σ2) - the conjugate prior

The conjugate prior for the mean follows a normal distribution with known initial hyperparam-

eters µ0 and σ2
0 (initial mean and variance). This way, the prior of the mean is translated by

equation 5.14.

p(µ) ∝ exp


−

1

2σ2
0

(µ− µ0)
2


 (5.14)

The posterior is also a normal with the updated parameters µ1 and σ2
1.

p(µ) ∝ exp


−

1

2σ2
1

(µ− µ1)
2


 (5.15)

The updated parameters can be computed by expressions 5.16 and 5.17:

1
σ2

1

=
1
σ2

0

+
n

σ2
(5.16)

µ1 =
1
σ2
0
µ0 + n

σ2 x̄

1
σ2
0

+ n
σ2

(5.17)

The inverse of the variance is called the precision. The above equation shows that for

normal data and normal prior distributions, each with known precision, the posterior precision

is equal to the sum of prior and data precisions. The posterior mean µ1 is expressed as a
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weighted average of the prior and sample mean, with weights proportional to the precisions.

The posterior Bayes estimates can be found by:

E(µ|X) = µ1 (5.18)

var(µ|X) = σ2 + σ2
1 (5.19)

Normal data with unknown mean (µ) and unknown variance (σ2) - the Jeffreys prior

The simplest option for the joint prior is to assume that the mean and variance can be estimated

independently of each other and assume vague prior distributions for the unknown parameters.

A common pair of vague priors for the normal model is given by equations 5.20 and 5.21.

p(µ) ∝ c,−∞ < µ < +∞ (5.20)

p(σ2) ∝ 1
σ2

, σ2 > 0 (5.21)

This is equivalent to Jeffreys prior for (µ, σ2):

p(µ, σ2) ∝ 1
σ2

, −∞ < µ < +∞, σ2 > 0 (5.22)

which is an improper prior. To draw inference on the unknown parameters (µ, σ2) it is necessary

to derive the posterior distribution given all observations X = (x1, ..., xn) from Bayes’ theorem.

This posterior takes the following form:

p(µ, σ2|X) ∝
(

1
σ2

)1/2

exp


−1

2


 µ− x̄

σ/
√

n




2


(
1
σ2

) (n−1)+1
2

exp

[
−1

2
S

σ2

]
(5.23)

where S =
∑

(xi − x̄). The form of p(µ, σ2|X) indicates that the conditional posterior is a

normal distribution with mean x̄ and variance σ2/n and the marginal posterior for σ2 is an

inverse χ2 distribution in the form:

µ|σ2, X → N

(
x̄,

σ2

n

)
(5.24)

(n− 1)s2

σ2
→ χ2

n−1 (5.25)

where s = 1
n−1

∑
(xi − x̄)2 is the sample variance. The 100(1 − α)% credible intervals for µ

and σ2 are, respectively:
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(
x̄− tα/2(n− 1)

s√
n

, x̄ + tα/2(n− 1)
s√
n

)
(5.26)


 (n− 1)s2

χ2
n−1,1−α/2

,
(n− 1)s2

χ2
n−1,α/2


 (5.27)

In this case the main parameter distributions can be obtained by simulation and by analyt-

ical solutions. Therefore, the posterior Bayes estimates for the parameters can be obtained by

the following expressions:

E(µ|X) = x̄ (5.28)

var(µ|X) =
n− 1

n− 3

s2

n
, n > 3 (5.29)

σ2 =
n− 1

n− 3
s2, n > 3 (5.30)

var(σ2|X) = 2


n− 1

n− 3




2
s4

n− 5
(5.31)

Normal data with unknown mean (µ) and unknown variance (σ2) - the conjugate

prior

The natural conjugate prior has the following form:

p(µ|σ2) ∝

n0

σ2




1/2

exp


−

n0

2σ2
(µ− µ0)2





 1

σ2




ν0/2+1

exp


−

S0

2σ2


 (5.32)

where n0 is the size of the initial sample. This means that the prior is the product of the density

of an inverted Gamma distribution with argument σ2 and ν0 degrees of freedom and the density

of a normal distribution with argument µ, where the variance is proportional to σ2. In other

words, it is the density of the so-called normal-gamma distribution. Therefore, the prior for µ

conditional on σ2 is a normal with mean µ0 and variance σ2/n0:

µ|σ2 → N

(
µ0,

σ2

n0

)
(5.33)

The prior for the precision (1/σ2) is the gamma distribution with hyperparameters ν0/2

and S0/2:
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1
σ2

→ gamma

(
ν0

2
,
S0

2

)
(5.34)

The appearance of σ2 in the conditional distribution of µ|σ2 means that µ and σ2 are

necessarily interdependent. The conditional posterior density of µ, given σ2, is proportional to

p(µ, σ2) with σ2 held constant. After some algebra, it can be shown that:

µ|σ2 → N

(
µ1,

σ2

n1

)
(5.35)

where

µ1 =
n0

n0 + n
·µ0 +

n

n0 + n
· x̄ (5.36)

n1 = n0 + n (5.37)

The parameters of the posterior distribution combine the prior information and the infor-

mation contained in the data. For example, µ1 is a weighted average of the prior and of the

sample mean, with weights determined by the relative precision of the two pieces of information.

The marginal posterior density of 1/σ2 is gamma:

1
σ2
|x → gamma

(
ν1

2
,
S1

2

)
(5.38)

where,

ν1 = ν0 + n (5.39)

S1 = S0 + (n− 1)s2 +
n0.n

n0 + n
(x− µ0)2 (5.40)

The posterior sum of squares (S1) combines the prior sum and the sample sum of squares,

and the additional uncertainty given by the difference between the sample and the prior mean.

5.2.5 Posterior simulation

Obtaining the posterior distribution is the fundamental objective of Bayesian analysis. To

obtain the complete posterior distributions of the parameters it is normally necessary to use

simulation methods. However, it can be useful to obtain point estimates that resume the overall

information like the mean and variance of the posterior distributions. In some cases, this can
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be carried out using analytical closed form solutions especially if the prior distributions are

properly chosen. Other possible method is to infer from the simulated distributions.

There are several different algorithms to simulate the posterior distributions. One of the

most popular is the Markov Chain Monte Carlo (MCMC). The MCMC algorithm was first

introduced by Metropolis et al. (1953) and sequently generalised by Hastings (1970). Markov

chain simulation is a general method based on a sequential draw of sample values with the

distribution of the sampled draws depending only on the last value. In probability theory,

a Markov chain is a sequence of random variables θ1, θ2, ..., θn for which, for any time t, the

distribution of θt depends only on the most recent value, θt−1. The description of the math-

ematical fundaments of the algorithm are outside the scope of the work but a comprehensive

and thorough analysis on this subject can be found in Brooks (1998).

The Metropolis and the Gibbs sampler are particular Markov chain algorithms. The Gibbs

sampler is the most popular one and is normally chosen for simulation in conditionally conjugate

models, where it is possible to directly sample from each conditional posterior distribution.

The Metropolis algorithm can be used for models that are not conditionally conjugate. For

parameters whose conditional posterior distribution has standard forms it is better to use the

Gibbs sampler otherwise the Metropolis should be used. In this work, the Gibbs sampler was

implemented in order to simulate the posterior distributions.

To explain the Gibbs sampler lets consider a problem with two parameters θ1 and θ2 in

which the conditional distributions p(θ1|θ2) and p(θ2|θ1) are known, and it is necessary to

compute one or both marginal distribution p(θ1) and p(θ2). The Gibbs sampler starts with an

initial value θ0
2 for θ2 and obtains θ0

1 from the conditional distribution p(θ1|θ2 = θ0
2). Then the

sampler uses θ0
1 to generate a new value θ1

2 drawing from the conditional distribution based

on the value θ1
1, p(θ2|θ1 = θ0

1). In mathematical terms the samples are taken from the two

conditional distributions in the following sequence:

θt
1 → p(θ1|θ2 = θt−1

2 ) (5.41)

θt
2 → p(θ2|θ1 = θt

1) (5.42)

This sequence of draws is a Markov chain because the values at step t only depend on the

value at step t − 1. If the sequence is run long enough the distribution of the current draws

converges to the simulated distribution.

More specifically, to implement the Gibbs sampler for instance in the case of the Normal

model with conjugate priors for unknown mean and variance it is necessary first to obtain draws

from the marginal posterior distribution of the variance and then simulate the mean value from
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the conditional posterior distribution on the variance and data. The mathematical form of this

procedure is the following:

1

σ2(1)
|x → gamma

(
ν1

2
,
S1

2

)
(5.43)

µ(1)|σ2, x → N

(
µ1,

σ2(1)

n1

)
(5.44)

...

1

σ2(t)
|x → gamma

(
ν1

2
,
S1

2

)
(5.45)

µ(t)|σ2, x → N

(
µ1,

σ2(t)

n1

)
(5.46)

5.3 Application of the Bayesian framework to update E in a

rock mass

5.3.1 Introduction

In this work, the developed Bayesian framework is applied to data collected in an underground

structure for updating the E value. The data consisted in the results of a Large Flat Jack (LFJ)

test performed by LNEC (LNEC, 1983, 2003) in the scope of the Venda Nova II hydraulic scheme

project which will be more deeply described in Chapter 7. Figure 5.4 presents a cross-section

of the powerhouse caverns of this scheme.

In the performed LFJ test, several loading/unloading cycles were performed in different

circumstances. This way, and excluding the values obtained in the first loading cycles, a total

of 160 E values were obtained from this test and were used in this application.

The geomechanical parameter was considered a random variable. The original distribution

of the population is not known. Normally, in probabilistic approaches, the geomechanical

parameters are considered to follow normal or lognormal distributions. In the developed study,

both distributions were considered in order to evaluate the impact of prior assumptions on the

final results.

The normal distribution presents some drawbacks like the possibility that the random vari-

able assume negative values which is, in this particular case, physically impossible. However, it

has the advantage of computational convenience and, normally, good results can be obtained.
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Figure 5.4: Cross-section of the Venda Nova II powerhouse complex caverns.

The lognormal distribution has the advantage of not allowing negative values for the ran-

dom variable and this is one of the main reason of its use for modelling geotechnical data.

Moreover, experience shows that normally this distribution is appropriate to describe deforma-

bility parameters (LNEC, 1983). The consideration of the lognormal distribution does not

raises considerable new computational issues. By its definition, the lognormal distribution is

the probability distribution of any random variable whose natural logarithm is normally dis-

tributed. It means that if a random variable X is log normally distributed then Y = Log(X) is

normally distributed. This way, the updating procedure considering a lognormal distribution

of the data was carried out in three main stages.

1. Proceed to a logarithmic transformation of the data and calculation of the main param-

eters of the distribution (mean and standard deviation).

2. Compute the updated parameters with the formulae for the normal distribution case.

3. Transform the updated parameters for their equivalent ones of the lognormal distribution

using the following expressions:

µX = exp

(
µY +

σ2
Y

2

)
(5.47)

σ2
X = exp

(
2µY + σ2

Y

) · (
exp(σ2

Y )− 1
)

(5.48)
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The Bayesian updating calculations were performed considering several situations in terms

of uncertainty levels, probability distribution functions for the data and initial knowledge.

Concerning the uncertainty for the parameter two different levels were considered, namely: i)

unknown mean and known deterministic variance; and ii) unknown mean and variance. For each

case, the situations of no prior knowledge translated by the uninformative Jeffreys prior and

prior knowledge obtained by analytical solution based on the empirical classification systems

application were considered. In conclusion, a total of eight calculations, which are schematized

in Figure 5.5, were performed and compared considering different assumptions. The following

items start with a brief statistical analysis of the available data. Then, the main results are

presented.

Figure 5.5: Scheme of the performed calculations for the Bayesian updating.

5.3.2 Statistical analysis of the data

The prior information for the conjugate prior cases was obtained using data from the empirical

classification systems application. The calculation procedure was already described in the

previous Chapter and used a set of analytical solutions collected in the literature. It was

composed of a total of 76 cases gathered in the zone where the LFJ test was performed such

that the results could be comparable. Figure 5.6 presents the histograms of the raw data and

with the logarithm transformation (to be used in the lognormal case) and Table 5.1 the main

parameters of each distribution.

Table 5.1: Distribution parameters for the initial values of E (GPa).

Parameter Distribution (a) Distribution (b)

µ 38.5 3.486

σ 17.6 0.665

σ2 309.8 0.442
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(a) (b)

Figure 5.6: Histograms of E calculated from the empirical systems application data: (a) raw data (b)

logarithmic transformation.

The distributions show high skewness, especially the transformed data and suggest non-

normality of the data. The Shapiro-Wilk normality test was performed to test this hypothesis

and it shows that they are non-normal for a 95% confidence level. However, based on the

central limit theorem, it will be considered that these samples were taken form a population

which follow a normal distribution. This assumption is also valid for the data from the LFJ

tests.

The histograms of the 160 values of E obtained by the LFJ test are presented in Figure 5.7

in the normal and logarithmic forms. The mean and standard deviation of both distributions

are presented in Table 5.2.

Table 5.2: Distribution parameters for the values of E obtained by the LFJ tests (GPa).

Parameter Distribution (a) Distribution (b)

µ 36.9 3.594

σ 6.1 0.171

σ2 37.2 0.029

The histograms of Figure 5.7 present a normal trend for the data. However, the Shapiro-

Wilk normality test showed that for a confidence level of 95%, only distribution a) is a normal

distribution.

The mean values of E pointed out by the empirical systems application and the ones given

by the LFJ tests are quite close. This means that the initial guess was almost validated by
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(a) (b)

Figure 5.7: Histograms of E from the LFJ tests: (a) raw data (b) logarithmic transformation.

the performed in situ tests and the updating procedure should not have a significant impact

on this value. However, the uncertainty translated by the standard deviation (or variance) is

much lower for the LFJ tests so it is expected that it initial value decreases significantly with

the Bayesian updating procedure.

5.3.3 Updating of E considering unknown mean (µ) and known variance (σ2)

In the case of using the Jeffreys prior no initial knowledge is considered about E. Nevertheless,

in this approach, the value of the population variance is considered to be known. This should

not be the current situation and it is used mostly for comparison purposes. For this reason, it

is considered a deterministic variance equal to the value of the empirical systems application

results.

After obtaining the posterior distribution of the mean values, the Gibbs sampler was used to

simulate 10000 population values which showed, in trial calculations, to be a sufficient number

of examples to reach convergence. First, mean values for the mean were generated and then

used to infer to the population using the known variance. Table 5.3 resumes the values obtained

for the posterior distributions of the mean and the simulated population values.

The results obtained for the posterior distributions are comparable in terms of the mean

value of the mean which are very similar for both distributions. However, the computed stan-

dard deviations have a significant difference with logical impact on the 95% CI. The differences

on the standard deviation can be observed in the plots of the probability density functions

(Figure 5.8). It can be observed that the mean value of the mean is almost coincident but the
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Table 5.3: Posterior estimates of the mean value of E considering Jeffreys prior (GPa).

Parameter Normal distribution Lognormal distribution

µ1 36.9 36.4

σ1 1.391 1.917

95% CI for the mean 34.2-39.6 32.8-40.3

µpop 37.0 46.7

σpop 19.1 38.2

95% CI for the

population mean

5.5-68.5 11.2-117.4

CI - confidence interval

lognormal distribution translates a higher uncertainty about its true location.
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Figure 5.8: Posterior probability density functions for the mean value of E for both types of distribu-

tions using Jeffreys prior.

The simulated values of the population present significant differences. In the normal case,

the mean value for the population is very close to the posterior mean. For the lognormal

distribution, the inferred mean value of the population is significantly higher (about 26%) than

the one obtained in the normal case. The same trend is observed for the standard deviation

and is reflected in the 95% confidence intervals.

Figure 5.9, plotted using the mean value of the mean, shows that the probability density

function of the lognormal distribution is highly skewed to the left and, due to the high variance,

presents a long tail to the right which reflects on a high value of E on the upper bound of the
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95% CI. Another important issue is that the normal distribution, also because of the high

deterministic variance, presents positive probabilities for negative values of E.
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Figure 5.9: Posterior probability density functions for the simulated values of E for the both types of

distributions using Jeffreys prior (inferred values for the population).

For both cases, the simulated value of the standard deviation is higher than the initial

deterministic value since it conveys also the standard deviation (uncertainty) of the mean.

To use the conjugate informative prior it was necessary to define a standard deviation for

the initial mean (σ0). It was decided to establish this value considering the 95% confidence

interval for the mean. For instance, in the normal distribution case, this interval ranged from

34.5 to 42.5, i.e., 38.5±4. This way, it was considered 4 GPa to be the standard deviation for

the mean. A similar procedure was adopted for the lognormal distribution. Table 5.4 resumes

the main parameters of the prior and posterior distributions for this case.

The posterior results are very similar to the previous ones using the Jeffreys prior. Both

priors led to almost the same result in terms of the posterior mean with differences lower than

1%. Only a slight reduction (about 6%) is observed in terms of the posterior standard deviation

because of the information provided by the prior. The mentioned facts point out for the low

impact of the prior in the posterior parameters. In fact, the high uncertainty in the initial

data, translated by its high variance, turns the initial distribution little informative. Moreover,

and based in the asymptotic theory, as the sample increases the posterior converges to the

likelihood. In this case, the sample is composed by 160 cases which can be considered a high



Chapter 5. Updating of Geomechanical Parameters Through Bayesian Probabilities 141

Table 5.4: Prior and posterior estimates of the mean value of E considering the conjugate prior (GPa).

Parameter Normal distribution Lognormal distribution

µ0 38.5 33.1

σ0 4 5.1

µ1 37.1 36.0

σ1 1.314 1.806

95% CI for the mean 34.5-39.7 32.6-39.7

µpop 37.1 46.5

σpop 18.9 38.4

95% CI for the

population mean

5.9-68.2 11.0-117.4

value. Figure 5.10 presents the prior and posterior probability density functions for the mean

value of E.
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Figure 5.10: Prior and posterior probability density functions for the mean value of E.

It can be observed that the effect of the LFJ tests is quite significant and that the prior

distribution is relatively flat. The uncertainty about the initial mean value was substantially

decreased since its standard deviation was reduced from 4 GPa to 1.3 GPa in the normal case

and from 5.1 GPa to 1.8 GPa for the lognormal case. Both posteriors converged to a near

location around a higher probability region between 36 GPa and 37 GPa.

The values inferred for the population are also quite close to the previous case. This is also

due to the already mentioned fact that these values are mainly controlled by the deterministic
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value of the variance. The updating of the mean value distribution has a minor impact on the

posterior simulated population.

The confidence intervals for the population mean are very large. They are fundamentally

controlled by the high population variance and little by the mean variance.

For comparison purposes, Figure 5.11 shows a plot of the prior and posterior population

probability density distribution of E, for the normal case, considering the mean value of the

mean. The influence of the mean updating in the population is small due to the deterministic

value of the standard deviation. Even though some uncertainty reduction can be observed. An

important issue is the existence of negative values with non-zero probability for both prior and

posterior distributions.
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Figure 5.11: Prior and posterior probability density distributions for E considering the normal distri-

bution (inferred values for the population).

Figure 5.12 compares the posterior density distributions for the mean value of E. The main

aspect is the higher variation for the conjugate prior case for the normal model. This is due to

the fact that posterior variance conveys the sample and prior variance while for the Jeffreys case

only the sample variance is considered in the model. This increasing variance in the posterior

for the conjugate case is negligible for the lognormal distribution. In fact, both approaches led

to almost equal posterior distributions showing that, in this case, the prior information had

minor impact in posterior results.
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Figure 5.12: Posterior probability density distributions for E considering the Jeffreys and conjugate

priors.

5.3.4 Updating of E considering normal data and unknown mean (µ) and

variance (σ2)

In this case, Jeffreys posterior is conditional on the data and on the unknown variance. This

posterior is a normal distribution with mean x̄ and variance σ2/n and the marginal posterior for

σ2 is an inverse χ2 distribution. This way, the posterior distributions take the forms presented in

Table 5.5. The obtained results for the main parameters of the mean and simulated population

posterior distributions are presented in Table 5.6.

Table 5.5: Posterior distributions considering Jeffreys prior

Normal distribution Lognormal distribution

µ|σ2, X → N

0
@x̄,

σ2

n

1
A⇒ N

0
@36.9,

σ2

160

1
A µ|σ2, X → N

0
@x̄,

σ2

n

1
A⇒ N

0
@3.594,

σ2

160

1
A

(n− 1)s2

σ2
⇒

5916.39

σ2
→ χ2

n−1

(n− 1)s2

σ2
⇒

4.649

σ2
→ χ2

n−1

The posterior values of the mean are equal to the previous case where the variance was

considered as a known parameter. In fact, a different approach did not affect this value but

had significant impact on its variability. Since the variance was considered a random unknown
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Table 5.6: Posterior estimates of the mean value of E (GPa)

Parameter Normal distribution Lognormal distribution

µ1 36.9 36.4

σ(µ1) 0.244 0.007

σ1 6.13 1.89

σ(σ1) 0.35 0.012

95% CI for the mean 36.5-37.3 36.37-36.39

µpop 37.2 37.3

σpop 6.38 6.57

95% CI for the

population mean

26.7-47.7 27.5-49.0

value, its distribution depended only on the variance of the LFJ tests which was significantly

lower than the deterministic variance in the previous case. This fact was most pronounced for

the case of the lognormal distribution and is reflected in the 95% CI for the mean which is

extremely narrow.

The consideration of a random variance also had significant influence on the population

simulated values since it was possible to update its value reducing the uncertainty about E.

The updated parameters of the distributions are very similar for both cases. In Figure 5.13

the probability density functions are presented and the similarity of the distributions can be

observed.
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Figure 5.13: Posterior probability density distributions for E for the normal and lognormal case using

Jeffreys prior (inferred values for the population).
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In this case, there are no negative values with positive probabilities in the normal distri-

bution case. The 95% confidence intervals for the mean value of the population appear to be

credible in an empirical judgement.

In the case of conjugate prior distributions, the initial data based on the empirical rock

mass classifications was used to obtain the priors for the mean and variance. Applying Bayes

theorem and using the abovementioned data from the LFJ tests, the conditional posterior

distribution for the mean and the marginal posterior for the variance were obtained. The prior

and correspondent updated posterior distributions are presented in Table 5.8.

Table 5.7: Prior and posterior distributions considering the conjugate prior.

Normal distribution Lognormal distribution

Priors µ|σ2, X → N

0
@38.5,

σ2

76

1
A µ|σ2, X → N

0
@3.489,

σ2

76

1
A

1

σ2
→ gamma

0
@38.5,

1

11573.5

1
A 1

σ2
→ gamma

0
@38.5,

1

16.586

1
A

Posteriors µ|σ2, X → N

0
@37.4,

σ2

236

1
A µ|σ2, X → N

0
@3.560,

σ2

236

1
A

1

σ2
→ gamma

0
@118.5,

1

14597.6

1
A 1

σ2
→ gamma

0
@118.5,

1

19.194

1
A

As the mean is conditional on the variance, prior and posterior estimates for the mean value

and standard deviation were obtained by simulation using the Gibbs sampler similarly to the

previous example. The main results for the prior and posterior distributions are presented in

Tables 5.8 and 5.9.

The updated mean value of the mean (µ) underwent a small variation from prior to posterior

estimates. In fact, this variation was only of about 3% and 7% for the normal and lognormal

case, respectively. The initial mean value was already close to the results provided by the LFJ

tests. This means that the analytical solutions provided a very good estimate of E.

The most important aspect is the substantial uncertainty reduction at all levels. For the

normal distributions case the standard deviation of the mean (σ(µ)) has reduced from 2.02

GPa to 0.73 GPa, i.e. only 36% of the initial value. The mean of the standard deviation (σ)

underwent a 37% decrease from 17.5 GPa to 11.1 GPa. Finally, the standard deviation of the

standard deviation (σ(σ)) was also significantly decreased from 1.45 GPa to 0.51 GPa.
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Table 5.8: Prior and posterior estimates of the mean value of E (normal distribution) (GPa).

Parameter Normal distribution Lognormal distribution

µ 38.5 37.4

σ(µ) 2.02 0.73

σ 17.5 11.1

σ(σ) 1.45 0.52

95% CI for the mean 35.2-41.8 36.2-38.6

µpop 38.4 37.5

σpop 19.6 11.9

95% CI for the

population mean

6.1-70.7 17.9-57.1

Table 5.9: Prior and posterior estimates of the mean value of E (lognormal distribution) (GPa).

Parameter Normal distribution Lognormal distribution

µ 32.8 35.2

σ(µ) 2.47 0.915

σ 1.943 1.498

σ(σ) 0.105 0.028

95% CI for the mean 28.9-37.1 33.6-36.7

µpop 42.8 38.3

σpop 36.1 17.3

95% CI for the

population mean

9.8-109.2 17.2-71.0

The lognormal distribution follows the same trend of uncertainty reduction. The relative

reduction of σ(µ) was very similar to the previous case. In relation to the remaining parameters,

σ and σ(σ), they were reduced in 23% and 73%, respectively.

To illustrate this fact, Figure 5.14 shows the prior and posterior probability density functions

of the mean value of E considering the mean value of its standard deviation. The uncertainty

reduction from the prior to the posterior can be clearly observed.

Using simulation it was possible to infer mean and 95% CI for the population. In relation

to the mean value, the updating process only changed significantly the mean of the lognormal

distribution which was reduced in about 11%. For the normal distribution case this value

remained almost unchanged.

Also for the population values the updating process allowed a significant reduction on the

dispersion measures which means less uncertainty. The standard deviation values were reduced

in 39% and 52% respectively for the normal and lognormal distributions, with direct impact on

a substantial narrowing of the 95% CI for the mean.

In Figure 5.15 the prior and posterior probability distributions of E considering the mean

values of the mean and standard deviation is presented. The uncertainty about the parameter
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Figure 5.14: Prior and posterior probability density functions for the mean value of E.

was clearly reduced using the Bayesian methodology. For the normal distribution case the prior

allowed for negative values to have positive probabilities. The updating process corrected this

situation. The prior lognormal distribution avoided this situation to happen because it does

not allow negative values. The updating enabled to reduce the uncertainty as well as the high

skewness of the prior.
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Figure 5.15: Prior and posterior probability density functions for E (inferred values for the population).
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The main aspect to focus when comparing the posterior results using the Jeffreys and

conjugate priors, is that the variance is higher for the latter. In fact, as it is clearly illustrated

by Figure 5.16, the uncertainty is higher for the conjugate distributions. This fact was already

observed for the case of unknown mean and known variance and is due to the consideration of

the prior information uncertainty which does not exist when using Jeffreys prior.
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Figure 5.16: Posterior probability density functions for E (inferred values for the population).

5.4 Alternative updating methodology using the Weibull dis-

tribution

5.4.1 Introduction

The Bayesian framework presented previously showed good results in the uncertainty treatment

especially when both mean and variance of the parameter are considered to be unknown random

variables. However, it can be pointed out as the main drawback the relative sensitivity of the

posterior results to the prior distribution assumptions.

In this context, a new methodology is proposed which tries to avoid this problem and can

be generally applied to most geotechnical parameters updating problems. In this methodology,

a two-parameter Weibull distribution is used to model both prior data and the likelihood. The

Weibull distribution is a much more flexible distribution which adapts to the available data and
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can transform into a normal, Rayleigh or even an exponential distribution depending on the

data configuration.

Since Weibull data is not conjugate with Weibull prior there is no closed form solution

to the problem. This way, to avoid heavy computations which would transform the method

difficult to implement in a practical sense, some acceptable simplifications were performed. The

method is then a heuristic approximation to produce a quick method of estimating Weibull

parameters assuming that they are normally distributed. This can be considered an acceptable

simplification since one of the properties of maximum likelihood estimators is that they are

asymptotically normal, meaning that for large samples they are normally distributed.

In the next item the Weibull distribution is briefly described since it is not widely used in

geotechnical applications. Then the developed methodology is presented followed by the main

results.

5.4.2 The Weibull distribution

The type of Weibull distribution used in this methodology is called the two-parameter Weibull

distribution (Weibull, 1951). Its probability densisty function is defined as:

f(x) =
β

α


x

α




β−1

exp


−

x

α




β

; x ≥ 0 (5.49)

where β > 0 is the shape (or slope) parameter and α > 0 is the scale parameter. For x < 0 this

function takes a zero value. The correspondent cumulative distribution function is translated

by:

F (x) = 1− exp


−

x

α




β

(5.50)

The reliability of a distribution is simply one minus the cumulative distribution function so

the reliability of the Weibull distribution is given by:

R(x) = exp


−

x

α




β

(5.51)

The mean (µ) and standard deviation (σ) of a Weibull random variable can be expressed

as:

µ = α ·Γ

 1

β
+ 1


 (5.52)
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σ = α ·

√√√√√Γ


 2

β
+ 1


− Γ


 1

β
+ 1




2

(5.53)

where Γ is the gamma function which is defined as:

Γ(n) =
∫ ∞

0
e−xxn−1dx (5.54)

To obtain the value (x) correspondent to a certain reliability degree (R(x)) the following

expression can be used:

x = α · {−ln [R(x)]}1/β (5.55)

If R(x) = 0.50 one obtains the median value.

The Weibull distribution is one of the most widely used in reliability engineering and failure

analysis. It is also very important in extreme value theory, weather forecasting and industrial

engineering problems. It is a very versatile and flexible distribution since it adapts to the data

and can mimic the behaviour of other types of distributions, based on the value of the shape

parameter, β. For instance if β is equal to 3.4 or 1 then the Weibull distribution appears similar

to the normal and exponential distributions, respectively.

Weibull analysis is a method for modelling data sets containing values greater than zero.

Many methods exist for estimating Weibull distribution parameters from a set of data like the

probability plotting, the maximum likelihood estimation or the hazard plotting. To apply any

of these methods it is necessary to perform some preliminary calculations.

The probability plotting method, which was used in this work, involves the calculation of

a regression line based on the input data. It starts with the organisation of data in ascending

order and defining the order number or rank of each data entry. Next, it is necessary to obtain

their median rank positions which can be estimated using the following equation:

MR(%) ≈
i− 0.3

N + 0.4
· 100 (5.56)

where i is the order number and N is the total sample size. The abscissas and ordinates for

the regression line are then obtained using the following expressions:

xi = ln(Xi) (5.57)

yi = ln [−ln(1−MR)] (5.58)
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where Xi are the different data values. Then, using the least square method, it is possible to

obtain the regression line in the current form y = a + bx. The Weibull parameters can then be

calculated using the following expressions:

β = b (5.59)

α = exp


−


a

b





 (5.60)

5.4.3 The proposed methodology

In geotechnical engineering, most of the times some prior knowledge about the parameters exist.

This knowledge can be based on empirical assumptions, preliminary in situ or laboratory tests,

data from similar formations, etc. In this methodology it is assumed that a prior distribution

can be set up.

It is intended to model both the prior and the new data with Weibull distributions to

take advantage of its flexibility to adapt to the data. However, because the parameters of

the Weibull prior are not conjugate with Weibull data there is no analytical formula for the

posterior probability density of the parameters. The Bayesian updating process can be very

complex if conjugate distributions are not used.

To overcome this problem the developed methodology is based on a simple heuristic: the

parameters of the Weibull distributions are random variables which follow a multivariate normal

distribution and can be updated analytically as such. The main disadvantages are that the

method does not uses formal Bayesian methods and assumes that the parameter estimates

are normally distributed. This can be considered as an acceptable approximation since the

maximum likelihood estimators for the Weibull parameters are asymptotically normal, meaning

that for large samples they are normally distributed. Even though the used method of parameter

estimation was the probability plot it conducts, normally, to similar results to the maximum

likelihood approach.

Brennan and Kharroubi (2007) considered the same simplifications in a similar Weibull

approach and they reached an approximately 5% error from the full Bayesian calculation.

Moreover, the authors stated that its accuracy is context dependent. If the prior information

is weak (i.e. based on little knowledge or with considerable uncertainty) and the data is strong

(i.e. large sample size) or in the inverse case of strong prior and weak data, then the result can

be almost equivalent to formal Bayesian updating. Between these extremes, the simplifications

can lead to reduced accuracy.
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The developed methodology starts then with the computation of the Weibull parameters (α

and β) from the prior data. As it was already referred, it is assumed that the uncertainty in

these parameters can be correctly characterised by a multivariate normal distribution (Prior →
N(µ0, σ0)). The value of σ0 was considered to be related to the 95% CI to the mean of the

Weibull analysis regression parameters. This way, σ0 was computed as the distance between

the mean and the upper or lower bound of the 95% CI. In the cases where the distances were

different, the mean of the two values was considered.

Next, the same procedure is applied to the data considering again a multivariate normal

distribution to characterise the parameters uncertainty (Data → N(µ, σ)). To combine the prior

evidence and the data, the Bayesian updating formulae for the multivariate normal distribution

to calculate the posterior parameter estimates are used:

µ1 =

µ0

σ2
0

+
µ

σ2

1

σ2
0

+
1

σ2

(5.61)

1

σ2
1

=
1

σ2
0

+
1

σ2
(5.62)

To produce population values a simulation procedure is used. First, 10000 random values

for the parameters of the Weibull distribution are generated from their normal distribution

parameters. These values are then used to generate Weibull random values which are again

fitted to a Weibull distribution which is considered the population distribution. From this dis-

tribution it is possible to obtain the probability density function and to calculate moments and

values with certain reliability levels which can be of significant interest. Figure 5.17 schematizes

the described steps.

This method is relatively simple to use and takes advantage of the versatility and flexibility

of the Weibull distribution which adapts to the data and can take on the characteristics of other

types of distributions.

5.4.4 Results

In the first stage, a Weibull analysis was applied to the initial data from the empirical systems

and to the results of the LFJ tests. As it was referred, it was considered that the distribution pa-

rameters of the Weibull distributions followed a normal distribution. This way, the parameters

obtained by Weibull analysis are the mean value of the distribution. The standard deviation

is related to the 95% confidence interval for the parameter obtained by the linear regression

procedure.
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Figure 5.17: Scheme of the alternative Bayesian updating scheme.

Using these parameters it is then possible to produce the posterior estimates. In Table 5.10

the distribution parameters obtained through the Weibull analysis to the prior and tests data

and posterior updated values are presented. In the same Table the R2 parameter values from

the regression analysis are presented since they are a measure of the Weibull distribution fitting

to the data. The values of these coefficients are near the unity which points out to a good

fitting. As expected, the posterior parameters present lower standard deviations which mean

that uncertainty was reduced by using the Bayesian updating process.

The population values were generated through simulation. Due to the high standard devi-

ation of the parameter α, mainly in the prior distribution, the simulated values were truncated

to avoid negative values since this parameter can only assume positive ones. The parameters

of the Weibull fit to the simulated data are presented in Table 5.11 also along with R2 of the

linear fit.
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Table 5.10: Mean and standard deviation of the Weibull parameters and determination coefficient

from the Weibull analysis fitting (GPa).

α β R2

Mean Std. dev. Mean Std. dev.

Prior data 44.303 17.7 1.8282 0.095 0.9523

LFJ tests 39.314 7.9 7.2473 0.198 0.9706

Posterior 40.143 7.2 2.8423 0.086 -

Table 5.11: Parameters of the Weibull fit for the simulated population values (GPa).

α β R2

Prior data 36.762 3.0415 0.8428

LFJ tests 37.145 14.357 0.8546

Posterior 37.020 4.6114 0.9578

The R2 values are a little lower for the prior and the data due to the higher dispersion

of the simulated data comparing to the original one. The fitting for the posterior data can

be considered very good. Figure 5.18 presents the probability density functions of the prior,

likelihood and posterior Weibull population distributions correspondent to the parameters of

Table 5.11. In this Figure it is possible to observe the flatness of the prior due to the high

uncertainty about the distribution parameters. The posterior updated distribution presents

lower uncertainty due to the high reliability of the LFJ tests.
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Figure 5.18: Weibull distributions for the simulated populations.

The Weibull distribution allows using the reliability concepts in the calculation of parame-
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ters. Using the obtained distributions it is possible to calculate values with certain reliability

levels. In this case, the reliability of a certain value is interpreted as the probability of the

parameter true value to be higher than it. Table 5.12 presents the E values for the prior and

posterior distributions considering different reliabilities.

Table 5.12: E values for different reliability levels (GPa).

E (GPa)

Reliability Prior Posterior

0.01 60.7 51.6

0.025 56.5 49.1

0.05 52.7 47.0

0.10 48.4 44.4

0.5 32.6 34.2

0.90 17.5 22.7

0.95 13.8 19.4

0.975 11.0 16.7

0.99 8.1 13.7

5.5 Conclusions

Bayesian methods have an inherent flexibility introduced by the incorporation of multiples levels

of uncertainty and the resultant ability to combine information from different sources. In other

words, the major advantages of the Bayesian approach are in its ability to combine different

information and its rational way of dealing with uncertainty using probabilistic tools. This

methodology allows one to update random variables as new data is collected.

It is believed that the characteristics of the Bayesian data analysis make it well suited to

be applied on geotechnical problems where uncertainty is always present at different levels. In

geotechnics, the information about the interested formations increases as the project advances

for different stages and can be used to update the geotechnical models. Nowadays, this updating

is carried out based on empirical knowledge and basic statistic procedures.

In this Chapter, a general Bayesian framework for the geomechanical parameters updating

was developed and applied to the updating of E in an underground structure. Different types of

probability distributions, initial knowledge and uncertainty levels were considered and tested.

The first approach, which considered the mean value as a random unknown variable and the

variance known and deterministic, allowed obtaining good results in what concerns the mean

updating. In fact, it was possible to calculate updated posterior values, which were similar for
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both distributions, considering the LFJ test results, with reduced uncertainty. The conjugate

case provided very similar results which mean that the prior information had very little impact

and the posterior was controlled by the new data. The population simulated values showed

to have low sensitivity to the mean updating since its behaviour is mostly controlled by the

deterministic variance.

The results showed to be sensitive to the type of distribution assumed for the data. Im-

portant differences were observed in the posterior distributions for both the mean and the

population values considering the normal and lognormal distributions.

The major drawback of this approach is related with the calculation of the characteristic

values of E which is very important for design purposes. The fact that the population variance

is considered to be constant significantly influences the characteristic values maintaining them

almost unchanged. These values only vary due to the mean updating which has little impact

on the population distribution.

The second approach, which considers both mean and variance as unknown variables, even

though computationally more complex, allows overcoming this problem. The value of the

population variance is also updated which has an important influence on its distribution. This

approach allows a more global treatment of uncertainty and presents higher potential to be

used for the geomechanical parameters updating.

In this case, and when using the uninformative Jeffreys prior, probabilistic distributions of

the population were almost identical for both normal and lognormal case. Using the conjugate

prior the mean and population distributions seemed to be more sensitive to the choice of

distribution type.

Concluding, the approach of unknown mean and known variance is simpler and can be

used when the parameter of interest is the mean value of the geomechanical parameter. In

geotechnical engineering, the prior information is often more uncertain and if this data is used

to define a deterministic variance, which will certainly be high, the updating of characteristic

values for the population can be compromised.

The more complex model that considers both mean and variance as random variables, which

can be updated to infer to the population, allows overcoming the main problem raised by the

previous approach. It deals with uncertainty in a more global way allowing it to be reduced in

several dimensions. In both cases, posterior inferences showed stability to the choice of different

priors.

This Bayesian framework provides a consistent way of treating data coming from different

sources in order to increase the reliability in the calculated geomechanical parameters. Both

approaches are considerable sensitive to the choice of the population distribution which can

not be known. However, experience shows that lognormal distributions are more adequate to
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model data from deformability parameters and should be considered in the absence of more

information.

It is worth emphasising that, in the conjugate prior case, the Bayesian updating procedure

did not significantly changed the mean value of E. The preliminary evaluation based on ana-

lytical solutions and in the empirical rock mass classification systems application, was almost

corroborated by the results of the LFJ test. However, the data led to a very significant decrease

in the uncertainty about the parameters.

An alternative methodology was developed to try to overcome the sensitivity of the type

of distribution choice by using a much more flexible and general one which can adapt to the

available data. In this case, the 2-parameter Weibull distribution was used avoiding the more

rigid normal or lognormal distributions.

Since it is not possible to find conjugate distributions for the Weibull, some acceptable sim-

plifications were considered. The methodology is based on a heuristic that the model parameters

are random variables which follow a normal distribution and that the Bayesian updating model

for such distributions can be applied.

The R2 values obtained in the regression analysis for the calculation of the Weibull distribu-

tion parameters showed that it fitted well the observed data. For the prior and tests population

the fit is a little worst but still within acceptable values. To improve the results of this method-

ology and to get better fits to the data, the 3-parameter Weibull distribution or even mixtures

of Weibull with other distributions could be used leading to a more complex approach.

The methodology allowed to reduce the uncertainty concerning E and to obtain values with

different reliabilities. Using this Bayesian framework it is not necessary to specify the type of

distribution for the data since it uses a distribution that models the available data and adapts

to it. It can approximate a normal, exponential or other skewed distribution.

This work showed how the Bayesian tools can be used in geotechnics. Its main innovative

contribution is the definition of general, proper and mathematically consistent methods for the

geomechanical parameters updating that can be used in the different stages of an underground

work project.

The developed frameworks for the E updating showed interesting results especially in the

uncertainty reduction. These procedures can be sequentially applied as more information about

the rock mass is gathered.

These methodologies can be extended to models with more parameters (strength parameters

for instance). More complex models could imply the use of Bayesian structures with higher

complexity like the mixture or the hierarchical models.
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Chapter 6

Application of Inverse

Methodologies in Underground

Structures

6.1 Introduction

Design and construction of underground works is many times based on the observational method

(Terzaghi and Peck, 1948) in which field measurements are used in order to overcome uncertain-

ties related to the complexity and unpredictability of geological/geotechnical features. This way,

during construction and in some cases also in the exploration stage, displacements and stresses

of the underground structure surrounding the rock mass are monitored. Initially, this informa-

tion was used only for direct interpretation of safety assessment and to evaluate the adequacy

of the design and construction methods. Nowadays, with the development of computational

methods and observational techniques, it can also be used by practitioners and researchers to

validate or update the input data (like the geomechanical parameters for instance) allowing a

deeper understanding of the rock mass-underground structure behaviour and providing a sound

basis for the adaptation of the initial design and construction method.

The procedure of using field measurements in order to obtain input material parameters

is called back analysis in opposition to the conventional forward approach. At this point,

it is interesting to mention the main characteristics and differences of both methodologies

(Figure 6.1). A forward analysis starts with the definition of a constitutive model and their

related parameters which is normally carried out based on geological-geotechnical survey and in

experience. This information is used as an input on the numerical models developed for design

purposes and to predict stresses, strains, displacements, etc. In the back analysis approach, field

159
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measurements are used together with the models to calibrate their parameters (geomechanical,

stress state, etc...) matching, under a defined tolerance, predicted with observed measures. In

other words, based on monitoring results of displacements and/or stresses (most of the times

only displacements are available) and computational models, geomechanical parameters, loads

distribution and geometric conditions can be back analysed.

Figure 6.1: Scheme of the forward and back analysis (adapted from Sakurai (1997))

Two basic types of problems can be solved using back analysis techniques (Castro et al.,

2002):

• inverse problems of the first kind: determination of external loads based on the structural

properties and corresponding observed effects;

• inverse problems of the second kind: determination of structural properties as a function

of the external loads and corresponding observed effects.

The back analysis of geomechanical parameters in underground structures is within the scope

of the latter type of problems. This approach can be formulated as a problem of parameter

estimation in which the constitutive model is considered to be known and fixed. A full back

analysis procedure should consider all the uncertainties related to the problems therefore the

constitutive model should also be determined by back analysis (Sakurai et al., 1995). In the

scope of this work, only the identification of geomechanical parameters is carried out and the

used constitutive models are considered to be known.

Modelling softwares are not prepared to compute geomechanical parameters from measure-

ment input data. This way, an iterative procedure has to be adopted in order to obtain the

required output. Depending on the way the identification problem is solved, the available
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back analysis methodologies can be divided in two main categories: the inverse and the direct

approach (Cividini et al., 1981; Gioda and Sakurai, 1987).

In the inverse approach the equations which describe the system behaviour are rewrit-

ten/inverted in such a way that the material parameters appear as outputs and the measured

quantities as inputs. The first application of the inverse approach was carried out by Gioda

(1980) to identify elastic parameters and earth pressure in a tunnel lining. Murakami and

Hasegawa (1987) incorporated the Kalman filter probabilistic procedure in this algorithm in

order to consider the measurement errors in the results of back analysis. If the measurement

data set is well selected, this approach assures stability and fast convergence in the back anal-

ysis process (Venclik, 1994). This approach, in spite of normally being more efficient (demands

less iterations to converge), raises however some computational issues. For instance, in order

to invert the governing equations, and when a numerical model is used, it demands the access

to the software code which most of the times is not possible.

In the direct approach the numerical model is not modified. It is used together with an

error function (like the least squares), also called cost function, which measures the difference

between the observed and computed quantities. This function, which is normally non-linear, is

minimised in an iterative process using an optimisation algorithm. The direct approach is more

flexible then the previous since the optimisation routine can be programmed independently from

the numerical model and the coupling can be carried out using simple programming. However,

the iterative process can be time-consuming and convergence to the global minimum is not

assured. In the developed studies, the direct approach was used since it is a far more flexible

methodology.

Back analysis was introduced by Gioda (Gioda, 1980), Gioda and Maier (1980) and Cividini

et al. (1981) for the sophistication of the observational method and constitutes an essential tool

for assessing design parameters in underground structures. In the broader field of geotechnics,

many applications can be found in literature of which the following can be mentioned (Swoboda

et al., 1999; Sheu, 2006):

• characterisation of strength and deformability parameters of soils and rocks in under-

ground works (Gioda and Maier, 1980; Gioda, 1980; Sakurai and Takeuchi, 1983; Swoboda

et al., 1999; Deng, 2001; Jeon and Yang, 2004; Finno and Calvello, 2005);

• geotechnical structures behaviour prediction by back analysis of an early stage of con-

struction measurements (Asaoka and Matsuo, 1984);

• evaluation of soil and rock mechanics field tests results (Cividini et al., 1981; Gioda and

Maier, 1980; Eclaircy-Caudron et al., 2006; Zentar et al., 2001);
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• calibration of laboratory tests (Iding et al., 1974; Imre, 1994; Eclaircy-Caudron et al.,

2006).

Most of the published studies belong to the first group dealing with the evaluation of ge-

omechanical parameters, particularly applied to tunnels and underground structures. Different

material models have been adopted in these studies ranging from linear elastic to elasto-plastic

or even to time-dependent models. Some studies considered simultaneously the evaluation of

the in situ stresses while others a probabilistic view point for this problem. Some of these works

are briefly described latter.

In this Chapter, it is intended to present the main components and methods normally

used in back analysis applications of geotechnical problems and some of the most important

works developed in this field so far. Moreover, an application to a verification problem of

three gradient based algorithms to the geomechanical parameters identification is carried out.

These algorithms were programmed and coupled with a 3D numerical model that simulates the

excavation of a tunnel. Back analysis is performed in elasticity and elasto-plasticity in order to

study robustness and efficiency of the algorithms1. The main strengths and drawbacks of this

approach are highlighted. Finally, an innovative approach based on an evolutionary algorithm

(evolution strategies) is applied to a similar problem. In this case, analytical solutions were

used because a much higher number of computations was expected. It was found that much of

the problems raised by classical optimisation algorithms can be overcome by these algorithms.

For simplicity sake, in this thesis, the expressions ”back analysis” and ”inverse analysis”

will be applied to refer the problem of parameter identification through the direct approach

and using different minimisation algorithms.

6.2 Main components and methods of inverse analysis

In geotechnical engineering, inverse analysis have been used mainly to estimate rock or soil

parameters based on field monitoring (Ledesma et al., 1996). In the particular case of un-

derground works, the measurements performed in the first excavation stages can be used to

back analyse the parameters which then can be employed to modify/optimise the design and

excavation process.

The main components necessary to perform back analysis through the direct approach are

the following (Oreste, 2005):

1Robustness is seen as the algorithm capability to converge to a satisfactory solution and efficiency is related

to the speed convergence is attained
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• a representative calculation model that can determine the stress/strain field of the rock

mass;

• an error function;

• an optimisation algorithm to reduce the difference between the computed results and the

observed values.

In mathematical terms, the current optimisation problem in geotechnical back analysis

procedures can be stated as: find a set of Np unknown parameters x in a Np-dimension space

(the search space) such that the scalar error (objective) function f(x), which measures the

difference between measured and computed values, is minimised. By minimising f(x) it is

possible to obtain the best set of mean geomechanical parameter values which best fits the in

situ measures.

The error function can take several forms. Its appropriate definition is very important to

obtain good results in the back analysis process (Yang and Elgmal, 2003). The most used error

functions in geotechnical inverse analysis are (Ledesma et al., 1996; Tavares, 1997):

• Least-square method: does not implies any previous knowledge and the parameters are

obtained by minimising a function depending on the squared difference between the mea-

sured and computed values.

• Maximum likelihood approach: probabilistic formulation that can be applied when the

probability density function of the measurement errors is known. This is the method with

higher applicability when using previous information. It estimates the parameters that

maximise the probability of observing the measured data.

The least-square method can be considered a particular case of the maximum likelihood

approach when no a priori information about the parameters exist and the measurement errors

are assumed independent and normally distributed with the same variance. The probabilistic

approach is well suited to incorporate previous knowledge about the parameters and treat ob-

servation errors in a consistent way. However, it is usually difficult to determine the parameters

of the involved probabilistic variables distributions.

Back analysis methods can also be based in uncertain factors like in the Bayesian and

Kalman filter approaches. In the probabilistic approach based on the Bayesian rule, the esti-

mated parameters are the ones with higher probability given the available measurements and

their precision (Cividini et al., 1983; Gioda and Sakurai, 1987). In the Kalman filter method,

measurements, parameters and noise are related through a state equation to estimate an optimal

set of parameters (Murakami and Hasegawa, 1987).



164 6.2. Main components and methods of inverse analysis

Optimisation procedures can be used to systematically search for a set of parameters that

can minimise the difference between measured and computed values. In the field of inverse

analysis there are two main approaches to carry out the minimisation of the error function:

iterative optimisation algorithms form the field of classical optimisation theory such as the

Simplex, the Levenberg-Marquardt or gradient methods (Gens et al., 1996; Ledesma et al., 1996;

Lecampion et al., 2002; Calvello and Finno, 2004); optimisation methods from the artificial

intelligence field like neural networks (ANN), genetic algorithms (GA), evolution strategies

(ES), simulated annealing, etc (Haupt and Haupt, 1998; Hashash et al., 2004).

Concerning the classical optimisation methods, the main differences and their applicability

are related with the use or not of the first (g(x)) and second (H(x)) derivatives of the error

function. This way, these methods can be divided in the following groups (Yang and Elgmal,

2003):

• Zero-order methods (or direct methods): require only the evaluation of f(x). The Simplex,

the Gauss method and the Rosenbrock algorithm are examples of these methods.

• First-order methods (or gradient methods): require the evaluation of f(x) and g(x). In

case g(x) can not be explicitly obtained, which happens when numerical models are used

for instance, its computation can be a challenging task. It can be approximated by finite-

differences or using more complex though accurate methods like the direct differentiation

or the adjoint state method. The conjugate gradient method and the steepest descent are

two examples of these methods.

• Second-order methods: use information about g(x) and H(x) in the optimisation process.

Newton’s method is typically applied when both can be evaluated directly due to its

efficiency. Otherwise, there are several quasi-Newton methodologies to apply indirect

approximations to g(x) and H(x).

The performance of the optimisation method is highly dependent on the problem in which

it is applied. First and second order methods are normally more efficient. However, in some

cases, the error function is not differentiable or the computation of its gradient have a high

computational cost. Also, the success of the procedure is strictly connected to the ability of the

numerical and constitutive models to accurately predict ground behaviour and to the quality

and quantity of measurement data (Mattsson et al., 2001; Sakurai et al., 2003).

These algorithms do not search in the entire parameter space for the optimal solution. They

are characterised by a local search for a minimum of the error function, which are only capable

to attain under some specific conditions. A highly non-linear error function, which is common

in geotechnical problems, may contain several local minima. In this case, different optimised
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points can be identified depending on the initial estimation of the parameters (Calvello and

Finno, 2002). There is no way to determine whether the set of obtained parameters is also

the global minimum of the function. A possible strategy to validate the result is to carry out

several runs of the optimisation process with different initial guesses and analyse the outputs

(Yang and Elgmal, 2003; Levasseur et al., 2007).

Classical optimisation algorithms present a satisfactory performance in terms of robust-

ness and efficiency, in smooth-shaped error functions, with a clearly defined minimum (Figure

6.2). Moreover, they only can back analyse a reduced number of parameters (two or three)

with an important influence on the measured values (Oreste, 2005; Eclaircy-Caudron et al.,

2006; Levasseur et al., 2007). As the number of parameters increase, problems concerning the

non-uniqueness of the solution and convergence of the process arise. If there are correlated

parameters, the problem may be ‘ill-posed’ and an infinity of solutions exist (Zentar et al.,

2001). This way, it is advisable to perform sensitivity analysis before the identification process

to identify coupled parameters and reduce their number to a manageable level (Calvello and

Finno (2004)).

Optimum

Parameter 1

Parameter 2

Error

Figure 6.2: Typical topology of a smooth-shaped error function (adapted from Lecampion et al. (2002))

To overcome much of the classical algorithms mentioned drawbacks, it is possible to use

global optimisation techniques from the field of AI. Evolutionary computation is a subfield of

artificial intelligence related with metaheuristic optimisation algorithms such as:

• Evolutionary algorithms (e.g. GAs and ESs).

• Swarm intelligence (e.g. ant colony and particle swarm optimisation).
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Evolutionary algorithms are robust global optimisation methods, inspired by Darwin’s the-

ory of natural selection and survival of the fittest, which try to mimic the natural evolution

of the species in biological systems (Costa, 2007). They are characterised by a search of an

optimal solution in the entire parameter space. Values of the error function, related to different

parameter sets, are evaluated sequentially and compared. These algorithms do not require any

continuity or convexity property of the error function. Moreover, only information regarding

the objective function and constrains (if they exist) is required to perform the search. Another

characteristic that distinguishes these algorithms from the conventional ones is that they start

from a set of points (population) of solutions that evolves over time, rather from individual to

individual. Figure 6.3 clearly shows this characteristic. It is referred to the identification of

three parameters - shear modulus (Gref ), friction angle (φ′) and K0 - in a excavation problem

using a GA. In this Figure, each point refers to a set of parameters. Along the different gen-

erations, the solution is improved and a group of solution near the experimental value (white

square) is achieved.

Several evolutionary approaches have been applied to global optimisation problems with

success, namely GAs (Holland, 1975; Golberg, 1989; Renders, 1995) and ESs (Rechenberg,

1994; Schefel, 1995). GAs is the most popular type of evolutionary algorithms. A GA is a

class of global stochastic optimisation algorithms which does not need the derivative of the

error function. They try to mimic the way large populations evolve over a long period of

time, through processes such as reproduction, mutation and natural selection. To emulate the

natural phenomenon of evolution, GAs create a population of candidate solutions to a particular

problem, and through a process of random selection and variation, each generation improves

the quality of the solution.

In most GAs, a candidate solution, called an individual, is represented by a binary string.

Each binary string is converted into a phenotype that expresses the nature of an individual, and

its fitness with respect to the error function is evaluated. Based on fitness of the individuals

of a generation, a new one is computed by means of genetic operators such as reproduction,

crossover and mutation. In general, new generations are characterised by an increased average

fitness of the population.

GAs are well known to be able to solve complex optimisation problems with large, discrete,

non-linear and poorly understood optimisation problems (Holland, 1975; Golberg, 1989; Haupt

and Haupt, 1998; Marseguerra et al., 2003; Kang et al., 2004; Wrobel and Miltiadou, 2004).

They are robust and highly efficient but, since they are based on a heuristic methodology, GAs

do not guarantee an exact identification of the optimum solution. However, genetic mechanisms

such as reproductions, crossings and mutations, allow to localise an optimum set of solutions

close to the global optimum in a given search space even with noisy data (Levasseur et al.,
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Figure 6.3: Optimisation of three parameters (Gref , φ′ and K0) in a excavation problem using a

GA (Levasseur et al., 2007). a) Initial population; b) Sixth population; c) Eleventh population; d)

Nineteenth population.

2007). Also, GAs are able to deal with linear or non-linear constrains to the objective function.

ESs are also search procedures that mimic the natural evolution of the species in natural

systems. They are in many ways similar to GAs. For instance, they only require data based on

the objective function and constraints, and not derivatives or other auxiliary knowledge.

Typically, ESs are significantly faster and robust than GAs (Beyer and Schwefel, 2002).

This means that, normally, ESs take less evaluations of the error function to reach convergence

which can be important in reducing the computational effort when using numerical models.

Moreover, ESs are normally more robust algorithms meaning that they are more likely to find

the global optimum.

Normally, while GAs have a good performance to solve discrete or integer optimisation

problems, ESs are better suited to continuous optimisation problems (Schefel, 1995). This

characteristic makes them well adapted to be used for optimisation of geomechanical param-

eters, which are typically continuous values. Surprisingly, the use of GAs is more widespread

and it is not known any application of ESs in the geotechnics field. ESs were recently applied
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to problems in many domains (Costa and Oliveira, 2001) and seem to be one of the most

competitive and promising global optimisation techniques (Moles et al., 2003).

ESs start searching from an initial population (a set of points) and use deterministic transi-

tion rules between generations searching for new points based on mutation and recombination

operators. Constrains are handled, normally, using an elimination mechanism (the non feasible-

points are eliminated). The main differences with GAs, is that ESs use a real coding of decision

variables and the adaptation of step sizes for mutation during the optimisation process. This

last issue is one of the most promising features of ESs. The performance of ESs is largely

dependent on the adjustments of the internal parameters. This way, since also the step sizes of

mutation are themselves optimised during the search, the overall procedure is enhanced.

One of the main drawbacks of evolutionary algorithms is the number of error function

evaluations to reach convergence. When complex numerical models are used, the computational

effort can turn the optimisation procedure infeasible. To overcome this limitation, research is

needed to improve the efficiency of these techniques in order to bring the computational time to

acceptable levels. These algorithms are particularly well-suited to implementation on parallel

computers which can also be used to reduce the time of the process. If the number of processors

exceeds the population size, multi-level parallelisation may also be possible.

In spite all the recent advances in numerical methods, availability of affordable high per-

formance computers and novel monitoring techniques and devices, back analysis have not yet

become a common task in day-to-day practice of geotechnical engineering. In fact, several re-

search studies can be found in literature about various aspects related with these methodologies,

however, very few applied to real works and with direct impact to companies and practitioners.

Sakurai et al. (2003) presented some justifications for this fact.

• Normally engineers do not have the knowledge nor the time to manage both on site

practices and execution of back analysis.

• Back analysis are not included in the contracts’ specifications.

• Practical methods for using back analysis results have not been developed and tested to

a satisfactory level in order to be accepted by the industry.

6.3 Use of classical and new optimisation algorithms in inverse

analysis applied to underground structures

Since the use of optimisation algorithms based on AI is very recent in geotechnical engineering,

most applications so far have been developed based on the use of classical algorithms to minimise
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the error function.

In the particular case of underground works, several studies have been carried out concerning

the identification of geomechanical parameters. The first application developed in this field was

presented by Gioda (1980). In the same year, Gioda and Maier (1980) developed a methodology

to estimate the strength parameters and the stress state using the interpretation of results of

water pressure tests in a tunnel. In the same decade, other important works concerning the use

of in situ measurements as input for back analysis in geotechnical engineering were proposed

(Sakurai and Takeuchi, 1983; Gioda and Sakurai, 1987). After that time, several studies were

developed. In this work only some of the most important ones will be mentioned.

Hisatake (1985) proposed a method to estimate initial stresses and mechanical constants of

a time-dependent ground, combining the finite element method with the simplex optimisation

technique. In their benchmark paper, Ledesma et al. (1996) used the Gauss-Newton and the

Levenberg-Marquardt methods to minimise the maximum likelihood error function to estimate,

within a probabilistic framework, the geomechanical parameters of the rock mass interesting

the powerhouse cavern of Estanygento-Sallente in the Spanish Pyrennes (Figure 6.4).

Figure 6.4: Excavation sequence and field instrumentation of the Estanygento-Sallente powerhouse

cavern (Ledesma et al., 1996).

Swoboda et al. (1999) used the boundary control method, which tries to combine the ad-

vantages of both direct and inverse approaches, to develop a general code suitable to perform

identification on large and complex geotechnical models. The author applied this methodology

to the identification of elastic parameters in a shallow subway tunnel (Figure 6.5).
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Figure 6.5: Tunnel and field instrumentation layout (Swoboda et al., 1999).

Deng (2001) proposed a back analysis method based on the minimisation of the error on

the virtual work principle. It showed to be a simple and reliable method which did not use the

derivatives of the cost function. The developed methodology was applied to back analyse elastic

and elasto-plastic parameters in three case studies, namely: the mining basin of Nord-Pas-de

Calais in France, the Cidade Universitária tunnel of Lisbon Metro and the Água Vermelha dam

in Brasil.

In order to identify the in situ state of stress and the deformability of the rock mass for the

Alto Lindoso powerhouse complex, Castro et al. (2002) developed a methodology which used

directly the equations of the finite element formulation. It is an interesting approach since it

considers information from the previous excavation stages to compute the actual state allowing

to back analyse ne different elasticity modulus zones and ns different initial state of stresses

zones. Moreira et al. (2003) also developed an iterative back analysis methodology based on

the finite element method together with a maximum likelihood error function and the Gauss-

Newton minimisation algorithm. It was successfully applied to identify the parameters of the

soils interested to the surface terminus tunnel of the Alameda II station of Lisboa metro. In

this work, two types of model were considered, namely: a linear elastic either isotropic and

transverse-isotropic and hyperbolic with isotropy.

Considering a more complex elasto-viscoplastic constitutive law, Lecampion et al. (2002)

identified the parameters from measurements on an underground cavity, using a least-square

error function together with the Levenberg-Marquardt algorithm. An innovative approach was
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presented by Sakurai et al. (2003). The authors developed a back analysis procedure to identify

the strain distribution around a tunnel starting from a linear elastic model and adjusting the

results numerically by adding a set of forces to translate the non-linear material behaviour and

other factors yielding non-linearity to the model (Figure 6.6). Fakhimi et al. (2004) estimated

soil cohesion and the in situ horizontal stress using measures of tunnel convergence.

Figure 6.6: Approach to back analysis developed by Sakurai et al. (2003).

More recently, Eclaircy-Caudron et al. (2007) and Jeon and Yang (2004)used the finite

difference computer code FLAC coupled with external optimisation programmes and routines.

The first authors used the back analysis software SiDolo, which uses a hybrid optimisation

algorithm combining a gradient method with a variant of the Levenberg-Marquardt, to identify

parameters in the case of an axisymetric model of a tunnel. Moreover, they performed similar

calculations considering results of triaxial and pressurmeter tests. The latter authors, used

the same methodology applied to underground works models together with three direct search

algorithms.

In spite of the extension of the mentioned cases, many other studies have been conducted to

develop different models of displacement-based back analysis (Gioda and Jurina, 1981; Sakurai

and Takeuchi, 1983; Sakurai, 1997; Singh et al., 1997; Cai et al., 1998; Zhao et al., 1999; Gioda

and Swoboda, 1999; Yang et al., 2000).

To have a broader view of the application range of these methodologies, it is important to

mention studies concerning the use of back analysis to other geotechnical engineering problems.

Amusin et al. (1992) used a theoretical-empirical back analysis approach applied to the results

of laboratory tests. For the same purpose, Mattsson et al. (2001) developed an optimisation

routine using the Rosenbrock and the Simplex methods both belonging to the category of the

direct search methods. Yang and Elgmal (2003) applied Newton’s method and a optimisation

program which uses a quasi-Newton approach to estimate shear stress-strain parameters from
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triaxial tests.

Many back analysis applications have been carried out using results from pressuremeter

tests (Cambou and Bahar, 1993; Zentar et al., 2001; Rangeard et al., 2003). Calvello and

Finno (2004) identified the parameters for the elasto-plastic Hardening Soil model in four clays

using results from triaxial tests calibrated by monitoring data given by inclinometers in a

supported excavation. Sheu (2006) adopted the meshless local Petrov-Galerkin method and

Bayesian statistics to develop a direct back analysis procedure for the particular case of transient

problems. This model does not use a finite element mesh since it is derived over a local domain.

This way, measured data acquired at discrete points may be directly used into the model.

In a first approach of using AI techniques in back analysis, Shang et al. (2002) based on

approximately 100 case studies of tunnel projects in China, used an Intelligent Back Analysis

to investigate rock mass properties (stresses and rock mass modulus) around tunnels. Using

the boundary element method the back analysis is performed under the guidance of experts’

knowledge. Also, a case-based system of back analysis was applied to identify probable failure

modes for tunnels and underground openings (Lee and Sterling, 1992).

In spite of the current application of evolutionary optimisation algorithms in several field,

their use in geotechnical engineering is still scarce. Very few applications of these methods can

be found in literature but the results are very promising when compared with the performance of

classical algorithms to the typical geotechnical problems of parameter identification. Levasseur

et al. (2007) presented a study comparing the behaviour of two different optimisation techniques

in geotechnical problems, namely, the steepest descent and a genetic algorithm. They applied

them to the results of a pressuremeter test and to monitoring results of a sheet pile wall retaining

an excavation. They found that the GA is particularly suitable to identify soil parameters when

the topology of the error function is complex. The GA worked well in every situation even in the

cases where parameters are non-influent or correlated. However, it is computationally expensive

and perhaps prohibitive if there are only a few parameters to identify.

Deng and Lee (1981) developed a method for displacement back analysis, based on ANNs

and GAs to identify the elasticity modulus in slope stability analysis. The ANN replaces the

finite element calculation in order to enhance the calculation efficiency and the GA is used as a

global optimisation method. A similar approach was adopted by Pichler et al. (2003) to identify

parameters of elastic and elasto-plastic models. In this application, the GA was used not only

as a global optimisation technique to find the optimal solution but also for the initial choice of

the network weights in order to improve the training procedure.

Simpson and Priest (1993) used GAs to identify discontinuity frequency in a fractured rock

mass, Goh (1999) to analyse slip surfaces and Pal et al. (1996) like Samarajiva et al. (2005) to

calibrate laboratory test results.
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6.4 Application of gradient optimisation algorithms to a verifi-

cation problem

6.4.1 Introduction

A synthetic verification example of a tunnel excavation is used to test the capabilities of gradient

optimisation algorithms in geomechanical parameters identification both in elasticity and in

elasto-plasticity. A least-square error function was used together with three different algorithms,

namely: the steepest descent (SD), the conjugate gradient (CG - PR version: unidimensional

exact search) and quasi-Newton (QN - DFP version). The gradient of the error function was

approximated by finite differences. Parameters like efficiency and robustness of each algorithm

were investigated.

A three-dimensional (3D) numerical model of the tunnel, developed with the finite difference

software FLAC3D, was used considering the different construction stages. In a first stage,

the algorithms were tested in elasticity and afterwards using the Mohr-Coulomb elasto-plastic

constitutive model.

The analysis started with the definition of a set of geomechanical parameters which were

attributed to the surrounding rock mass to obtain the ”monitored” measures in a given section.

Then, different perturbations were applied to the parameters to check if the algorithms were

able to identify the correct values.

The overall procedure of the back analysis is schematised in Figure 6.7. First an initial set

of parameters is defined and introduced in the numerical model. The response of the model is

then computed allowing to evaluate the error between computed and ”observed” measurements.

If the error is below a certain pre-defined tolerance (in this case 0.1%) the process is stopped

and the set of parameters is the optimised one. If the error is above the defined threshold, a

new set of parameters is calculated based on the considered optimisation algorithm and a new

iteration is computed. This process is iteratively repeated until convergence is reached.

6.4.2 Numerical model

The developed numerical model is a tunnel composed by a 4 m radius arch and a vertical wall

with the same span. The considered sequential excavation steps were the excavation of the top

heading followed by the bench excavation. Between these steps the support system composed

by 20 cm of shotcrete was installed. The excavation is carried out in 3 m length consecutive

advances. The consideration of the excavation sequence is extremely important specially when

significant plastic zones occur. In this case, the stress state and displacements of the previous

stages have significant impact on the excavation stage being analysed.
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Figure 6.7: Scheme of the back analysis procedure using gradient optimisation algorithms.

The initial model presented 40 m depth and 90 m length. It was composed by 31130 zones

and 35399 nodes and took approximately two hours to run. Since it was intended to perform

several calculations with the model, it was decided to simplify it in order to decrease the

computational time. These simplifications were related with the extension of the model, which

was reduced to 20 m, and mesh refinement. The tunnel depth was also reduced to 24 m. As a

result, the simplified model was composed of 1110 zones and 1375 nodes and took only about

two minutes to run (Figure 6.8).

In a first stage, an elastic constitutive model for the rock mass was considered with a

deformability modulus (E) of 2 GPa and a Poisson coefficient (ν) of 0.1. A gravitational stress

state was considered with a horizontal to vertical stress ratio (K0) of 0.8.

In this calculation, a total of five measurements in the reference section were considered

through different combinations, namely: vertical displacements at the surface, at the top of the

arch and in the tunnel floor; and horizontal (perpendicular to the tunnel axis) displacement

and stress in the middle point of the wall. Table 6.1 resumes the results obtained with the

initial parameters which were used as monitored values in the back analysis calculations.

In a second stage, calculations were performed to identify the strength parameters of the
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(a)
(b)

Figure 6.8: Initial (a) and simplified (b) models for the back analysis calculations.

Table 6.1: Computed values for the elastic calculation.

Horizontal stress in the wall (kPa) 180

Surface 0.493

Displacements (mm) Arch 1.278

Wall 1.045

Floor 1.810

Mohr-Coulomb failure criterion. The adopted values for cohesion (c’) and friction angle (φ′)

were, respectively, 50 kPa and 32o. These values are relatively low for a rock mass but their

choice is related to the fact that it was intended that plastic zones occurred in the model,

namely near the excavation, to check their influence on the back analysis process.

In the calculation using the Mohr-Coulomb constitutive model, four measurements were

used. In this case, two displacements and two stresses (one horizontal and one vertical for each)

were adopted. In Table 6.2 the results of this calculation are presented.

Table 6.2: Computed values for the plastic calculation

Horizontal stress in the wall (kPa) 171

Vertical stress in the arch (kPa) 151

Displacements (mm) Arch 1.664

Wall 1.578
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6.4.3 Used back analysis techniques

The error function used in this verification example was the least square equation translated

by equation 6.1.

ε =
1

m
·

m∑

j=1


ηj − fj (x)

ηj




2

=
1

m
·

m∑

j=1


1−

fj (x)

ηj




2

(6.1)

where ε is the mean squared error, x is the vector of n components of the parameters to

estimate, ηj is the j measurement obtained during tunnel construction, fj is the computed

value correspondent to the j measurement and m is the in situ measurement number. The

iterative process is carried out until ε is below a pre-defined threshold. In the tested verification

example a value of 0.1% was adopted for this parameter.

The minimisation of this function was carried out using three different optimisation algo-

rithms which use the gradient of the error function to guide the search. These methods always

start from an initial approximation of the parameters. The next (i + 1) iteration is computed

based on the current one (i) in the form:

x(i+1) = x(i) + α(i) · d(i) (6.2)

x(i+1) is the parameter vector of the next iteration, x(i) is the parameter vector of the current

iteration, d(i) defines the search direction and α(i) the length of the advancement step. The

search direction was defined using three different algorithms: steepest descent (SD), quasi-

Newton (QN) and conjugate gradient (CG).

In the SD method, the search direction is dependent on the gradient of the error function

in the following form:

d(i) = −g
(
x(i)

)
(6.3)

where g
(
x(i)

)
is the error function gradient vector in relation to the parameters which is given

by:

g
(
x(i)

)
=

2

m
·

m∑

j=1


1−

fj (x)

ηj


 ·


−

1

ηj
·
dfj (x)

dx


 (6.4)

which implies the evaluation of the numerical model gradient vector in relation to the param-

eters. This is one important issue relating the application of these algorithms. Normally, the

gradient is approximated by finite differences. The main difficulty in this approach is to de-

termine the step of the finite difference calculation. The influence of this choice will also be

investigated in this study. With this methodology, the gradient is computed as follows:
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 df

dx




x=x(i)

=
f

(
x(i) + ∆x(i)

)− f
(
x(i)

)

∆x(i)
(6.5)

in which ∆x(i) is a vector that includes the increment of only one of the parameters.

In the QN method the search direction is obtained in the following way:

d(i) = −H(i) · g
(
x(i)

)
(6.6)

In the DFP method, the H(i) matrix is determined by equation 6.7:

H(i) = H(i−1) −
H(i−1)yyT H(i−1)

yT H(i−1)y
+

ssT

sT y
(6.7)

where,

s = x(i) − x(i−1) (6.8)

y = g(x(i))− g(x(i−1)) (6.9)

The H(i) matrix takes the value of the identity matrix for i = (0, n, 2n, . . .) in which n is the

number of parameters. This means that, in these iterations, the search direction coincides with

the one obtained by the SD method. In the case of the CG method, this direction is defined

by:

d(i) = −g(x(i)) + β(i−1) · d(i−1) (6.10)

the β matrix is computed as follows:

β(i−1) =
g(x(i))T y

g(x(i−1))T g(x(i−1))
(6.11)

The β matrix takes the null value for i = (0, n, 2n, . . .) meaning that, in these iterations,

the search direction coincides with the one obtained by the SD method.

The mean squared error condition requires that αi is chosen is such a way to satisfy equation

6.12:

dε(αi)

d(αi)
= 0 (6.12)

where,
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Developing equation 6.13 in Taylor series in x(i) until the first order element one obtains:
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Taking the derivative of this equation and putting it equal to zero as indicated in equation

6.12:
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From equation 6.15 it is possible to determine the value of αi:
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This equation can be generalised for the case of n parameters in the following way:
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6.4.4 Obtained results

As it was already referred, in the performed back analysis calculations it was considered an

elastic model, with identification of E and K0, and an elasto-plastic model (Mohr-Coulomb),

in order to identify c′ and φ′.
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All the calculations were carried out affecting the parameters with a given deviation in

relation to the ”real” values, and performing the back analysis procedures to analyse their

behaviour under different circumstances. In the elastic model case, the SD algorithm was

used, in a first stage, to analyse the importance of these deviations, together with the type

and number of measurements, in the convergence of the algorithm. Moreover, the step of the

finite difference approximation to the gradient was also analysed in terms of its influence in

convergence and speed of the process. The behaviour of this algorithm considering the input of

one extra parameter, simulating the ‘ill-posed’ problem of having more parameters to identify

than available measurements was also studied. In a second stage, the performance of the three

algorithms was tested considering the measurement of one stress and one displacement and

different initial deviations of the parameters.

In the calculation considering an elasto-plastic behavioural model, the three algorithms

were used to estimate the Mohr-Coulomb strength parameters considering different number of

measurements and deviations for the parameters initial approximations. Moreover, the influence

of the finite difference step in the identification process convergence was also tested.

In the first performed example, the SD algorithm was used considering two vertical displace-

ment measurements (surface and arch of the tunnel) and identification of only one parameter

(E). Several deviations from the ”real” values of the parameters were tested. In the text the

sign (+) in the deviation means that the values were increased, while (−) means otherwise.

Also, two different steps for the gradient calculation were considered (2% and 10%). In Table

6.3 the main results are presented.

Table 6.3: Results of the identification process of E with two displacement measurements.

Iterations number Identified value E (GPa)

Deviations Step 2% Step 10% Step 2% Step 10%

10% (+) 1 1 2.042 1.996

25% (−) 2 2 1.983 2.010

25% (+) 2 2 2.030 2.022

50% (+) 3 3 2.000 2.008

50% (−) 3 3 2.001 2.011

100% (+) n.c. n.c. - -

n.c. - no convergence was obtained.

The results show that the identification process converges to the real solution in a reduced

iterations number excepting for the case of 100% deviation. In this case, the value of E was

negative in the second iteration which stopped the calculation. The algorithm must be adapted
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in order to contemplate the cases where the parameters take values without physical meaning

which can be done by using constrains to the parameter values translating a priori knowledge

about their interval range (for instance by experts’ knowledge). However, deviations of this

magnitude are not expected to happen often in practice, therefore non-convergence in this case

is less important.

The step value of the finite difference calculation did not influence the identification process.

The convergence and speed of back analysis, as well as the quality of the results, were unchanged

(Figure 6.9). In fact, the final values of E are the correct ones within the maximum error

tolerance (ε < 0.01%).
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Figure 6.9: Convergence of the identification process considering two steps for the finite difference

calculation for the case of 50%(−) deviation.

In the following calculation, the same measurements were used in order to identify both E

and K0, considering a 10% step for the finite difference. Table 6.4 resumes the overall results.

Table 6.4: Results of the identification process of E and K0 with two displacement measurements.

Identified values

Deviations Iterations number E(GPa) K0

25% (+) 2 2.280 0.566

50% (+) 2 2.683 0.233

10% (+) 1 2.085 0.706

50% (+) for E and

50% (−) for K0

1 2.797 0.084
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In this case, convergence is reached in a very reduced iteration number but not for the correct

values. There are an endless number of possible combinations for the parameters which lead to

the same measurement values. The non-unicity of the solution is due to the high correlation

between the two used measures (two vertical displacements). The problem is ‘ill-posed’ since, in

practice, this high correlation is similar to the use of only one measure to identify two unknown

parameters.

In this context, calculations were repeated replacing the vertical measurement at the surface

by the horizontal displacement in the wall of the tunnel. It was intended to check the differences

in the algorithm performance when using less correlated measures. Table 6.5 presents the

obtained results.

Table 6.5: Results of the identification process of E and K0 with one horizontal and one vertical

displacement measurement.

Identified values

Deviations Iterations number E(GPa) K0

25% (+) 5 2.012 0.802

50% (+) 3 2.066 0.811

10% (+) 3 2.083 0.810

50% (+) for E and 50% (−) for K0 n.c. - -

n.c. - no convergence was obtained.

In three of the tested cases convergence was achieved for the correct parameters. In practical

terms, the results show that, in some cases, it is possible to proceed with back analysis using

only a few displacement measurements provided that they do not have a high correlation degree.

It is worth to mention that the iteration number required for a 50% deviation was less than the

one needed for the 25% deviation case. As it is possible to observe from Figure 6.10, for the

first case the error function shows an initial higher slope which provides faster convergence.

Other parameters were added to the identification process, namely, the volumic weight of

the rock and the deformability modulus of the support system. However, and in line with

the conclusions of other studies (Oreste, 2005; Eclaircy-Caudron et al., 2006; Levasseur et al.,

2007), it was not possible to identify these parameters since they have reduced influence on

the measurements. The optimisation algorithms use the derivative values to determine which

are the parameters with higher influence on the error function value. This way, varying the

parameters with more influence on the measures allow faster convergence to be attained. Pa-

rameters with low influence on measurements, and consequently lower gradient value, will tend

to stabilise around a certain value while the algorithm searches for the minimum varying the
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Figure 6.10: Error function values during the identification process for two different deviations.

more influencing parameters.

Still considering displacement-based back analysis, calculations were performed using more

measurements than parameters to identify. In the process, three measures were used, namely

the vertical displacements in the arch and floor of the tunnel and the horizontal displacement

in the wall. A fourth measure was then added - the surface vertical displacement - to analyse

the effect of the input of a highly correlated measure. The results are presented in Table 6.6.

Table 6.6: Results of the identification process of E and K0 with three and four displacement mea-

surements

Identified values

Deviations Iterations

number

Measurements

number

E(GPa) K0

25% (+) 5 3 2.058 0.807

50% (+) 8 3 2.025 0.803

10% (+) 4 3 2.038 0.820

50% (+) for E and 50% (−) for K0 12 3 2.061 0.799

25% (+) for K0 and 25% (−) for E 2 3 1.970 0.794

50% (−) 5 3 1.940 0.796

25% (+) 5 4 1.986 0.799

50% (+) for E and 50% (−) for K0 8 4 2.032 0.788

The results show that using three displacements, the identification process is stable and

convergent. The correct values were identified in a reduced iterations number. Using the

information collected along the several performed iterations it was possible to draw the function
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error topology as well as a plan view with isolines of error values. This task was carried out

by means of a a Kriging algorithm (Journel and Huijbregts, 1978; Cressie, 1991). This is

a geostatistical griding method which can smoothly interpolate the shape of a surface from

irregularly spaced data.

Figure 6.11 presents the topology of the error function for the present case. It is a convex-

shaped surface with a clearly defined and singular minimum correspondent to the optimum set

of parameters. Gradient-based algorithms normally show good performances in optimisation

problems with this type of regular error functions.

Normally, higher deviations mean more iterations needed to reach convergence. However,

this is not the case when the deviations have different signs for the parameters. In this case,

the behaviour is more unpredictable and dependent on the characteristics of the error function

surface. When comparing these results with the ones provided in the case using only two

displacements (see Table 6.5), it can be stated that the use of more measurements leads to a more

time consuming process (more iterations needed to match all the considered displacements).

However, when using a higher measurement number the process is more robust since convergence

was reached in the case where the process of using only two measures failed.

(a)
(b)

Figure 6.11: Topology of the error function on the identification of E and K0 for the case of using

three measurements. (a) 3D view (b) Plan view.

The consideration of one additional correlated measurement in the identification process

increased convergence speed in one of the two tested cases. The number of iterations was

reduced meaning that, event though the high correlation, the process can be enhanced by the

inclusion of such measurements. It can then be stated that, in displacement-based back analysis

in elasticity, a high number of reliable displacements should be used.

The performance of the three algorithms was compared through several simulations, con-
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sidering the measurement of one vertical displacement (tunnel arch) and one horizontal stress

(tunnel wall) with different initial deviations. All the finite difference approximations to the

gradient were computed with a 10% step with the exception of two calculations. For the cases

of the QN and CG algorithms, one example was computed with a 2% step in order to check the

sensitivity of these algorithms to the variation of this parameter. The results of the simulations

are resumed in Tables 6.7, 6.8 and 6.9.

Table 6.7: Results of the identification process of E and K0 with one stress and one displacement

measurements using the SD algorithm

Identified values

Deviations Iterations number E(GPa) K0

25% (+) 4 2.016 0.774

50% (+) 4 2.107 0.791

100% (+) 10 2.056 0.730

50% (−) 3 2.029 0.789

50% (+) for K0 and 50% (−) for E 10 1.907 0.822

25% (−) for K0 and 25% (+) for E 2 1.992 0.796

25% (+) for K0 and 25% (−) for E 7 1.950 0.837

Table 6.8: Results of the identification process of E and K0 with one stress and one displacement

measurements using the QN algorithm

Identified values

Deviations Iterations number E(GPa) K0

25% (+) 4 2.029 0.771

50% (+) 6 2.121 0.753

100% (+) n.c. - -

50% (−) 4 1.997 0.791

50% (+) for K0 and 50% (−) for E 8 1.928 0.799

25% (−) for K0 and 25% (+) for E 2 2.150 0.702

25% (+) for K0 and 25% (−) for E 7 1.909 0.820

25% (+) for K0 and 25% (−) for E

(step 2%)

6 1.941 0.822

n.c. - no convergence was obtained.

With exception of one calculation, every tested case converged to the correct parameter

values, within the established tolerance. Only for a 100% deviation in both parameters, the

identification process with the QN algorithm provided a negative value for K0. As it was already
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Table 6.9: Results of the identification process of E and K0 with one stress and one displacement

measurements using the CG algorithm

Identified values

Deviations Iterations number E(GPa) K0

25% (+) 3 2.161 0.739

50% (+) 4 2.094 0.742

100% (+) 8 1.998 0.775

50% (−) 6 1.954 0.817

50% (+) for K0 and 50% (−) for E 4 2.020 0.781

25% (−) for K0 and 25% (+) for E 4 1.929 0.837

25% (+) for K0 and 25% (−) for E 5 1.925 0.850

25% (+) for K0 and 25% (−) for E

(step 2%)

6 1.994 0.796

referred, this problem is not very relevant since so high deviations are not expected to happen

often in practice and it can be solved with the introduction of simple constrains.

In relation to performance, i.e., the number of iterations required to achieve convergence,

the algorithms present some significant differences. This aspect is particularly relevant in back

analysis problems using high computational cost numerical models (3D for instance) since a

high iteration number can lead to prohibitive computational times. In Figure 6.12 a comparison

of the algorithms performance is presented.
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Figure 6.12: Comparison between the algorithms in terms of efficiency.

The CG algorithm is the most efficient. In a total of seven analysed cases, only in two

it is outperformed by the remaining algorithms. It takes a mean of 4.9 iterations to reach
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convergence while the SD and QN algorithms, need 5.2 and 5.7 iterations, respectively. It is

worth to mention that the last did not reach convergence in one of the studied cases. In Figure

6.13 the evolution of the error function along the iterative process for the three algorithms is

presented considering the case of 25% (+) and 25% (−) deviations for K0 and E, respectively.

In this case, the behaviour of the SD and QN algorithms are very similar, while the CG presents

an enhanced performance from the third iteration.
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Figure 6.13: Evolution of the error function values during the identification process for the three

algorithms.

A calculation was performed to check the sensitivity of the QN and CG algorithms to the

step of the finite difference calculations. As it can be observed in Tables 6.8 and 6.9 the impact

is reduced. The number of iterations only varied one unity considering the two different steps.

It can be concluded that, in elasticity, the adopted step for the finite difference approximation

to the gradient has a low impact in the convergence speed. However, mainly for the last two

algorithms, more tests are needed with different deviations to allow generalising this conclusion

and also to check for possible implications on convergence itself.

Using the developed numerical model, several identification processes were carried out to

identify the strength parameters of the Mohr-Coulomb failure criterion (c’ and φ′) under differ-

ent conditions. Using the three algorithms, simulations were carried out considering different

deviations and a variable number of available measurements. Table 6.10 resumes the obtained

results. Whenever omitted, a step of 10% for the finite difference calculation was used.

As it can be observed, in the cases convergence was obtained, the identified parameters

are relatively different from the correct ones. This tendency is more pronounced for c’ where
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Table 6.10: Results of the identification process of c′ and φ′.

Identified values

Algorithm Deviations Iterations

number

Measurements

number*

c′(kPa) φ′(o)

10% (+) 3 3 54.78 31.20

25% (+) 6 2 59.14 30.35

25% (−) 2 2 39.62 33.65

25% (+) 5 3 60.20 30.33

SD 25% (+) 3 4 60.17 30.14

25% (+) 2% step 2 3 59.32 29.97

25% (+) 15% step n.c. 2 - -

25% (+) for c′ and

25% (−) for φ′
2 3 63.67 29.84

25% (+) n.c. 3 - -

QN 25% (+) 2% step n.c. 3 - -

25% (+) 15% step n.c. 3 - -

25% (+) n.c. 3 - -

CG 25% (+) 2% step 5 3 58.67 30.35

25% (+) 15% step n.c. 3 - -

* 2 measurements: vertical displacement in the crown and horizontal stress in the wall; 3 measurements: equal

to the previous plus the horizontal displacement in the wall; 4 measurements: equal to the previous plus

vertical stress in the crown; n.c.: no convergence was obtained.

higher deviations were found. Figure 6.14 presents the topology of the error function in the

case of two measurements. The main characteristic that can be observed is the presence, in

the studied parameter space, of two local minima and the low convexity of the function. In

this situation, it is expected that gradient-based algorithms perform poorly. In fact, the non-

convergence in several cases may be related with the flatness of the error function. In the cases

where convergence was achieved, the identified parameters corresponded to the local minima

nearer the initial point.

The number of observations did not change substantially the final values of the parameters.

However, the convergence speed increased with the available measurement number, which is an

important issue. This statement can be observed by the evolution of the parameter values in

the identification process considering, for instance, a deviation of 25%(+) (Figure 6.15).

This conclusion is in contradiction to what was verified in elasticity, where a higher number

of measurements considered in the back analysis led to a more robust but less efficient (more

iterations needed) process. This way, it is necessary to perform complementary calculations to

analyse this particular issue.

The QN algorithm never reached convergence while for the case of the CG only in one case
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(a)
(b)

Figure 6.14: Topology of the error function on the identification of c′ and φ′ for the case of using two

measurements. (a) 3D view (b) Plan view.
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Figure 6.15: Evolution of the c′ (a) and φ′ (b) values during the identification process using the SD

algorithm together with different number of available measurements.

it was attained. These algorithms showed a poor performance in elasto-plasticity. The step of

the finite difference calculation is very important in this case. The use of a smaller value for the

step (2%) allowed, in the case of the SD algorithm, to speed up convergence, decreasing from 5

to 2 the number of iterations required to stop the process. In the case of the CG algorithm it

allowed convergence to be obtained. This way, it can be concluded that, in elasto-plasticity, the

gradient calculation has a high influence on the back analysis in both speed and convergence

of the estimation process. When using the finite difference method to compute its approximate

value, a low step should be used in order to increase the process stability.
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6.5 Application of Evolution Strategies (ES) to analytical ver-

ification problems

6.5.1 Introduction

To test the performance of ESs in the identification of geomechanical parameters, two verifi-

cation problems of a circular tunnel in an elastic and elasto-plastic medium were developed.

Since a larger number of error function evaluations were expected due to the nature of the

algorithm, analytical solutions were used to reduce the computational time. As in the previous

application, the least-square error function was used.

Geomechanical parameters were attributed to the rock mass in order to obtain the ”moni-

tored” values. These algorithms do not work with an initial approximation to the solution but

with constrains to the parameters values. These constrains were used to define interval ranges

for the geomechanical parameters to identify. Different magnitude intervals were established in

order to evaluate the stability of the algorithm.

The used analytical models were developed by Rocha (1976) and Salençon (1969), for the

elastic and elasto-plastic solutions, respectively. The adopted characteristics for each problem

are presented in Table 6.11.

Table 6.11: Characteristics of the verification problems.

Elastic case Elasto-plastic case

Radius 5 m 1 m

Depth 20 m 20 m

Geomechanical

parameters

E = 1500MPa and

ν = 0.34

E = 1500MPa; ν = 0.21 ;

φ′ = 30o; c′ = 3.45MPa and ψ = 0

Stress field Gravitic: σV = 0.75MPa

and K0 = 0.5

Isotropic: σ0 = 0.54MPa

ν - Poisson coefficient; ψ - dilation angle; σV - vertical stress; σ0 - isotropic stress.

In the elastic case, a total of four measurements, two stresses and two displacements, were

used in the identification process, namely: the vertical and horizontal displacements in the arch

and wall of the tunnel and horizontal and radial stresses.

In the elasto-plastic case, the initial set of parameters did not cause yielding to happen in

the rock mass surrounding the opening. This way, the rock mass behaves elastically, therefore,

this case was used mainly to investigate the possibility to identify strength parameters when no

plastic zones occur. In a second stage, the isotropic stress was increased to a value of 30 MPa in

order to study the effect of yielding and increased non-linearity of the problem in back analysis.
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Since an isotropic field stress was used, the measurements located at the same distance from

the tunnel centre were equal. This way, a total of three radial measurements, two displacements

and one stress, were considered in the back analysis process. The displacements were taken at

distances of 1 m and 4 m from the tunnel centre. In relation to the measured stress a 1.5 m

distance was assumed.

The back analysis procedure for this case is schematised in Figure 6.16. First a initial

generation of ten potential solutions is coded by the algorithm. The response of the analytical

model is computed considering these solutions. If the stopping criteria is met (in this case

two error values are considered as it will be described latter) the process is stopped and the

solution is the set of parameters correspondent to the lower value of the error function within the

generation. Otherwise, a new generation is coded by the ES algorithm using genetic operators

(like mutation and recombination) and tested again with the analytical model in an iterative

process until convergence is achieved.

Figure 6.16: Scheme of the back analysis procedure using the ES algorithm.

A total of 19 cases were tested in elasticity and elasto-plasticity considering different com-

binations of measurements and parameters to identify. In each case, 10 different ranges for the

parameters were considered for efficiency check of the algorithm. Table 6.12 resumes all the
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different combinations of measurements and parameters in the analysed cases.

Table 6.12: Adopted combinations of measurements and parameters for the evaluation of the ES

algorithm in back analysis.

Case Parameters Measurements

1 E uarch and σH

2 E and σH uarch and σR

Elastic case 3 E and σH uarch and uwall

4 E, σH and ν uarch and σR

5 E, σH and ν uarch, uwall and σR

6 c’ and φ′ u1m, u4m and σRpl

Elasto-plastic case 7 E and φ′ u1m, u4m and σRpl

No-Yielding 8 E and c’ u1m, u4m and σRpl

9 c’ and φ′ u1m and σRpl

10 E and φ′ u1m and σRpl

11 E and c’ u1m and σRpl

12 E, c’ and φ′ u1m, u4m and σRpl

13 c’ and φ′ u1m, u4m and σRpl

Elasto-plastic case 14 E and φ′ u1m, u4m and σRpl

With Yielding 15 E and c’ u1m, u4m and σRpl

16 c’ and φ′ u1m and σRpl

17 E and φ′ u1m and σRpl

18 E and c’ u1m and σRpl

19 E, c’ and φ′ u1m, u4m and σRpl

6.5.2 Evolution Strategies

Due to the lack of knowledge in the geotechnics field concerning the fundaments of ESs, in

this subchapter some of the main issues concerning these algorithms are presented with special

emphasis to the ES used in the analysed verification problems. It is not intended to give a

thorough insight about the specific features of the ESs (many handbooks were already devoted

to this subject e.g. Bäck (1996)) but to provide a general presentation of their characteristics.

The ESs algorithms are search procedures that mimic the natural evolution of the species in

natural systems. They work directly with the real representation of the parameter set, searching

from an initial population (a set of points) normally generated at random, requiring only data

based on the objective function and constrains, and not derivatives or other auxiliary knowledge.

Transition rules are deterministic and the constrains are normally handled eliminating the points

outside their range.

For differentiation sake, there was the necessity to establish a nomenclature distinguishing
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the existent types of ESs. This nomenclature is based on the parents (µ) and offspring (λ)

number and selection type designated as ‘+’ or ‘,’. The most simple form of ES is the so-called

two-membered (1+1)-ES (Schwefel, 1965). In this strategy, at a given generation, there are only

one parent (µ=1) and one offspring (λ=1) generated by mutation adding a random quantity

z(k) to the parent. Selection takes place between the two in relation to the error function value,

provided that it satisfies all the constrains. The selected one becomes then the parent of the

next generation and the process is repeated until the stop criteria is met (Costa and Oliveira,

2001).

Usually, the random numbers z(k) are generated according to a Normal distribution with

mean zero and variance σ2
i . The initial standard deviations σi can be set using equation 6.18.

σ
(0)
i =

∆x√
n

(6.18)

where ∆x is a rough measure of the distance to the optimum and n is the dimension problem.

However, it can be difficult to estimate ∆x therefore the alternative equation 6.19 can be used.

σ
(0)
i =

βi − αi

λ
√

n
(6.19)

where αi and βi are the lower and upper bounds of the decision variable i. The standard devi-

ations (or step size) are actualised during the process using different rules and self-adaptation

schemes which enhances the algorithm performance (Rechenberg, 1994).

From the appearance of the (1 + 1)-ES algorithm, several developments have been carried

out. Nowadays, two main distinct types of ESs, differing basically on the selection procedures,

are used: the (µ + λ)-ES and the (µ, λ)-ES. In (µ + λ)-ES, at a given generation, there are

µ parents, and λ offspring are generated by mutation. Then, the µ + λ members are sorted

according to their objective function values. Finally, the best µ of all the µ+λ members become

the parents of the next generation (i.e. the selection takes place between the µ + λ members).

The (µ, λ)-ES differs from the previous in the point that selection takes place only between the

λ members.

Traditionally, the search of new points was based on one single operator, the mutation

operator. As it was already referred, mutation consists basically on adding random numbers

with mean zero and variance σ2
i to the vector of decision variables. However, the introduction

of a second operator - recombination - benefits ESs performance. Basically, the recombination

operator consists on, before mutation, to recombine a set of chosen parents to find a new

solution. A given number ρ of parents are chosen for recombination. Thus, the nomenclature

for ESs with recombination are usually referred as (µ/ρ+λ)-ES or (µ/ρ, λ)-ES. In the analysed
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verification problems a (µ/ρ+λ)-ES algorithms was used. Figure 6.17 shows the different stages

of this ES.

m  Parents

Mutation

l  Offspring

Sorting

m  + l  Offspring

Selection

m  Parents

Best

Worst

Current generation New generation

Figure 6.17: Evolution stages of the (µ/ρ + λ)-ES algorithm (Costa and Oliveira, 2001).

In each generation, a set of ten potential solutions was generated. The algorithm stopped

its search when one of the following conditions was met:

• the maximum number of generations was reached (a maximum of 100 was assumed);

• the difference between the two extreme values of the error function considering a given

generation is lower than ε1;

• the ratio between the previous difference and the mean value of the error funtion within

the generation lower than ε2.

In a first attempt, values of 10−4 and 10−5 were used for ε1 and ε2, respectively. However,

these values were too high and, most of the times, the algorithm was kept in local minima.

This way, in order to obtain good results, values of 10−5 and 10−6 had to be considered for ε1

and ε2.

6.5.3 Obtained results

In this section the main results are analysed in terms of convergence and performance of the

used ES for the different cases considered and presented in Table 6.12. Case 1 is related with the

simple case of E identification using two measurements. The results for the different analysis

are presented in Table 6.13.
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Table 6.13: Results of the identification of E with two measurements in the elastic case.

Range of E (MPa) Number of

generations *

Identified value -

E (MPa)

Absolute value of

the error function

100-10000 3 1498.50 1.00× 10−6

500-5000 2 1499.64 5.82× 10−8

1000-3000 2 1499.98 1.11× 10−10

1000-2000 2 1499.65 5.44× 10−8

1100-1800 3 1499.62 6.31× 10−8

1200-1700 3 1500.13 7.62× 10−9

1300-1650 2 1499.81 1.58× 10−8

1400-1600 1 1498.70 7.53× 10−7

1450-1550 1 1499.35 1.88× 10−7

1499-1501 1 1499.97 3.39× 10−10

* - in each generation 10 candidate solutions are generated.

The algorithm presented total convergence even for very high range intervals. Evolutionary

algorithms normally take several hundreds or even thousands of error function evaluations to

reach convergence. In this case, a maximum of three generations (i.e. 30 evaluations) to reach

convergence were needed which can be considered a low value for this type of algorithms.

Cases 2 and 3 are related with the identification of E and σH using two measurements.

For the first, which used a displacement and a stress measurement, the correct values were

identified in every case. The maximum range for E was the same as considered in the previous

case while for σH it was between 0.1 MPa and 1 MPa. In this case, the algorithm took 12

generations to reach convergence. However, the number of generations rapidly decreased for 3-

4 considering more reasonable intervals. Figure 6.18 presents the topology of the error function

for this case. In spite of the elastic behaviour, and in contrast with what was verified for the

same case using the traditional algorithms, the error function is not strictly convex and present

a complex topology with several local minima. The equations of the analytical solution, even

though referring to an elastic solution, are highly non-linear. However, the algorithm was able

to find the global minimum in every tested case, which would be very difficult if a traditional

algorithm was used.

Considering case 3, two displacement measurements were used. In this case, the correct

parameters were not identified for the algorithm converged rapidly for local minima with very

low error function values. The two displacements seem to be highly correlated and the problem

is ‘ill-posed’.

In the last two cases, ν was added to the back analysis. In case 4, only two measurements

were used which is less than the number of parameters to identify. However, convergence was

attained to the values of E and σH very close to the correct ones which not happened with ν.
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(a) (b)

Figure 6.18: Topology of the error function on the identification of E and σH for the analytical case

in elasticity and using two measurements. (a) 3D view (b) Plan view.

This was probably due to a low importance of ν in the computed displacements and stresses

which allow to obtain approximate values with a relatively wide range of this parameter. When

another measurement was added (case 5), the performance of the algorithm was significantly

enhanced even though the high correlation between the two displacement measurements. How-

ever, for the larger parameter ranges, a relatively high number of generations were needed as

can be observed in Table 6.14

Table 6.14: Results of the identification of E, σH and ν with three measurements in the elastic case

Range Identified value

E (MPa) σH(MPa) ν Number

of gener-

ations

E (MPa) σH(MPa) ν Absolute value

of the error

function

100-10000 0.1-1 0.1-0.45 36 1501.01 0.376 0.341 6.67× 10−6

500-5000 0.2-0.9 0.1-0.45 27 1511.87 0.375 0.342 2.20× 10−5

1000-3000 0.2-0.8 0.2-0.4 34 1517.85 0.375 0.346 7.75× 10−4

1000-2000 0.2-0.7 0.2-0.4 33 1477.01 0.372 0.333 1.28× 10−4

1100-1800 0.3-0.6 0.3-0.4 4 1439.61 0.372 0.336 4.26× 10−4

1200-1700 0.3-0.5 0.3-0.4 7 1415.62 0.375 0.340 9.70× 10−4

1300-1650 0.3-0.4 0.32-0.37 2 1462.24 0.371 0.332 1.95× 10−4

1400-1600 0.35-0.45 0.32-0.36 1 1499.76 0.375 0.341 3.21× 10−6

1450-1550 0.36-0.38 0.33-0.35 1 1498.50 0.374 0.340 1.99× 10−6

1499-1501 0.37-0.38 0.33-0.35 1 1499.54 0.375 0.341 1.54× 10−6

For the elasto-plastic cases with no-yielding it was possible to identify the correct values in

every combination of two parameters with both two or three available measurements, i.e. from

cases 6 to 11. In fact, it was observed that the measurement number have only minor impact.
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Considering all the tested cases, convergence was achieved in a maximum of 11 generations

which happened only three times (out of 60 calculations) and for the largest intervals. For

reasonable parameter ranges, the identification process only took 4-5 generations to identify

the correct values. This good performance is not related with simple topologies of the error

function as it can be seen in Figure 6.19 which presents this function for case 6. In fact, it

presents an irregular shape with local minima and the algorithm was able to find the optimum

solution in different conditions in a reasonable number of error function evaluations.

(a) (b)

Figure 6.19: Topology of the error function on the identification of c′ and φ′ for the analytical case in

elasto-plasticity (no-yielding) and using two measurements. (a) 3D view (b) Plan view.

The remaining case, where three parameters were considered together with the same mea-

surement number, only partial convergence was achieved. In fact, as it can be observed in

Table 6.15, the correct parameters were not identified when larger intervals were considered.

In these cases, the algorithm was trapped in local minima. In practice, it is expected that the

consideration of a priori knowledge, experts’ opinion and/or site characterisation can keep the

interval ranges of the parameters within reasonable ranges and minimise this problem.

For the elasto-plastic cases with yielding the problem becomes more complicated. Besides

the high non-linearity of the governing equations, they also present discontinuities. The equa-

tions that provide the stresses and displacements are different for the elastic and plastic zones.

This fact is clearly reflected on the results. In the cases where two parameters are considered

together with three measurements, the behaviour of the algorithm is different. The identifica-

tion process for cases 14, 15, 17 and 18 was able to reach convergence to the correct parameter

values. The impact of the measurement number on the results was low with no recognisable

pattern of which cases the algorithm was more efficient. Moreover, the overall behaviour of the

algorithm was very similar to the non-yielding cases (7, 8, 10 and 11). However, the identifica-
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Table 6.15: Results of the identification of E, c′ and φ′ and with two measurements in the elasto-plastic

case with no-yielding.

Range Identified value

E (MPa) c’ (MPa) φ′(o) Number

of gener-

ations

E (MPa) c’ (MPa) φ′(o) Absolute value

of the error

function

100-10000 0.1-10 10-50 8 2541.05 6.76 11.86 4.17× 10−4

500-5000 0.5-5 15-45 8 1605.30 3.75 28.19 1.04× 10−5

1000-3000 1-5 20-40 7 1657.84 3.90 27.37 2.35× 10−5

1000-2000 2-5 25-35 2 1495.61 3.46 30.07 3.11× 10−5

1100-1800 2.5-4 25-35 6 1500.18 3.45 30.00 3.62× 10−7

1200-1700 3-4 26-34 1 1407.84 3.20 31.38 2.66× 10−5

1300-1650 3.2-3.8 27-33 1 1446.63 3.32 30.97 5.54× 10−5

1400-1600 3.2-3.7 28-32 1 1499.08 3.45 30.07 4.04× 10−6

1450-1550 3.3-3.6 29-31 1 1525.31 3.49 29.69 4.17× 10−5

1499-1501 3.4-3.5 29-31 1 1499.07 3.44 30.07 5.78× 10−6

tion of the couple c′ and φ′ raised more problems. In fact, only partial convergence was achieved

independently on the available measurement number. In some of the cases, the algorithm was

not able to avoid local minima. To provide a thorough insight of the problem in this specific

case, the topology of the error function was drawn (Figure 6.20).

(a) (b)

Figure 6.20: Topology of the error function on the identification of c′ and φ′ for the analytical case in

elasto-plasticity (with yielding) and using three measurements. (a) 3D view (b) Plan view.

In a first analysis this error function presents a more smooth shape than many of the

previously presented ones. This way, it should not be expected an erroneous behaviour of the

algorithm. It is however interesting to notice that there is a region in the parameter space for
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which the error is extremely high, dropping very rapidly for a large and very flat valley. This

region corresponds to very low error function values. This way, there are many combinations

of c′ and φ′ which provide approximately the same measurements. This is probably due to a

low influence of these parameters in the considered measurements in comparison with E. To

avoid this problem, calculations were repeated considering a new and more restrict limit for

the stopping criteria. In these new calculations, ε1 and ε2 were put equal to 10−6 and 10−7.

With this consideration, the results were significantly enhanced as it can be seen in Table 6.16

showing that the limits assumed for the stopping criteria can sometimes be important to avoid

local minima and provide better results of the identification process for parameters with lower

influence on measurements. However, and as it should be expected, computational cost also

increased translated by a higher number of generations needed to reach convergence.

Table 6.16: Results of the identification of c′ and φ′ with three measurements in the elasto-plastic case

with yielding

Range ε1 = 10−5 and ε2 = 10−6 ε1 = 10−6 and ε2 = 10−7

c’ (MPa) φ′(o) Number

of gener-

ations

c’ (MPa) φ′(o) Number

of gener-

ations

c’ (MPa) φ′(o)

0.1-10 10-50 13 3.48 29.78 17 3.48 29.81

0.5-5 15-45 7 2.81 33.51 23 3.42 30.12

1-5 20-40 3 3.45 30.01 4 3.44 30.03

2-5 25-35 4 3.08 32.14 13 3.27 30.91

2.5-4 25-35 5 3.41 30.16 6 3.43 30.10

3-4 26-34 3 3.20 31.38 7 3.23 31.19

3.2-3.8 27-33 3 3.49 29.77 3 3.49 29.77

3.2-3.7 28-32 2 3.24 31.09 4 3.33 30.68

3.3-3.6 29-31 2 3.44 30.03 3 3.44 30.03

3.4-3.5 29-31 1 3.45 30.02 1 3.45 30.02

As it was verified that the limits of the stopping criteria could have a significant impact

in both the quality of the results and speed of convergence, all the cases of the elasto-plastic

case with yielding were repeated for different values of ε1 and ε2. For higher error limits the

algorithm could not find the optimal set of parameters in many cases due to local minima. For

lower values, results were improved but the computational cost was also significantly increased.

This way, it was concluded that the first set of adopted values for ε1 and ε2, and besides the

problems presented in the already mentioned cases, provides the algorithm a balance between

robustness and efficiency.

Finally, in case 19 in which three parameters are considered together with three measure-
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ments, the same problems were detected as in the non-yielding case. The performance of the

algorithm is enhanced as the search space is reduced and lower limits of the stopping criteria

did not have any influence on the obtained results.

6.6 Conclusions

It has passed almost three decades since the first applications of in situ measurements in

the back analysis of geotechnical parameters. Since then, many studies have been carried

out and presented in literature. However, the use of back analysis is still far from being a

standard procedure in geotechnical projects. One of the main reasons, between others, is that

back analysis is a time-consuming process which demands some expertise. Moreover, in many

cases, classical optimisation algorithms fail to provide a solution that corresponds to the global

optimum.

In this Chapter, the main components, methods and types of back analysis were briefly

described. Special emphasis was given to the direct approach for being a more general and

flexible procedure. In the direct approach back analysis is carried out using an error function

which measures the differences between observed and computed quantities, and an optimisation

algorithm to minimise this function in an iterative process. This way, back analysis can be

programmed independently of the model (analytical or numerical) and coupled with it in order

to increase the process performance.

Some of the main works related with back analysis in the geotechnics field, with particular

relevance to the identification of the geomechanical parameters in underground structures, were

presented. Focus was drawn to the type of algorithms normally used in the direct approach

distinguishing to main types, namely the classical and new algorithms. The classical ones,

developed in the scope of the traditional optimisation field, have been normally used since

the first applications. However, as they present some limitations, new algorithms, based on

significantly different intrinsic principles, have been developed and applied with success. One

example of this type of algorithms are the ESs, which are based on AI techniques, and try to

mimic natural principles like natural selection and survival of the fittest.

This Chapter intends to provide a contribution to the definition of a reliable process to

perform back analysis specially related with the type of algorithm used in the optimisation

process. Using validation problems concerning parameters identification in an underground

work, different types of optimisation algorithms, classical and new, were tested in order to

highlight their main advantages and drawbacks for this particular case. Three classical gradient-

based and one ES algorithms were used considering several different conditions to evaluate their

efficiency and robustness.
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The classical algorithms were coupled with a 3D model of a tunnel excavation. The per-

formed tests allowed to conclude that gradient-based optimisation algorithms present a very

good performance when an elastic model is used. In this situation, these algorithms present a

robust and efficient performance since they can, in most of the cases, converge to the optimal

solution in a reduced iteration number. In displacement-based back analysis the use of a high

number of reliable measurements increase robustness even though some efficiency loss. More-

over, the gradient of the error function can be well approximated by finite differences. The

chosen step for this calculation has only minor impact in the process.

Considering the back analysis of strength parameters of an elasto-plastic constitutive model,

these algorithms are less reliable. Typically, in these cases, the error function topology is

complex presenting one or more local minima. In several cases the algorithms fail to converge

or convergence is achieved to the local minimum closer to the initial solution. This way, in

order to increase the rate of success when applying gradient based algorithms in elasto-plasticity

models, one should be aware of:

• provide the most accurate initial estimation possible to try to avoid local minima;

• use a high number of reliable (specially non/low correlated measurements);

• if using the finite difference method to compute the error function gradient use a low value

of the step (typically less than 2%).

It can be then concluded that gradient-based algorithms present significant limitations to

perform the identification of geomechanical parameters in underground structures when more

complex models are used. Moreover, they are only able to identify a reduced number of param-

eters which hinders back analysis to be carried out when using a constitutive model composed

by a high parameters number.

In order to overcome some of the limitations of the classical algorithms, the ES innovative

approach was proposed and applied in two analytical verification problems and proved to be a

reliable method in the back analysis of geomechanical parameters. The algorithm showed to be

robust in identifying the global minimum even in very complex and noisy error functions and

in wide parameter spaces (large intervals for the parameters). Its efficiency is very interesting

when compared with other types of evolutionary algorithms (like GAs) that normally take sev-

eral hundreds or even thousands of error function evaluations to reach convergence. It is worth

mentioning that the used algorithm was not optimised for this specific application. This way,

further research may be able to improve its behaviour in both robustness and efficiency. The

adopted limits for the stopping criteria can have a significant impact on the capacity to achieve
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the global minimum of the algorithm in particular in what concerns the identification of param-

eters with low importance in the considered measurements. In these cases, the error function

presents wide valleys corresponding to low values of the error function and it is necessary to

use very restrict stopping criteria limits in order to avoid local minima.

Concluding, it is believed that this new approach is a step forward in the development of

a generic methodology that can provide an adequate framework for many geotechnical back

analysis problems. However, there are still much research work to be performed in order to test

and validate this algorithm specially using more complex models. Moreover, another important

issues must be consistently contemplated in a global inverse approach using these techniques.

A full back analysis approach should consider all uncertainties related to the used model. This

way, not only the parameters of the constitutive model but the model itself should be back

analysed. Also, the consideration of the previous excavation stages is particularly important in

the prediction of the actual stress state and definition of the displacements field. This is valid

for both direct and inverse approaches. The measurements observed in the several excavation

stages should be considered in the back analysis in order to obtain more consistent results.
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Chapter 7

Venda Nova II Powerhouse

Complex - Back Analysis of

Geomechanical Parameters

7.1 Introduction

The EDP - Electricity of Portugal decided to repower the Venda Nova hydroelectric scheme,

located in the North of Portugal, by building a new power station, named Venda Nova II, that

took advantage of the high existing head - about 420 m - between the reservoirs of Venda Nova

and Salamonde dams (Lima et al., 2002) (Figure 7.1).

Venda Nova II is equipped with two reversible units in order to optimise the water resources

use for energy production. The scheme, built in a predominantly granite rock mass, is almost

fully composed by underground facilities, including caverns and several tunnels and shafts with

total lengths of about 7.5 km and 750 m, respectively (Figure 7.2). The Venda Nova II project

involved the construction of important geotechnical underground works of which the following

can be mentioned:

• the access tunnel to the caverns, with about 1.5 km, 10.9% slope and 58 m2 cross-section;

• the hydraulic circuit with a 2.8 km headrace tunnel with 14.8% slope and a 1.4 km tailrace

tunnel and 2.1% slope, with a 6.3 m diameter modified circular section;

• the powerhouse complex located at about 350 m depth with two caverns, for the power-

house and transforming units, connected by two galleries;

• an upper surge chamber with a 5.0 m diameter and 415 m height shaft and a lower surge

chamber with the same diameter and 60 m height.

203
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Figure 7.1: General perspective of the power reinforcement scheme (adapted from Plasencia (2003))

Even though the multiplicity of underground structures built in the scope of this scheme,

the analysis will focus only on the powerhouse complex. For this caverns, 2D and 3D numer-

ical models were developed considering the different construction stages. The geomechanical

parameters of the granite formation for the numerical models were obtained using the software

GEOPAT (Miranda, 2003) which is based in artificial intelligence (AI) techniques. This software

is a knowledge based system which allows obtaining geomechanical parameters for underground

structures modelling in granite formations. Phases2 and FLAC3D were used for the 2D and

3D models, respectively.

This scheme was built in a granite rock mass with overall good quality. In order to have

an insight of the main geomechanical characteristics of the rock formation, in the following

section some of the geotechnical information gathered during the geotechnical surveys carried

out to characterise the rock mass interesting the hydraulic circuit is concisely analysed. The

results of some in situ and laboratory tests are evaluated using statistical tools which allowed

to understand some particular characteristics of the rock mass.

Afterwards, the main characteristics of the powerhouse complex are presented together with

the geotechnical survey performed to characterise the rock mass near the caverns and the defined

monitoring plan. The main results of the numerical models are analysed and compared with

the monitored data in terms of displacements.

Finally, back analysis techniques are applied in order to identify some geomechanical param-

eters. Two different techniques are used, namely a optimisation software called SiDolo which

is based on a hybrid technique which combines two traditional optimisation algorithms and



Chapter 7. Venda Nova II Powerhouse Complex - Back Analysis of Geomechanical Parameters 205

1 - Venda Nova reservoir         7 - Tailrace tunnel
2 - Upper intake                       8 - Powerhouse cavern
3 - Lower intake                       9 - Transformer cavern
4 - Upper surge chamber       10 - Ventilation galleries
5 - Lower surge chamber       11 - Access tunnel
6 - Headrace tunnel               12 - Auxiliary tunnel

Figure 7.2: Scheme of the underground works composing the Venda Nova II complex (adapted from

(Lima et al., 2002))

an evolution strategy (ES) algorithm as used in the previous Chapter. Due to the rock mass

characteristics the most important parameters in the behaviour (in terms of displacements) of

the powerhouse complex are K0 and E. Therefore, these parameters were the ones object of the

back analysis process. Calculations were performed considering different circumstances.

Part of this work was carried out in cooperation. In particular, the 3D model of the caverns

and the back analysis calculations with this model were developed in a joint effort with Professor

Daniel Dias and Engineer Stéphanie Eclaircy-Caudron of INSA-Lyon.

7.2 Analysis of geotechnical information along the hydraulic

circuit of Venda Nova II

In order to have a more thorough insight about the rock mass interesting the Venda Nova II

project, a succinct analysis of the deformability and strength properties determined by means

of in situ and laboratory tests performed by LNEC was carried out (LNEC, 1983, 2003, 2005).

In this study, the results of the following tests are analysed: dilatometers in boreholes, seismic

waves propagation by ultrasounds, uniaxial compressive strength in rock samples and shear

tests on discontinuities.

Part of this information was already used and analysed in previous chapters. In particular,

the results of the LFJ test was used in Chapter 5 in the scope of the developed Bayesian
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approach to update the geomechanical parameters. Just for the record, the results of this test

pointed out to a value of E ranging from 33 GPa to 40 GPa with a mean value of about 37 GPa.

Also, in Chapter 4 the results of this test were used to calibrate the analytical methodology

based on the empirical system for the calculation of E.

A coarse porphyritic, both biotitic and moscovitic, granite prevails in the region. The

rock mass on which the hydroelectric complex is installed is characterised by a medium-size

grain granite of a porphyritic trend with quartz and/or pegmatitic veins and beds, which are

occasionally, rose. The rock mass also presents embedment of fairly quartzitic mica-schist.

The geotechnical survey allowed to define three geotechnical zones, namely: ZG1 - corre-

spondent to a very good quality rock mass which is located at variable depths and interests in

particular the caverns of the powerhouse complex; ZG2 - a transition slightly weathered rock

formation; ZG3 - corresponding to the superficial and unconfined rock. This zonation can be

observed in Figure 7.3. Globally, the rock mass interesting these underground works presents

good geomechanical quality in spite of the presence of some less favourable geological features

like the Botica fault.

ZG 1

ZG 1

ZG 2 ZG 2ZG 3

ZG 3

Figure 7.3: Geological-geotechnical zones along the hydraulic circuit (adapted from Plasencia (2003))

From the available information it was not possible is some of the tests to distinguish to

what geotechnical zones they were referred. In these cases, only a global view of the rock mass

characteristics is performed. However, it is believed that a substantially higher number of the

analysed tests were performed in the ZG1 zone.

In the dilatometer test, the deformations are applied in four diametral directions and in three

load cycles. In the analysis of the results, the readings produced by the first cycle were not

considered. Table 7.1 presents the results obtained by the analysis of these tests. In this Table,

the number of tests (n), the mean and standard deviation and the percentiles correspondent to

5% and 95% are presented.

The mean value is about 16 GPa which is substantially lower than the results obtained

by the LFJ. In the case of the dilatometers, tests were performed in all types of rock masses

(including fault zones) which is translated by the high variability of the results and wide interval
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Table 7.1: Statistical analysis of E in GPa obtained by the dilatometer tests.

Zone n mean Std. Dev. 5% 95%

All 436 16.14 12.02 2.19 41.92

between the 5% and 95% percentile. In the other hand, the LFJ was performed in a rock mass

referred to the ZG1 geotechnical zone. The highest values obtained by the dilatometer tests

are close to the mean value obtained with the LFJ.

The Shapiro-Wilk and the Kolmogorov-Smirnov tests were performed to the the overall data

collected by the dilatometers. The distribution can not be considered normal nor lognormal for

a 95% confidence degree. However, the second one constitutes a better fit as it can be observed

by Figure 7.4.

(a) (b)

Figure 7.4: Histograms of the E values obtained by the dilatometer tests (a) normal distribution (b)

lognormal distribution.

To complement the previous analysis, the results from ultrasound tests, which allow obtain-

ing the seismic waves velocity (Vp and Vs) also related with deformability properties, were anal-

ysed. Table 7.2 presents the results of these tests. The mean values of Vp and Vs translate a stiff

formation. The values of the 5% percentile are correspondent to a more weathered/fractured

formation.

A total of nine SFJ tests were performed. From these, only three (SFJ-5, SFJ-6 and SFJ-7)

were considered to be representative of the rock mass with a low disturbance (fracturing) degree

caused by the excavation process. The results of these tests ranged from 46 GPa to 51 GPa.
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Table 7.2: Statistical analysis of Vp and Vs obtained by the ultrasound tests.

Vp (m/s) Vs (m/s)

Zone n mean Std. Dev. 5% 95% mean Std. Dev. 5% 95%

All 65 4250 760 2688 5314 2631 461 1777 3310

Information about the in situ state of stress can also be obtained using the SFJ tests results.

In this case, a value of 1.63 was found for K0 perpendicular to the cavern axis.

Six STT tests were performed in two different locations. The tests, in spite of being carried

out in relatively distant test sites, present very similar results. In fact, values of 2.2 and 2.6 were

found for K0 in the same direction as stated for the SFJ tests. The vertical stress corresponds

approximately to the overburden gravitic load. Figure 7.5 presents the locations of the SFJ and

STT tests and resumes the obtained results. In this Figure, an additional value of K0 equal to

2.3 is presented which was obtained by back analysis (LNEC, 2003) and will be referred more

in detail later in this Chapter.

Figure 7.5: Location and comparison between the results of the SFJ and STT tests.

Concerning the laboratory tests, Table 7.3 presents the results obtained by the compression

tests, namely the unconfined compressive strength (σc) and the elasticity modulus of the intact

rock (Ei). The high mean strength and stiffness correspond to a good quality intact rock. In

the particular case of Ei, the mean value is lower than the one obtained by the in situ test for

the rock mass of better quality which translate the inclusion in these tests of samples collected
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in lower quality geotechnical units. However, considering the value correspondent to the 95%

percentile, and the previous results of the in situ tests, it can be stated that E (for the ZG1

zone) is about 60% to 70% of Er.

In terms of σc, the overall data collected by the performed tests follows a normal distribu-

tion. This was not observed for Ei. In fact, the Shapiro-Wilk and the Kolmogorov-Smirnov

tests rejected the null hypothesis of the data following a normal or a lognormal distribution.

However, and as observed before for the case of E determined by the dilatometer tests, the

latter distribution presents a better fit.

Table 7.3: Statistical analysis of σc and Ei obtained by the laboratory compression tests

σc (MPa) Ei (GPa)

Zone n mean Std. Dev. 5% 95% mean Std. Dev. 5% 95%

All 80 89.6 36.4 24.7 147.7 39.1 19.1 5.9 68.5

The laboratory shear tests on discontinuities were only performed in samples collected in

zone ZG1. Besides the Mohr-Coulomb strength parameters (φ′ and c’) also the dilation angle

and the stiffness in the normal (Kn) and tangent (Kt) directions are presented. These results

were collected in two different sources LNEC (1983, 2005). In spite of the different criteria

for defining the strength parameters values, they correspond approximately to the residual

ones. Statistical tests were also performed to the collected data to investigate if the different

parameters follow a normal or a lognormal distribution. Table 7.4 presents the results obtained

on 40 samples.

Table 7.4: Statistical analysis of shear tests on discontinuities results.

mean Std. Dev. 5% 95% Distribution

φ′ (o) 38.8 6.2 30.4 52.3 Normal and lognormal

c’ (KPa) 82.1 56.1 0 184.9 Normal

Dilatance (o) 8.7 4.7 0.1 17.6 Normal

Kt (MPa/mm) 1.87 0.89 0.83 3.40 Lognormal

Kn (MPa/mm) 32.9 40.4 1.84 106.0 none

The discontinuities present good strength characteristics. In fact, the mean value of the

residual φ′ is high (around 39o) and they also exhibit, most of the times, some internal cohesion.

This parameter is characterised by a high variability which is much less pronounced in what

concerns φ′. It is interesting to observe the dilatant behaviour of the discontinuities in almost

every test. The strength parameters are well described by normal distributions. In the case of
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φ′ the lognormal distribution can also be used.

The tangent stiffness, which follows a lognormal distribution is, in mean terms, about 6% of

the normal one. However, the results for Kn show a large dispersion and nor the normal or the

lognormal distribution fits to the data. It was observed that the results of the two sets of data

were significantly different for this parameter. This was probably due to different approaches

in the way this parameter was defined which, in one of the analysed reports, was not detailed.

When analysing the two sets of data separately, in both cases, the lognormal distribution fitted

well the data.

In conclusion, the rock mass interesting most of the hydraulic circuit present good geome-

chanical properties which was observed by a large number of in situ and laboratory tests. The

intact rock and the discontinuities are characterised by high values of strength and stiffness.

The stress state is characterised by a vertical stress proportional to the gravitic load and a

mean K0 value in the perpendicular direction of the caverns axis of about 2.5.

In global terms, it was observed that the normal distribution is more adequate to model

strength parameters while the lognormal is better suited to describe deformability parameters.

7.3 The underground powerhouse complex

The powerhouse complex consists, basically, on two caverns interconnected by two galleries. It

is located in a intermediate position of the hydraulic circuit, at an approximately 350 m depth.

Figure 7.6 presents two pictures of the powerhouse complex during excavation. In plan, the

powerhouse and transforming units caverns are rectangular and have respectively, the following

dimensions: 19.0 x 60.5 m2 and 14.1 x 39.8 m2. The distance between their axes is 45.0 m. Both

caverns have vertical walls and scheme arch roofs. In the case of the arch of the powerhouse

cavern, the invert of the ceiling is located 20.0 m above the main floor (level 235), whereas in

the case of the cavern containing the transforming units, this distance is 10.45 m (Figure 7.7).

The complex was built in a granite rock mass with good geomechanical quality. In order

to characterise the rock mass in the area of the caverns, four deep subvertical boreholes with

continued sample recovery were performed. Along the boreholes, Lugeon permeability tests

were also executed. The lengths of the boreholes varied between 271.0 m and 381.6 m and

their positioning was controlled each 50 m. They defined the vertexes of a quadrilateral whose

centre was predicted to be close to the central point of the caverns area (Plasencia, 2003).

The geomechanical characterisation and the laboratory tests carried out on the 98 collected

samples allowed the identification of three geological-geotechnical zones on the rock mass as

presented in Table 7.7. Caverns are located in the ZG1C zone corresponding to the zone with

best geomechanical characteristics.
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(a) (b)

Figure 7.6: Pictures of the powerhouse complex caverns during excavation (provided by EDP).

Figure 7.7: Powerhouse complex geometry.

Between the boreholes, seismic tests using longitudinal waves (P waves) were performed in

order to obtain tomographies of the rock mass and to detect important geological structures

(LNEC, 1997; Plasencia et al., 2000). These tests were executed at depths varying between 95

m and 370 m and the results confirmed the previous zoning. The area where the caverns are

located was characterised with P waves velocities between 5250 m/s and 6000 m/s, sometimes

4750 m/s to 5250 m/s. These values confirmed the good geomechanical characteristics of the

rock mass.

After the construction of the access tunnel to the caverns, an exploration gallery was ex-

cavated in order confirm the previous geomechanical characterisation and to measure the in

situ stress state. This gallery was excavated from the top of the access tunnel and parallel to
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Table 7.5: Geological-geotechnical zoning of the rock mass

Weath. Disc. RQD Perm. Ir (MPa) σc (MPa) Ei (GPa)

ZG3C W3/W4-5 F3/F4-F5 0-90 >10 UL 3.8 57.7 42.0

ZG2C W1-2/W3 F1-2/F3 50-90 0-8 UL 6.3 96.9 51.0

ZG1C W1/W2 F1/F2 90-100 <2 UL 7.0 110.1 54.9

UL - Lugeon units; Ir - Point load index.

the caverns axis. As it was already referred, LFJ tests were used to obtain the deformability

modulus of the rock mass. These tests led to values ranging from 33 GPa to 40 GPa. The STT

and SFJ tests results showed that the vertical and horizontal stress parallel to the caverns axis

have the same magnitude and correspond to the overburden dead load. In the perpendicular

direction the stress values are approximately 2.5 times higher (LNEC, 1983). From the litho-

logic characterisation it was possible to identify four main discontinuities sets. In Table 7.6

their main characteristics according to the ISRM (1978) criteria are summarised.

Table 7.6: Characteristics of the four main families of discontinuities (Plasencia, 2003).

Family 1 2 3 4

Direction N81oE N47oW N8oE N50oE

Inclination 77oNW 12oNE 83oNW 80oNW

Continuity 1 to 3 m 1 to 10 m 3 to 10 m 3 m

Alteration W1-2, occasionally

W3

W1-2 W1-2, occasionally W4 W1-2

Opening closed at 0.5 mm closed at 0.5 mm closed at 0.5 mm,

sometimes 2.5 mm

closed

Thickness none at 0.5 mm none at 0.5 mm none, sometimes 2.5 mm none

Roughness Undulating poorly

rough to rough

Undulating poorly

rough, sometimes

rough stepped

rough plane, sometimes

polished

undulating

poorly rough

Seepage Dry Dry Dry, occasionally with

continuous water flow

Dry

Spacing 2 to 3 m, sometimes

1 or 4 m

2 to 3 m, sometimes

1 m

1 to 2 m 5 to 6 m

In order to evaluate the behaviour of the rock mass and support system during and after

construction, a monitoring plan using extensometers and convergence targets was established.

The extensometers, in a total number of eleven, were placed in two sections along the caverns

axis and their lengths varyed from 5 m to 40 m (Figure 7.8). Almost all the extensometers are

double. Just the ones installed in the wall of the main cavern (powerhouse cavern) are triple and

of larger length (EF1 and EF5). The convergence targets were installed in several sections (5
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to 7 each section). The three-dimensional convergence measurement readings were carried out

through an optical system based on the total station technology. Six load cells were also installed

for the anchors. Figure 7.9 shows the evolution of the measured displacements in extensometers

EF5 and EF11 (or extensometers 1 and 5). The observed values in extensometers EF3 and EF4

showed to be unreliable. Therefore, they were discharged for the subsequent analysis.

a) b)

Figure 7.8: Cross-sections of the monitoring plan.
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Figure 7.9: Displacements evolution measured by extensometers EF5 and EF11.
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For the numerical models developed in this work, the geomechanical parameters were ob-

tained using the Knowledge Based System GEOPAT (Miranda, 2003). It uses well organized

and structured knowledge from experts together with AI techniques for decision support in the

geomechanical parameters evaluation and has been used with success in different applications.

The system is interactive and was implemented using three platforms - Visual Basic, Excel and

the object oriented programming software KAPPA-PC (Intellicorp, 1997).

In the case of rock masses, RMR, Q and GSI empirical systems are applied. The system pro-

ceeds to the evaluation of strength and deformability parameters, using accumulated knowledge

acquired in Metro do Porto and causal nets established for this purpose. In highly heterogeneous

rock formations, the KBS system adopts a probabilistic methodology to obtain a distribution

of GSI that allows the calculation of mean and characteristic strength and deformability values.

Using the gathered geological-geotechnical information together with GEOPAT, the follow-

ing geomechanical parameters were obtained: E = 45GPa, φ’ = 54o and c’ = 4MPa. A value

of 0.2 is adopted for the Poisson ratio and a non-associated flow rule with the dilatancy angle

taken equal to 0◦.

7.4 Numerical modelling

7.4.1 Description of the developed models

The 3D model was carried out using the finite difference software FLAC3D (Itasca, 2005) to

simulate the complex geometry of the powerhouse complex and its construction sequence. The

mesh was developed with the hexahedral-Meshing Pre-processor 3DShop and it is composed

by 43930 zones, 46715 grid-points and 1100 structural elements (Figure 7.10). Since the field

stress around the caverns was constant it was possible to simplify the mesh in order to increase

the computation efficiency. This way, instead of the real 350 m depth of the cavern axis, only

200 m were modelled.

The cross-section analysed through the 2D numerical model, developed using Phases2

(www.rocscience.com) software, was section a) referred in Figure 7.8. When comparisons be-

tween the two models are performed they are always referred to the results obtained for this

cross-section where reliable monitoring values were available.

The sprayed concrete was simulated by shell elements with a linear elastic and isotropic

constitutive model, with a Young modulus of 15 GPa and a Poisson ratio of 0.2. The rockbolts

were simulated by cable elements, which can yield tensile strength, with two nodes and one

axial degree of freedom. An elastic-perfectly plastic constitutive model with a Mohr-Coulomb

failure criterion was assumed to represent the rock behaviour.
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Figure 7.10: 3D mesh developed for the Venda Nova II powerhouse complex.

For the 3D numerical modelling, the construction sequence was simplified relatively to the

one defined in design. Five excavation stages were considered and are described in Table 7.7.

Due to the good geomechanical quality of the rock mass its behaviour during tunnelling was

almost elastic. This way, the simplifications considered for the excavation stages had minor

impact on the computed displacements.

The construction sequence adopted for the 2D model was very similar. The only difference

was the way the two interconnecting galleries were simulated. Three different approaches were

carried out in a preliminary analysis: i) considering the total excavation of the galleries; ii)

non considering the effect of the galleries excavation due to their small influence in the global

behaviour of the structure; iii) replacing the material in the area of the galleries with other

material with equivalent lower geomechanical properties. The first approach led to unrealistic

results with multiple shearing zones and high displacement levels which were not observed in the

field. Since the model was developed considering plain strain conditions this assumption was

too unfavourable. The remaining two approaches showed very similar results. The differences

were insignificant, therefore, it was chosen not to consider the effect of the interconnecting

galleries excavation in the following analysis.

Due to the high depth of the underground complex, a constant stress field was considered

and its magnitude was set based on the results of the in situ. The vertical stress was computed

considering the overburden dead load of the rock mass. The same stress value was considered in

the horizontal direction parallel to the cavern axis. In the perpendicular direction the performed

tests pointed out for a K0 coefficient between 2 and 3. Some preliminary calculations allowed

to conclude that lower values of this coefficient led to more realistic results. Therefore, in the

following analysis, an initial value of 2 was adopted.
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Table 7.7: Adopted construction stages for the 3D numerical model.

Stage Model Description

1

Excavation of the upper part of the main cavern arch.

Application of 25 cm of fiber sprayed concrete on the arch and

6 m length and 25 mm diameter rockbolts in a 2x2 m mesh.

2 Excavation of the remaining part of the arch

3

Excavation of the main cavern until the base level of the

interconnecting galleries and the transforming units caverns.

Application of 25 cm of fiber sprayed concrete on the arch of

the second cavern and 6 m length and 25 mm diameter

rockbolts in a 2x2 m mesh.

4

Excavation of the two interconnecting galleries and application

of 25 cm of fiber sprayed concrete in the roof.

5 Completion of the main cavern excavation.

7.4.2 Analysis of the results

In this section, the results of the models are analysed and compared particularly for the last

excavation stage. Emphasis will be given to the results in terms of displacements since they can

be compared with the real behaviour of the structure observed by the extensometers, allowing

the validation of the developed models.

Due to the high K0 and the span of the main cavern vertical wall, the higher displacements

were expected to take place in that area. Figure 7.11 presents the displacement contours

computed with the 3D model for the last excavation stage. In fact, the highest displacements

are observed in the wall of the main cavern, particularly, between the two interconnecting

galleries.

Comparing the results of the two models for the reference cross-section (Figure 7.12), the

same qualitative displacement pattern can be observed. The displacement vectors show that the

displacements are sub-horizontal near the walls of the main cavern due to the strong influence

of the high horizontal stress in that direction.
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Figure 7.11: Displacement contours for the 3D model in the last excavation stage.

For a more thorough analysis, Figure 7.13 shows the computed displacements along lines

coinciding with extensometers 5 and 7 (near the wall and arch of the main cavern, respectively).

The displacements of the 2D calculation along the sub-horizontal line are much higher than for

the 3D model which was expected due to the plain strain consideration. For the 3D model the

maximum displacement along this line is, approximately, 10 mm while for the 2D model this

value is almost 50% higher. The displacements near the arch of the main cavern are small for

both models. In this zone, the gravity loads, which would cause a downward movement, are

almost compensated with the high horizontal stress which pushes the arch upwards causing a

near-zero displacement.

Due to the good overall quality of the rock mass the displacements magnitude is small. The

maximum computed displacements in the rock mass are 15 cm for the 2D model and 10.5 cm

for the 3D case. Moreover, there are a small number of yielded zones which are confined to

small areas near the arch and wall of the main cavern.

Figure 7.14 compares the results of the models with the measures of extensometers 5 to

11 for the last excavation stage. The results of the 2D and 3D models are very similar for

most of the extensometers. Also, the computed values follow the same qualitative trend as

the observed ones. The worst results are observed for the inclined extensometers (2, 6 and 8)

where the displacement values are clearly overestimated. In the remaining cases the 3D model

is more accurate for the measurements of extensometers 5, 7 and 9 while the 2D model slightly

outperforms the 3D model for extensometers 10 and 11. In a qualitative perspective it can

be concluded that, excepting for extensometers 2, 6 and 8, the results of the models are very



218 7.4. Numerical modelling

Figure 7.12: Displacement contours and vectors for the 2D (upper image) and 3D models
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Figure 7.13: Computed displacements near (a) the wall and (b) arch of the main cavern.

acceptable.

For a more thorough insight of the results, some statistical analysis was carried out con-

sidering two different situations: a) comparison between the results of both models with the
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Figure 7.14: Comparison between computed and measured displacements in the last excavation stage.

measurements in the reference cross-section (extensometers EF5 to EF11) and b) comparison

between the 3D model results with all considered measures (EF1 to EF11 excepting EF3 and

EF4). Table 7.8 presents the mean values of the displacements and mean absolute error (MAD)

for both situations.

Table 7.8: Mean displacements and errors for situation a) and b).

Situation a) Situation b)

- 2D 3D Measured 3D Measured

Mean disp. (mm) 2.47 2.47 2.34 2.91 2.48

MAD* (mm) -0.135 -0.136 - -0.425 -

MAD∗ =
Pn

i=1(computed disp.− observed disp.)

It can be observed that, in mean terms, the results of the 2D and the 3D models are very

similar for the reference cross-section showing the same mean displacement and very similar

MAD values. The T-test was performed in order to compare the mean displacements of each

calculation with the correspondent real values. It was concluded that, for every situation, the

mean computed displacements can be considered statistically similar to the mean of the real

displacements for a 95% significance level. This conclusion corroborates the previous qualitative

idea of a good fit between the results of the models and the real behaviour of the underground
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structure. Moreover, the Smirnov test, performed between the computed and observed values,

validated for both situations the null hypothesis that these values follow the same statistical

distribution.

In order to have a better insight of this fit in each point, Figure 7.15 presents a plot of

real versus computed displacements for the 2D model in the reference cross-section and for the

3D model for all the considered extensometers. The values present a reasonable distribution

around de 45o slope line with no visible trend also pointing out for a good overall fit of the

models to the observed data.
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Figure 7.15: Computed versus real displacements for (a) the 2D and (b) 3D models.

Figure 7.16 shows the histograms of the errors for the 2D model in the reference section

and for the global results of the 3D model. The normal distribution curve as well as some

statistical measures are also presented. The histograms represent sets of 15 and 20 error values

for the 2D and the 3D model, respectively. The Shapiro-Wilk normality test was performed to

the errors of each model and it was concluded that they follow a normal distribution for a 95%

significance level suggesting a good distribution of the errors. This fact, in conjunction with

the low values of the mean error, point out for the good quality of the results.

In terms of stresses, the rock mass surrounding the caverns is mainly under compression.

The maximum compression stress, about 35 MPa, is observed in the upper zone of the main

cavern arch (Figure 7.17). Tension stresses only happen near the main cavern wall due to its

span and in situ state of stress. However, the maximum tension stresses are below 1 MPa.

Considering the strength properties of the rock mass it is expected that only a few plastic zones
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(a) (b)

Figure 7.16: Absolute error histograms for (a) the 2D and (b) 3D models.

occur and the rock mass behaves almost in elasticity. Figure 7.18 shows the zones in plasticity

and, in fact, only a few sheared zones can be observed in the surroundings of the underground

structure. This almost elastic behaviour of the structure and surrounding rock mass mean that

the adopted construction sequence in the models has a low impact on the final results and that

the most important parameters for the structure behaviour prediction are E and K0.

Figure 7.17: Computed minimum stresses (negative values translate compression).

The maximum computed shear strains were also low with values ranging from 0.02% and

0.1% for the 2D model and 0.015% and 0.04% for the 3D model. Once more, lower values were
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Excavated powerhouse cavern

Plastic zones

Figure 7.18: Plastic zones at the last excavation stage.

obtained for the 3D model. These values are within the expected range considering the quality

of the rock mass and the construction method.

Figure 7.19 presents the maximum and minimum principal stresses in the sprayed concrete

for the last excavation stage. It can be observed, and in agreement with a previous statement,

that the most compressed zone is located near the arch of the main cavern, mainly between

the interconnecting galleries. In this area, the computed compression stresses range between 4

MPa and 5 MPa. These values are still far from the limit compression strength of a current

sprayed concrete so crushing of the material is not expected to happen. The computed tension

stresses are generally low (<2 MPa). However, in the beginnings of the main cavern arch,

tension stresses can reach values up to 11 MPa. This is caused by a stress concentration effect

in this area and may cause cracking to the concrete. Therefore, it may be necessary to reinforce

it in order to avoid this to happen.

Figure 7.19: Stresses in the fiber sprayed concrete.
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For the 3D model a calculation of the factor of safety was carried out. FLAC3D uses

the method defined by Dawson (1999) in which the strength parameters are consecutively

reduced until significant plastic flow appears in some zone of the structure. This way, the

computed factor of safety was 4.63 which can be considered satisfactory in terms of security

level. Figure 7.20 shows an image of the last non-equilibrium state produced by the methodology

of strength reduction applied to calculate the factor of safety. The shear strain contours allow

the visualisation of the expected failure mode.

Yielding zone

Figure 7.20: 3D visualisation of the shear strain contours for the last non-equilibrium state.

Plastic flow appears in the connection zone between the vertical wall and the beginning of the

arch which is, as already referred, an area of stress concentration. This fact can be corroborated

by the observation of Figure 7.21 where a cutting plane through one of the interconnecting

galleries shows the shear strain contours and velocity vectors. It can be seen that potential

instability zones are located near the connections between the vertical walls and the arch of the

main cavern mainly near the high span vertical wall opposite to the interconnecting galleries.

Annex III is referred for more details about displacements countours and vectors and prin-

cipal stresses for two different cross-sections.

7.5 Back analysis of geomechanical parameters

7.5.1 Used optimisation techniques

As it was concluded by the structural analysis of the models, the parameters with more influence

on the behaviour of the powerhouse complex are E and K0. In this section, different techniques

are applied in order to back analyse these parameters based on the monitored displacements
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Figure 7.21: 2D visualisation of the shear strain contours and velocity vectors.

by the extensometers during the construction of the caverns.

The performed back analysis calculations were carried out in different stages. The first

calculations, which were used as a preliminary approach, were performed only for the reference

cross-section and using the 2D model. In this case, a least square error function was used

together with the steepest descent and conjugate gradient algorithms.

In a more advanced phase, two more optimisation algorithms, a deterministic and a prob-

abilistic, were applied together with the developed 3D model. These algorithms were coupled

with FLAC3D in order to perform the identification process in a more efficient way. The

algorithms are compared in terms of efficiency and robustness.

The deterministic method was the one provided by the software SiDolo (SiDolo, 2005). This

software was created at the Ecole Normale Superieure and, nowadays, is being developed by the

laboratory of mechanical and materials engineering of the Bretagne-Sud University in France.

It uses an hybrid algorithm that combines two traditional optimisation techniques, namely,

a gradient based algorithm and a variant of the Levenberg-Marquardt method to accelerate

convergence when the process is close to the solution (Eclaircy-Caudron et al., 2006).

The error function (L(A)) used by SiDolo is translated by equation 7.1:

L(A) =
N∑

n=1

1
Mn

Mn∑

i=1

T [Zs(A, ti)− Z∗s (ti)] .Dn. [Zs(A, ti)− Z∗s (ti)] (7.1)

where A represent the model parameters, N is the number of experimental results, [Zs(A, ti)−
Z∗s (ti)] is the difference between numerical and experimental results of the Mn observation

at timestep ti and Dn is the weighting matrix of the nth test. Dn is a diagonal matrix and

its coefficient translate the uncertainties/accuracy of the observed measurements. In practice,
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these coefficients correspond, normally, to the square of the inverse measurement error or of

its estimation. In this study, this errors were assumed to be equal for all measurements which

reduced equation 7.1 to a least square error function.

In the SiDolo software, the process is stopped if one of two conditions is verified: a maximum

pre-defined number of iterations is reached or when the relative difference between the error

function value obtained at a certain step and the best one obtained during the process is lower

than a defined threshold. In this study, a rate of 10−15 was adopted which is the default value.

The other used optimisation algorithm was the (µ/ρ+λ) evolution strategy (ES) presented

in the previous Chapter. For comparison sake, the same error function used by SiDolo was

considered together with this algorithm. For the stopping criteria, the error values ε1 and ε2

were initially considered equal to 10−5. In a more advanced stage, a value of 10−7 was also

tested in order to analyse the influence of this parameter in the obtained results and in the

algorithm efficiency.

7.5.2 Validation studies

In order to determine the possibility to identify E and K0 using the described techniques

together with the displacements observed in the extensometers, validation studies were carried

out before the optimisation process.

An experimental response of the 24 displacements measured by the extensometers was

artificially created using the 3D model and the set of geomechanical parameters initially defined

for the structural analysis. Then, the strength parameters, as well as the Poisson coefficient,

were fixed while E and K0 (perpendicular to the caverns axis) were supposed unknown. Both

methods need a definition of boundary values for the parameters to identify. This way, the

interval values were set between 1 GPa and 100 GPa for E and between 0.5 and 2.5 for K0.

Moreover, as SiDolo is based on traditional optimisation algorithms, it also needs an initial

approximation to the parameters. In this context, values of 60 GPa (+44.4% deviation) and

1.0 (-50% deviation) were adopted for E and K0, respectively.

Two identification processes were carried out using SiDolo. In a first approach, just the

displacements obtained after the first excavation stage were considered. Afterwards, the dis-

placements measured at every stage were used in the process. The idea of testing these extreme

approaches was to investigate the influence of the construction sequence in the identified pa-

rameters. If the results did not show significant differences, it meant that indeed the rock mass

behaves almost elastically and a more simple model, for instance, considering only the displace-

ments after one construction stage, could be used in the identification process enhancing its

efficiency. With the ES algorithm only the first of the described calculations was carried out.
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Table 7.9 resumes the obtained results.

Table 7.9: Results of the validation studies.

Case E (GPa) K0 Error value Iterations

SiDolo (1 phase) 45.0 2.0 8.9x10−13 25

SiDolo (all phases) 45.0 2.0 1.0x10−8 50

ES (1 phase) 43.3 1.9 1.3x10−7 10 (1 gen.)

It is possible to observe that SiDolo allows obtaining the correct parameter values in both

situations. The main difference is the efficiency of each calculation. When the displacements of

all excavation phases are considered, the iteration number, and consequently the computation

time, is much higher than in the case where the results of a single stage are used. It is once

again proved that the rock mass behaviour during the caverns excavation is nearly elastic and

the construction sequence has minor impact on the identification process.

The ES algorithm, which used the measurements of only one stage also, reached convergence

within a single generation of solutions, i.e. in ten iterations. The identified parameters are close

to the correct ones with an error of approximately 4% which is due to the relatively high values

adopted for ε1 and ε2 (10−5). A more restrict stopping criteria would enhance the quality of

the results but increase the computation time. Nevertheless, it was concluded that, also with

this technique, it would be possible to proceed to the back analysis of the interested parameters

considering only the measurements made after one excavation stage.

Figure 7.22 presents the error function topology for the referred case. It is possible to

observe that, in spite of being somewhat irregular, the error function presents a clear and sin-

gular minimum. This characteristic enables the parameters identification using both algorithms

without convergence problems.

This way, it was decided that in the proceeding back analysis calculations, only the dis-

placements observed after the last excavation stage would be used. This option lead to a very

important decrease of the identification process computation time with almost insignificant

precision loss, in comparison to the option of using the data of all construction stages. The

decision of using the results of the last excavation stage (instead of using, for instance, the

results of the first stage that would also reduce the computation time) is related with the diffi-

culty of precisely define the time limits between the construction stages and the correspondent

displacements after each one of them. In this context, the definition of results after the last

stage appears as much more clear and could result in more accurate results of the back analysis

process.
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(a) (b)

Figure 7.22: Topology of the error function on the identification of E and K0 for the validation study

using only the displacements measured after the first stage. (a) 3D view (b) Plan view.

7.5.3 Results

The first preliminary calculations were performed using the previously presented 2D model.

Together with a least square error function, the steepest descent and the conjugate gradient

algorithms were used in the minimisation process. The gradient of the error function in relation

to the parameters was computed using the finite differences method.

Since the computational time of the model was relatively low, several runs were carried out

considering all the available measurements on the reference cross-section and different combi-

nations of a limited number of measures. These preliminary calculations constituted a first

approach to the problem highlighting possible problems on the identification process and es-

tablishing a possible variation range for the interested parameters.

Due to the 2D model plain strain consideration, the computed strains and stresses were

higher in this case than for the 3D model. The number of yielded zones were consequently

higher and its behaviour aparted, in some way, from the elastic. In the previous chapter, it

was concluded that measurement based back analysis using plastic models with yielding and

traditional algorithms could lead to the identification of parameters which correspond to local

minima near the initial guesses of the parameters. This was normally achieved in a reduced

number of iterations. The results obtained from the preliminary calculations resemble this

situation.

In fact, the results of the several performed calculations pointed out to parameter values not

far from the initial guesses. The values of E ranged from 40 GPa to 45 GPa while K0 ranged

from 1.90 to 2.45. These values were normally reached in a reduced iterations number. Probably

they correspond to local minima. Also, some problems related with the process convergence

were identified. The back analysis was ”ill-posed” for some measurement combinations which

did not allow convergence to be obtained. These results underline once more the problems with
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the applicability of traditional algorithms on the identification of geomechanical parameters in

underground works.

Concerning the back analysis using the 3D model, as already referred, two different method-

ologies were used. A back analysis software called SiDolo based on traditional algorithms and

an ES were coupled with the model to perform the identification process. The interval range

adopted for the parameters was the same used for the validation studies. They seem sufficiently

large to contain the optimal solution and to correctly test the algorithms in this real application.

In the calculations performed using SiDolo, the initial approximation for the parameters were

the values given by GEOPAT, i.e. 45 GPa for E and 2.0 for K0. In the first identification attempt

the 20 measurements were considered and convergence was reached. In order to evaluate the

process stability and consistency on the results it was decided to perform another calculation in

different conditions. These conditions could be defined in a variety of ways and it was necessary

to establish a criterion. It was verified that the difference between the computed and observed

measurements was always of the same sign before and after optimisation excluding for the values

of EF1.15 and EF5.40. This way, a second process was carried out considering as a starting

point the optimised values of the first calculation and without the cited measurements. Table

7.10 presents the results of the two identification attempts using SiDolo and compares them

with the results obtained with the initial guess provided by GEOPAT.

Table 7.10: Results of the identification processes using SiDolo.

Case E (GPa) K0 Error valuex10−6 Mean disp. (mm)* Iterations

Initial values 45.0 2.0 1.76 2.91 -

Results (1) 55.0 1.98 1.26 2.36 25

Initial values 45.0 2.0 1.90 2.51 -

Results (2) 56.7 1.90 1.34 1.93 12

* - the mean measured displacements are 2.48 mm and 2.11 mm for the first and second calculations,

respectively.

Concerning the first identification attempt, convergence is attained in a total of 25 iterations.

The optimised set of parameters is not significantly different to the initial guesses specially in

what concerns K0. The optimised value of E is 22% higher than the initial one. The error

function value underwent a 29% decrease and the mean displacement differs only 0.12 mm from

the measured values.

Figure 7.23 presents a comparison between the measured displacements with the ones com-

puted with the initial and optimised set of parameters. It is interesting to notice that the results

obtained with the optimised parameters only outperforms the fit of the initial calculations in
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nine out of twenty measures. However, the errors plot show a more smooth distribution of the

errors in the different extensometers for the optimised parameters calculation.
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Figure 7.23: Comparison between the observed measurements and the computed values with the initial

and optimised set of parameters obtained by SiDolo in the first identification attempt. (a) Absolute

values (b) Error values.

For the second attempt, additional 12 iterations were necessary to achieve convergence. In

spite a higher variation in relation to the initial values given by GEOPAT, the final obtained

set of parameters is close to the first attempt. The error function value was reduced in a similar

percentage as in the previous calculation. The mean value of the displacement is only 0.18 mm

less than the observed values. The results of this calculation point out to a more rigid rock mass

and less important horizontal loads translated by the lower value of K0 in relation to the first

calculation. Figure 7.24 presents the fit of the this second identification attempt. The same

trend is observed as in the previous scenario. Even though a higher number of initial better

fits, the errors for the optimised parameters are more uniform in the considered extensometers.

The initial conditions for the two identification attempts were not considerably different

and significant variations in the results were not expected. However, the back analysis process

showed to be stable. The second attempt, which considered only 18 measurements instead of

the initial 20, presents an absolute error function value (initial and after optimisation) higher

than in the first identification process. It means that an overall poorer fit was obtained in

this calculation. This way, in the identifications carried out with the ES, only 18 displacement

measurements were considered in order to check, under different circumstances, if the obtained

results could be improved.

A total of three back analysis processes were performed using the ES algorithm. In the
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Figure 7.24: Comparison between the observed measurements and the computed values with the initial

and optimised set of parameters obtained by SiDolo in the second identification attempt. (a) Absolut

values (b) Error values.

first identification attempt, a value of 10−5 was considered for ε1 and ε2. To evaluate the

influence of the stopping criteria, a second process was carried out using a value of 10−7 for

these parameters. Finally, in the third attempt, an elastic constitutive model was adopted for

the rock mass. Table 7.11 resumes the obtained results of these calculations.

Table 7.11: Results of the identification processes using the ES algorithm.

Case E (GPa) K0 Error valuex10−6 Mean disp. (mm)* Generations

Initial values 45.0 2.0 1.90 2.51 -

ES (10−5) 52.1 1.72 1.37 1.91 1

ES (10−7) 58.0 1.98 1.34 1.97 6

ES (10−7) elastic 58.5 2.02 1.36 1.91 7

* - the mean measured displacement is 2.11 mm.

In the first calculation, and due to the relatively high value for the stopping criteria (10−5),

convergence was reached in only one generation (10 iterations). The probabilistically created

group of solutions by the algorithm allowed to obtain results which reduced the error function

value. The optimised set of parameters varied the same relative magnitude in relation to the

initial values. In particular, the optimised value of E is 14% higher and K0 14% lower.

The adoption of a more restrict stopping criteria (10−7), allowed to improve the results

in relation to the observed measurements. With this new set of optimised parameters, every

evaluation criteria was improved. In fact, the value of the error function was decreased and the
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mean displacement is closer to the observed value. This improvement was obviously translated

with an increased computational effort. In this case, 6 generations (60 iterations) were needed

in order to reach convergence.

In comparison with the set of parameters obtained with SiDolo, the error function value is

similar but the mean displacement is slightly closer to the observed values in the solution found

by the ES. Figure 7.25 presents a comparison between the observed displacements and the

ones computed with the initial and optimised set of parameters. As it should be expected, the

results are similar to those reported with the set of parameters identified with SiDolo namely

in relation to the more smooth distribution of errors obtained with the optimised parameters.

However, in this case, the fit is improved in 9 out of 18 cases while for the previous case, that

value was 8.
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Figure 7.25: Comparison between the observed measurements and the computed values with the initial

and optimised set of parameters obtained by the evolution strategy considering ε1 and ε2 equal to 10−7.

(a) Absolute values (b) Error values.

In order to have a thorough insight of the fit, Figure 7.26 presents a comparison between the

computed and measured values using the initial and the optimised set of parameters obtained

by the ES. It is possible to observe that for the optimised set case, the values are more uniformly

distributed around the 45o slope line translating a better fit of the model.

In conclusion, the results obtained by the set of parameters identified by the ES algorithm

slightly outperformes the ones obtained by SiDolo. The reason could be one of the following: i)

the traditional algorithm based software SiDolo was kept in a local minimum; ii) the stopping

criteria of the ES was more restrict. In order to investigate this subject, Figure 7.27 presents

the topology of the error function for this case and the location of the identified values by both
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Figure 7.26: Comparison between the observed measurements and the values computed using a) the

initial set of parameters and b) the optimised set of parameters.

methodologies. In the plan view, it is possible to observe that the solution given by SiDolo

and the ES using the more restrict stopping criteria, lay near the same isoline. The remaining

solution given by this algorithm corresponds to a higher value of the error function caused

not by a local minimum but because of the higher allowed error value to stop the process.

This way, it is possible to conclude that the correct hypothesis is the one raised in ii), i.e. the

slight differences in the solutions provided by the two methodologies is related with the adopted

stopping criteria.

(a)
(b)

Figure 7.27: Topology of the error function for the plastic model of Venda Nova II powerhouse complex.

(a) 3D view (b) Plan view.
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However, it is also possible to observe a local minimum in the error function near the region

corresponding to E and K0 values of 45 GPa and 1.5, respectively. Both methodologies were

able to avoid this local minimum and converge to the global solution but probably for different

reasons: the ES because of its intrinsic characteristics of global optimisation that allows it to

avoid local minima as observed in the previous Chapter; SiDolo because of the characteristics

of the error function topology but mostly because the initial guess for the identification with

SiDolo was already close to the global optimum. These are just hypothesis that need to be tested

with additional calculations. In particular, it would be interesting to perform a calculation

using SiDolo with an initial approximation close to the local optimum to check for convergence

problems.

The first calculation with SiDolo used a starting point close to the value where the local

minimum is observed. However, since the initial conditions of the identification process were

different, namely in terms of the number of considered measures, there is no enough data to

assure that this particular local minimum exists in the error function correspondent to this

situation.

Finally, the optimisation procedure was carried out considering an elastic model for the rock

mass. The identified set of parameters is rather close to ones obtained with the plastic model.

The error function value is only slightly increased. Figure 7.28 presents the plot correspondent

to the error function topology. As it should be expected, its topology is very similar from the

previous calculation. However, there is one particular issue that is important to mention. In

this case, the local minimum is no longer observed. This conclusion points out to the fact

that this is a particular characteristic of models with plasticity, meeting the observations of

the previous chapter. As there is a minor number of plasticity zones only one local minimum

appears in the error function. Probably, in models with a higher plasticity degree, multiple

local minima may appear.

As it was stated, the back analysis process allowed to obtain sets of parameters which

improved the fit between the computed and measured quantities. For instance, the set identified

by the ES algorithm with the more restrict stopping criteria, provide a very good quality fit.

However, it is important to discuss to what extent these results really translate the in situ

conditions of the rock mass. Obviously, the obtained results have to be analysed considering

the limitations of the used models. The main limitations and their impact on the results are

briefly discussed in the following items.

• Only one value for E and K0 was considered when, in fact, their values can very within

the area interested by the caverns. This variation is dependent on the heterogeneity of

the rock mass and anisotropy degree of the in situ stresses. The relative homogeneity of
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(a) (b)

Figure 7.28: Topology of the error function for the elastic model of Venda Nova II powerhouse complex.

(a) 3D view (b) Plan view.

the rock mass and the results of the STT tests, which resulted in approximate values of

K0 in two distinct test sites, point out to the fact that this issue may not be significantely

important in this case and the obtained parameters correspond to mean values with an

acceptable accuracy.

• The used field measurements are the total displacements at the end of the last excava-

tion stage. However, when the extensometers are placed, some displacement has already

ocurred in the rock mass which can not be measured. This way, the total real displace-

ment is higher than the measured one and in this case the back analysis process can

point out to a more rigid solution. The alternative was to use an incremental solution

considering the measurements between stages as presented in LNEC (2003) for this case.

This approach overcomes the previously raised problem and takes in consideration, in a

consistent way, the measured displacements and the construction stages. Nevertheless,

the correct definition of the time when a certain construction stage is ended and a new one

starts is complicated because of the grey areas corresponding to time overlapping between

the different construction stages. The definition of this border is, therefore, subjected to

judgment errors or, at least, some imprecision. Probably, the best way is to use both

approaches in order to validate and compare the results. In the cited study performed by

LNEC this incremental back analysis solution was used together with a 2D model and the

measures in three extensometers between two stages. In spite of the different approaches

and the consideration, in latter case, of a significantely lower measurement number, the

results are similar to the ones obtained by the ES algorithm. In particular, the same E

value (58 GPa) was identified and for K0 the difference was about 15% (2.3). Then, it

can be concluded that these results point out for the low importance, in this case, of the
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displacements occurred in the rock mass before the extensometers placing and validate

the obtained results.

• The field measurements were only referred to two cross-section in the extent of the caverns.

This way, the results are more related with the rock mass in the vicinity of these cross-

sections.

In order to more thoroughly validate the obtained results, some other back analysis calcu-

lations may be performed in order to cover some particular aspects: i) use the ES algorithm

considering the incremental solution considering the measurements between stages; ii) input

more measurements data in the back analysis process, namely convergence measures which

were available as well; iii) perform the calculations considering a wider range in particular for

K0 in order to search for other solutions to which correspond a lower error function value.

7.6 Conclusions

The Venda Nova II hydroelectric scheme, built in the North of Portugal, includes a set of very

important underground structures. In this Chapter a short description of these structures was

performed emphasising its main issues.

The scheme was built mainly in a granite rock mass. In order to have a better understand-

ing of the geomechanical characteristics of the interested rock mass, an analysis of geotechnical

data gathered in different surveys was carried out. A high number of in situ and laboratory

tests were statistically analysed. The results allowed to conclude that the rock mass presents

good geomechanical properties, both in terms of the intact rock and discontinuities surfaces.

Moreover, the performed analysis pointed out to the fact that, in general, strength character-

istics are well described by normal distributions while the lognormal presents a better fit for

deformability parameters.

The powerhouse complex, composed by two caverns connected by two galleries, was de-

scribed and object of the development of 2D and 3D numerical models. The different construc-

tion stages were considered and their behaviour was analysed and compared with the monitored

values by extensometers placed in the caverns along two cross-sections. The geomechanical pa-

rameters used in the models were obtained through the GEOPAT system .

The results point out for an almost elastic behaviour of the rock mass due to the small dis-

placements and shear levels induced by the caverns excavation which caused a reduced number

of yielding zones. The displacements configuration is very much influenced by the high hori-

zontal stress perpendicular to the caverns axis. This way, the maximum displacement values

are observed near the high span vertical wall of the main cavern.
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Even though the higher computed displacements in the 2D model due to the plain strain

consideration, the fit of the results is acceptable in the developed models in both qualitative

and quantitative aspects. In fact, the performed statistical analysis validate the observed good

quality of the results. The small measured displacements turn the fit more difficult to obtain

(due to lack of precision in the readings, simplifications of the constructions sequence and

constitutive models, etc.) which could be one of the reason of a poorer fit in some extensometers.

The stresses in the support system are low and the computed factor of safety on the 3D

model is 4.63 which translate an acceptable security level. The most probable failure mode

taken from this calculation is plastic flow in the connection between the beginning of the arch

and the vertical wall of the main cavern since its an area of stress concentration.

Using the developed models together with different back analysis techniques, E and K0

were back analysed based on the displacements measured by the extensometers. In a first stage,

validation studies were performed to evaluate the possibility to identify these parameters. It was

observed that, due to the almost elastic behaviour, the construction sequence had low impact

on the measured response and it was decided to consider only the displacements measured after

the last construction stage in the back analysis calculations.

Two different back analysis techniques were used: the software SiDolo based on two tradi-

tional optimisation techniques and an ES algorithm. They were coupled with the 3D model to

perform the identification of the cited parameters. The use of 3D models for back analysis is

not very common and constitutes one important innovative aspect of this work.

The back analysis reached convergence with both techniques. It was possible to identify

sets of parameters which improved the fit between measured and computed displacements. It is

worth to mention that the initial parameters provided by GEOPAT were close to the real values.

The ES slightly outperformed SiDolo when a more restrict stopping criteria was adopted.

The ES was able to avoid a local minimum which was observed in the error function topology

even for a higher value of the considered stopping criteria. SiDolo was also able to do it but

probably because the initial value was already close to the final solution. Additional calculations

are needed to validate this theory. It was also observed that, using an elastic model, the local

minimum no longer existed. Probably, the appearance of local minima is more characteristic of

plastic models and they are closely related to the plasticity level which occurs in the models.

The capacity of the used models to translate reality was discussed. Three main limitations

were pointed out: i) the consideration of only one value for E and K0; ii) the use of the

total displacements measured in the end of the last excavation stage which can cause a stiffer

response of the numerical model and iii) the use of measurements in only two cross-sections.

It was concluded that, in this particular case, these limitations did not have a very significant

impact to the point of severely influencing the reliability of the back analysis results. However,
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they should be considered in future analysis.

In conclusion, the main innovative aspect of this work was the use of the ES algorithm

combined with a 3D model. In this first approach it was shown that this combination can

provide very good results. The 3D model more closely translates the real behaviour of the

structures and the ES algorithm allows avoiding many problems of the traditional optimisation

algorithms. However, much research is still needed in order to test the algorithm in different

circumstances and to improve its efficiency. However, in this case, the identification process

was finished in an acceptable number of iterations. It would be interesting also to test other

evolutionary algorithms (like GAs) in the same problem to compare the results in this particular

aspect.
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Chapter 8

Conclusions

8.1 Summary and main contributions

The evaluation of strength and deformability parameters in rock formations is still a subject

where high uncertainty level exists. In the case of underground works these parameters are

evaluated and updated in several stages of the project to which correspond different degrees of

knowledge about the involved rock formation. This way, different techniques must be used in

this evaluation which must be adapted to the available knowledge in each phase.

Three different levels concerning the geomechanical parameters evaluation in an under-

ground structure project were defined. Level 1 is related to the parameters evaluation in

the preliminary stages of design where information is still scarce; in level 2 new geological-

geotechnical information is available and the preliminary geotechnical model (i.e. the initial

geomechanical parameters) can be updated using this information; level 3 is concerned with

the back analysis of the parameters when field observation becomes available.

In this thesis, the problematic of geomechanical parameters evaluation (restricted to strength

and deformability parameters) in underground structures is addressed. Some innovative devel-

opments in the numerical methodologies associated to the evaluation of these parameters are

achieved. Instead of focusing on a particular issue of the numerical methodologies, a global

approach was carried out in order to improve the way geomechanical parameters are calculated

in the several stages of an underground work project.

Concerning the methodologies for geomechanical parameters evaluation in rock masses, and

besides a systematic presentation of the main methods with especial emphasis to the most

innovative aspects, some innovative contributions were carried out, namely:

• An updating of the main innovative aspects of the RMR, Q, QTBM and GSI empirical

systems. A summary of expressions to compute the deformability modulus (E) was carried

239
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out. Concerning the RMR and Q systems, their matrix form and random set theory

approach was presented.

• Development of some correlations between classical empirical indexes (RMR-Q and RCR-

N) and new ones (FRMR-FQ which only consider the parameters related with the rock

mass, i.e. the common parts of the RMR and Q indexes) based on a large database

gathered in a granite rock mass of the North of Portugal.

• Description of some methods especially devoted to the characterisation of highly hetero-

geneous rock masses like granite rock masses, flysch and block in matrix rocks (bimrocks).

Concerning level 1, related with the preliminary evaluation of the geomechanical parameters,

the approach was to take advantage of the great amounts of geotechnical data normally produced

in large projects. The idea was to explore this data using innovative and automatic tools, from

the fields of artificial intelligence and pattern recognition (in particular Data Mining), in order

to discover embedded knowledge which could be useful and reliable.

In this context, the main achieved original contributions were the following:

• Development of new and reliable regression models, based on multiple regression and

ANN, for the calculation of the RMR and Q systems indexes and the geomechanical

parameters φ′, c’ and E. Several models were developed using different sets of information

which allow their use in different conditions of knowledge about the rock mass and can be

helpful for the decision-making process. Most of the induced models use less information

than the original formulations maintaining a high accuracy level.

• Enhance the understanding of the main parameters related with the behaviour of the

granite rock mass and the limitations of some empirical systems. The importance of the

discontinuities characteristics in the rock mass behaviour was verified. However, it was

pointed out that some of the conclusions, for instance the low importance of the water

conditions, were probably due to limitations of the used database or even of the empirical

systems themselves, in particular the RMR.

• The results of some expressions concerning the calculation of E were compared and a

methodology to define a single final value for this parameter was stablished and validated

with the results of reliable in situ tests. It was observed that some expressions may not

be adequate to be applied to granite rock masses.

• The establishment of the importance of the Q system value in the strength parameters

calculation as a very complete and useful parameter.
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• Development of the HRMR-G (Hierarchical rock mass rating for granites). This new

empirical rock mass classification system is based on the RMR system and presents a

decision tree format. It is called hierarchical because it can be applied with different

levels of knowledge. Each level provides a classification for the rock mass with a certain

probability degree. It does not need a deterministic definition of each parameter that

constitutes the RMR system (which in practice is not realistic) but only a range interval

of some of these parameters. As more information is available, it is possible to step to

the lower levels of the system providing a classification with a higher probability of being

correct.

Level 2 is related with the updating of the geomechanical parameters as new information

is available, for instance due to geotechnical survey campaigns performed in different project

stages. In underground structures, the geomechanical information is available from several

sources and present different reliabilities. In this context, the main goal was to develop a

proper, systematic and mathematically valid procedure to update the geomechanical parameters

as new information is available, considering the important contribution of experience in order

to reduce the uncertainties related to parameters values. This task was carried out in the scope

of Bayesian (subjective) probabilities.

The main contributions developed in the scope of this work were the following:

• Development of a Bayesian framework for a formal updating of E in underground works.

Different levels of initial knowledge and distributions of the data (normal and lognor-

mal, being the latter the one normally used to describe deformability parameters) were

considered.

• Development of an innovative and heuristic Bayesian updating method using the two-

parameter Weibull distribution. This approach tries to avoid the sensitivity of the pos-

terior updated results to the consideration of a certain type of distribution to the data.

The Weibull distribution is flexible and adapts to the data allowing to transform itself

(depending on the characteristics of the data) into a normal, a Rayleigh or an exponential

distribution.

• Application of the developed methodologies to real data for the updating of E in an

underground structure considering the results of in situ tests. Geotechnical data from

the Venda Nova II scheme, namely empirical systems applications and results from LFJ

tests performed by LNEC, was used in the process. The developed methods presented

mathematical consistency and were important mainly in the uncertainty reduction related
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to the real value of E. This example also showed possible applications of Bayesian tools

in geotechnics.

Level 3 is concerned with the use of field measurements in order to reevaluate the geome-

chanical parameters in a process called back analysis. In this procedure, the parameters of the

constitutive model (or the constitutive model itself) are fine tunned in order to improve the

match between measured and computed values. It can be performed using an error function,

which measures the differences between measurements and computed values, together with an

optimisation technique. Concerning this problem, the main goal was to test different optimi-

sation techniques in validation and real problems of geomechanical parameters identification in

underground works.

The main contribution achieved in this specific field were the following:

• Three traditional gradient-based optimisation algorithms were tested with a 3D model

verification problem of a tunnel excavation in elasticity and in elasto-plasticity. This type

of algorithms performed very well in elasticity corresponding to smooth-shaped error

functions with a clearly defined minimum. In elasto-plasticity, where a great number

of local minima may occur, they present convergence problems and identification of the

optimal set of parameters is not assured.

• The ES innovative optimisation algorithm was tested in two analytical verification prob-

lems of a tunnel also in elasticity and elasto-plasticity. The algorithm proved to be robust

even for complex error function topologies with several local minima. In terms of effi-

ciency, it normally takes more iterations then a traditional algorithm but far from the

hundreds or thousands calculations that a genetic algorithm normally needs to converge.

It is important to mention that the used algorithm was not optimised to the specific ap-

plication of geomechanical parameters in underground structures. However, the obtained

results seem promising to the potential broader application of this algorithm.

• A statistical analysis of geotechnical information gathered in different surveys was carried

out. The results pointed out to the overall good geomechanical quality of the granite

rock mass in spite of some localised geological features presenting lower characteristics.

Moreover, it was possible to conclude that lognormal and normal distributions are better

suited to describe deformability and strength parameters, respectively.

• For the caverns of the powerhouse complex 2D and 3D models were developed considering

the different excavation stages. The main conclusions of the structural analysis were that

the rock mass behaves almost in elasticity due to its good quality and that the displace-

ments (and stresses) field is highly influenced by K0 in the perpendicular direction of the
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caverns axis. The results of the numerical models were compared with field observation,

namely displacements measurements in extensometers and the fit was acceptable both in

the qualitative and quantitative perspectives.

• The parameters E and K0 (perpendicular to the caverns axis) were back analysed using

the 3D model together with two different optimisation algorithms, namely the SiDolo

optimisation software and the ES algorithm. The optimised set of parameters were not

significantly different from the initial values, specially to what concerns the K0 parameter.

These results were analysed at the light of the considered simplifications. It was concluded

that, in this particular case, the observed limitations did not affect significantely the

results of the back analysis process but should be considered in future calculations. In

what concerns the performance of the algorithms, both were able to obtain good results.

The ES algorithm slightly outperformed SiDolo in the error function value related with

the obtained set of parameters and proved its ability to avoid a local minimum which

was observed in the error function topology. The main aspect of this analysis was the

coupling of a 3D model with a innovative algorithm that showed good performance.

In conclusion, the main overall innovative contributions of this thesis were the following:

• The application of innovative tools of data analysis (namely Data Mining) to the geome-

chanical characterisation field, which allowed the development of novel and useful models

that can be used mostly in the preliminary stages of the project. Moreover, this study

allowed to get an insight of some issues concerning some physical aspects of the analysed

granite rock mass, particularly in what concerns the most important parameters in the

prediction of its overall behaviour.

• The development of a proper and mathematically valid framework based on Bayesian

probabilities which allows the updating of the geomechanical parameters due to the con-

sideration of new knowledge. It contemplates different uncertainty levels and types of

knowledge and is able to deal with them consistently.

• To perform inverse analysis of geomechanical parameters considering a 3D model of an

underground structures together with an innovative algorithm from the field of evolution-

ary programming - an evolution strategy (ES) - which allows to overcome some of the

main limitations of tradicional optimisation algorithms normally used in the back analysis

process.
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8.2 Future developments

In this thesis several issues concerning the geomechanical parameters evaluation were addressed

in a integrated way. Some innovative contributions were achieved in different fields concerning

the numerical evaluation of geomechanical parameters in underground structures. However,

these contributions are not closed form solutions to the problems but almost initial however

consistent approaches to possible answers. The use of Data Mining, Bayesian probabilities and

inverse methodologies in the evaluation of geomechanical parameters in underground structures

raise significant opportunities of open windows for future research. This way, there are a lot

that can be done in the addressed areas and only some possible paths are going to be presented

in the following items:

• The in situ strength evaluation of rock masses is still a problem not satisfactorily solved.

This way, more work is necessary to improve the evaluation of strength parameters of

rock masses.

• Improve some technological and efficiency aspects related with the LFJ test. There is a

large experience in using this test in Portugal, mainly by LNEC, however, some issues

must be enhanced.

• Development of the direct and indirect methodologies of geomechanical characterisation

in highly heterogeneous rock formations. These type of formations cover important areas

(like in the North of Portugal) and in spite of some recent developments in this field, more

advances are necessary. The results of some of the current characterisation methodolo-

gies are almost meaningless in this type of formations, therefore special methods have to

be developed and tested to provide a more accurate characterisation of such formations.

Two possible numerical approaches are the development of advanced homogenisation tech-

niques and the use of probabilistic tools like the stochastic random fields approach.

• Increase the used database of geomechanical data in order to overcome some of the pointed

out limitations. This process will allow to fine-tune and validate the already developed

models.

• Apply the Data Mining techniques to other databases of geotechnical information consid-

ering other types of data and different rock masses, for instance the volcanic formations,

which present several particular issues. Other possible applications of these tools are the

analysis of the data gathered by TBM machines and the validation of the QTBM system.

• Establish standard ways of organising the geotechnical information in order to allow

applying DM techniques increasing the knowledge about the involved formations. This



Chapter 8. Conclusions 245

is a subject whose importance is already recognised by the scientific community as it

can be stated by the creation of the JTC2 - Joint Committee on Representation of Geo-

Engineering Data in Electronic Format (http://www.dur.ac.uk/geo-engineering/jtc2).

• Develop the Bayesian frameworks using more complex models, for instance the hierarchical

and the mixture models, and extend them to the consideration of strength parameters

and other important issues like the interaction between parameters.

• Improve the efficiency of the ES algorithm by adapting it to the particularities of the

constitutive models normally used to characterise rock masses. Efficiency can also be

improved using parallel or distributed calculation.

• More thoroughly test and validate the ES algorithm in real and verification problems

under different assumptions and circumstances.

• Use other artificial intelligence based optimisation techniques like the simmulated an-

nealling and particle swarm intelligence in the back analysis process.
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199p (2005).

Rackwitz, R. “Reviewing probabilistic soils modelling.” Computers and Geotechnics, 26: 199–

223 (2000).

Raiffa, H. and Schlaifer, R. Applied statistical decision theory. Harvard Business School, Cam-

bridge, Ma (1964).

Rangeard, D., Hicher, P. and Zentar, R. “Determining soil permeability from pressuremeter

tests.” Int. Journal for Numerical and Analytical Methods in Geomechanics, 27: 1–24 (2003).

Rangel, J., Viveros, U., Ayala, A. and Cervantes, F. “Tunnel stability analysis during con-

struction using a neuro-fuzzy system.” Int. Journal for Numerical and Analytical Methods

in Geomechanics, 29: 1433–1456 (2005).

Read, S., Richards, L. and Perrin, N. “Applicability of the Hoek-Brown failure criterion to

New Zealand greywacke rocks.” In “Proc. 9th Int. Cong. on Rock Mechanics,” 655–660.

Paris, France (1999).

Rechenberg, I. Evolutionsstrategie’94. Stuttgard: Frommann-Holzboog (1994).

Renders, J. Algorithmes génétiques et réseaux de neurones. Hermés: Paris (1995).
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Histograms of the numerical

variables used in the DM process
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278 Histograms of the numerical variables used in the DM process

Statistical measures

Attribute Min. Max. Mean Median Std. dev.

RQD 20.0 100.0 81.0 85.0 12.9

Jw 0.66 1.00 0.99 1.00 0.06

Jn 2.00 36.00 6.59 6.00 4.38

Jr 1.00 3.00 1.69 1.50 0.65

Ja 0.75 12.00 4.06 3.00 2.72

SRF 1.00 10.00 1.46 1.00 1.40

Q 0.014 133.300 13.605 8.800 18.341

P1 1.0 12.0 11.0 12.0 2.0

P2 3.0 20.0 16.2 17.0 2.6

P3 6.0 20.0 14.6 15.0 2.8

P4 0.0 30.0 15.0 16.0 6.6

P5 4.0 15.0 14.1 15.0 1.7

P6 -12.0 0.0 -7.0 -5.0 3.2

RMR 16.0 89.0 63.8 68.0 14.8

P41 0.0 4.0 1.9 2.0 0.8

P42 0.0 6.0 2.6 4.0 2.1

P43 0.0 6.0 3.5 3.0 1.6

P44 0.0 6.0 2.6 2.0 2.0

P45 0.0 6.0 4.3 5.0 1.6

Q’ 0.069 133.333 13.972 8.889 18.176

RQD/Jn 0.556 47.500 16.249 15.000 7.967

Jr/Ja 0.083 4.000 0.757 0.500 0.809

Jw/SRF 0.100 1.000 0.873 1.000 0.259

logQ -1.854 2.125 0.741 0.945 0.709

logQ′ -1.158 2.125 0.836 0.949 0.567

GSI 19.0 84.0 59.1 63.0 14.1

N 0.069 133.333 13.935 8.889 18.192

RCR 0.0 81.0 59.6 62.0 12.3

σc (MPa) 3.0 193.8 173.8 193.8 39.7

φ′ (o) 23.8 62.5 57.4 59.6 5.7

c’ (MPa) 0.501 9.000 3.694 3.623 1.548



Annex II

Correction for φ′ and c’ due to H

and D

In this Annex the developed methodology for a simple correction of the Mohr-Coulomb geome-

chanical parameters for a given H and D to a different pair of values is described. The main

goal is to complement the DM models which give the parameters for reference values of D=0

and H=350 m. First, a general methodology was developed with a broader field of application

and then simplified for the particular case of the DM models.

The development of the methodology started with a parametric study of the geomechanical

parameters obtained with the Venda Nova II powerhouse complex data. The H-B failure crite-

rion parameters were firstly calculated and then the Mohr-Coulomb geomechanical parameters

obtained through the linearisation of that failure criterion for an interest range of stress values.

It was considered, as it was for design and modelling purposes, that a gravitic stress field was

applied to the rock mass which linearly increased with H. Consequently, for increasing stress

(or H), φ′ decreases while c’ has an inverse trend. In relation to the D factor, increasing values

lead to lower values for both φ′ and c’. This happens given that higher D values translate a

more disturbed rock mass therefore with lower geomechanical parameter values. Figures II.1

and II.2 show the variation of φ′ and c’, respectively, for different D and H values.

The variation of φ′ is non linear for both cases. However, the curves are almost parallel and

are well translated by second degree polynomials. The reduction of φ′ is most pronounced for

higher D values. For instance, considering the H=400 m curve, a reduction of approximately

2.5o exist when D varies form 0.8 to 1, while when the variation is from 0 to 0.2 only a 1o

reduction is observed. In relation to H, the variation of φ′ is higher for lower H values. When

H varies from 25 m to 50 m, there is an approximately 3o reduction in φ′. However, for high H

(or stress) values the reduction of this parameter tends to be negligible.
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Figure II.1: Variation of φ′ with a) D and b) H.
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Figure II.2: Variation of c’ with a) D and b) H.

On the other hand, c’ has a nearly linear variation with D and H. This parameter increases

with H due to the higher stress field and decreases with D. The variation of D from 0 to 1

means a 1/3 reduction of c’. In relation to H, its variation from 25 m to 100 m leads to a c’

increase of 15% but if H reaches 400 m the variation is very significant, approximately 80%.

The developed generic methodology is based on the application of two correction factors for

each parameter related with D and H. The correction factors can be taken from charts obtained

by the normalisation of the previously presented curves for D=0 and H=350 m. This choice

was made in order to facilitate its use in the case of the DM prediction models, since they were

developed considering these D and H values.

Generically, in the developed methodology, if the geomechanical parameters are available

for a given pair (D0; H0) and it is intended to correct them to another pair of values (Df ;Hf )

the process is carried out in two steps:

• first, proceed to the correction for D: (D0; H0) to (Df ;H0);
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• second, correct this value for H: (Df ; H0) to (Df ; Hf ).

This way, the final value of the geomechanical parameters are obtained adding to the initial

values the two correction factors. In the particular case of φ′ its corrected value (φ′cor) is

computed by:

φ′cor = φ′ini + ∆φ′D + ∆φ′H (2.1)

where φ′ini is the initial friction angle, ∆φ′D is the correction for D and ∆φ′H is the correction for

H. Attention should be paid that, in this case, the correction values are the difference between

the corrections of the final and initial values of D and H:

∆φ′D = ∆φ′finalD −∆φ′initialD (2.2)

∆φ′H = ∆φ′finalH −∆φ′initialH (2.3)

where ∆φ′initialD and ∆φ′finalD are the correction factors, related to D, correspondent to

(D0;H0) and (Df ; H0), respectively; and ∆φ′initialH and ∆φ′finalH are the correction factors,

related to H, correspondent to (Df ; H0) and (Df ;Hf ), respectively. For the particular case of

the DM models, the results are already defined for values of H=350 m and D=0 so the initial

values are 0. The correction factors for φ′ can be taken from the charts of Figures II.3 and II.4.
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Figure II.3: Correction factor chart for φ′ concerning D
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In the case of c’, the linear relation with H and D allows establishing a simpler correction

process. The expression for computing the final value of c’ is similar to the one developed for

φ′:

c′cor = c′ini + ∆c′D + ∆c′H (2.4)

where c′cor is the corrected cohesion, c′ini the initial cohesion, ∆c′D is the correction for D and

∆c′H is the correction for H. The correction factors are proportional to two parameters α and

β in the sense:

∆c′D = −α×∆D = −α× (Dfinal −Dinitial) (2.5)

∆c′H = β ×∆H = β × (Hfinal −Hinitial) (2.6)

where Dfinal, Dinitial, Hfinal and Hinitial are the final and initial values for the disturbance

factor and depth, respectively. For the particular case of the DM models Dinitial and Hinitial

are 0 and 350, respectively. The α and β parameters can be taken from the charts of Figures

II.5 and II.6.
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Calculation Example: Lets consider that for D=1 and H=100 m the φ′ and c’ values were 54.64o

and 1,382 MPa, respectively, and it was intended to obtain these geomechanical parameters for

D=0.5 and H=300 m.

Correction of φ′:

First, the correction for the D factor.
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(D = 1;H = 100m) → (D = 0.5; H = 100m) ⇒

⇒ ∆φ′D = ∆φ′finalD −∆φ′initialD = −2.51− (−8.86) = 6.35o (2.7)

Second, the correction for H.

(D = 0.5;H = 100m) → (D = 0.5; H = 300m) ⇒

⇒ ∆φ′H = ∆φ′finalH −∆φ′initialH = 0.96− 7.04 = −6.06o (2.8)

Final value of φ′.

φ′cor = φ′ini + ∆φ′D + ∆φ′H = 54.64 + 6.35− 6.06 = 54.93o (2.9)

The value of the φ′ obtained directly by the H-B methodology is 55.01o which means that

the error is approximately 0.15%.

Correction of c’:

First, the correction for the D factor.

(D = 1;H = 100m) → (D = 0.5;H = 100m) ⇒

⇒ ∆cD
′ = −α×∆D = −α× (Dfinal −Dinitial) = −1.18× (0.5− 1) = 0.59MPa (2.10)

Second, the correction for H.

(D = 0.5;H = 100m) → (D = 0.5;H = 300m) ⇒

⇒ ∆cH
′ = β ×∆H = β × (Hfinal −Hinitial) = 0.0042× (300− 100) = 0.84MPa (2.11)

Final value of c’.

c′cor = c′ini + ∆c′D + ∆c′H = 1.382 + 0.59 + 0.84 = 2.812MPa (2.12)

The correct value for c’ is 2.805 MPa. This means that the error associated with the

correction is 0.25%. Several runs were carried out and the maximum computed error was

approximately 2.5% which can be considered acceptable.



Annex III

Computed stresses and

displacements for the 3D model of

Venda Nova II

In this Annex some aditional results concerning the 3D model of Venda Nova II powerhouse

complex are presented. In particular, the evolution in the different excavation stages of the

total displacements (along with displacement vectors) and minimum and maximum stresses are

detailed for two different cross-sections. The first, which is designated cross-section 1, intersects

one of the interconnecting galleries, while cross-section 2 passes through a zone closer to one

extreme of the caverns and does not intersect any gallery. It was thought to present similar

results correspondent to the calculation with the optimised parameters. However, the results

were qualitatively identical differing only in a stiffer response of the rock mass due mainly to

the higher value of E. This way, in the following Figures, the results are presented.

Figure III.1: Adopted mesh for the 3D model of the Venda Nova II powerhouse complex

285



286 Computed stresses and displacements for the 3D model of Venda Nova II

FLAC3D 3.00
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Step 965  Model Perspective
11:58:19 Fri Oct 26 2007

Center:
X: 3.886e+001
Y: 5.001e+001
Z: 2.987e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 4.77
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2.5000e-003 to  3.0000e-003
3.0000e-003 to  3.1852e-003

Interval = 5.0e-004

Displacement
Plane: on
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(a)
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Step 1667 Model Perspective
12:15:27 Fri Oct 26 2007

Center:
X: 4.991e+001
Y: 5.001e+001
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Rotation:
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Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000
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1.0000e-003 to  1.5000e-003
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3.0000e-003 to  3.4385e-003

Interval = 5.0e-004

Displacement
Plane: on
Maximum = 3.438e-003
Linestyle

(b)
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Step 3067 Model Perspective
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Center:
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12:34:19 Fri Oct 26 2007

Center:
X: 4.107e+001
Y: 5.001e+001
Z: 2.576e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of Displacement Mag.
Plane: on
Magfac = 0.000e+000

9.9725e-005 to  1.0000e-003
1.0000e-003 to  2.0000e-003
2.0000e-003 to  3.0000e-003
3.0000e-003 to  4.0000e-003
4.0000e-003 to  5.0000e-003
5.0000e-003 to  6.0000e-003
6.0000e-003 to  7.0000e-003
7.0000e-003 to  8.0000e-003
8.0000e-003 to  8.3616e-003

Interval = 1.0e-003
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Step 5013 Model Perspective
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Y: 5.001e+001
Z: 1.934e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of Displacement Mag.
Plane: on
Magfac = 0.000e+000

1.8159e-005 to  1.0000e-003
1.0000e-003 to  2.0000e-003
2.0000e-003 to  3.0000e-003
3.0000e-003 to  4.0000e-003
4.0000e-003 to  5.0000e-003
5.0000e-003 to  6.0000e-003
6.0000e-003 to  7.0000e-003
7.0000e-003 to  8.0000e-003
8.0000e-003 to  9.0000e-003
9.0000e-003 to  1.0000e-002
1.0000e-002 to  1.0509e-002

Interval = 1.0e-003

(e)

Figure III.2: Total displacements for cross-section 1. a) Stage 1. b) Stage 2. c) Stage 3. d) Stage 4.

e) Stage 5.
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FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 965  Model Perspective
12:04:03 Fri Oct 26 2007

Center:
X: 3.886e+001
Y: 5.001e+001
Z: 2.987e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 4.77
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMin
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-2.5546e+007 to -2.5000e+007
-2.5000e+007 to -2.4000e+007
-2.4000e+007 to -2.3000e+007
-2.3000e+007 to -2.2000e+007
-2.2000e+007 to -2.1000e+007
-2.1000e+007 to -2.0000e+007
-2.0000e+007 to -1.9000e+007
-1.9000e+007 to -1.8000e+007
-1.8000e+007 to -1.7000e+007
-1.7000e+007 to -1.6863e+007

Interval =  1.0e+006

(a)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 1667 Model Perspective
12:16:19 Fri Oct 26 2007

Center:
X: 4.991e+001
Y: 5.001e+001
Z: 2.797e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 4.77
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMin
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-2.7933e+007 to -2.6000e+007
-2.6000e+007 to -2.4000e+007
-2.4000e+007 to -2.2000e+007
-2.2000e+007 to -2.0000e+007
-2.0000e+007 to -1.8000e+007
-1.8000e+007 to -1.6000e+007
-1.6000e+007 to -1.4882e+007

Interval =  2.0e+006

(b)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 3067 Model Perspective
12:25:50 Fri Oct 26 2007

Center:
X: 4.383e+001
Y: 5.001e+001
Z: 2.434e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMin
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-3.2688e+007 to -3.0000e+007
-3.0000e+007 to -2.5000e+007
-2.5000e+007 to -2.0000e+007
-2.0000e+007 to -1.5000e+007
-1.5000e+007 to -1.0000e+007
-1.0000e+007 to -5.0000e+006
-5.0000e+006 to -3.5870e+006

Interval =  5.0e+006

(c)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 3648 Model Perspective
12:35:21 Fri Oct 26 2007

Center:
X: 4.107e+001
Y: 5.001e+001
Z: 2.576e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMin
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-3.2653e+007 to -3.0000e+007
-3.0000e+007 to -2.5000e+007
-2.5000e+007 to -2.0000e+007
-2.0000e+007 to -1.5000e+007
-1.5000e+007 to -1.0000e+007
-1.0000e+007 to -5.0000e+006
-5.0000e+006 to -3.7777e+006

Interval =  5.0e+006

(d)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 5013 Model Perspective
14:14:09 Fri Oct 26 2007

Center:
X: 4.383e+001
Y: 5.001e+001
Z: 1.934e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMin
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-3.4497e+007 to -3.0000e+007
-3.0000e+007 to -2.5000e+007
-2.5000e+007 to -2.0000e+007
-2.0000e+007 to -1.5000e+007
-1.5000e+007 to -1.0000e+007
-1.0000e+007 to -5.0000e+006
-5.0000e+006 to -2.4459e+006

Interval =  5.0e+006

(e)

Figure III.3: Minimum stresses for cross-section 1. a) Stage 1. b) Stage 2. c) Stage 3. d) Stage 4. e)

Stage 5.
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FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 965  Model Perspective
12:04:56 Fri Oct 26 2007

Center:
X: 3.886e+001
Y: 5.001e+001
Z: 2.987e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 4.77
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMax
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-9.7091e+006 to -9.0000e+006
-9.0000e+006 to -8.0000e+006
-8.0000e+006 to -7.0000e+006
-7.0000e+006 to -6.0000e+006
-6.0000e+006 to -5.0000e+006
-5.0000e+006 to -4.0000e+006
-4.0000e+006 to -3.0000e+006
-3.0000e+006 to -2.0000e+006
-2.0000e+006 to -1.6951e+006

Interval =  1.0e+006

(a)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 1667 Model Perspective
12:17:15 Fri Oct 26 2007

Center:
X: 4.991e+001
Y: 5.001e+001
Z: 2.797e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 4.77
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMax
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-9.5276e+006 to -9.0000e+006
-9.0000e+006 to -8.0000e+006
-8.0000e+006 to -7.0000e+006
-7.0000e+006 to -6.0000e+006
-6.0000e+006 to -5.0000e+006
-5.0000e+006 to -4.0000e+006
-4.0000e+006 to -3.0000e+006
-3.0000e+006 to -2.0000e+006
-2.0000e+006 to -1.2622e+006

Interval =  1.0e+006

(b)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 3067 Model Perspective
12:27:14 Fri Oct 26 2007

Center:
X: 4.383e+001
Y: 5.001e+001
Z: 2.434e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMax
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-9.6353e+006 to -9.0000e+006
-9.0000e+006 to -8.0000e+006
-8.0000e+006 to -7.0000e+006
-7.0000e+006 to -6.0000e+006
-6.0000e+006 to -5.0000e+006
-5.0000e+006 to -4.0000e+006
-4.0000e+006 to -3.0000e+006
-3.0000e+006 to -2.0000e+006
-2.0000e+006 to -1.0000e+006
-1.0000e+006 to 0.0000e+000
0.0000e+000 to  3.3822e+005

Interval = 1.0e+006

(c)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 3648 Model Perspective
12:35:55 Fri Oct 26 2007

Center:
X: 4.107e+001
Y: 5.001e+001
Z: 2.576e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMax
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-9.6694e+006 to -9.0000e+006
-9.0000e+006 to -8.0000e+006
-8.0000e+006 to -7.0000e+006
-7.0000e+006 to -6.0000e+006
-6.0000e+006 to -5.0000e+006
-5.0000e+006 to -4.0000e+006
-4.0000e+006 to -3.0000e+006
-3.0000e+006 to -2.0000e+006
-2.0000e+006 to -1.0000e+006
-1.0000e+006 to 0.0000e+000
0.0000e+000 to  9.1235e+004

Interval = 1.0e+006

(d)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 5013 Model Perspective
14:14:48 Fri Oct 26 2007

Center:
X: 4.383e+001
Y: 5.001e+001
Z: 1.934e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 2.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMax
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-9.7208e+006 to -9.0000e+006
-9.0000e+006 to -8.0000e+006
-8.0000e+006 to -7.0000e+006
-7.0000e+006 to -6.0000e+006
-6.0000e+006 to -5.0000e+006
-5.0000e+006 to -4.0000e+006
-4.0000e+006 to -3.0000e+006
-3.0000e+006 to -2.0000e+006
-2.0000e+006 to -1.0000e+006
-1.0000e+006 to 0.0000e+000
0.0000e+000 to  2.0880e+005

Interval = 1.0e+006

(e)

Figure III.4: Maximum stresses for cross-section 1. a) Stage 1. b) Stage 2. c) Stage 3. d) Stage 4. e)

Stage 5.
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FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 965  Model Perspective
12:09:54 Fri Oct 26 2007

Center:
X: 3.886e+001
Y: 5.001e+001
Z: 2.990e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 4.77
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of Displacement Mag.
Plane: on
Magfac = 0.000e+000

5.2048e-005 to  2.5000e-004
2.5000e-004 to  5.0000e-004
5.0000e-004 to  7.5000e-004
7.5000e-004 to  1.0000e-003
1.0000e-003 to  1.2500e-003
1.2500e-003 to  1.5000e-003
1.5000e-003 to  1.7500e-003
1.7500e-003 to  2.0000e-003
2.0000e-003 to  2.2500e-003
2.2500e-003 to  2.5000e-003
2.5000e-003 to  2.7500e-003
2.7500e-003 to  2.9043e-003

Interval = 2.5e-004

(a)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 1667 Model Perspective
12:18:53 Fri Oct 26 2007

Center:
X: 4.814e+001
Y: 5.001e+001
Z: 2.797e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 4.77
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of Displacement Mag.
Plane: on
Magfac = 0.000e+000

1.0143e-004 to  5.0000e-004
5.0000e-004 to  1.0000e-003
1.0000e-003 to  1.5000e-003
1.5000e-003 to  2.0000e-003
2.0000e-003 to  2.5000e-003
2.5000e-003 to  3.0000e-003
3.0000e-003 to  3.2895e-003

Interval = 5.0e-004

Displacement
Plane: on
Maximum = 3.289e-003
Linestyle

(b)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 3067 Model Perspective
12:29:05 Fri Oct 26 2007

Center:
X: 4.728e+001
Y: 5.001e+001
Z: 2.797e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of Displacement Mag.
Plane: on
Magfac = 0.000e+000

4.8591e-005 to  1.0000e-003
1.0000e-003 to  2.0000e-003
2.0000e-003 to  3.0000e-003
3.0000e-003 to  4.0000e-003
4.0000e-003 to  5.0000e-003
5.0000e-003 to  6.0000e-003
6.0000e-003 to  7.0000e-003
7.0000e-003 to  7.8566e-003

Interval = 1.0e-003

Displacement
Plane: on
Maximum = 7.857e-003

(c)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 3648 Model Perspective
14:08:10 Fri Oct 26 2007

Center:
X: 5.833e+001
Y: 5.001e+001
Z: 2.797e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of Displacement Mag.
Plane: on
Magfac = 0.000e+000

9.1690e-005 to  1.0000e-003
1.0000e-003 to  2.0000e-003
2.0000e-003 to  3.0000e-003
3.0000e-003 to  4.0000e-003
4.0000e-003 to  5.0000e-003
5.0000e-003 to  6.0000e-003
6.0000e-003 to  7.0000e-003
7.0000e-003 to  7.8670e-003

Interval = 1.0e-003

Displacement
Plane: on
Maximum = 7.867e-003

(d)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 5013 Model Perspective
14:17:21 Fri Oct 26 2007

Center:
X: 6.109e+001
Y: 5.001e+001
Z: 1.692e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of Displacement Mag.
Plane: on
Magfac = 0.000e+000

2.9684e-005 to  1.0000e-003
1.0000e-003 to  2.0000e-003
2.0000e-003 to  3.0000e-003
3.0000e-003 to  4.0000e-003
4.0000e-003 to  5.0000e-003
5.0000e-003 to  6.0000e-003
6.0000e-003 to  7.0000e-003
7.0000e-003 to  8.0000e-003
8.0000e-003 to  9.0000e-003
9.0000e-003 to  1.0000e-002
1.0000e-002 to  1.0095e-002

Interval = 1.0e-003

(e)

Figure III.5: Total displacements for cross-section 2. a) Stage 1. b) Stage 2. c) Stage 3. d) Stage 4.

e) Stage 5.
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FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 965  Model Perspective
12:11:07 Fri Oct 26 2007

Center:
X: 3.886e+001
Y: 5.001e+001
Z: 2.990e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 4.77
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMin
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-2.4784e+007 to -2.4000e+007
-2.4000e+007 to -2.3000e+007
-2.3000e+007 to -2.2000e+007
-2.2000e+007 to -2.1000e+007
-2.1000e+007 to -2.0000e+007
-2.0000e+007 to -1.9000e+007
-1.9000e+007 to -1.8000e+007
-1.8000e+007 to -1.7000e+007
-1.7000e+007 to -1.6925e+007

Interval =  1.0e+006

(a)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 1667 Model Perspective
12:19:55 Fri Oct 26 2007

Center:
X: 4.814e+001
Y: 5.001e+001
Z: 2.797e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 4.77
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMin
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-2.6859e+007 to -2.6000e+007
-2.6000e+007 to -2.4000e+007
-2.4000e+007 to -2.2000e+007
-2.2000e+007 to -2.0000e+007
-2.0000e+007 to -1.8000e+007
-1.8000e+007 to -1.6000e+007
-1.6000e+007 to -1.4989e+007

Interval =  2.0e+006

(b)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 3067 Model Perspective
12:30:21 Fri Oct 26 2007

Center:
X: 4.728e+001
Y: 5.001e+001
Z: 2.797e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMin
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-3.1214e+007 to -3.0000e+007
-3.0000e+007 to -2.7500e+007
-2.7500e+007 to -2.5000e+007
-2.5000e+007 to -2.2500e+007
-2.2500e+007 to -2.0000e+007
-2.0000e+007 to -1.7500e+007
-1.7500e+007 to -1.5000e+007
-1.5000e+007 to -1.2500e+007
-1.2500e+007 to -1.0000e+007
-1.0000e+007 to -7.5000e+006
-7.5000e+006 to -5.4980e+006

Interval =  2.5e+006

(c)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 3648 Model Perspective
14:10:52 Fri Oct 26 2007

Center:
X: 4.728e+001
Y: 5.001e+001
Z: 2.797e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMin
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-3.1200e+007 to -3.0000e+007
-3.0000e+007 to -2.7500e+007
-2.7500e+007 to -2.5000e+007
-2.5000e+007 to -2.2500e+007
-2.2500e+007 to -2.0000e+007
-2.0000e+007 to -1.7500e+007
-1.7500e+007 to -1.5000e+007
-1.5000e+007 to -1.2500e+007
-1.2500e+007 to -1.0000e+007
-1.0000e+007 to -7.5000e+006
-7.5000e+006 to -5.6086e+006

Interval =  2.5e+006

(d)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 5013 Model Perspective
14:18:19 Fri Oct 26 2007

Center:
X: 6.109e+001
Y: 5.001e+001
Z: 1.692e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMin
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-3.3021e+007 to -3.2500e+007
-3.2500e+007 to -3.0000e+007
-3.0000e+007 to -2.7500e+007
-2.7500e+007 to -2.5000e+007
-2.5000e+007 to -2.2500e+007
-2.2500e+007 to -2.0000e+007
-2.0000e+007 to -1.7500e+007
-1.7500e+007 to -1.5000e+007
-1.5000e+007 to -1.2500e+007
-1.2500e+007 to -1.0000e+007
-1.0000e+007 to -7.5000e+006
-7.5000e+006 to -5.0187e+006

(e)

Figure III.6: Minimum stresses for cross-section 2. a) Stage 1. b) Stage 2. c) Stage 3. d) Stage 4. e)

Stage 5.
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FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 965  Model Perspective
12:12:01 Fri Oct 26 2007

Center:
X: 3.886e+001
Y: 5.001e+001
Z: 2.990e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 4.77
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMax
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-9.7472e+006 to -9.0000e+006
-9.0000e+006 to -8.0000e+006
-8.0000e+006 to -7.0000e+006
-7.0000e+006 to -6.0000e+006
-6.0000e+006 to -5.0000e+006
-5.0000e+006 to -4.0000e+006
-4.0000e+006 to -3.0000e+006
-3.0000e+006 to -2.0000e+006
-2.0000e+006 to -1.8014e+006

Interval =  1.0e+006

(a)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 1667 Model Perspective
12:20:41 Fri Oct 26 2007

Center:
X: 4.814e+001
Y: 5.001e+001
Z: 2.797e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 4.77
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMin
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-2.6859e+007 to -2.6000e+007
-2.6000e+007 to -2.4000e+007
-2.4000e+007 to -2.2000e+007
-2.2000e+007 to -2.0000e+007
-2.0000e+007 to -1.8000e+007
-1.8000e+007 to -1.6000e+007
-1.6000e+007 to -1.4989e+007

Interval =  2.0e+006

Contour of SMax
Plane: on
Magfac = 0.000e+000

(b)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 3067 Model Perspective
12:31:06 Fri Oct 26 2007

Center:
X: 4.728e+001
Y: 5.001e+001
Z: 2.797e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMax
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-9.5684e+006 to -9.0000e+006
-9.0000e+006 to -8.0000e+006
-8.0000e+006 to -7.0000e+006
-7.0000e+006 to -6.0000e+006
-6.0000e+006 to -5.0000e+006
-5.0000e+006 to -4.0000e+006
-4.0000e+006 to -3.0000e+006
-3.0000e+006 to -2.0000e+006
-2.0000e+006 to -1.0000e+006
-1.0000e+006 to -7.1732e+005

Interval =  1.0e+006

(c)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 3648 Model Perspective
14:11:26 Fri Oct 26 2007

Center:
X: 4.728e+001
Y: 5.001e+001
Z: 2.797e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMax
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-9.5707e+006 to -9.0000e+006
-9.0000e+006 to -8.0000e+006
-8.0000e+006 to -7.0000e+006
-7.0000e+006 to -6.0000e+006
-6.0000e+006 to -5.0000e+006
-5.0000e+006 to -4.0000e+006
-4.0000e+006 to -3.0000e+006
-3.0000e+006 to -2.0000e+006
-2.0000e+006 to -1.0000e+006
-1.0000e+006 to 0.0000e+000
0.0000e+000 to  3.0394e+005

Interval = 1.0e+006

(d)

FLAC3D 3.00

Itasca Consulting Group, Inc.
Minneapolis, MN USA

Step 5013 Model Perspective
14:18:58 Fri Oct 26 2007

Center:
X: 6.109e+001
Y: 5.001e+001
Z: 1.692e+001

Rotation:
X: 0.000
Y:   0.000
Z: 0.000

Dist: 1.060e+003 Mag.: 3.81
Ang.: 22.500

Plane Origin:
X: 0.000e+000
Y: 5.000e+001
Z: 0.000e+000

Plane Orientation:
Dip: 90.000
DD: 0.000

Contour of SMax
Plane: on
Magfac = 0.000e+000
Gradient Calculation

-9.6401e+006 to -9.0000e+006
-9.0000e+006 to -8.0000e+006
-8.0000e+006 to -7.0000e+006
-7.0000e+006 to -6.0000e+006
-6.0000e+006 to -5.0000e+006
-5.0000e+006 to -4.0000e+006
-4.0000e+006 to -3.0000e+006
-3.0000e+006 to -2.0000e+006
-2.0000e+006 to -1.0000e+006
-1.0000e+006 to 0.0000e+000
0.0000e+000 to  8.0777e+005

Interval = 1.0e+006

(e)

Figure III.7: Maximum stresses for cross-section 2. a) Stage 1. b) Stage 2. c) Stage 3. d) Stage 4. e)

Stage 5.


