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Abstract

Automated driving cars are emerging, increasing the need for advanced occupant monitoring applications.
A transversal need for such systems is the detection of the occupants’ posture. Discriminative approaches
have received increased focus in the past decade, due to its automated detection and the growth in Machine
Learning (ML) applications and frameworks. One of its downsides is the need for a large dataset to train,
to achieve high accuracy. To allow a robust algorithmic training and validation, an algorithmic development
pipeline able to generate both real and synthetic datasets in the in-car scenario needs to be established,
together with adequate evaluation procedures, this thesis addresses such development. The approach focuses
first in two toolchains for in-car human body pose dataset generation: (1) real, and (2) synthetic. The first
toolchain uses two types of sensors for the data generation: (1) image data is captured through a Time-
of-Flight (ToF) sensor, and (2) human body pose data (ground-truth) is captured through an inertial suit
and optical system. Besides quantifying the inertial suit inherent sensitivity and accuracy, the feasibility
of the overall system for human body pose capture in the in-car scenario was demonstrated. Finally, the
feasibility of using system generated data (which was made publicly available) to train ML algorithms is
demonstrated. The second toolchain uses the features and labels from the previous one, in this case both
sensors are synthetically rendered. The toolchain creates a customized synthetic environment, comprising
human models, car, and camera. Poses are automatically generated for each human, taking into account
a per-joint axis Gaussian or incremental distribution, constrained by anthropometric and Range of Motion
measurements. Scene validation is done through collision detection. Rendering is focused on vision data,
supporting ToF and RGB cameras, generating synthetic images from these sensors. The feasibility of using
synthetic data (which was made publicly available), combined with real data, to train distinct machine learning
agorithms is demonstrated. Finally, several algorithms were evaluated, and a Deep Learning (DL) based
algorithm, namely Part Affinity Fields, was selected, customized and trained with datasets generated with the

previously mentioned toolchains, ultimately aiming to improve accuracy for the in-car scenario.



Vi

Resumo

Veiculos totalmente autonomos estao a emergir, aumentando a necessidade de um sistema de detecao
avancada dos ocupantes. Uma necessidade transversal destes sistemas € a detecao da postura dos ocu-
pantes. Abordagens discriminativas tem gerado um maior interesse na ultima década, muito devido a sua
detecao automatica bem como ao aumento de aplicacdes de Machine Learning (ML).Contudo, estes neces-
sitam de um grande conjunto de dados de treino, de forma a aumentar a precisao. Para permitir um treino
e validacéo robusta, é necessario estabelecer um pipeline de desenvolvimento algoritmico capaz de gerar
conjuntos de dados reais e sintéticos para o cenario automovel, juntamente com procedimentos de avali-
acao adequados, esta tese visa este desenvolvimento. Esta foca-se inicialmente no desenvolvimento de duas
toolchains para a geracao de datasets de pose humana no interior do veiculo: (1) reais, e (2) sintéticos. A
primeira toolchain utiliza dois tipos de sensores para a geracdo de dados: (1) imagens através de um sensor
Time-of-Flight (ToF), e (2) a pose humana (ground-truth) ¢ através de um fato inercial e um sistema dptico.
Para além de quantificar a sensibilidade e precisdo inerente do sistema inercial, a viabilidade do sistema
completo para captura de pose humana no interior do veiculo foi demonstrada. Por fim, é demonstrada
a viabilidade de usar dados reais (disponibilizados publicamente), para treinar algoritmos ML. A segunda
toolchain utiliza as mesmas features e labels da anterior, neste caso ambos 0s sensores sao sintéticos. Esta
cria um cenario customizavel, constituido por modelos humanos, carro, e camera. As poses sao geradas
automaticamente para cada humano, tendo em conta uma distribuicdo Gaussiana ou incremental, sendo
estas restringidas por medidas antropométricas. Diferentes tipos de detecdo de colisdes sao avaliados de
forma a validar os dados, nomeadamente corpo-corpo, humano-humano, e humano-carro. A renderizacao
é focada em cameras ToF e RGB, gerando imagens sintéticas destes sensores. E demonstrada a viabilidade
de utilizar dados sintéticos (disponibilizados publicamente), para treinar algoritmos ML. Finalmente, varios
algoritmos foram avaliados, e um algoritmo, nomeadamente Part Affinity Fields, foi selecionado, modificado
e treinado com os datasets gerados através das toolchains mencionadas anteriormente, de forma a aumentar

a sua precisao para o cenario do interior do veiculo.
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Chapter 1

Introduction

This chapter presents the concept of human body pose detection, both outside and inside the vehicles,
as well as its validation with ground-truth systems. These concepts are the driving factor for the goals and
contributions of this thesis. The organization of the dissertation is also listed at the end of this chapter.

With current development and deployment of Advanced Driver-Assistance Systems, higher levels of car
automation will be available. With them, the human factor inside the car will also change.

These modifications require advanced systems for passenger detection, their behaviours and the way
they interact with the vehicle. Due to this fact, systems that allow for passenger body pose detection inside of
vehicles are the determinant factor to ensure both safety and comfort. Currently, there are several known R&D
groups already focused in this or in other use cases, such as Laboratory for Intelligence & Safe Automobiles
[26, 27, 28, 29, 30], and Stanford Artificial Intelligence - Toyota Center For Al Research [31, 32, 33, 34, 35].
Others show the same focus but outside the automotive industry, such as Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation [36, 37, 38, 39], and Carnegie Mellon University (CMU) [40,
41, 42].

To achieve a system able to monitor occupant’s body pose, it is necessary to develop a suitable technology
for monitoring (i.e. image sensor), and an algorithm to detect the human body pose. This algorithm can be
seen as a measuring device, and to validate such device there is the need to do so with a higher performance
one (i.e. ground-truth system). This system must be capable of measuring the human body pose, and

evaluate the developed algorithm.
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1.1. Ground-truth system 3

1.1 Ground-truth system

The ground-truth concept is related to the measurements made in cartography, where the remotely
captured information from satellites would be validated with measurements made on the ground. In what
concerns the information captured by Global Positioning System for investigation in the field of transportation,
ground-truth refers to what the traveler is doing (i.e. travel time, distance, etc.) [43]. However, this concept
can be applied transversally in other fields of 3D positioning, where to validate/calibrate a measurement
device, you need a device that works has a standard (i.e. ground-truth system). This system can and must
be contextualized with metrology [44]. Its concept can be applied in its different action fields, namely the
scientific metrology, that ensures the organization, development and maintenance of measurement stan-
dards; the industrial metrology, that ensures the performance of measurement devices used in industry and
industrial processes; and the legal metrology, that has the purpose to ensure the level of accuracy of mea-
surements when they influence the transparency of economical, health and safety transactions. For a better
understanding of this system functionality, we can use the applied standard process in industrial metrology,
that is represented in Figure 1.1.

Interferometric
National Standard
Interferometric
Standard Standard

___________________________________

Reference

Standard . - e
Interferometric Laser Standard Block Comparator
Differential Measurement

| Displacement Gauge ] [ Standard Blocks ]
Calibration Device Class 0 and 1
Work Standard \ 1
0 ‘ -
-

Figure 1.1: Standard process in industrial metrology. Image adapted from [1].

In this process, the main objective is to insure the quality of the measurement devices used by the
end consumer. To achieve this, it is necessary to use devices with high accuracy and reduced uncertainty,
that will serve as standard for end devices calibration. This system must have fundamental concepts in its
conception, namely that its metrological static and dynamic characteristics have a higher performance than
the device being calibrated (i.e. usually with a relation of 1:10 or 1:4). As a conclusion, to validate the human
body pose estimation algorithm, it is necessary to develop a ground-truth system with 6 Degrees-of-Freedom
(DoF) for each human body joint (i.e. motion capture system). As mentioned previously, this system must

have a higher performance than the human body pose detection, namely in terms of accuracy, precision,
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uncertainty, resolution, range, drift and hysteresis.

In 2006, Moeslund et al. [45] made a survey of advances made between 2000 and 2006 in vision-based

human motion capture. With over three hundred related publications identified in major conferences and

journals, it was possible to identify the main technological challenges, and the key advances that it:

Initialization: Automatic initialization of model shape, appearance and pose for human motion

reconstruction;

Tracking: Tracking of multiple people in unstructured outdoor scenes, using appeareance, shape

and motion from figure-ground segmentation;

Human motion reconstruction from multiple views: Techniques to efficiently search for space
of possible pose configurations for robust reconstruction from mutiple view video acquisistion. Current
approaches capture gross body movement but do not accurately reconstruct fine detail such as hand

movements or axial rotations;

Monocular human metion reconstruction: Human motion capture from single views with
stochastic sampling techniques using learnt motion models to constrain reconstruction based on

movement;

Pose estimation in natural scenes: Probabilistic assemblies of parts based on robust body part

detection has achieved 2D pose estimation in challenging cluttered scenes such as film footage;

Recognition: Understanding behavior and action for surveillance applications towards automatic

detection of unusual activities.

Itis easy to understand that motion capture is of high demand in different areas, leaving us with an increasing

number of scientific articles about the subject. From 2006 to 2017, the scientific interest in motion capture

stayed relevant. To get a grasp on the current methodologies, it requires a continuous and extensive work. At

the moment, more than 400 publications at journals are accounted for.

1.1.1 Motion capture systems

Generating real data for Machine Learning (ML) algorithms is an important task in a wide range of areas.

Motion capture data for the in-car scenario can be seen has a difficult task, given the lack of motion capture

systems that can reliably work in it. Although there are accurate motion capture systems available, they

are not focused in heavily occluded scenarios. The alternative can involve eletromagnetic or inertial based

systems, solving the occlusion problem, but adding a new limitation - the magnetic distortion sensitivity.
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Eletromagnetic systems

Systems such as Polhemus (Polhemus, Vermont, United States) are eletromagnetic based, and despite
being highly accurate, they suffer from eletromagnetic disturbances from external sources, such as metals or
electronic devices. Mitobe et al. [46] were able to track finger movement of pianists with a spatial resolution
of 3.8 um, although it also showed the complexity of the setup and the need for placing a single wired sensor
for each tracked joint. Other wireless solutions are available through the Polhemus Liberty latus [47, 48],

allowing full body motion capture, but still suffering from the same sources of uncertainty.

Optical systems

Optical based motion capture systems are used across several R&D fields [49, 50, 51] and can be
separated in two types: (1) marker-based with high accuracy, illumination imunity and high setup time;
and (2) markerless with fast setup time but with reduced accuracy and higher sensitivity to light conditions.
Although marker-based systems, such as the Vicon system (Vicon, Oxford, UK), are the gold standard for
motion capture, they suffer from the fact that they need to have the markers in line of sight to guarantee
acurate tracking. Rahmatalla et a. [52] circumvented the occlusion problem by adding virtual (calculated)
markers while tracking a seated operator indab. However, they only focused on the lateral pelvis’ markers.
Considering the technical limitations of the most robust motion capture systems, it is not feasable to use

them alone for the in-car environment.

Inertial and magnetic measurement units (IMMUs)

Inertial and Magnetic Measurement Units (IMMUs) based systems are an alternative to optical systems
since they do not need the subject to be in line of sight. Theoretically, they are able to infer body segment
orientation as well as joints’ positions, althought they are prone to errors caused by drift or magnetic sensitivity.
Another issue for the estimation of full body kinematics is related to the need of a biomechanical model and its
initial calibration. Current biomechanical models are proposed by the Internal Society of Biomechanics (ISB)
[63]. For example, Xsens (Xsense, Enschede, Netherlands) uses a modified version with 23 segments and
22 joints [54]. During calibration, the subject needs to stand in a calibration posture, known as the N-Pose
or T-Pose, which assumes that all segments are aligned and the coordinate systems of all joints are parallel
to one another. This initial assumption adds a systematic error that offsets the segments’ orientations and
joints’ positions. In its thesis [55], Monica Orozco compared MVN BIOMECH Awinda from Xsense against

Vicon Nexus through the study of gait kinematics with calibration postures that deviate from the standard
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N-Pose, showing that the error introduced could be considered as a shift in joint angle values while the shape
was not affected. It was also possible to understand that this error could be corrected with the information of
the true body posture captured during the calibration procedure. Two correction approaches were proposed
(Orientation Correction and Planar Angle Correction), giving the possibility to achieve an initial calibration

procedure for human subjects that are not able to attain a N-Pose.

1.2 Human body pose detection

Human body pose detection represents an extensive research challenge for a great deal of applications.
In general, these methods can be divided in two main classes: generative and discriminative. Generative
approaches are designed to fit and deform a model to match with the image to detect the pose [5, 56, 57,
58, 6, b9, 60, 7, 61]. Discriminative approaches are designed to learn a mapping from image features to a
body pose, using only the information of the image [2, 22, 3, 4, 62, 63, 39]. To define the best approach to
detect the human body, it is needed to weight the pros and cons of both methodologies (Table 1.1).

Table 1.1: Algorithmic classes.

Classes Advantages Disadvantages

-No need for tracking method

L. -Fast after training -No explicit model
Discriminative
-Without error accumulation -Big training dataset
-Efficiency
-Needs initialization
. -Explicit model
Generative -Slow after training

-Correlation between body parts

-Local minima

Regarding the generative ones, the main advantage is the robustness, once these methods fit one or
more previous models to the image, allowing to introduce shape prior information to the method. However,
this class of methods uses error minimization functions, being susceptible to be trapped in local minima and
having a high computational cost. In opposite, the discriminative methods are fast after training, allowing
to achieve real time detection. Moreover, these methods are capable of dealing with large body shape
variations. The main problem associated with discriminative approaches is that they are inherently limited
by the amount and the quality of the training data, requiring a large training dataset to avoid overfitting and

generalization problems. Weighting the advantages/disadvantages of each methodology and considering



1.2. Human body pose detection 7

that a pose detection algorithm with real time capability is needed in our scenario, it was decided to follow a

discriminative approach.

1.2.1 Discriminative Methods

Depth based discriminative approaches consist on different methods. Body part detection of the human
body can be done by identifying salient points [64], or regression methods by regressing a mapping function
from a large set of training data [2, 22, 3, 4, 63, 39]. This approach has the potential of generalizing to
different body shapes, invariant to pose, body shape, clothing. The processing efficiency is high, allowing
higher frame rate with enough DoF information related to the skeletal tracking. The down side is that the
training process is computationally expensive (i.e. Kinect API requires 300k poses to be trained in 24 hours
on a 1000 core cluster). Although the inference is fast and reliable, it does not work well with occlusion,
because the processing is done frame-by-frame and it does not take into account the movement in time and
its prediction. To develop the present Kinect Application Programming Interface (API) for skeletal tracking,
Shotton et al. [2] used a large and varied (real and synthetic body pose data) training dataset that allowed the
classifier to estimate body parts invariant to pose, body shape, clothing, etc. The 900k poses were filtered to
300k by just constraining the minimal distance between joints (5 mm). They were used to train a Random
Forest Classifier (RFoC) for body part segmentation from a single depth image. The system runs at 200
frames per second (fps) on a consumer hardware, where the computational processing was being done on

the Xbox Graphics Processing Unit (GPU) (Figure 1.2).

Figure 1.2: Shotton et al. human body pose detection algorithm: from depth, to body parts, to 3D joint
proposal. Image adapted from [2].

Buys et al. [3] used a similar approach to Shotton et al. [2] with some differences residing on the inferring
process. Shotton et al. assumed that the camera had a fixed position, so it was possible to first do a depth

based background subtraction and then evaluate the pixels with the Random Decision Forest. Buys et al.
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assumed that the camera did not have a fixed position so it had to evaluate all pixels without doing depth
based background subtraction, which reduces the accuracy of the skeletal tracking. To solve this, there was a
second stage after pose inferring (i.e. body part segmentation inferring followed by joint position calculation),

where the RGB body silhouette was used to remove wrong pixels, so a second body pose inferring could be

done and enhance the accuracy from the body pose detection (Figure 1.3).

Figure 1.3: Buys et al. two stage RGB-D human body pose estimation. Image adapted from [3].

Estimating upper body poses from sequence of depth images is a challenging problem. Because of the
adoption of randomized forest methods to label human parts in real time, it requires enormous training data
to obtain favorable results. Tsai et al. [4] proposed a novel two-stage method to estimate the probability maps
of upper body parts of users (Figure 1.4). These maps are then used to evaluate the region fitness of body
parts for pose recovery. The probability maps estimated by the classifiers are applied to objective functions
for skeleton extraction, where a Random Sample Consensus method is used to estimate approximate results.
The framework was adapted to parallel computing for GPU processing and real time detection. The two-stage
method was compared with a single-stage RFoC for upper body estimation. For the single-stage RFoC method,
30000 synthesized depth images were adopted, of which the postures were acquired from the CMU mocap
database. For the two-stage estimation model, 10000 synthesized images to train the first upper and lower
body classifier. For the second phase, 20000 images were adopted to train the detailed upper-body-part
classifier. In the end, the two-stage method achieved more stable results with compact training data and real

time capabilities.
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Figure 1.4: Tsai et al. human upper body pose estimation. Image adapted from [4

Hesse et al. [39] proposed a system with fast training and flexibility to fit the requirements of markerless
3D movement analysis of infants. It uses Random Ferns Classifier as a robust alternative to RFoC to find
the 3D positions of body joints in single depth images. The training time is reduced by several orders of
magnitude compared to the Kinect approach using a similar amount of data. The system was trained in 9
hours on a 32 core workstation opposed to 24 hours on a 1000 core cluster, achieving comparable accuracy
to the Kinect Software Development Kit (SDK). The average distance error over all joints was 41 mm.

Crabbe et al. [63] proposed a method for estimating body pose in high-level pose spaces directly from a
depth image without relying on intermediate skeleton-based steps. The method is based on a Convolutional
Neural Network (CNN) that maps the depth-silhouette of a person to its position in the pose space. The
pose representation is initially built from skeleton data. This opens the possibility for a wider application of
the movement analysis method to movement types and view-angles that are not supported by the skeleton
tracking algorithm. Training took 7 hours and algorithm performance was of 100 fps.

Discriminative strategies rely on two main phases: 1) training phase where the method is trained using
a dataset (e.g. depth images) with the respective labels (e.g. 3D joint position); and 2) testing phase where
the trained method is used to predict unlabelled samples (Figure 1.5A). The training phase normally starts
with feature extraction from the images. A feature extractor strategy is used to transform an image (i.e. pixel
intensities) into other type of representation (e.g. Histogram of Oriented Gradients (HoG), Scale-Invariant
Feature Transform) that helps the discriminative method to classify or detect patterns on the image. After
that, these features and the corresponding labels are used to train the method. In the testing phase, the
same feature extraction strategy is applied, which will be used by the trained method to predict the label.
Inside the discriminative class, we can define two sub-classes: the traditional and the Deep Learning (DL)

methods (Figure 1.5B). The majority of methods implemented so far to human pose estimation were based
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in traditional machine learning approaches (e.g. Support Vector Machine (SVM), RFoC, Neural Network).
However, in the last years, human detection and pose estimation methods based on deep learning approaches
appear forcefully. The major difference between these two types of discriminative methods lies in the fact
that the traditional ones need hand-crafted feature extractors. In a DL approach, this step is eliminated as
the method selects the best features by itself. Since the features extraction step requires a lot of time and its
design depends directly of the expertise of the user, deep learning approaches open the possibility to achieve

more accurate results than traditional machine learning strategies.

Training phase
Labels
Images Features - ; -
- Traditional machine learning
_
Testing phase
T |

Figure 1.5: (A) Discriminative method phases: in the first phase, the method trains in a labelled dataset;
in the testing phase, the trained method is used to classify unlabeled images. (B) Comparison between
traditional machine learning and deep learning approaches.

1.2.2 Generative Methods

One difference between discriminative and generative approaches is the time consideration. Where the
first is done frame by frame or multi-frame (i.e. through time with Recurrent Neural Networks or Long Short-
Term Memory). The second takes time into consideration for human body pose estimation, while using prior
knowledge on human kinematics, body shape and/or temporal motion continuities. Among other things,
these priors allow to create a system without the need of a large body pose training dataset. Unfortunately,
this leads to problems related to tracking, both on the automatic initialization process and recovery from
loss of tracking. This approach can resort to different types of filtering [6, 60], Kalman Filter (KF), Extended
Kalman Filter, Particle Filter (PF), Partitioned Particle Filter (PPF), Annealed Particle Filter, Condensation
Particle Filter, Particle Swarm Optimization (PSO). The filtering objective is to predict joint positions while
taking into account previous state, future prediction state and measured state. This way it is possible to
better estimate the possible joint position and orientation.

There are also other generative approaches where a template, either parametric or non-parametric, is
fitted to the observed data, mostly with variants of Finite Iterative Closest Point (FICP) [5, 56, 59, 7]. This

method uses a source point cloud (captured data) and a reference point cloud (template) so it can estimate the
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combination of rotation and translation that will best align both. The template adaptation poses a consistency
problem between template and subject’s body shapes. One option is to use pre-scanned personalized models,
where the scans can occur prior to the body pose detection, with one or multiple depth sensors. Another
option is to adapt the template either using dedicated frames or along the tracking process. Knoop et al. [5]
proposed a tracking system for 3D tracking of human body movements based on a 3D body model and FICP.
The proposed approach was able to incorporate raw data from different input sensors, as well as results from

feature trackers in 2D or 3D (Figure 1.6).

3d data
2d data
Fusion

Scene

Figure 1.6: Knoop et al. 2D and 3D human body pose detection fusion. Image adapted from [5].

Pekelny et al. [56] presented one of the first approaches for pose and surface estimation from Time-
of-Flight (ToF) Depth frames. An initial segmentation on the first frame is done, including the knowledge of
the kinematic structure. FICP is used to continuously align the model from the first frame with subsequent
depth frames. Xing et al. [6] modeled the human body as an assembly of 3D geometric primitives whose
dimensions were estimated automatically (Figure 1.7). Motion parameters were recovered by projecting
hypothesized body model pose to camera imaging space and seeking for optimal solution that best matches
camera observation as well as physical constraints. The temporal approach was done by designing an
objective function to quantify the discrepancy between the predicted and the actual observed features and
penalize implausible or unnatural poses. These authors exploited the body skeleton’s tree structure and
proposed a self-adaptive version of PSO to solve the optimization problem. In the end, it was possible to
achieve higher accuracy then the Kinect skeleton tracking, running at 30Hz. Nonetheless, the test sampling

data was not every extensive, impeding a better grasp on its true accuracy.
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(a) (b) (c) (d)

Figure 1.7: Xing et al. human body pose model: (A, B and C) three examples of different poses with the
estimated 3D body model superimposed on the color images, (D) model in pose (C) from a different Point-
of-View (PoV). Image adapted from [6].

Ganapathi et al. [59] derived an algorithm for tracking human pose in real time from depth images based
on Maximum a Posteriori Estimation in a probabilistic temporal model. Their key idea was to extend the FICP
by modeling the constraint that the observed subject could not enter free space. The resulting filter ran at
125 Hz on one Central Processing Unit (CPU) core.

In its thesis [60], Li developed a novel full body pose tracking system which incorporates a previous
body part detection algorithm into a particle filter framework. The Local Shape Context (LSC) feature was
generalized to not only recognize the endpoint body parts, but also to detect the limbs simultaneously. The
LSC descriptor was used to describe the local shape of different body parts with respect to a given reference
point on the human silhouette, and was shown to be effective at detecting and classifying endpoint body
parts, while being computationally efficient. A successful tracking was achieved by using a PF with partitioned
sampling. Particle likelihood was evaluated using the identified endpoint body part locations, the depth map,
and other detected body part information. The full tracking space (25 DoF) was partitioned into 9 partitions.
The particles first were propagated, evaluated/weighted, resampled in each of the partitions, and then each
particle is evaluated one more time by considering all the partitions to estimate the final distribution. The
particle weighting used several cues, namely explicit distance cue, depth cue and implicit distance cue. The
system is capable of tracking in near real time on a standard laptop computer, achieving an average error of
10 cm.

Ye et al. [7] presented a novel real time algorithm for simultaneous pose and shape estimation for artic-
ulated objects, such as humans and animals (Figure 1.8A). The pose estimation component embedded the
articulated deformation model with exponential-maps-based parametrization into a Gaussian Mixture Model.
Benefiting from this probabilistic measurement model, the algorithm requires no explicit point correspon-

dences as opposed to most existing methods (for example FICP methods). In regard to the template used,
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its novel shape adaptation algorithm based on the same probabilistic shape model automatically captures
the shape of the subjects during the dynamic pose estimation process, improving the tracking accuracy. In
addition, two novel approaches were used, a mesh model or a sphere-set model as the template for both
pose and shape estimation. The algorithm is fast and accurate, achieving 60 Hz on a mid-range GPU.
Unfortunately, the algorithm still presents problems when body members are close to other body parts, and
when non-rigid surfaces create body occlusion, (e.g. skirts; Figure 1.8B). Nonetheless, the algorithm achieved

a higher accuracy than other concurrent approaches, both discriminative [2] and generative [65, 59].

Figure 1.8: Ye et al.: (A) pose and shape estimation for human and animals; (B) failed body pose estimation.
Images adapted from [7].

1.2.3 Hibrid Methods

In the interest of achieving the higher accuracy of generative approaches and the higher frame rate (lower
computational power) of the discriminative ones, some work has been done to combine the complementary
characteristics of both approaches [65, 8, 29, 38, 66]. Ganapathi et al. [65] combined an accurate generative
model with a discriminative model that provides data-driven evidence about body part locations. In each filter
iteration, a form of local model based search is applied, that exploits the nature of the kinematic chain. As
fast movements and occlusions can disrupt the local search, a set of discriminative trained patch classifiers
are used to detect body parts. Unfortunately, the system had a processing time of [100; 250] m.s per frame
to estimate the joint angles. Baak et al. [8] rely on a dataset to infer the pose and later on refines it (Figure
1.9). In this case, salient points features are extracted to be used for dataset lookup. With a variant of
Dijkstra’s algorithm, the first five geodesic extrema are stacked as the index that is used to infer the most
similar pose in the dataset. The late-fusion scheme is based on an efficiently computable sparse Hausdorff

distance to combine local and global pose estimates.
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Final pose

Pose database

Database lookup

Figure 1.9: Baak et al. human body pose detection framework. Image adapted from [8].

In the interest of developing a method for human-machine interface application in car, Ohn-Bar et al. [29]
developed a vision-based system with RGB-D capture, composed by a combined RGB and depth descriptor. A
careful evaluation of different temporal descriptors showed the challenging nature of the dataset, with RGB-D
fusion proving to be beneficial for recognition. Muench et al. [38] developed a method for action recognition
based on the Generalized Hough Transform. The advantages of the proposed method are inherent time
segmentation, view-independence, and robustness against noise. The method was validated on a standard
hardware using the Kinect sensor for acquiring 3D poses of persons, and it had a processing time of 30 H z.
The method acquired skeletal tracking (body pose) as input data, and encoded its information. The encoded
data was neither euler angles or quaternions but instead focused on direct cosine data, where the relative
joint angle was used. This information was later used to create Hough “templates” to identify body actions.
In its thesis, Ville Stohne [66] developed a real time filtering for the human pose estimation using multiple
Kinects. To improve the skeletal tracking done by the Kinect API that suffers from occlusion of body parts
and limitations regarding rotation, the author proposed a working approach to combine data from multiple
Kinect depth sensors to create stable pose estimates of human user in real time. The skeletal tracking (body
pose detection) was not part of the development, and the Kinect API (discriminative) was used to gather this
information in real time. Stohne focused on the skeletal data fusion from the multiple Kinects, comparing two
different filtering techniques, PF and KF. The implemented system provides a stable, fast and cost-efficient
setup for motion capture and pose estimations of human users, where the comparison difference between KF
and PF was that the first had more performance with good accuracy, and the second increased the accuracy

at the cost of performance.
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1.3 Datasets

Due to the high demand in the field of investigation for motion capture systems, and to avoid redun-
dancies, several datasets of motion capture data have been made available. These datasets can have a real
or synthetic basis, however both follow the same basilar principal - i.e. one must record ground-truth label
information wrt. the feature sensor frame (e.g. RGB, ToF, etc). These datasets give access to high amounts

of generic information that allows to train algorithms to achieve high accuracy with increased generalization.

1.3.1 Real datasets

The CMU Graphics Lab Motion Capture Database [51] is by far one of the most extensive dataset of
publicly available motion capture data. The dataset is comprised by human body poses that include markers’
3D/2D positions and human skeleton data, and RGB frames. All information is directly obtained from the
Vicon system, both for the Vicon skeleton template and RGB Vicon cameras. Currently, there are 2605
trials in 6 categories and 23 subcategories, but unfortunately none of them are related to in-car scenarios.
The Humankva Dataset [49] is another database for human motion and pose estimation. The toolchain is
comprised of a method of synchronized recording of multiple RGB video sources and 3D/2D motion capture
data. The similarities between CMU and HumanEva are related to the human body pose that derives from
the Vicon system. Both systems give an accurate body pose, but unfortunately such method cannot be
used for in-car scenarios, where occlusion is a factor that invalidates the Vicon system. Within the in-car
scenario, Borghi et al. [67] used the Pandora dataset for the POSEidon head and shoulder pose estimator.
The Pandora dataset is generated in a laboratory environment with minimal occlusion, with different subjects
performing similar driving behaviours while seating on a chair. Head and shoulder orientation were captured
through inertial sensors.

Other datasets, such as the SPHERE-Staircase [63], expand the image format to RGB-D. Simpler RGB
datasets with 2D ground-truth are also available, such as Vision for Intelligent Vehicles and Applications-
Hands/Faces [68], MPIl human pose dataset, Leeds Sports Pose, FLIC dataset [69], and Ultrecht Multi-
Person Motion Dataset [37]. Even though there are several motion capture datasets to be used as ground-
truth and benchmarking tools, to our knowledge there are not many that use RGB-D capture and contain
ground-truth data (with higher accuracy than the body pose algorithms). There are simpler datasets that
record ground-truth data through algorithmic inferring and not as real ground-truth data.

Due to this limitations, it is of interest to this thesis, the creation of a real in-car motion capture dataset

containing synched information from the image sensor and human body pose information from the ground-
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truth system. This dataset can be used for the algorithmic evaluation, and if it is made available it can be

used as a community tool for the same purpose.

1.3.2 Synthetic datasets

Another approach is to build a synthetic dataset, through the support of other real motion capture
datasets. While CMU has an extensive motion capture database, its data consists of ground-truth data
and RGB frames only. Its ground-truth data can be used separately for computer graphics animation, as well
as to build a virtually animated system that simulates depth frames from a ToF camera, taking into account
the sensor Field-of-View (FoV), noise mode, etc. In this type of scenario, it is possible to animate a human
body mesh with the ground-truth data from CMU, add the camera perspective, noise model, and export depth
frames with associated ground-truth information. Shotton et al. [50] created a realistic synthetic dataset from
generated depth images of humans of many shapes and sizes in highly varied poses, sampled from a motion
capture database. Interestingly, this dataset was not used for the evaluation of the algorithm, instead it was
used for its training (i.e. evaluation was done with real data).

For scenarios where it is hard to generate robust datasets, such as in-car, or even when a larger quantity
of data is required, synthetic data is an alternative. Varol et al. [70] created the SURREAL dataset and
toolchain. The toolchain can not be seen as a fully synthetic dataset generation pipeline because it relies
on real motion capture data. Using the Blender engine (Blender Foundation, Amsterdam, Netherlands), real
motion capture data from CMU and Human3.6M [71] datasets is fitted into a Skinned Multi-Person Linear
Model (SMPL) [72], which is textured and clothed, while the scenery is comprised of a background image,
light and a camera that renders depth, RGB, surface normals, optical flow (motion blur) and segmentation
frames, as well as ground-truth data for body joint locations (2D/3D).

Outside the in-car human body pose focus, the SYNTHIA dataset was also created. Ros et al. [73]
proposed a virtual world to automatically generate realistic synthetic images with pixel-level annotations,
something that would be extremely time consuming if it had to be done manually. The entire urban scenery
is customizable through the Unity engine (Unity Technologies, San Francisco, United States), including urban
object placement, textures, weather seasons, time of day and clouds with dynamic illumination engines. Two
datasets are generated: 1) the SYNTHIA-Rand that consists in RGB and labeled frames from multiple cameras
placed in the city and 2) SYNTHIA-Segs that simulates multiple depth cameras on top of a moving virtual car,
generating 360° LIDAR data. The toolchain does not focus in RGB sensor realism, but instead focuses in the
generalization of the scenery variables, and the automated generation of sensor image and segmentation data

for training and evaluation. For object detection, the VANDAL dataset was developed [74]. A semi-automatic
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procedure was used to gather 3D CAD models from Web resources, allowing to generate depth images for
each one. Object classes were manually queried and downloaded from 3D CAD model repositories, making
a total of 319 categories with 30 objects each. Through the Blender engine and a Python script, depth data
was generated for each object, while increasing the dataset size by changing object orientation with respect
to the camera and its morphology. The last two toolchains [72, 74] focus on the advantages of 3D engines,
such as Unity and Blender, enabling the access to easily customizable scenes and generation of new data
from it. Also outside the in-car scenario, there are more recent approaches that make use of the Pandora
dataset to exploit the generation of synthetic depth images through a GAN approach [75] to tackle the head
pose estimation problem. For the same estimation problem, other methods are able to train only on synthetic
images [/6], however the feature input is based on RGB images, making it a more reach feature frame but
less robust to light conditions.

Considering that synthetic visual data realism is important and relevant for algorithmic accuracy, re-
searchers have made efforts to better understand the existing sources of noise in ToF sensors, and to recre-
ate them synthetically. Planche et al. [77] identified and simulated several noise sources, such as axial and
lateral, specular surface, non-specular surface, structural, lens distortion, quantization step, motion, rolling
shutter and shadow noise. These authors were also able to show how important it is to add realism to the
frames when training a CNN, by comparing against different types of synthetic datasets. Some researchers
have also avoided the noise source’s recreation into frame rendering, and instead focused in the final image
noise characterization. BlenSor did this in a simplified way [78]. It focused on generating similar data for
various range scanners, while synthesizing Gaussian noise and lens distortions. The procedure of generat-
ing depth data does not involve using the depth information of each pixel in Blender, instead performing
ray-casting for each pixel, in some way simulating the ToF physical model. Considering a less generic noise
model, Nguyen et al. [79] focused on axial and lateral noise regression for the Kinect ToF output frames.
Later on, Iversen et al. [80] were able to improve this model and synthetically reproduce the cameras axial

and lateral noise also.

1.4 Motivation

Development of a human body pose detection system for the in-car scenario requires two basilar systems:
(1) a standardized robust image sensor for real time feature aquisition, and (2) a human body pose detection
algorithm with real time performance, high inference accuracy and generalization. In regard to the 27¢

system, traditional discriminative based algorithmic development requires datasets with proper ground-truth



18 1. Introduction

data, both for training and evaluation (i.e. in supervised learning). This approach becomes even harder to
acomplish in the in-car scenario, due to the scarse or non-existent datasets depending on the use-case, as
well as the non-existent ground-truth systems. Therefore, it is of high importance to develop/implement such
ground-truth system and image sensor, and consecutively generate these datasets. With proper datasets

available, one may then develop the final human body pose detection algorithm for the in-car scenario.

1.5 Goals

This thesis focuses on the development of a pipeline to obtain a human body pose detection algorithm
for the in-car scenario. The primary focus will be placed in the development of toolchains that are able to
generate datasets for the algorithmic training and evaluation, as well as the evaluation of the ground-truth
system. In addition, upon evaluation of state-of-the-art algorithms, an adapted human body pose detection
algorithm will be implemented, with post-customization to the scenario in question. The development follows

the pipeline illustrated in Figure 1.10.
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Figure 1.10: Overview of development pipeline.

1.5.1 Ground-Truth Implementation and Evaluation

One of the most important requirements of the real dataset generation toolchain is the availability of a
robust human body pose ground-truth system capable of achieving human motion capture in highly occluded
scenarios such as in-car. This type of system is not available as a whole, nor as a robust human joint cartesian

position capturing system. This task focuses in doing a state-of-art overview of such systems, as well as doing
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a market selection of specific products capable of creating a ground-truth system. Before using such systems
for the real dataset generation, one must evaluate the proposed ground-truth system. For the evaluation
step, several evaluation methods and corresponding toolchains were implemented, capable of recording
and evaluating the ground-truth system. This step requires software able to record in real time with proper

synchronization between systems, as well as easy data manipulation and evaluation pipelines.

1.5.2 Real Dataset Toolchain

Real datasets are the primary choice to be used to train every detector. This decision comes from the fact
that a real dataset is recorded with real sensors feature data, which will later be used to infer the pose. This
data not only gives the required information for pose inferring, but also gives information about the sensor’s
inherent noise model, allowing to generate a training dataset with similar characteristics to the one where the
human pose must be detected. Usually, creation of a real dataset consists in recording the body pose with
a motion capture system, while synchronously acquiring an image using an image sensor (e.g. RGB or ToF).
The pose is then referenced from one system to the other, in order to be correctly projected into the visual
frame. This entire procedure is very time consuming and requires a lot of manual interaction, hampering the
task of creating a large and generic dataset. Despite some datasets related with human body pose being
publicly available (with RGB and depth sensors), these motion capture datasets do not focus on the in-car
scenario, mostly due to the fact that standard vision based motion capture systems are not able to function
properly in this scenario. This thesis addresses this need by presenting a user-friendly toolchain to generate
human body pose datasets in an in-car environment, with the ground-truth system itself being also evaluated.
These datasets may be used to train human body pose detection algorithms for an in-car scenario. This
toolchain uses an inertial suit for human body pose capture, a ToF sensor for image capture and the Vicon
to spatially and temporally align all systems. The output data is comprised of human body poses given with
respect to the camera’s coordinate system in 2D and 3D for the ToF’s amplitude/depth image frame and
tridimensional point cloud, respectively. The entire real dataset generation procedure requires an in-lab car
scenario, something possible through a car testbed equiped with the real dataset hardware and software
technologies. This toolchain requires the same software philosophy as the previous one (Section 1.5.1) due
to the complexity of the entire system. The datasets recorded will be used for the algorithm training and

evaluation, and can be seen as the best ones for it due to its inherited realism.
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1.5.3 Synthetic Dataset Toolchain

Alternatively, synthetic datasets can be used to solve some of the real datasets problems. Unlike real
datasets, synthetic datasets can be generated in large quantities and with higher generalization, allowing to
obtain more training data in less time. However, synthetic images may suffer from the lack of realism when
it comes to modeling the visual sensor noise. Creation of synthetic datasets can be performed using two
types of approaches. On the one hand, the procedure can be entirely synthetic and automatic, where the
pipeline creates the input and output models [73]. On the other hand, some procedures can still include real
data as an input for the pipeline, using recorded motion capture data to give motion to a synthetic generic
human model [2, 50]. This thesis addresses the synthetic dataset generation by presenting an automated
and user-friendly customizable toolchain to generate realistic human body pose synthetic datasets in a in-car
environment. This data must simulate a real in-car environment, allowing to maintain the robustness of the
pose detector method when applied to real images. This toolchain uses humans, camera and car models
as inputs, where all of them can be customized according to the data to be generated. The output data is
comprised of human body poses referenced to the camera’s axes, as well as the corresponding image frames
from RGB and ToF cameras. For every new frame that is generated, a new per-joint motion is applied to each
human model, and it gets validated for collisions between all models. Although both ToF and RGB frames
are generated, ToF is the one with more relevance, because of its ability to provide 3D information of the
scene, thus giving the detector an easier way to infer an accurate 3D body pose. The entire toolchain follows
a strictly software based implementation, capable of creating a car scenario similar to the previous toolchain
(Section 1.5.2) but this time more generic and open to customizations, that would not be possible otherwise.
While this toolchain uses comercially available software to ease 3D scene manipulation, it implements on
top of it an highly customized and automated script. The script implementation allows the toolchain to be
oriented with the development needs of the pipeline. The generated datasets will be used for the algorithm

training, and although not as realistic as the real ones, they can improve the generalization of the algorithm.

1.5.4 Algorithm Development

To detect the human body pose in images acquired with camera sensors and, thus, the activity of
the car's occupants, a robust method for human body pose estimation is needed. Specifically for the in-
car environment, few strategies were proposed. Indeed, the images acquired inside a car produce several
occlusions, impeding the detection of some joints. This problem hampers the direct usage of traditional

human pose estimation algorithms and makes this task more challenging than open space pose estimation.
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This thesis addresses this need by focusing on the development of a method for human body pose estimation
with a ToF sensor inside a car. Taking into account the timeline of dataset avaiability, a first evaluation to pre-
selected methods was performed with a publicly available dataset both for training as well as infering. Although
this dataset does not represent the in-car scenario, it does use similar data formats for the image sensor as
well as the ground-truth. Through a first algorithmic evaluation/selection step, the next step consisted in
customizing the selected method, Part Affinity Fields (PAF) [25], to better suit our generated datasets format.
A final step involved the training and evaluation through generated datasets with manually labeled ground-
truth. The main requirements of the method were its accuracy in detecting the pose along with its robustness
to deal with large variability between different people (i.e. regarding body shape or size). Moreover, to deal

with fast human movements, it was also important to guarantee the real time capability of the pose detection.

1.5.5 Algorithm Evaluation

Atoolchain to quantitatively and qualitatively evaluate the developed algorithm was then developed, with

several requirements in mind:

ToF camera interface;

Algorithm interface through language abstraction interface;

Dataset interface through preestablished dataset standard (real and synthetic):

Quantitative evaluation through standard metrics;

Quialitative evaluation through frame projection of dataset ground-truth and algorihm infering.

This toolchain helps mostly on the qualitative evaluation procedure across the entire dataset.

Finally, the algorithm from Section 1.5.5 was evaluated through several training configurations of gener-
ated datasets, from real datasets (Section 1.5.2) to synthetic ones (Section 1.5.3). Qualitative and quantitative
evaluation was performed through the algorithmic evaluation toolchain (Section 1.5.5). One of the biggest
considerations for algorithmic training was the use of a computationaly capable hardware system, which was

used transversally across the entire development pipeline.

1.6 Main Contributions

The main contributions of this thesis are two novel toolchains for dataset generation: (1) a real dataset

generation toolchain, and (2) a synthetic dataset generation toolchain. In regard to the 1%¢ toolchain, its



22 1. Introduction

inertial-based ground-truth system can be seen as a novelty for the in-car scenario, together with the thorough

evaluation procedure presented. In regard to the 2¢ toolchain, its major contributions are:
1. Realistic synthetic human body pose generation;
2. Ability to customize car, image sensor, car occupants and their motion profile;
3. Rendering realism is achieved by image processing techniques to mimic camera’s output;
4. High throughput of synthetic data.

Both toolchains were developed with the focus to train and evaluate a human body pose detection algorithm,
and are currently being used by Bosch. Four datasets were made publicly available to the R&D community,
being 2 real and 2 synthetic ones. This thesis does not propose a novel algorithm, however it presents a

customized DL based algorithm for the in-car scenario:
1. Detection of the existence of a joint label in the image;
2. Data augmentation strategy for depth images.

The algorithm was trained and evaluated with several datasets generated with the developed toolchains, giving

a good understanding of the requirements for improving algorithm training and ultimately accuracy.

1.7 Structure of the Thesis

Chapter 2 describes the hardware and software tools used across all chapters.

Chapter 3 describes the extensive evaluation done on the selected ground-truth system. The overal
evaluation methodology is presented. Static evaluations are performed at a sensor level, followed by dynamic
full body evaluations at a sensor and joint level. The entire evaluation procedure allows for a better under-
standing of the error propagation in the system. This method was first presented in “A system for the
generation of in-car human body pose datasets”, currently in revision process.

Chapter 4 describes the first toolchain for dataset generation, where the development methodology
of the real dataset toolchain is presented. The related work on real dataset generation is summarized. The
methods for spatial and temporal calibration of all subsystem’s of the toolchain are presented. The system’s
full alignment for dataset generation is shown. The system’s evaluation and the potential interest is presented
and discussed, as well as the main conclusions for it. This toolchain was first presented in “A system for

the generation of in-car human body pose datasets”, currently in revision process.
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Chapter 5 describes the second toolchain for dataset generation, where the development methodol-
ogy of the synthetic dataset toolchain is presented. The methods for scene customization, generation and
validation are presented. Human model creation and motion profile considerations are also shown. The
rendering pipeline tries to achieve realism through an implementation of noise sources and stylization. The
toolchain’s computational performance and potential interest is presented and discussed, as well as the main
conclusions for it. This toolchain was first presented in [81].

Chapter 6 presents the human body pose detection algorithm development. The selection and evalua-
tion of ML and DL based algorithms is shown. The customization of a DL based algorithm PAF for the in-car
scenario is presented. This work was first presented in [82].

Chapter 7 shows the development of a sub-toolchain for algorithmic qualitative and quantitative evalu-
ation. The algorithm training and evaluation through the datasets generated with the developed toolchains is
presented and discussed, as well as the main conclusions for it.

Chapter 8 presentes conclusions and outlining new directions for future work in the field.



Chapter 2

Tools Overview

This chapter discusses the hardware and software technologies used transversally throughout the sub-

tasks. In-depth description is shown, as well as a requirement overview for each part.
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2.1 Hardware Overview

In this section, the hardware systems used across the development pipeline are shown. The context of

requirement for each chapter is described, as well an as in-depth description of each system.

2.1.1 Inertial System

Section 1.5.1 refers to the implementation and evaluation of the selected ground-truth system, a main
requirement for the real dataset generation toolchain in Section 1.5.2. As it is shown in Chapter 4, one of the
main parts of the ground-truth system is the inertial suit MVN Awinda [19]. The selection of the inertial-based
ground-truth system was done concurrently with Bosch, considering the state-of-the-art overview presented
in Chapter 1 and the technological limitations when applied in the in-car scenario. Robustness to occlusion,
magnetic distortion and drift converged the decision to the MVN Awinda system.

The MVN Awinda is a suit comprised of 17 wireless inertial sensors capable of capturing each body
segment orientation [9]. Through proprietary kinematic forwarding algorithms, the system is able to estimate
specific skeletal joint 6 Degrees-of-Freedom (DoF) data wrt. its world axes. The entire inertial based motion
capture system is processed in the MVN Studio software, where it is possible to calibrate the subject, monitor
and record its body pose [19]. Sensor data is accessible through the MT Software Development Kit (SDK) [19]
and body pose data is accessible through network protocol decoding [83], allowing for software synchroniza-
tion. In regard to hardware synchronization, file format exporting is also available. Different solutions mean

different types of data.

2.1.1.1 Motion Capture

In order to do human motion capture, MVN Awinda provides a modified version of the biomechanical
model proposed by the Internal Society of Biomechanics (ISB) [53], with 23 segments and 22 joints [54].
Through the placement of 17 sensors in each segment of the human body following the MVN Awinda proce-

dure [9] (Figure 2.1) the system estimates and captures the kinematic model of the human subject.
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Figure 2.1: Body sensors’ placement: orange represent the segment labels and red the joint labels. Adapted
from MVN quick setup sheet [9].

The estimation is done through the MVN Studio software, using proprietary algorithms for body pose [84]
and absolute positioning through Kalman Filter (KF). Once calibrated with the subject’s body anatomical
dimensions and initial body pose (i.e anatomical frame), the kinematic model is post-processed and captured

in real time (equation 2.1 and Figure 2.2).

q=q +qt+q;J+ gk

Gplandmark =¢ Dorigin +GB q ®B €T ®GB C]* (21)

...BABB q — GBAq* ®GBB q

Positions of anatomical landmarks with respect to the joint origin of the related segment Gplmd,mrk
in the global frame G can be found by rotating the vector of the landmark Bz in the body frame B to the
global frame and adding the global position of the origin. Joint rotation is defined as the orientation of a distal
segment GBBq with respect to a proximal segment GBAq. Where ® denotes a quaternion multiplication, *
the complex conjugate of the quaternion, Gqueg represents the quaternion vector describing the orientation

of the segment with respect to the global frame.
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Figure 2.2: MVN Studio calculation of joint angles/positions: (A) global and local coordinate frames, and (B)
body anatomical landmarks. Adapted from MVN quick setup sheet [9].

Available data is different depending on the final model and the type of access, as follows (Figure 2.3):
e MT SDK [19]: Sensor 3 DoF orientation data;
* Network protocol decoding [83]: Simplified ISB model (Figure 2.3B);

¢ Recorded file [19]: ISB model (Figure 2.3C).

A B C

Figure 2.3: MVN motion capture models: (A) live ISB model (joints and added markers/landmarks), (B) sim-
plified ISB model (joints represented by rgb-axis) and (C) ISB model (joints and added markers/landmarks).

Considering the network access, the simplified ISB model is comprised of 20 skeleton joints” 6 DoF data
(translation and rotation). In terms of recorded file access, the ISB model is comprised of the same 20 joints’
6 DoF data (translation and rotation) plus 64 body anatomical landmarks (e.g. pRightAuricularis). The ISB

model relates itself with the human skeleton joints (Table 2.1).
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Table 2.1: MVN models joint label correspondences. Virtual joints (i.e. the model does not perform direct

joint estimation) are indicated in bold.

Human joints | Simplified ISB (Index) | ISB

Right Femur RightUpperLeg(15) | jRightHip

Left Femur LeftUpperLeg(19) jLeftHip

Right Knee RightLowerLeg(16) | jRightKnee

Left Knee LeftLower Leg(20) jLeftKnee

Right Ankle Right Foot(17) jRight Ankle
Left Ankle LeftFoot(21) jLeftAnkle
Right Foot RightToe(18) jRightToe

Left Foot LeftToe(22) jLeftToe

Right Humerus | RightShoulder(7) jRightShoulder
Left Humerus | LeftShoulder(11) jLeftShoulder
Right Elbow RightUpperArm(8) | jRightElbow
Left Elbow LeftUpper Arm(12) | jLeftElbow
Right Wrist Right Forearm(13) JjRightWrist
Left Wrist LeftForearm(9) jLeftWrist
Right Hand RightHand(10) jRightTopO fHand
Left Hand LeftHand(14) jLeftTopOfHand
Pelvis L5(0) jL5S1

T8 Vertebrae T8(4) JT9T8

C7 Vertebrae Neck(5) JjT1C7

C1 Vertebrae Head(6) jC1Head

2.1.1.2 Software synchronization

Software synchronization can be used to capture synchronized information from several systems simulta-

neously. The MVN Awinda system allows this type of implementation through the MT SDK or network protocol

decoding, using C++/.NET or even MATLAB.

Through the MT SDK; a 3" party application can connect directly to the MVN Awinda sensors and collect

3 DoF orientation data from each as illustrated in Algorithm 2.1.1. A first stage of Connection is required to

enable data capture, followed by the Data capture itself with synchronization timestamps and data samples.
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Algorithm 2.1.1 MT STREAM SDK

1: connection:

2: detectDevices.begin();
3 openPort();
4: enableRadio();

5. pata:

6: packet = mtwCallbacks[i]— > getOldestPacket();
# Timestamp

7 packet— > timeO f Arrival();
# Quaternion sample

8: packet— > orientationQuaternion();

On the other hand, network protocol decoding requires the selection of an User Datagram Protocol
(UDP) Application Programming Interface (API) in order to comunicate with MVN Studio and decode its data
streaming. After this, one can capture the simplified ISB model with per joint 6 DoF data (Algorithm 2.1.2).
UDP method is not so straightforward, due to the fact that there are no SDK functions that give direct access
to data samples. Instead, data is transmited in a single string communication packet [83] with the entire
full body model information indexed, index, sequentially, and with fixed size of bytes for each data type
segment id— 4bytes, segment translation— 4 x 3bytes, segment quaternion— 4 x 4bytes,

reserving a total of 32 bytes for each segment.

Algorithm 2.1.2 MVN UDP SDK

1: connection:

# Set communication settings
2: com.ReceiverAddr.sinport = htons(U D Pport);
3: com.Receiver Addr.sinport.sqddr = inet_addr(IPport);
4: bind(com);
5: Dpata:
# Timestamp
6: DecodeDataToTimestamp(com);
# Full Body Model sample
7. DecodeDataToSegmentTranslation(com(index));

8: DecodeDataToSegmentOrientation(com(index));

Data is not recorded by the MVN system, instead it is accessed by a 3"¢ party application for recording

purposes.

2.1.1.3 Hardware synchronization

MVN allows for hardware synchronization through the Xsens Awinda Station [85], where several systems
can be electrically connected with a masterslave configuration. MVN Studio uses the hardware trigger to
record the suits’ motion capture data synchronously with other systems’ software. Data is exported through
standard formats, one of them being *.c3d files [86] with 64 anatomical landmarks. In this case, the ISB

full body model is exported.
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2.1.2 Vicon System

Like any other metrological evaluation, the assessment of the human motion capture system (Sec-
tion 1.5.1) requires a better motion capture system to work as ground-truth. On the other hand, the ground-
truth system requires an in-lab absolute positioning system to reference the ground-truth pose with image
sensor devices. To satisfy both section requirements, the Vicon system is used. In this sense, the Vicon sys-
tem is used to evaluate the MVN Awinda (Chapter 3), while also being used to obtain an absolute positioning
for the in-lab scenario (Chapter 4).

The Vicon system is first and foremost a marker (IR passive/active) 3D tracking system. Through several
marker placement configurations and specific software packages, the system is capable of capturing the
human body pose as well as other custom objects. This is possible through the use of IR sensitive cameras
that identify and triangulate the position of each visible marker. Through the Vicon Nexus software package,
the system is able to do human motion capture of several human subjects at the same time, as well as
custom made objects (custom configuration of markers). Data is accessible through DataStream SDK [87]
for software synchronization solutions, or file format exporting for hardware synchronization solutions. Once

again, each solution has access to different types of data.

2.1.2.1 Motion Capture

To perform human motion capture, Vicon provides the Plug-in Gait model [11]. Through the placement
of 49 markers in the human body following Vicon's procedure [10] (Figure 2.4), it is possible for the system

to estimate and capture the kinematic model of the human subject.

Figure 2.4: Plug-in Gait marker placement: (A) guide, (B) human. lllustration used from Vicon Plug-in Gait
marker placement manual [10].

The estimation is done through the Vicon Nexus software, using extensively the chord function [11] with
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pre-inserted subject dimensions that were measured. Once calibrated, the kinematic model is captured in real
time. As mentioned above, the output data depends on the final model and the type of access (Figure 2.5)

as follows:

e DataStream SDK [87]: Kinematic Fit model (Figure 2.5B);

¢ Recorded file [88]: Plug-in Gait model (Figure 2.5C).

Figure 2.5: Vicon motion capture models: (A) raw marker data, (B) kinematic fit model and (C) plug-in gait
model.

Considering the SDK access, the kinematic fit model is comprised of 20 joint 6 DoF data (translation
and rotation). In terms of recorded file access, the plug-in gait model is comprised of 19 joint 6 DoF data
(translation and rotation). Although both models are similar wrt. human body limbs, they differ from the
torso to the head. These differences come from the fact that the models do not completely follow the skeletal
standard, giving the best estimation to the limb joints (Figure 2.6) and creating virtual joints for the rest of

the body.

oy~ @) G

Figure 2.6: Plug-in gait model limb joints. lllustration used from Vicon Plug-in Gait manual [11].

Human body joints association can be seen in Table 2.2. Vicon's kinematic fit or plug-in gait models

are not as realistic as the ISB model from MVN Awinda. Note also that, although the kinematic fit model
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is comprised of segments and joints in the Vicon Nexus software, the DataStream SDK only gives access

to segment data. This consideration does not constrain the evaluations as segment data is related with the

segment’s orientation 3 DoF and segment’s origin position (joint) 3 DoF, therefore only requiring to relate the

segment with the joint itself when joint data is needed.

Table 2.2: Vicon models joint label correspondence. Virtual joints (i.e. the model does not perform direct
joint estimation) are indicated in bold.

Human joints | Kinematic Fit | Plug-in Gait | Human joints | Kinematic Fit Plug-in Gait
Right Femur R_Femur RFEP Right Elbow R_FElbow RHIJ
Left Femur L_Femur LFEP Left Elbow L_FElbow LHIJ
Right Knee R_Tibia RFEO Right Wrist R _Wrist RRAO
Left Knee L_Tiibia LFEO Left Wrist L_Wirst LRAO
Right Ankle R_Foot RTIO Right Hand R_Wristgnd RHAO
Left Ankle L_Foot LTIO Left Hand L_Wristgnd LHAO
Right Foot R_Toe RFOO Pelvis Root PELO
Left Foot L_Toe LFOO T8 Vertebrae LowerBack_L_Collar | TRXO
Right Humerus | R_Humerus | RC'J C7 Vertebrae LowerBack_Head

Left Humerus | L_Humerus | LC'J C1 Vertebrae Head HEDO

2.1.2.2 Software synchronization

The Vicon system allows for software synchronization through the DataStream SDK, using C++/.NET or

even MATLAB. Through the DataStream SDK, a 3" party application can connect to the Vicon system (locally

or through an IP address) and collect 6 DoF data from a custom object to a full body model as shown in

Algorithm 2.1.3.

Algorithm 2.1.3 DATASTREAM SDK

1: connection:

2: MyClient.Connect(IP);

3: MyClient.EnableSegmentData();

4: MyClient.SetStreamMode(Server Push);

5 Dpata:

6: foreach s in Segments do

# Get Timestamp

7 MyClient.GetTimecode();
# Get sample
8: MyClient.GetSegmentGlobalTranslation(Subject Name, SegmentLabel);
9: MyClient.GetSegmentGlobal RotationQuaternion(SubjectName, SegmentLabel);
10: endfor

Data is not recorded by the Vicon system, instead it is monitored in real time by it, and accessed by a
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37 party application for recording purposes. As it was mentioned before, for the purpose of human body

motion capture, the kinematic fit is the only model accessible.

2.1.2.3 Hardware synchronization

Similarly to the MVN Awinda system, Vicon also allows hardware synchronization through the Lock+
system [89], where several systems can be electrically connected with a master-slave configuration. This
configuration allows for a hardware trigger, where the system records its data in the proprietary software (Vicon
Nexus) synchronously with the other systems software. Data is then exported through standard formats such
as *.c3d files [86], where all motion data related to the subject for each timestamp is stored. In regard to

the Vicon motion data, it represents the plug-in gait model.

2.1.3 ToF Camera

Section 1.5.2 refers to the real dataset generation using ground-truth data as well as Time-of-Flight (ToF)
images, and Section 1.5.5 refers to a ToF image sensor for the online qualitative evaluation. As it is shown
in chapters 4 and 7, image data is captured by a ToF sensor. After a state-of-the-art sensor evaluation and
selection and considering Bosch roadmap, several iterations of ToF sensors were used in Chapter 4. The
latest ToF sensor iteration was also implemented into the algorithmic evaluation toolchain (Chapter 7) for
qualitative evaluations.

Image sensor requires in-depth understanding (i.e. metrological characteristics, image features, and
automotive standards) as it is an important factor for the real dataset generation. It is necessary to quantify
the measurement needs of the system being evaluated, it being the human body pose detection algorithmic
system. This system resorts to image processing techniques and technology, so in this case we have several
types of technology at our disposal to make image capture and processing. Because we are talking about
image processing to obtain the position of each human body joint, it is necessary to capture the 3D space,

including the subject. So, it is possible to use stereoscopic image processing or ToF (Figure 2.7).

Light reflected
by object

Figure 2.7: ToF principle. lllustration adapted from [12].

The sensor’s resolution is one metrological characteristic inherent to both technologies that affects the



34 2. Tools Overview

ground-truth system accuracy. Stereoscopic systems use standard RGB cameras that at present capture
images at 1920x1080 pixels without adding great cost, making it possible to obtain spatial resolutions in
the order of the millimeter, contrarily to the ToF system that has much inferior pixel resolutions. Despite
this limitation, the ToF system still shows several advantages compared to the stereoscopic one, namely
a bigger ambient light immunity, and the ability to capture the raw 3D space without the need for image
processing (except some types of filters to smooth the 3D point cloud). With the Light-Emitting Diode (LED)
evolution, it was possible to implement them in ToF systems [12], managing a substantial price reduction for
this technology and at the same time making it more accessible for investigation projects. Nontheless, it still
lacks the maturing seen in RGB cameras’ pixel resolution.

ToF cameras estimate the 3D space through one of the following main modulation methods:

* Continuous Wave (CW): Measures the phase shift, @, between the emitted, (), and received, r(t),
signal (Figure 2.8A);

e Pulse Modulation (PM): Duration of the emitted pulse is set to the round trip time from light source to

the further object (Figure 2.8B and equation 2.4).

Figure 2.8: ToF principle: (A) CW, where blue lines represent each C'(3¢) sample; (B) PM, where blue areas
represent each C(3¢) sample.

Looking in-depth for the CW modulation [90] (equation 2.2), the ToF system is able to estimate the
pixel-object distance, d, through the cross-correlation, C'(3¢), between emitted, s(t), and received, r(t),
signals. Where tA represents the amplitude of the received signal and it depends on the object’s reflectivity
and sensor’s sensitivity, £B represents the offset coefficient due to the ambient illumination, f, represents
the modulation frequency, and T represents the time of flight for light sent from the camera and received by

it after being reflected by the object. tA and ¢B are unknown and are estimated at the camera.
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s(t) = acos(27 fut)

r(t) =tAcos(2m frn(t — 7)) + tB (2.2)

tA
L O() = GT COS(27 fru5¢ + 27 fonT) + tB

Estimation is possible through the four bucket method (Figure 2.8A and equation 2.3). Four equidis-
tant samples of the received signal, r(t), within one cycle are captured, where the cross-correlations with
the sent signal, s(t), are ¢(3%), ¢(t90), ¢(32180), €(32270). Where lc is the light speed constant. Also it
is important to observe that @ is a phase wrapping because it ranges from [0, 2], limiting the maximum

distance, dmaz, With it.

\/[C(%wo) — c(5290)]2 + [c(50) — c(32180) ]2
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Looking in-depth for the PM [17], light modulation is different but the principal is the same (equation 2.4).

Q]_ = C(%O), Q2 = C(%go), Q3 = C(%lgo), Q4 = C(%Q’?O)

1 (Q4-Q3
¢ = tan 1<m> (2.4)
_c ¢
= 5o

Breuer et al. made a depth sensor comparison and accuracy analysis [91], focusing more on the Kinect
V2 accuracy and precision in standard scenarios. The sensor showed significant distance dependent error,
requiring further calibration. The warm up experiment suggested a temperature dependent bias that needs
to be corrected. Integration over multiple raw frames offered a measuring range of up to 18 meters. Analysis
of pixel noise showed a strong relation to non-correlated scene illumination. The high resolution RGB camera
provides a second image for triangulation, offering an extended range and higher accuracy in short range
measuring.

Affordable systems [13] (Figure 2.9A) show higher pixel resolution of 512x424 pixels and a range of 50

centimeters to 4,5 meters. This type of technology has had a great reception in the field of investigation,
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mostly for 3D motion capture. Wei et al. [92] developed a method of capture and reconstruction of the
human body movement in 3D space, using the depth information provided by Kinect, concluding that the
system is viable for real time virtual models control with great accuracy, using a real person’s movement.
Unfortunately, this technology is not normalized to be used inside car interiors, mostly because of its laser
emissions, where Kinect only complies with International Electrotechnical Commission (IEC) 60825-1:2007
(Safety of laser products - Part 1: Equipment classification and requirements) for a Class 1 laser product,
not focusing on several other automotive standards.

Tl (Texas Instruments Inc., Texas, United States)) provides an evaluation kit for the OPT8241 ToF sensor
(Figure 2.9B), with a resolution of 320x240 pixels, [12; 60] frames per second (fps), and an operating range
up to 4 m (dependent on the modulation frequency). On the software side, there is the Voxel-SDK for
3rd party development, and the Voxel Viewer (built on top of Voxel SDK) to configure/calibrate/monitor the
kit. The evaluation kit supports several output formats: Phase ,C(3¢), amplitude, tA=amp,,, depth,
d=depth.,,, and point cloud, pcy. Embedded temporal and spatial filtering is also possible. Unfortunately,
this evaluation kit is not certified for automotive products, where the only standard provided by the Infrared
(IR) emissions is Class 1 Laser Product European Standard (EN)/IEC 60825-1 2007&2014 (similar to Kinect
v2).

SICK (Sick AG, Waldkirch, Germany) is a company known for its industrial sensors, and recently they
developed a ToF sensor (Figure 2.9C) for industrial applications, more precisely to aid on Artificial Intelligence
transporters motion. The principle is the same of other ToF sensors, but with less resolution (176x144 pixels)
at 30 fps, with a Gigabit Ethernet interface and an API for easy development in Java, Python, C++, C#, etc.
It also allows to filter, reduce and manipulate streamed data inside the device (embedded programming).
Unfortunately, this is a certified industrial product that can be considered a closed box and is not prepared
nor certified to be part of an automotive product. Still, its IR emissions are certified as EN 62471:2008 -

“Risk Group 0”.

Figure 2.9: ToF image sensors: (A) representation of point cloud from Kinect V2 comercial product (lllustra-
tion adapted from [13]); (B) Texas Instruments OPT8241 (lllustration adapted from [14]); (C) SICK V3S110
(Hlustration adapted from [15]).
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Sensor selection was done hilaterally taking into consideration Bosch sensor roadmap, shifting the focus
to ToF image sensors. Through the years of 2016 to 2018 three product iterations were made and used: (1)
Melexis (Melexis, Ypres, Belgium) EVK75023, (2) Melexis EVK75123 and (3) Gene8 Pico Monstar 105. While
preserving automotive standards and improved image data quality, there was always the need to achieve

higher Field-of-View (FoV) due to the implicit cockpit visibility requirement as illustrated in Figure 2.10.

Figure 2.10: Bosch roadmap for ToF sensor placement and visibility requirements.

2.1.3.1 Melexis EVK75023

In the in-car scenario, it is necessary to use a ToF system that is normalized, as in the case of EVK75023

(Figure 2.11) from Melexis which complies with several automotive standards:

¢ |nternational Organization for Standardization (ISO)/Technical Specifications 16949:2009 Quality
management systems - Particular requirements for the application of ISO 9001:2008 for automo-

tive production and relevant service part organizations;

¢ Automotive Electronics Council-Q100 Failure Mechanism Based Stress Test Qualification for Integrated

Circuits;
e EN 62471:2008 Photobiological safety of lamps and lamp systems:

LED-Lens FL70 - “Risk Group O - Exempt Group” no warning labels needed;

LED-Lens FL66s - “Risk Group 1” warning labels needed:;

LED-Lens FL63s - “Risk Group 1” warning labels needed:;

LED-Lens FL90 - “Risk Group 1" warning labels needed.

In the case of IR light emissions, the “Risk Group 1" LED’s need to be labeled to warn about the maximum
eye exposure time for a distance of 20 ¢m to it. Although Melexis provides several standards on its supply
chain, it still represents a tier 2 supplier, where they can only guarantee the standard for the ToF sensor and

LED IR emitters. In order for the final product to be fully compliant with the automotive standards, Bosch
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has the responsibility to make the system automotive ready. This is true because Bosch is the tier 1 supplier

and needs to qualify each individual component of the system.

Figure 2.11: Melexis EVK75023 ToF sensor. lllustration adapted from [16].

The evaluation kit is comprised of two LIM-U850-6 (lllumination Unit) equipped with LED-Lens FL70,
one TIM-U-MLX75023 (ToF Sensor Board), one CM-i.MX6x (Processor Module), and one interface board
(Figure 2.12A). In regard to the ToF sensor, it only has a pixel resolution of 320x240 pixels and an application
range of 3.7 m to 1.6 km (dependent of the modulation frequency in Figure 2.12B), which means that in
a scenario of 2.5 m of height (necessary for a full human body capture) it will give us a theoretical spatial
resolution of approximately 10 mm /pizel. However, such resolution is not truly achievable because this
type of technology only has a depth accuracy of centimeters. It is important to point out that the spatial
resolution mentioned before is relative to the X and Y coordinates, because the Z axis (depth) requires further

testing to be quantified.
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Figure 2.12: EVK75023: (A) Block diagram, and (B) range vs modulation frequency. lllustrations adapted
from [16].

The data and control interface is done via Gigabit-Ethernet, where the control interface is used to set and
read configuration registers, allowing several types of configurations, such as:

¢ (alibrations: temperature compensation, distance offset related to modulation frequency, lens cali-

bration, illumination compensation, modulation frequency, frame average, and integration time;
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¢ Filters: median, bilateral, sliding average, wiggling compensation, and Fixed-Pattern-Phase Noise com-

pensation.

The data interface provides a continuous stream of raw phase, amplitude, depth and point cloud data:

Amplitude frame tA=amp,,: Reconstructed from the sum of raw phase data of all 4 phases

0,90, 180, 270, and is associated with the material reflectivity to the IR light emitted.

Depth frame d=depth,,: |s associated with the distance between the pixel and the object that is

pointing to. The distance of each pixel is coded in milimeters;

Point cloud matrix (XYZ voxel) pey: Is associated with the cartesian position of each pixel.

Balance: Is associated with the confidence of depth measurement of each pixel.

The evaluation kit comes with BltTofApi SDK that allows development in C, C++, C# and MATLAB, giving
enough freedom for 37 party toolchain implementation. SDK allows for software synchronization and with
a simple pipeline it is possible to connect and capture data from the sensor as illustrated in Algorithm 2.1.4.
BltTofApi is available for x86/x64 and Advanced RISC Machine architectures, meaning that higher level
applications can be deployed natively onto the ToF device itself with less effort. The developer has access to
a dedicated partition for user applications, embedded on the ToF device Main Flash. This is possible through
SSH connection, giving access to ‘/mnt/user’ directory. The device can be programmed with the use of
the Bluetechnix ToF API (BTA), although the API runs exclusively on the i.MX6 Quad processor (four Cortex-
A9 cores at 1GHz). The Graphics Processing Unit (GPU) access is also possible through Open Computing
Language. Lower level access to the Central Processing Unit (CPU) is also possible through NEON, a set of

Single Instruction Multiple Data instructions.

Algorithm 2.1.4 BltToFApi SDK

1: connection:

2 BT AinitCon fig(&con fig);
3: BT Aopen(&config);
4. pata:

5: BT AgetFrame(&frame);
# Timestamp

6: frame— > timeStamp;
# Frame samples
# Amplitude

7: BT AgetAmplitudes(frame);
# Point cloud

8: BT AgetXY Zcoordinates(frame);
# Depth

9: BT AgetDistances(frame)
# Balance

10: frame.channels.data
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In terms of image quality control, the EVK75023 uses an IR exposure confidence level for each pixel.
The exposure is not of the same quality for each pixel, and that leads to a noisy image. An extra frame is
accessible, con fidence, giving the confidence level of each pixel with embedded filtering, with the depth
information for pixels with low confidence not being set. As mentioned before, several filters are accessible.
Temporal filtering is a median FIFO stack, F\I FOgaeks, With @ maximum number of 15 frames, that allows

to reduce the gaussian noise at the expense of reducing the frame rate (i.e. fout = and added

Iin )
FIFOsta.cks
motion blur. Spatial filtering is also available through a fixed size averaging kernel W - H that makes several
frame passes. In Figure 2.13 it is possible to see temporal and spatial filtering applied to the evaluation kit's

output data.

Image Capture Embedded Procedure

Level 1 Flow Chart Level 2 Actions

Figure 2.13: EVK75023 image filtering experimentation. Depth and point cloud are shown for each sequential
filtering configurations: (top) no filtering; (middle) temporal filtering; (bottom) temporal and spatial filtering.

It is important to understand that post-processing filtering (temporal and spatial) does not increase the
Signal-to-Noise Ratio (SNR). To achieve a better SNR, an increased integration time is needed, although this

factor increases the system'’s temperature and eye safety concerns.

2.1.3.2 Melexis EVK75123

Later in 2017, the new Melexis EVK75123 was released (Figure 2.14), bringing the same automotive

standards but with improved characteristics, such as:

e Smaller form factor 80x50 mm;
¢ Programmable illumination power with higher peak power;

e |llumination from LED to Vertical-Cavity Surface-Emitting Laser, allowing higher modulation frequencies

and better SNR:
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e FoVincreased to 110, although reduced to 100 due to barrel distortion;

¢ |dentical SDK interface.

EVK75123-110-850-1

Figure 2.14: Melexis EVK75123 ToF sensor. lllustration adapted from [17].

2.1.3.3 Gener8 Pico Monstar 105

In 2018, a new ToF iteration was possible, with the same automotive standards as the Melexis products,

but with a more closed box concept (similar to the likes of Kinect V2). The Pico Monstar 105 comes with

increased pixel resolution 352x287 and similar FoV of 100x85. Although lacking the lower level configurations

as filtering, modulation frequency, integration time, calibration, etc, it gives access to specific use-cases with

predefined embedded configurations (Table 2.3).

Table 2.3: Pico Monstar 105 use-cases.

Use Case | Range(m) | FPS (Hz) | Integration Time (us)
1 1.0—-4.0 |5 2000

2 1.0—-4.0 |10 1000

3 0.5—-15 |15 700

4 0.3—20 |25 450

5 0.3—-20 |35 600

6 0.1—-1.0 |45 500

SDK support comes in the form of libroyale [93], allowing 3¢ party implementation in C, C++ and

MATLAB (Algorithm 2.1.5). Image data is also similar to the Melexis EVK, although changing balance frame

for confidence frame, and also adding a noise frame. These last two frames are not required for the dataset

generation, although they can be used for improved image data understanding.
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Algorithm 2.1.5 Libroyale SDK

1: connection:

2:
3:
4:

cameraDevice— > initialize();

cameraDevice— > setUseCase(I");

cameraDevice— > startCapture();

5. Dpata:

6:

11:

12:

oL

# Timestamp

data— > timeStamp;

# Frame samples

# Amlitude

data— > points.grayValue;
# Point cloud

data— > points.x;

data— > points.y;

data— > points.z;

# Confidence

data— > points.depthCon fidence;
# Noise

data— > points.noise;

2.1.4 Car TestBed

Sections 1.5.2 and 1.5.5 generate and evaluate data for the in-car scenario. This focus brings the need

for a car testbed. As it is shown in chapters 4 and 7, a car testbed is prepared for the sole purpose of having

a controlled in-lab environment for a functioning car interior. This allows for better real dataset generation as

well as validation.

2.1.5 Computing Server

Sections 1.5.1 to 1.5.5 require computational capabilities for the different tasks at hand. Each chapter

uses the same computing server, built to satisfy the requirements of the entire development pipeline:

Chapter 3 - For the ground-truth evaluation several toolchains were developed, all needing real time

recording from multiple systems. This requirement adds the need for high CPU core number, disk

write/read speed, disk storage and Random-Access Memory (RAM) storage;

Chapter 4 - Real dataset generation has the same requirements of the previous chapter;

Chapter 5 - Synthetic dataset generation as the same requirements, but due to different needs. The

developed toolchain does not use external systems and relyes extensively on the server resources for

an high throughput of synthetic data generation;

Chapter 6 - Algorithmic development does not rely on the CPU requirements like in other chapters.

Machine Learning (ML) based methods training is supported by GPU arquitectures based on Compute
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Unified Device Architecture cores, due to inherited instruction paralelism. New GPU server arquitec-
tures bring improved resources compared with standard desktop, as well as new architectures for ML
focused instructions. One of those improvements is the hardware level matrix operations per clock
cycle (Tensor Cores [18]) as illustrated in Figure 2.15, giving up to 12x performance gains compared

with standard single 16 bit floating point operations.

e (Chapter 7 - Algorithmic evaluation needs dataset storage and algorithmic infering, to which adds the

requirements of all previous chapters.

PASCAL VOLTA TENSOR CORES|

N

AU
ASSALERRARRN

Figure 2.15: Nvidia tensor core performance illustration. Image addapted from [18].

Considering the development requirements and project funds, a custom Fuijitsu server (Figure 2.16) was
used with the following caracteristics: Xeon Gold 6140 18 cores 2.3GHz; 128GB DDR4 2.6GHz RAM; Nvidia
V100 16GB High Bandwith Memory 2, Peripheral Component Interconnection Express; 480GB Solid-State
Drive (SSD) SATA6; and 2TB 10Krpm Hard Disk Drive.

Figure 2.16: Fujitsu RX2560 M4 server for computing requirements throughout the development pipeline.

2.2 Software Overview

In this section, the software systems used across the development pipeline are shown. The context of

requirement for each chapter is described, as well as an in-depth description.
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2.2.1 ADTF

Chapters 3 and 4 have several toolchains that require real time recording from multiple systems,
which can be performed through software synchronization. Automated Data and Time-Triggered Framework
(ADTF) [94] is specifically focused for real time software synchronized data aquisition pipelines.

ADTF is a framework for synchronized data capture, process, monitor and actuation between different
systems. Each specific higher level function (i.e. system data capture) is implemented in a custom made C++
based function-block, named Filter. Each filter follows an implementation protocol (Figure 2.17A shows the
main implementation protocol, with a sub-protocol for the _F'ilter :: Init() and _Filter :: Shutdown()
functions being shown in Figure 2.17B), in order to be used by ADTF, making it possible for each filter to declare
I0s Init(StageFirst), receive user data I' (Figure 2.17C) from ADTF Init(StageNormal), boot and
start its task _Filter :: Start().

Property Value [2]
= RB_TOPE0_MVMNAWINDA

IFilter::State Shutdown
FArmL ODB41EAT

fAmR DOB4TEA2
shutdown(StageFirst) Footl. O0B4TEAC
FootR DDB41ESC
HandL DUB41ESD

1 7
TFilter::State_Created HandR 00B41EB7
- Head 00B41EAQ

ILegl 00B41EEY

. ILegR OUB41EES

Init(StageN ormal) Shutdown(StagelN ormal) p:lgls D0BATECE
priority 1

. . . RadioChannel 21
TFilter: State_Initialized Shoulderl o0B41ERL

ShoulderR D0B41EAD
Stem DDB41EAT
Init(StageGraphR eady) Shutdown(StageGraphR eady) wArmL 00B41EBD L}
- uAmR 00BA1EDC
ulegl DOB4TECF
ulegR DDB41EBS
UpdateRate (Hz) 60
B

C

A

Figure 2.17: ADTF implementation: (A) protocol, (B) sub-protocol, and (C) user input I' for a specific filter.

When a filter is fully implemented it can be seen as a black-box with inputs and outputs of different data
types (e.g boolean, int, float, struct), where they represent the data captured/sent by/of hardware systems
(e.g. images, positions, orientations, etc.). Upon developing all filters, an implementation with higher level
of abstraction can be used in ADTF, where all filters are used in a pipeline to achieve the purpose of the tool

itself (Figure 2.18).
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Filter Filter

S1 [ _
A Hard Disk

Filter /|‘ Recorder
SZ Szn

Figure 2.18: ADTF pipeline graph (e.g. two filters for two hardware systems [S; and Sa] sending data to a
hard disk recording filter).

Once ADTF starts the entire pipeline (Figure 2.18), each filter will follow its internal booting sequence
(Figure 2.17B) and interact with each other. Here is where ADTF excels, by giving synchronization microsecond
timestamps Ag, t = 0, ..., T NN [0, 00] (T represents the number of recorded samples from all systems),
for each data sample Sg ., n = 0, ..., N (N represents the number of samples for the filter) of each filter,
8, as can be seen in Figure 2.19. These timestamps allow for robust data interpolation (e.g. inside a filter or

outside ADTF), generating new data samples with identical timestamps for all filters.

%0) t(0)
Sy
Sy
S 1,0 —» S LN
M At
Sa0 Son
Ao At

Figure 2.19: ADTF data recording synchronization graph. Example shows two filters generatinng samples
Ssn—n With different sampling frequencies, with associated global timestamps Ag—r

2.2.2 MATLAB

Chapters 3, 4 and 7 have several toolchains that require data post-processing to solve three main needs:
(1) ADTF data import and time interpolation, (2) data representation and (3) error quantification. MATLAB is
the main tool for this task, allowing for fast software prototyping.

MATLAB is a fast prototyping software development tool, giving the possibility to manipulate data in a fast
way when processing speed is not the focus. In order to post-process ADTF recorded data, MATLAB needs to
import it. Metadata files (*.description), that describe the output data from each recorded filter, are used in

conjunction with each recorded file, to inform MATLAB about the data structure of each system (Figure 2.20).
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<?2xml wversion="1.0" encoding="iso-8859-1"
<adtf:ddl zmlns:adtf="adtf">
<header>

standalone="no"?>

{langaageiversianha.DU</1anguage7versian}

<author>Jodo Borges</author>

<date_creation>01.02.2017</date_creation>

<date_change>01.02.2017</date_change>

<description>ADTF generated</dsscription>

</headexr>

<datatypes>

<datatype description="predefined ADTF
<datatype description="predefined ADTF
<datatype description="predefined ADTF
<datatype description="predefined ADTF
<datatype description="predefined ADTF
<datatype description="predefined ADTF
<datatype description="predefined ADTF
<datatype description="predefined ADTF
<datatype description="predefined ADTF
<datatype description="predefined ADTF
<datatype description="predefined ADTF
<datatype description="predefined ADTF
</datatypes>

<structs>

<struct alignment="1" name="MVNAwinda"
<element alignment="1"
</struct>
<struct ali
<element al
<element al
<element al
<element alig
</struct>
<struct alignment= ="ViconNexus"
<element alig
</struct>
<struct aligmn

<element al
<element al
<element al
<element align
</struct>
</{structs:
<streams>

<stream description="streamid 1" name="|

version
arraysize="17" byteord

vysize="17" byteorder

" name="tViconNexus"
;size="10" byteord:
ze="15" byteorder
ze="T" byteorder="LE" bytepos="25"
e="4" byteorder="LE" bytepos="32"

tBool datatype" max="tTrue" min="tFalse"
tChar datatype" max="127" min="-128"
tFloat32 datatype" max="3.402823e+38" mi
tFloatéd datatype" max="1.T797693e+308" m
tIntlé datatype" max="32767" min="-32T768"

tInt32 datatype" max="2147483647" min="-2147483648"
tInt64 datatype" max="9223372036854775807" min="-9223372036854775808"

tInt8 datatype" max="127" min="-128"
tU0Intlé datatype" max="65535" min="

tUInt32 datatype" max="4294967295" min="0"
tUInt64 datatype" max="18446744073709551615" min="0"

tUInt8 datatype" max="255" min="0" name="

am

versiol

" bytepos="0"

versi

LE" bytepos="0"
LE" byvtepos="10"
name="dummyl1"

MVNAwinda" type="MVNAwinda" />

<stream description="streamid 2" name="ViconNexus" tvpe="ViconNexus" i=

</streams>
</adtf:ddl>

name="mediatype"

nam=="segmentID"
name="bodySegmentID"

name="tBool"

tU0Intg"

"tUInt8"

type="tUInt8"

name="tUInt32"

name="sensorID" type="tUInte" />
" type="tU0Ints"

¥ />
name="oneData" type="tFloat64" />

I

size="g"
name="tChar" size="8" />

3.402823e+38"
-1.797693e+308"

type="tViconNexus"

type="t0Int8" />
type="t0Intsg"

name="oneData" type="tFloat64" />

>

name="tFloat32"
name="tFloat64"

name="tIntl6" size="16"
name="tInt32"
name="tInt8" size="8" />
name="tUIntl6" size="16"

/>

size="32" />
name="tUInt64"
size="@" />

" bytepos="0" name="mediatype" type="tMVNAwinda" />

/>

/>

>

size="32" />
zize="64" [
Ve

size="32" />

name="tInt64" size="64" />

size="64" />

Figure 2.20: ADTF example metadata file. streamid_1 = S; and streamid_2 = S;.

In the illustration it is possible to see the memory padding of the entire data structure for each filter,

where this information relates not only to the structure data types itself but also to the sequence of variable

declaration. When a CPU arquitecture (x86, x64, etc) writes a datastructure into memory, it does so in a byte

sized square shape to improve memory read/write performance. To fit a data structure into a square shaped

memory layout, dummy bytes are added between variables when needed. This information is important to

correctly read the recorded data from an ADTF recording. Using ADTF dat2mat proprietary script, it is possible

to import the ADTF recorded data in MATLAB (Figure 2.21) making use of the metadata files. With a standard

interface between ADTF and MATLAB, it is possible to manipulate data to satisfy the needs of the developed

toolchains.
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| Data_Raw | | Data_Raw | Data_Raw(1).Data | Data_Raw | Data_Raw(1).Data | Data_Raw(1).Data(1).mediatype

152 struct with 2 fields Data_Raw(1).Data Data_Raw(1).Data(1).mediatype

.. [ StreamMame [ Data ..f Fields H tmTimeStamp fnediatype | Fields et sensorlD [ bodySegmentlD (3 dummy1 3 oneData

1 'MVNAwinda' Tx67 B 1 12006920177 st | 1 [48 48 66 52 49 69 65 57 0 205] | Ix15 wint8 [205 205 205... [000 0]

2 |'ViconNexus' 12 2 13942920 \» 2 [48 48 66 52 49 69 66 52 0 205] it [205 205 205... [0000]
3 13959920 7 3 [48 48 66 52 49 69 65 68 0 205] [205 205 205... [000 0]
4 13978920 Tx 4 [48 48 66 52 49 69 66 68 0 205] [205 205 205... [0000]
5 13992920 1x1Astruct 5 [48 48 66 52 49 69 68 67 0 205] [205 205 205... [0 00 0]
6 14010920 1x17 Kruct 3 [48 48 66 52 49 69 65 55 0 205] [205 205 205... [-0.5795 0.1107 -0.7624 -0.2658]
7 14026920 1 ct 7 [48 48 66 52 49 69 65 50 0 205] [205 205 205... [-0.3377 0.5010 -0.6158 -0.5057]
i 14033321 1 2 [48 48 66 52 49 69 57 68 0 205] [205 205 205... [0000]
& 14037321 1 9 [48 48 66 52 49 69 66 55 0 205] [205 205 205... [000 0]
10 14052321 1 10 [48 48 66 52 49 69 67 70 0 205] [205 205 205... [0 00 0]
11 14067724 1 1 [48 48 66 52 49 69 66 53 0 205] [205 205 205... [-0.6085 0.4619 -0.4808 -0.4304]
12 14070724 1. 12 [48 48 66 52 49 69 66 57 0 205] [205 205 205... [0 00 0]
13 14086724 1 13 [48 48 66 52 49 69 66 54 0 205] [205 205 205... [-0.7680 0.3167 -0.5406 -0.1329]
14 1410272 14 [48 48 66 52 49 69 65 67 0 205] [205 205 205... [-0.3168 -0.1272 -0.9070 -0.2464]
15 14104724 7, 15 [48 48 66 52 49 69 57 670 205] [203 205 205...|[-0.0268 -0.3452 0.6093 0.7131]
16 14119724 1 ct 16 [48 48 66 52 49 69 65 49 0 205] nt [205 205 205... [0 00 0]
17 14121724 1x17 struct 7 [48 48 66 52 49 69 67 56 0 205] |lx15 wint§ [203 205 205... [0000]

4a170704 a0z

Figure 2.21: ADTF imported data in MATLAB: (green) all samples from S and Sa, (blue) all samples from
S1 (tmTimeStamp = \; and mediatype = S1,,) and (red) all data from a single Si,, sample.

2.2.3 Blender

Section 1.5.3 refers to the synthetic dataset generation. Chapter 5 is entirely focused on one single
toolchain capable of simulating image sensors in a 3D scenario comprised by cars and humans, with human
motion. To reduce the development time and complexity, the video game industry analogy can be applied.
Instead of developing an entire game engine (in-car 3D scenario), a market solution is used as a base for
development. Blender [95] is a great choice, allowing for all the main features that are requirements of the

toolchain itself.

2.2.4 Python

As it was mentioned, Section 1.5.3 refers to the synthetic dataset generation, and Section 1.5.4 refers to
the algorithm development. Although chapter 5 uses a base 3D engine (Blender), this engine does not deploy
all the solutions for the synthetic toolchain. There is the need to build a custom toolchain that allows the user
to customize image sensors, cars, human models, human motion and dataset. Blender is Python based,
allowing for customization to the engine through Python custom scripts, making Python the obvious choice for
toolchain development alongside Blender. Chapter 6 is less limited to development software choices, requiring
different software tools depending on the available algorithms’ implementations, as well as data preparation.
Python is again an obvious choice, being used across most ML/Deep Learning (DL) frameworks, although

being also a great tool for data preparation.
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2.2.5 C++/C#

C++ is used not as a choice but as an implicit requirement from previous choices. ADTF is based in C++
software development (chapters 3 and 4), and, as it is shown in Chapter 6, the final algorithmic implemen-
tation is based in a C++ framework. In Chapter 5, a choice was made to use C# as the main programming
language for Graphical User Interface (GUI) construction (to serve as a way to perform customizations within

each toolchain) for toolchain customization.



Chapter 3

Ground-truth implementation and

evaluation for the in-car scenario

This chapter considers the creation of a ground-truth system capable of capturing human body pose inside
of a vehicle, in order to train and evaluate the algorithm in its development process. To satisfy the needs of the
real dataset toolchain in Chapter 4, as well as the algorithm evaluation in Chapter 7, a selected ground-truth
system was implemented and evaluated through an extensive evaluation procedure, with specific toolchains
developed for this purpose. Preliminary versions of the work presented in this chapter were presented in the
paper “A system for the generation of in-car human body pose datasets”, currently in revision
process.

In the first section of this chapter, the evaluation procedures as well as the toolchains developed are
shown. Four evaluation procedures were defined in order to better understand the ground-truth system sensor
and full body model errors, both from a static and dynamic prespective. For each evaluation procedure, a
toolchain was developed. Each toolchain presented hardware and software requirements, which are now
shown in-depth.

In the second and third sections of this chapter, the evaluations results, discussion and conclusions are
shown. Each of the four evaluation procedures present results that support a better understanding on the

ground-truth system limitations and benefits. Finally, possible future improvements are then discussed.

Contents
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3.1 Evaluation toolchains

In this section, the evaluation procedures and corresponding toolchains are shown. To best understand
how the entire inertial suit behaves in human motion capture, there is a need to evaluate it in four distinct

ways:
¢ Static evaluation:
— Sensor (SSE) - understanding the sensor level sensitivity to magnetic distortions in each rotation
axis;
— Full body model (SFE) - understanding the full body joint’s sensitivity to drift and magnetic
distortions;
¢ Dynamic evaluation:
— Sensor (DSE) - understanding the sensor level sensitivity to specific human body segments’
rotation:;

— Full body model (DFE) - understanding the full body joints’ translation error.

3.1.1 Static Evaluation

3.1.1.1 Static sensor evaluation

To understand how the inertial sensor is prone to error in each rotation axis, a toolchain had to be devel-
oped in order to rotate the sensor in each axis and compare its rotation with the real one. The toolchain used
a nanotec SMCI47-S-2 stepper motor drive [96], to rotate a stepper motor in closed-loop, where the inertial
sensor was mechanically coupled (500mm shaft coupling). Through the Nanotec Software Development Kit
(SDK) [97] it is possible to rotate the stepper motor, degrees, while capturing the sensor Euler rotation

through the MT SDK [19] as shown in Algorithm 3.1.1.
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Algorithm 3.1.1 SSE

1: connection:

# Sensor
2. Connectionin Alg.2.1.1
# Motor

3: motor = ComM otorCommands()
4. pata:

for each 7 in Niterations do
motor.StartTravel Profile(degrees)
for each s in Nsamples do

mtwData._orientation.x()

O 00~

mtwData._orientation.y()
10: mtwData._orientation.z()
11: end for

12: endfor

Equation 3.1 estimates the error of each sensor axis of rotation, &. Calculating the deviation from the
actual sensor axis orientation, 86y, (without the initial offset 868g) against the motor actual rotation, m©y,
where 8O represents an individual axis of rotation (roll 2, pitch 4 or yaw z) depending on which is parallel
with the motor axis rotation. This error allows us to know both the sp and so of the error considering all
the recorded samples, where nl represents the motor rotation iterations (nd = Niterations) and nS the

sensor samples in each 360° rotation (nS = Nsamples).

s0; = sO; — 5O
& = |s©; — mOy|
nlIxnS
> &
s = 120 (3.1)
nl x nS
nlxnS
Z (& — sp)?
S0 = =0
' (nI xnS)—1

3.1.1.2 Static full body evaluation

Static full body evaluation was focused on understanding how the Internal Society of Biomechanics (ISB)
model behaves in a real world driving scenario. Considering the fact that no other system can evaluate the
inertial system inside a vehicle, the evaluation focused on comparing the initial N-Pose model before entering
the vehicle and after driving. To achieve this evaluation a standard use of the MVN Studio is sufficient to
extract both models joint’s cartesian position and rotation at a specific timestamp (before entering the vehicle
and after leaving it) in Excel format.

With such data, it is possible to compute the Euclidian error, &;, of each joint for any final N-Pose (s = 2)
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against the initial one (s = 1) (equation 3.2), where Pxyz; represents the 3D cartesian position for each

of the 20 joints, nJ.

Pryzej = {Tsj, Ysjr Zs g}

&= \/(371,]' = T95)? 4 (Y15 — ¥25)° + (215 — 225)°

Another important step to improve cartesian error estimation is the alignment of both N-pose frames in

(3.2)

terms of rotation, T}’e“’is. Such alignment is required given that the subject does not stand in the N-Pose
facing the same orientation in regard to the Earth magnetic north. To accomplish it, a root joint is selected
(pelvis) and its transformation matrix, Tpetwis, iS Used as a translation and rotation offset to the rest of the

body joints (equation 3.3).
ijpelvis _ (TpelviS)T . {T] (33)

3.1.2 Dynamic Evaluation

Each evaluation method (DSE and DFE) uses an independent toolchain due to its evaluation specificity. To
perform a dynamic evaluation of the inertial suit, a more robust motion capture system is needed. Since this
evaluation is focused in an in-lab environment, there is the possibility of using the golden-standard of human
motion capture, the Vicon System. Also it is important to have a synchronized recording of both systems.
Considering the fact that both allow software synchronization, the toolchains use software synchronization
recording through Automated Data and Time-Triggered Framework (ADTF) [94]. Data post-processing and
error quantification is done in a Graphical User Interface (GUI) implemention in MATLAB for each toolchain

(Figure 3.1).

S; [ MVN Awinda - S;| MVN Awinda -
dat > dat [
S,| Vicon Nexus S, | Vicon Nexus

ADTF MATLAB ADTF MATLAB

A B

Figure 3.1: Toolchain pipeline for dynamic evaluations: (A) DSE, and (B) DFE. MVN Awinda and Vicon
Nexus Filters data (i.e. sensors and segments quaternions) are recorded synchronously in ADTF, and then
post-processed in MATLAB for error quantification.
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3.1.2.1 Dynamic sensor evaluation

To understand how the inertial sensor dynamic range behaves in each human body segment, each MVN
Awinda sensor needs to be recorded synchronously with the Vicon kinematic-fit model and referenced to its
corresponding segment, in order to compare both. Comparison is based on the raw quaternion data, g,
of each system (sensor for MVN Awinda and segment for Vicon kinematic-fit) sent from each filter. Each
quaternion is then converted to axis-angle, 6, (equation 3.4), while removing the offset rotation of the first

frame through the quaternion conjugate, (go)¢, in order to have a relative rotation for each segment.

Gt = Qe + Qi + ¢ ;3 + qr ik
qre = ¢ - (q)° (3.4)
0, = 2 x arccos(qry,)

To achieve this, a toolchain was developed consisting of two parts: (1) synchronized recording through

ADTF and (2) graphical quantitative evaluation through MATLAB.

Recording (ADTF)

First part requires the development of two distinct filters for data capture of MVN Awinda sensors, and
Vicon kinematic fit model. Although distinct, there is a need to relate the filter output in order to later reference
the sensor data with the segment data. For this, a standard output data structure is created, Ss,n, where
each sensor address or segment label is referenced (Table 3.1). Referencing is done as a filter initialization,

although it is possible to customize the information in ADTF before boot, I".
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Table 3.1: Reference between sensor address and kinematic-fit segments.
Ssn Segment | Sensor Ssn | Segment | Sensor
Head Head O00B41EA9 | ulegL | L_Femur | OOB41ECF
ShoulderL | L_Collar 00B41EB4 | uLegR | R_Femur | O0OB41EB5
ShoulderR | R_Collar OOB41EAD | ILegl | L_Tibia 00B41EB9
uArmL L_Humerus | OOB41EBD | ILegR | R_Tibia 00B41EB6
UArmR R_Humerus | OOB41EDC | FootL | L_Foot 00B41EAC
fArmL L_Elbow OOB41EA7 | FootR | R_Foot 00B41E9C
fArmR R_Elbow O0OB41EA2 | Stern | LowerBack | OOB41EA]
HandL L_Wrist O00B41E9D | Pelvis | Root 00B41EC8
HandR R_Wrist O00B41EB/

With this information, each filter is able to use the same output data structure BodySensors and

BodySegments (Figure 3.2).

Figure 3.2: Filters output for DSE: (A) MVN Awinda, (B) Vicon Nexus.

Although the structure data type is different (tMotionSensor # tMotionSegment), the relevant
data format is similar bodySegmentI D and oneData. In conclusion, each time a filter sends a data
sample, Sy n, in reality it is sending an array of size 17 (segments :: count = sensor :: count) with each
body segment name, bodySegmentI D, and its quaternion, oneData. This sample is then added to an
ADTF timestamp, A¢, to be used synchronously. Following the SDK interaction of each system (DataStream
SDK and MT SDK) as shown in algorithms 2.1.1 and 2.1.3, it is possible to implement a filter for MVN Awinda
sensor data (Algorithm 3.1.2) and Vicon kinematic fit segment data (Algorithm 3.1.3).
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Algorithm 3.1.2 RB_TOPS80_MVNAWINDA

1:

3:

Init(StageFirst):

2:

Init(StageNormal):
4
5:
6:

(tMotionSensor) MV N Awinda < output

for cach 7 in BodySensors do
BodySensors[i].segmentID + T’

end for

7: _Filter::Start():

8:
9:

Connection inAlg. 2.1.1
Thread.start()

10: Thread:

11:

for cach 2 in BodySensors do

12: BodySensors[i].oneData < packet.orientationQuaternion() Data in Alg. 2.1.1
13: endfor
14: MV NAwinda « BodySensors

Algorithm 3.1.3 RB_TOP80_VICONNEXUS

1: Init(StageFirst):

2:

(tMotionSegment)ViconNexus < output

3: Init(StageNormal):

4:
5:
6:

for cach s in BodySegments do
BodySegments[i].segmentID <« I’

end for

7: _Filter::Start():

8: Connection inAlg. 2.1.3
9: Thread.start()
10:  Thread:

11: foreachiin BodySegments do

12: BodySegments[i].oneData +— MyClient.GetSegmentGlobal RotationQuaternion() Datain Alg. 2.1.3
13: endfor
14: ViconNexzus < BodySegments

Each filter is then used at a higher level in ADTF with the purpose of recording synchronized data to the

hard drive as illustrated in Figure 3.3.

RB_TOPS0I_MVNAWINDA Harddisk_Recorder
MVNAwinda |_. »| MVNAWInda

ViconNexus

RE_TOPE0_VICONNEXUS dynaney

ViconMexus

Figure 3.3: ADTF pipeline for DSE evaluation recording.

Evaluation (MATLAB)

MATLAB was used for the second part, loading each recording through the dat2mat script (Figure 2.21)

and post-processing them (Figure 3.4). This part of the toolchain has three main functions:
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1. Data synchronization;
2. Graphical representation;

3. Metrics generation.

Angle of 3D Rotation (%)

Figure 3.4: MATLAB sub-toolchain for DSE evaluation.

Using the definition of equation 3.5, the first function uses Algorithm 3.1.4 to create new timestamps, Ay,
from a custom user-defined frequency, I'¢, and interpolate consecutively, n, all samples of each quaternion,
Qs,n,i, from each segment, 4, from each system, s, considering its real timestamp, A¢. This way new samples
are created for each system but with identical timestamps, 8,44, generating synchronized data samples for
all variables By n,i—Vs i, @s,ni—>Ps,i. Note that interpolation needs to be related with the type of data

being interpolated, therefore using Spherical Linear Quaterninon Interpolation (SLERP) for the quaternion

data.

Ssni = {bodySegmentIDs,, ;, oneDatas ., ;}

Ss,n,'i = {Bs,n,’ia Qs,n,i}

5s,t’,z‘ = {Us,t’,i7 @s,t',z’}
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Algorithm 3.1.4 DSE SYNCHRONIZATION

1:

18:

DT+

)

2
3
4
5
6
7
8
9
10:
11:
12
13
14
15
16
17

At,S1,0 A S2.n #0
Tini <
At; S2,0 AS1,n #0

. At, S1,N ANS2.n #0
. Tend <

Xty So N AN S1,n #0

! Trange < Tend — Tini

Trange

1/f

LAy 0, ﬁ s Trange t' =0,..,T

St =0,.,T

s,t! i

. foreach sin 651“’1’ do

for each t/ in Ays do
tini < At N Ssn,t <t

tend < At N Seom,t >t
t

. t! —tin4
ratio <— ﬁ
for each ¢ in 5s,t',i do
Gini + Qsyn,irt <t
dend + Qsyn,irt >t
Potl i SLERP(Qini,dend, ratio)
end for
end for

end for

The second function gives the graphical representation of 8, in equation 3.4 of each selected body

segment (Table 3.1) and system (Figure 3.2). In this case, g; represents the quaternion of a segment from

a system, s 4, across the entire timeline, Aw. The third and final function calculates the error for each

segment, & 4, through equation 3.6. The axis-angle from both systems 614 and @, is used to calculate

the dynamic error of the segment across the timeline, p;,07;.

Ql,t’,i = Eq 3-4(% — <P1,t'—>T,i)

brp i = Eq 34(% — <P2,t'—>T,i)
Evi = \91,t',1; — 92,t’,i|

==

3.1.2.2 Dynamic full body evaluation

Dynamic full body evaluation was focused on understanding how the ISB model behaves against the

Vicon kinematic fit model. To accomplish it, both systems need to be recorded synchronously and each

joint referenced. Comparison is based on the Euclidian error, &, between joints, j, (equation 3.2) where
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Pzxyz, j represents the cartesian position for each of the 20 joints from the first system, and Pxyzg j from
the second. As it was mentioned before, the kinematic fit model does not match completely the ISB model,
therefore there is the need to relate each joint of both systems (Table 3.2). Since each model is in their

respective world coordinate system, the models need first to be spatially aligned.

Table 3.2: ISB joints reference with kinematic fit segment origin (joint).

Ssn Kinematic Fit | ISB Ssn Kinematic Fit | ISB

Head Head_End Head LeftLowerLeg | L_Tibia Left Lower Leg
LeftUpperArm | L_Elbow Left Upper Arm | RightLowerlLeg | R_Tibia Right Lower Leg
RightUpperArm | R_Elbow Right Upper Arm | LeftFoot L_Foot Left Foot
LeftForearm L_Wrist Left Forearm RightFoot R_Foot Right Foot
RightForearm R_Wrist Right Forearm LeftToe L_Toe Left Toe
LeftHand L_Wrist_End Left Hand RightToe R_Toe Right Toe
RightHand R_Wrist_End Right Hand Neck Head Neck
LeftUpperLeg L_Femur Left Upper Leg | Chest R_Collar T8
RightUpperLeg | R_Femur Right Upper Leg | Pelvis LowerBack Pelvis

Similar to the previous evaluation, a toolchain was developed consisting of two sub-toolchains: (1) syn-

chronized recording through ADTF and (2) graphical quantitative evaluation through MATLAB.

Recording (ADTF)

The first sub-toolchain requires the development of two distinct filters for data capture of MVN Awinda

ISB model, and Vicon kinematic fit model. Joint data referencing is done as a filter initialization (Table 3.2),

although it is possible to customize the information in ADTF before boot, I'. With this information, each filter

is able to use the same output data structure BodyJoints and BodySegments (Figure 3.5).

A

B

Figure 3.5: Filters output for DFE: (A) MVN Awinda, (B) Vicon Nexus.

Although the structure data type is different (tMotionJoint # tMotionSegment), the relevant

data format is similar XY Z Data and QuatData. Following the SDK interaction of each system (DataS-

tream SDK and User Datagram Protocol (UDP) SDK) as shown in algorithms 2.1.3 and 2.1.2, it is possible
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to implement a filter for MVN Awinda simplified ISB model joint data (Algorithm 3.1.5) and Vicon kinematic
fit segment data (Algorithm 3.1.6). Each filter is then used at a higher level in ADTF with the purpose of

recording synchronized data to the hard drive as illustrated in Figure 3.6.

Algorithm 3.1.5 RB_TOP80_MvnAwindaFullBody

1: Init(StageFirst):

2: (tMotionJoint) MV N AwindaFullBody <+ output
3: Init(StageNormal):

4: foreach jin BodyJoints do
5: BodyJoints|j].bodyjointI D + T

6: endfor
. _Filter:Start():

8: Connection in Alg. 2.1.2
9: Thread.start()
10: Thread:

11: foreach j in BodyJoints do

12: XY ZDataByteIndex < 28 + j x 32

13: QuatDataBytelndex < 40 4+ j X 32

14: BodyJoints[j].XY ZData < DecodeDataToSegmentTranslation(com(XY ZDataBytelndex)) Datain
Alg. 2.1.2

15: BodyJoints[j].QuatData < DecodeDataToSegmentOrientation(com(QuatDataBytelndex)) Datain
Alg. 2.1.2

16: endfor

17 MV N AwindaFullBody + BodyJoints

Algorithm 3.1.6 RB_TOP80_ViconNexusFullBody

1: Init(StageFirst):

2: (tMotionSegment)ViconNexusFullBody « output
3: Init(StageNormal):

4 foreach bs in BodySegments do
5: BodySegments[bs].segmentID <« T’

6: endfor
7 _Filter::Start():

8: Connection inAlg. 2.1.3
9: Thread.start()
10: Thread:

11 foreachbsin BodySegments do

12: BodySegments[bs].XY ZData <+ MyClient.GetSegmentGlobalTranslation() DatainAlg. 2.1.3
13: BodySegments[bs].QuatData «+ MyClient.GetSegmentGlobal RotationQuaternion() Datain Alg. 2.1.3
14: endfor

].5: ViconNezusFullBody < BodySegments

RB_TOPB0_ViconNexusFullBody Harddisk_Recorder

ViconMexusFulBody | .| ViconNexusFulBody
MVNAwindaFullBody
j dynamicpin
RB_TOP80_MvnAwindaFulBody
MVNAwindaFullBody

Figure 3.6: ADTF pipeline for DFE evaluation recording.
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Evaluation (MATLAB)

A MATLAB sub-toolchain imports and post-processes the recording (Figure 3.4) through four main func-

tions:
1. Data synchronization;
2. Data spatial alignment;
3. Graphical representation;

4. Metrics generation.

Figure 3.7: MATLAB sub-toolchain for DFE evaluation.

Using the definition in equation 3.7 the first function is similar to Algorithm 3.1.4 (i.e. new synchronized
samples are created from the raw ADTF ones, through interpolation), although the main difference comes in
the interpolation method. In the present case, linear interpolation is used for joints’ position K j— Ks g j,

and SLERP is used for the orientation data Qsn,j— Ps,j-

Ssnj = {bodySegmentl D, ;, XY Z Datas , ;, Quat Datas , ;

Ssng = {Bsnj: Ksnjs Qsni}

Osprj = {’Us,t/,j, Ks,t!j %,t/,j}
The second function (Figure 3.8) aligns both models through a two-step process: first, a coarse alignment
is performed using equation 3.3 to reference each joint 3 with respect to the pelvis one Tfe'm; then, the
Finite Iterative Closest Point (FICP) alignment [98] Algorithm 3.1.7 is used to better align both models. In the

latter, each full body sample K44 ; becomes a 3D mesh, My, giving each joint a vertex xyz position. The
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latter step allows to minimize the differences between models while distributing the initial coarse alignment,

0o 4 i i
Tsf’:} ,J error through the entire body.

WNAvindaFuBocy J MYNAvindaFiiBody
1000

ViconNexusFulBody ‘ ViconNexusFulBody

)
—" 1000

)

J WNAvindaFuBody MNAvindaFulBody
1000
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Figure 3.8: DFE MATLAB spatial alingment: 1! column represents initial alignment with equation 3.3, and
274 column represents the second step of alignment with FICP.

Algorithm 3.1.7 DFE ICP

LM,y r

st/ .5
. foreacht’in M, ,/ do
)

2
3 %2,1/,
T, >V FICP(M, /)
1,t/,5

4. foreach jin &, 4/ ; do
50
5: K e 2t L )
2,t/,j LI 2,t/.j
6 end for

7.

end for

The third function gives the graphical representation of each body model, 8,4 ;, joint cartesian position,
Ky j, (Table 3.2) across the recording timeline, t' — T, as well as the Euclidian error, &, between joints
(Figure 3.7).

The forth and final function calculates all joints’ errors between systems pu;,0; as well as the error graphical

representation, & ;, (equation 3.8) for the third part.
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Pryzsyj = Kspj = s,
&vj = Eq3.2(Pryzs; < Pryzsp )

T
>
t'=0

oy =

T
T
> (&g — )

t'=0

T7—-1

3.2 Evaluation results

In this section, the inertial suit evaluation is described. As it was mentioned in Section 3.1, there are four
evaluation procedures, SSE, SFE, DSE and DFE. For each procedure, several toolchains were developed and
with them several evaluation recordings were perfomed. All MVN Awinda sensors were updated to V4.2.1,

and motion capture was performed with MVN Studio 4.97.1.

3.2.1 Static sensor evaluation

To understand the sensors’ behaviour at the lowest level, each axis was evaluated as illustrated in Figure
3.9. Afull 360° rotation with 11.25° increments, degree, for each axis was performed. At each incremental

rotation, 300 samples, nS, were recorded for 5 seconds.

Figure 3.9: Sensor axes and associated rotations: X - roll, Y - pitch and Z - yaw. Adapted from MVN Users’
Manual [19].

In Figure 3.10, itis possible to understand that the sensor is very accurate for the Roll and Pitch rotations,
but it showed higher errors for Yaw, probably due to the fact that it is highly sensitive to local distortions of

the Earth’s magnetic field.
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Figure 3.10: Sensor’s angular error in all axes.

3.2.2 Static full body evaluation

To understand the full body static behaviour, three evaluation procedures were performed (Figure 3.11):
e EVI: Closed circuit driven during 80 seconds for 500 meters;

e EV2: Closed circuit driven during 120 seconds for 500 meters;

e EV3: City to city circuit driven during 2400 seconds for 40 kilometers.

The purpose was to compare each final N-Pose (after exiting the car) with the first one (before entering the

car), and from that evaluate the Euclidian error of each joint.

' ] 0 [ ] [ + +
» . » 3 » [ v

o bR P

§ S $
§ § g 3
(0000000000000000()000000000000000()0000000000000000000000000000000000000()

Figure 3.11: Evaluation procedures in regard to circuit, distance, time and full body pose qualitative result.

In Figure 3.12, it is possible to understand that although there is an increased error related with driving
time (magnetic sensitivity, sensor/strap displacement, inherent drift) and joint distance from the pelvis (error
associated with kinematic forwarding), the inertial suit output is quite stable. If drift was the only stability
factor, worst case would be: EV'1 = 750 um/s, EV2 = 416 pm/s and EV'3 = 39.5 um/s, where
it is possible to see that drift is not constant throughout the evaluation procedures. This observation shows

that error acumulation has limited relation with time.
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Figure 3.12: Joints's (Table 2.1) Euclidian error, &, for each SFE evaluation procedure (EV1, EV2 and EV3).

3.2.3 Dynamic sensor evaluation

To understand how the sensors behave in the human body, we placed them as indicated by the supplier
(Figure 2.1) and evaluated them at a lower level. This concept allowed us to understand how each sensor
behaves in each segment, in terms of rotation range. To contextualize this understanding with body move-
ments, a total of three recording procedures were established. These had the purpose of evaluating a specific
body movement plane: coronal (RC'), sagittal (R.S) and transversal (RT'). For each one, a full body motion
procedure was performed and periodically repeated for ten cycles. Each procedure was recorded five times
to have suficient statistical data.

Segment results in coronal and sagittal planes show the worst results (Figures 3.13A and 3.13B) in terms of
segments with higher soft tissue (upper arms and legs), given the increased frequency of muscular contrac-
tions. Feet also presented sub-optimal results, but are more related to the sensor’s proximity to magnetic
distortions from the iron foundations of the building. Transversal plane (Figure 3.13C) show the best results
with a segment median error, p;, lower than 10°, which is related to the fact that it required less soft tissue
contractions. Full body segment evaluations show a median full body error, p;, lower than 5° across planes

(Figure 3.13D).
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Figure 3.13: Segments’ angular error. (A) coronal plane, (B) sagittal plane, (C) transversal plane and (D) full

body in all planes.

Due to the higher error found in the upper arms and legs, an extra segment evaluation was performed.

In this case, new sensor positions were defined and evaluated (Table 3.3), and the results can be seen in

Figures 3.14A and 3.14B. The results show that the best position for fixation is the G'reater trochanter

for the upper leg, and T'riceps lateral for the upper arm.

Table 3.3: Upper Arm and Upper Leg segment evaluations.

Evaluation

Sensor Leg Position

Sensor Arm Position

Movement Plane

P1C
P1S
P2C
P2S
P3C
P3S
P4C
P4S

Greater trochanter
Greater trochanter
lliotibial tract
lliotibial tract
Bicepts femoris
Bicepts femoris
Semitendinosus

Semitendinosus

Triceps lateral
Triceps lateral
Triceps long
Triceps long
Triceps medial
Triceps medial
Biceps

Biceps

Coronal
Sagital
Coronal
Sagital
Coronal
Sagital
Coronal

Sagital
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Figure 3.14: Upper arm and leg orientation error in coronal and sagittal planes for different positions, p (from
1to 4). (A) Upper Arm and (B) Upper Leg.

3.2.4 Dynamic full body evaluation

To understand how the joints’ position behave in the human body, we evaluated the complete output
from the inertial suit (Figure 2.1). This evaluation gives a better understanding of how the Awinda motion
capture system behaves against the Vicon motion capture system in terms of joints’ position. To contextualize
this understanding with body movements, the same three recording procedures from the segment evaluation
were used. An extra 4" procedure was added, where a driving simulation (outside the car) was performed
and assessed (RDr).

In terms of joints’ evaluations, the transversal plane maintains the best results (Figure 3.15C). Coronal and
sagittal planes show worst errors (Figures 3.15A and 3.15B), specifically for the lower body extremities in the
coronal plane. This is due to error propagation from the kinematic forwarding method, and the fact that the
coronal plane movements had considerably higher feet joint movement range compared with the sagittal and
transversal planes. In regard to the 4*" procedure, the error increased (Figure 3.15D), possibly due to the
increase in range of motion in almost every joint, specifically the right hand (simulating its movement to the
back part of the car seat). Full body joint results in Figure 3.15E show a median error, p;, lower than 15mm

for the coronal, sagittal and transversal planes, and 30mm for the driving simulation.
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Figure 3.15: Joints’ positional error. (A) coronal plane, (B) sagittal plane, (C) transversal plane, (D) driving
simulation and (E) full body in all evaluations.

3.3 Discussion and Conclusions

We evaluated a specific inertial suit, highlighting its limitations through an extensive evaluation procedure
that separates itself from other more specific methods [55] where the evaluation is focused mainly in the
calibration procedure and the full body kinematics output. Although there was no focus in evaluating the

calibration procedure, a specific sub-toolchain was developed that allowed us to learn the best stance for
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the human subject in the calibration step. This sub-toolchain is not used each time we perform a recording
due to the fact that it requires both the Awinda and the Vicon full body suits, creating to much entropy
while recording. Sub-optimal performance was detected at a sensor level for the Yaw rotation (Figure 3.10),
however this behaviour did not propagate to the full body analysis. Full body analysis showed larger errors for
sensors in segments with increased soft tissue, or performing an higher Range of Motion (RoM) (Figures 3.13A
and 3.13B). This source of error propagates into the joints’ position analysis, due to its inherited kinematic
forwarding pipeline, showing the larger errors in the furthest body joints wrt. to the pelvis joint (Figures 3.15A,
3.15B and 3.15D). We believe that this evaluation to the inertial suit brings a better understanding on its

behaviour and limitations.



Chapter 4

Real Dataset Toolchain

The present chapter follows up on the previous one, focusing on the real dataset generation problem.
Preliminary versions of the work presented in this chapter were presented in the paper “A system for the
generation of in-car human body pose datasets”, currently in revision process.

In the first section of this chapter, the real dataset toolchain (previously mentioned in Section 1.5.2)
development is shown in-depth. The complete real dataset generation pipeline is shown through three main
parts: recording in Section 4.1.1, alignment in Section 4.1.2, and rendering in Section 4.1.3. Recording
(Section 4.1.1) shows the Automated Data and Time-Triggered Framework (ADTF) sub-toolchains that allow
for real time synchronized recording, describing each developed filter. Alignment and rendering (sections 4.1.2
and 4.1.3) are based on a single MATLAB sub-toolchain, shown in-depth in both sections. Specific temporal
and spatial calibration methods and algorithms are presented in Section 4.1.2, while dataset specific data
rendering is shown in Section 4.1.3.

In the second section of this chapter, the entire toolchain’s evaluation and potential interest is shown.
Two evaluation procedures were defined, one focused on the real data generation itself, and a second focused
on the real data application for human body pose estimation. The first evaluation procedure (Section 4.2.1.1)
is divided in tightly secured human motion and free human motion, car seat position and human actions,
in order to show how the recorded human body pose behaves in different scenarios. The second evaluation
procedure (Section 4.2.2) shows how real datasets generated by the toolchain can improve the accuracy of
different Machine Learning (ML) based methods for human body pose detection.

The chapter proceeds with the discussion of the obtained results, and its main conclusions. Results
from evaluation procedures show that the toolchain falls behind the market gold standard in terms of out-car
scenario, however it improves considerably for the in-car scenario, being able to capture the human body pose

wrt. a Time-of-Flight (ToF) sensor. This understanding goes behond the in-car scenario, opening possibilities
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for highly occluded scenarios. Toolchain generated data was shown as being valuable for ML based methods,
increasing their detection accuracy. Dataset sources of error were identified across chapters 3 and 4 and

future error minimization approaches were proposed.
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4.1 Toolchain Overview

In this section, the previously selected ground-truth system (Chapter 3) is used for the purpose of devel-
oping a toolchain capable of generating ToF images with associated human body pose ground-truth for in-car

scenario. To achieve such toolchain, several systems are required:

a ToF sensor for image capture (C' being the position of the camera’s optical center);

* an Inertial suit (namely a MVN Awinda) for relative human body pose ground-truth (A being the head

joint, and J each one of the remaining body joints);

* a global object positioning system, such as the Vicon system (W being the Vicon’s global coordinate

system, and O the subject’s head object tracked by it);

a car testbed.

As Figure 4.1 illustrates, there is the need to indirectly estimate TJC in order to project each joint into the
ToF perspective. This estimation adds a certain complexity with the added systems, making it necessary to
directly estimate all other transformations between systems. With it, there is a need to spatially and temporally

align the data, to correctly project the human body pose information into the ToF camera’s coordinate system.

Figure 4.1: 3D representation of coordinate systems when recording a real dataset. W: Vicon global coordi-
nate system; C': ToF optical center and orientation; O: subject’s head object tracked by the Vicon system;
A: inertial suit head joint; J: inertial suit joints.

To satisfy the abovementioned requirements, the toolchain implements the pipeline illustrated in Fig-
ure 4.2, where the entire real time recording procedure is done with ADTF sub-toolchains, and the alignment

and rendering is done in a MATLAB sub-toolchain (Figure 4.3).
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Recording (ADTF) Alignment (Matlab) Rendering (Matlab)
Vicon-to-ToF Awinda-to-Vicon Awinda-to-ToF
ToF Vicon Tol
T 1 . .
upert ‘ t(O)Vicon t(O)sznda t(O)sznda >
NG
Section 4.1.1 Section 4.1.2 Section 4.1.3

Figure 4.2: Overview of the toolchain pipeline. Recording: blue highlight represents the Vicon system; orange
highlight represents the MVN Biomech Awinda system; red highlight represents the ToF camera. Alignment:
gray highlights correspond to the developed algorithms, with the other variables being determined by con-
catenation of the other algorithms’ output.

Figure 4.3: MATLAB sub-toolchain for real dataset generation.

4.1.1 Recording (ADTF)

Dataset recording is done for all relevant systems: image data is recorded from a ToF sensor; relative

body pose data is recorded from the MVN Awinda inertial suit; global positioning data is recorded with Vicon
Nexus through the creation of a virtual head object for the human subject. Note that this object was selected
for two main reasons: (1) low soft tissue related errors for both Vicon and inertial suit's markers/sensors;
and (2) best joint visibility for the Vicon system in an in-car environment, generating more valid data.
The entire recording process follows the same philosophy as previous toolchains in Chapter 3, where there is
the need to use ADTF to implement a sub-toolchain for real time recording. As it was already mentioned, there
are three main systems requiring an ADTF filter (Figure 4.4A), shown in subsections: (4.1.1.1) ToF camera,
(4.1.1.2) MVN Awinda Full Body, and (4.1.1.3) Vicon head tracker.

Since the temporal alignment between the ToF sensor and the Vicon system is performed independently
prior to any acquisition, a separate recording procedure was necessary (Figure 4.4B), being shown in detail

in subsections 4.1.1.4 and 4.1.2.1.
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RB_TOPSO0_PICOMONSTAR105 Harddisk_Recorder
PicoMonstar105Data PicoMonstar105Data
Ampiit - MVNAwindaFullBody
i _ ViconRefSystem
DepthImage |- -| dynamicpin RB_TOP80_PICOMONSTARLO0S Harddisk_Recorder
Confidencelmage |- 105Data PicoMonstar105Data
Ampltudelmage |_ ViconTime RefSystem

NoiseImage |- _| dynamicpin

RB_T OP80_MvnAwindaFulBody Depthimage

MVNAwIndaFulBody Confidencelmage

RB_TOPS8O0_VICONREFSYSTEM RB_TOPS0_VICONTIMEREFSYSTEM
ViconRefsystem | | ViconTime RefSystem

A B

Figure 4.4: ADTF sub-toolchain for real dataset generation: (A) main real dataset recording, and (B) recording
for Vicon to ToF temporal alignment.

4.1.1.1 ToF camera

Despite the latest toolchain using one single ToF sensor, being the latest Bosch sensor iteration the Pico

Monstar 105, all sensor iterations will be shown as well as their in-depth implementation.

Melexis EVK75023 and EVK75123

Although different evaluation kits, both sensors use the same BltTofApi Software Development Kit (SDK),
allowing for an identical filter implementation. In terms of filter output data, independent camera frames and
a custom data structure (i.e. comprised by the data necessary for the real dataset [Figure 4.5A]) are used,
where Amplitude and PointCloud store the amplitude, depth and point cloud data from the sensor at a
320x240 pixel resolution. Sample data S,y is comprised by the EV K'75123_Frames structure variable,
this sample is then added to an ADTF timestamp A¢ to be used synchronously. One of the main differences
between the ToF filter and previous ones in Chapter 3 is the ability to configure the sensor itself. This is done
through the initialization process in ADTF, where user data, I, (Figure 4.5B) is read by the filter and sent to

the sensor.

Property Value
= RE_TOPSD EVKT5123

192.168.0.10
True
FrameModeDistAmp
1

QueueModeDropQidest

Vertical Lines Filter Enable

A B

Figure 4.5: EVK75123 filter: (A) output, and (B) user configurations, I".



4.1. Toolchain Overview 75

However, in order for the filter to send user data to the sensor, it is important to understand the SDK
interaction. The evaluation kit has three main memory areas: (1) one for global registers where global
configurations such as image filters are defined (Figure 4.6), (2) and (3) are considered memory tables T'1
and T2 for the purpose of using two diferent sensor configurations in mixed mode (more range with better

Signal-to-Noise Ratio (SNR) at close range).

Addr Register Name Default R/W Description
(hex) Value
(hex)
01E0  ImgProcConfig 28C0 RW Bit[0]: 1...enable Median Filter

Bit[3]: 1...enable Bilateral Filter

Bit[4]: 1...enable Sliding Average

Bit[6]: 1...enable Wiggling compensation

Bit[7]: 1...enable FPPN compensation

Bit[10]: 1...enable FrameAverage Filter

Bit[11]: 1...enable Temperature compensation
Bit[13]: 1...enable offset via register DistOffset0

Figure 4.6: One of the EVK75123 global registers, ImgProcConfig manages the enable/disable of embedded
filters. Image adapted from [20].

Memory tables T'1 and T'2 are mainly used to configure the duty cycle times for the Pulse Modulation
(PM), IDLETIM E#, INT#, which are calculated in regard to the modulation frequency, fm, frame rate,
fin, and integration time, IT, number of phases, N Phase, and Central Processing Unit (CPU) processing
frequency, C PU clock, (equation 4.1).

1
PhaseReadTime = CPUdock T . 240
2

1
 IDLETIME# = (— — NPhase - (IT + PhaseReadTime)) - fn, (4.1)

m

cINT#=1IT - f,,

Due to this fact, one must implement an entire sensor configuration procedure for the _Filter::Start()

function (Figure 4.7A), where specific registers are used (Figure 4.7B).
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, %ADC_DELAY_FT, 8);

btaHandle, Re ress.ADC_DELAY_FT, &ADC_DELAY_FT, @)

er(btaHandle, RegisterAddness.ADC_DELAY_FT, &ADC_DELAY_FT, @)

A B

Figure 4.7: EVK75123 initialization: (A) graph, and (B) registers address.

Following the SDK interaction in Algorithm 2.1.4, the filter is able to connect and capture data from the
sensor, as well as configure it (Figures 4.5B and 4.7A), with the entire filter higher level implementation being

shown in Algorithm 4.1.1 as well as the filter itself in Figure 4.8.

Algorithm 4.1.1 RB_TOP80_EVK75123

1: mit(stageFirst):

2: (tFrames)EV K75123Data < output
3: (tBitmapFormat) AmplitudeImage < output
4: (tBitmapFormat)DepthImage < output

5: (tBitmapFormat)BalanceImage <+ output
6: Init(StageNormal):

7: EV K75123.usercon fig < I in Figure 4.5B
8: _Filter::Start():

9: Connectionin Alg. 2.1.4
10: RegisterAddress <+ EV K75123.usercon fig in Figure 4.7A

11: Thread.start()
12: Thread:

].3: EV K75123_Frames.Amplitude < BT Aget Amplitudes(frame) DatainAlg. 2.1.4

14: EVK75123_Frames.PointCloud + BT AgetXY Zcoordinates(frame) Data in Alg. 2.1.4
15: EVK75123Data « BV K75123_Frames

16: AmplitudeImage < BT Aget Amplitudes(frame) DatainAlg. 2.1.4

17: DepthImage < BT AgetDistances(frame) DatainAlg. 2.1.4

18: Balancelmage < frame.channels.data Datain Alg. 2.1.4
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RB_TOPB0_EVK75123
EVK75123Data |-
AmplitudeImage
DepthImage
BalanceImage |-

Figure 4.8: ADTF filter for EVK75123.

Gene8 Pico Monstar 105

The final and current ToF sensor in the Bosch roadmap was the Pico Monstar105. This sensor relies on
the libroyale SDK [93] for configuration purposes and to capture image data. In terms of filter output data,
it uses the same philosophy as the Melexis filters, with independent camera frames and a custom structure
comprised by the camera specific real dataset data (Figure 4.9A), where Amplitude and PointCloud
preserve the amplitude, depth and point cloud data from the sensor at a 352x287 pixel resolution. Sam-
ple data, Ss,,,, is comprised by the PicoMonstar_Frames structure variable, which is added to an
ADTF timestamp, A¢, to be used synchronously. During the initialization process, the sensor is configured
by reading the ADTF user data, I, (Figure 4.9B) and sending the configuration parameters to the sensor

(cameraDevice — setUseCase(T') in Algorithm 2.1.5).

| Property Value

-~ RB_TOP80_PICOMONSTAR106
Amplitude Frame Output Enable True

Camera Mode (0.5-1.5m/15fps/0.6ms)
Confidence Frame Output Enable | True
Depth Frame Output Enable True

HATEILES it - Moise Frame Output Enable False

Amplitude[ H :

PointCloudl * 37, PointCloud Output Enable True
pricrity 1
Scaled Imaaes Enable Falze

A B

Figure 4.9: Pico Monstar 105 filter: (A) output, and (B) user configurations, I".

Through the SDK interaction in Algorithm 2.1.5, the filter is able to connect and capture data from the

sensor, with the filter higher level implementation being shown in Algorithm 4.1.2.
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Algorithm 4.1.2 RB_TOP80_PICOMONSTAR105

1 Init(StageFirst):

(tFrames)PicoMonstarl05Data < output
(tBitmapFormat) AmplitudeImage < output
(tBitmapFormat)NoiseImage < output

(tBitmapFormat)DepthImage <+ output

DR WN

. (tBitmapFormat)Con fidencelmage < output
7 Init(StageNormal):

8. cameraDevice— > setUseCase(T) in Figure 4.9B
9: _Filter::Start():

].O: Connection in Alg. 2.1.5

11: Thread.start()
12: Thread:

].3: PicoMonstar_Frames.Amplitude < data— > points.grayV alue Datain Alg. 2.1.5

14: PicoMonstar_Frames.PointCloud < {data— > points.x, data— > points.y, data— > points.z} Datain
Alg. 2.1.5

15: PicoMonstarl05Data <— PicoMonstar_Frames

16: AmplitudeImage < data— > points.grayV alue Datain Alg. 2.1.5

17: Noiselmage < data— > points.noise Datain Alg. 2.1.5

18: DepthImage < data— > points.z Datain Alg. 2.1.5

19: Confidencelmage < data— > points.depthCon fidence Datain Alg. 2.1.5

4.1.1.2 MVN Awinda Full Body

For full body pose, there is no need to implement a new filter, with real dataset generation making use
of the MVN Awinda filter developed for the DFE evaluation (i.e. Algorithm 3.1.5 in Section 3.1.2.2). This
decision comes from the fact that the filter captures the required information for the dataset (full body joints’

cartesian position and orientation).

4.1.1.3 Vicon head tracker

To create an head tracker, first an head marker pattern needs to be defined in the subject’s head (Fig-

ure 4.10A) and then created as an head object in Vicon Nexus (Figures 4.10B and 4.10C).

& System IEII:EH

LA | e
aa v P Head

> ®9 Markers

> ﬂ Joints

p<l Model Outputs
o<l Analysis Outputs

A B C

Figure 4.10: Head tracker configuration: (A) Head marker pattern, (B) and (C) Vicon Nexus head object
creation.

Through the Datastream SDK in Algorithm 2.1.3 and with the information of the head object used as

output (Figure 4.11), a specific filter can be created to capture the head segment position and orientation



4.1. Toolchain Overview 79

(Algorithm 4.1.3).

'iconHead Data

Figure 4.11: Filter output for Vicon head tracker.

Algorithm 4.1.3 RB_TOPS0_VICONREFSYSTEM

1: Init(StageFirst):

2: (tMotionObjects)ViconRefSystem < output
3: Init(StageNormal):

4: _Filter::Start():

B: Connectionin Alg. 2.1.3

6: Thread.start()
7. Thread:

8: ViconHead_Data.HeadTranslation < MyClient.GetSegmentGlobalTranslation() Datain Alg. 2.1.3
9: ViconHead_Data.HeadRotation < MyClient.GetSegmentGlobal RotationQuaternion() Datain Alg. 2.1.3
10: ViconRefSystem <+ ViconHead_Data

4.1.1.4 Vicon marker tracker

In regard to the second recording procedure, to temporally align the ToF camera with the Vicon system,

a vicon marker is used as a pendulum while being visible by the ToF and Vicon systems (Figure 4.12).
= |

i.f?.f?@' at7

Figure 4.12: Marker pendulum motion capture through Vicon and ToF sensor, for temporal alignment between
systems: blue highlight represents the Vicon marker, and red highlight represents the ToF camera.

This information was recorded with an ADTF sub-pipeline (Figure 4.4B), in order to garantee the temporal
latency of the final real dataset recording illustrated in Figure 4.4A. To create such sub-pipeline, there was the
need to use the previously created Pico Monstar 105 filter (Algorithm 4.1.2), and the creation of a specific
marker recording (Figure 4.13) Vicon filter (Algorithm 4.1.4) using DataStream SDK to capture marker data,

w
Px yzma.rker

= ViconTimeRefSystem.
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tMotionMarker

64 MarkerTranslation[3];

- ViconMarker_Data;

Figure 4.13: Filter output for Vicon marker tracker.

Algorithm 4.1.4 RB_TOPS0_VICONTIMEREFSYSTEM

1: Init(StageFirst):

2: (tMotionMarker)ViconTimeRefSystem <« output
3: Init(StageNormal):

4: _Filter::Start():

5: Connection inAlg. 2.1.3
6: MyClient.Enable MarkerData()

7: Thread.start()
8. Thread:

9: ViconMarker_Data.MarkerTranslation < MyClient.GetMarkerGlobalTranslation()
10: ViconTimeRefSystem < ViconMarker_Data

4.1.2 Alignment (MATLAB)

In order to achieve proper temporal syncronization, a temporal alignment between systems is required.
Considering the ToF camera as master to avoid image blur from interpolations, the other two systems have to
be synchronized and interpolated to each master timestamp (subsections 4.1.2.1 and 4.1.2.2). This procedure
defers from the one used in evaluations DSE and DFE (Sections 3.1.2.1 and 3.1.2.2) where each system was
synchronized to new timestamps, thus requiring a new synchronized method, shown in Section 4.1.2.3.

Considering the goal of generating a human body pose ground-truth projected into the ToF coordinate
system, several transformations need to be performed, each requiring a calibration procedure. There is the
need to spatially align the Vicon system with the ToF camera (subsection 4.1.2.4), as well as the Awinda suit

with the Vicon system (subsection 4.1.2.5).

4.1.2.1 Vicon-to-ToF temporal alignment

With the recorded information (Figure 4.4B), for each timestamp two virtual markers were created in the
camera’s perspective, with 2y coordinates: (1) one in the ampy,, frame (i.e. the marker pendulum zy
position in the image frame, Pxyc detected through equation 4.2 due to its saturated IR reflectivity, given by
the &y pixel position of the maximum reflectivity pixel), and (2) the 3D—2D projection of the Vicon’s marker

3D position in the camera’s image frame PxyzC  por—>PTYC 4rrep (trough equation 4.3).

Pxyc = argmax(amps,,) (4.2)
x?y
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P‘ryzmm’ker = TW Pmyzmarkev“
(4.3)
Pmymarker - nyzmarker ’ IMC

Equation 4.3 relies on two calibrations: (1) the camera’s pre-calibrated intrinsic matrix I Mg (equa-
tion 4.4), with fz, fy being the focal length in pixels, ez, ¢, being the optical center in pixels, and sk being

the camera axes skew angle: and (2) the Vicon-to-ToF spatial calibration TS (subsection 4.1.2.4)

f. 00

sk f, O (4.4)
Cz ¢y 1

IMe =

Both virtual markers must exist for each timestamp, generating an oscilating wave in the ToF x-axis (Fig

ure 4.14). Assuming that both signals are delayed copys of each other, this projection allows to estimate the

time delay t(O)T"F between both systems through the cross-correlation of the two discrete-time sequences,
Pzyc and PxyS , er

400
Pzyc
_Pmymarker
_300|
o
]
[a ¥
200 -
100
21 225 23 235 24 24.5

Time (s)

Figure 4.14: Projection of the Vicon’s marker in the ToF x-axis (red) and the marker's x-axis coordinate in
the image frame (blue), giving the delay between systems t(O)T"F Spikes in blue line are related to ToF
marker centroid perspective parallax error

4.1.2.2 Awinda-to-Vicon temporal alignment

To determine the temporal mismatch between the Vicon system and the Awinda suit, both systems’ head
joint quaternions were converted and represented in axis-angle, @y, (equation 3.4), while removing the offset

rotation of the first frame through the quaternion conjugate, (go)¢. This provides the head orientation as a

relative rotation for each system (Figure 4.15). Through the cross-correlation of both signals, ¢(0)

; Vieon
obtained, which allows to synchronize the Awinda suit with the Vicon system

Awinda is
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—_

Angle (rad)
(an)
ot

22 24 26 28 30 32
Time (s)

Figure 4.15: Axis-angle representation of both Vicon and Awinda head rotation, giving the delay between
Vieon
systems ¢(0) jacon, .

4.1.2.3 Toolchain temporal alignment

The definitions in equations 4.5, 4.6 and 4.7 simplify the variable groups from raw ADTF data, n, to
synchronized, #, for the three ADTF filter samples recorded in Figure 4.4A.

In terms of ToF filter (Algorithm 4.1.2), ampy 44, represents the synchronized t’ amplitude frame consid-
eringthe raw one, AM P, ¢, with f beingthe frame 1D concatenated pixel index; pey, g={pcxy, s, pcye, s, pc2e £}
represents the synchronized 3D point cloud from PC,, ,, with v being the frame 1D concatenated voxel index;

depthy ., represents the synchronized depth frame from pezy .

Ss—tofn = { Amplitude,, ¢, PointCloud,, ,}

(4.5)
" Ss:tof,n - {AMPn,fa PCn,v}

" Os=tof = {aMPy 2y, pev § = {DCTy §,DCY 5, DC20 5}, dePthy 4y}

In terms of MVN Awinda Full Body filter (Algorithm 3.1.5), Ky j represents the synchronized joint, 5, 3D

position and ¢y ; the quaternion rotation.

Ss—awindan,j = {bodySegmentID,, ;, XY Z Data,, ;, Quat Data,, ; }
. Ss:aw’inda,n,j - {Bn,ja Kn,j7 Qn,j}
R 5s:awinda,t’,j = {Ut’,ja Ry g, @tﬁj}
Finally, for the Vicon Head Tracker filter (Algorithm 4.1.3), py,04 represent the synchronized position and

rotation of the subject’s head from the respective raw ones, Tp,, Ry, .
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= {HeadTranslation,,, HeadRotation,, }

Ss:vicon,n7

. Ss=viconn, = {Tns B}
" 5s=m'con,t’ = {pt/, Qt/}

Using the definitions in equations 4.5, 4.6 and 4.7 for each filter output and with each previous tem-
poral calibration, all recorded systems from a real dataset recording are temporally aligned with each other
(equation 4.8). Each calibrated temporal mismatch, ¢(0 @‘;f;n and t(O)Xm, serves as a time offset
to the timestamp of each system’s sample: g being the ToF, to the Vicon, and t4 the MVN Awinda. In
Algorithm 4.1.5, it is shown how each individual system is temporaly aligned, considering the initialization

process of adding the time offset.

t(o)g?f;‘nda = t(0>€(z)§m + t(O)Xzzﬁf:da
to =to +t(0) o,
ta=1ta+1(0)20 40

tc = tc
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Algorithm 4.1.5 REAL DATASET SYNCHRONIZATION

1: initialize:

2. Eq4.8

3: # Get ToF timestamp range Trange

40 Typs < AN Sioro

5! Tepg + AN Siop N

6! Trange « Tend — Tini

70 T« N,Sectofn

8: # Create new synchronization timestamps At/ and samples 6S,t/ for all systems
9: Ay = AN Smfyo_}N‘t’ =0,..,T
100 5, .t =0,.,T

].].: # Interpolate new samples for Awinda & j and Vicon §
12
13
14
15

s=awinda,t’, s=vicon,t’
. foreacht’ in A,/ do
. #MVN Awinda joint position Kyl and rotation ¢,/ ¥

tini < At N Ss—qwinda,n,jt <t

tend < At N Ss—qwinda,n,j t >t

’
. . .
16: ratio < %

end " Yini

17 for each j in 5s:awmda,t’,j do
18: Qini — Qn,j,t <t'
19: dond — Qn j,t > t'
20: #yr 5+ SLERP(qini,9end, ratio)
21: Pini — K j,t <t/
22: Pend — Kn jit >t
23: Kpr 5 (Pend = Pini) - Tatio + pin;
24 end for
25: #Vicon Head Tracker position p, and rotation @,/
26: tini < A N Semvicon,m,t <t
27: tend « At N Ss—vicon.m, t >t
28: ratio < ft/f%
‘end " tini
29: Qini — Rn,t <t'
30:  gupg « Rn,t >t
31: 04 = SLERP(4ini, dend, ratio)
320 pini & Tt <t
33:  pend & Tn,t >t
34: Pt 4 (Pend — Pini) - 7atio + pin;
35: #ToF sensor point cloud PCTyr ¢y PCYyt §y PCZyl ¢
36:  forv =1 v4+=3 whiev < 352 - 287 - 3do
37 fe f41
38: pCxTys o4 PChr .,
39: peyys ;< PCnoyia
40: PCZyr g 4= PChp vt2
41: end for
42: #ToF sensor amplitude amp, s oy depth depth T,y
43:  forz = 1,24+ whiey < 352 do
44 fory = 1, y++, while y < 287 do
45: fez+(y—1)- 352
46: ampy ., — AMP,
47: deptht/ymyy —pezy g
48: end for
49: end for
50:  endfor

4.1.2.4 \Vicon-to-ToF spatial alignment
Vicon Head to Vicon World (TY)

The Tg’ transformation is automatically recorded through the Vicon system, and requires the setup of
a head object with a fixed pattern of markers as it was shown in Section 4.1.1.3. Tg’ is the transformation

matrix formed with the synchronized position and rotation information from the subject’s head py,0p .
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Vicon World to ToF Camera (T5)

For the calibration of ', , a checkerboard pattern was used together with four Vicon markers, B =1,..,4

placed in its surface (Figure 4.16A). Several samples are taken (Figure 4.16B), and for each, two object plane

surfaces were generated for both the ToF, TS, [99] and Vicon, Tg’, systems (Figure 4.16C).

Figure 4.16: Vicon world to ToF camera calibration. (A) checkerboard patern with Vicon markers visible to the
ToF camera and Vicon system. (B) matlab toolchain for static Vicon and ToF data capture and Tv?, calculation.
(C) 3D representation of the coordinate systems when calibrating Tv?, W: Vicon global coordinate system:;
C: ToF optical center; B: Checkerboard object plane surface.

This information allowed to calculate the transformation between systems through a least square min-
imization problem (equation 4.9), where in order to compute the optimal rotation matrix [100], first both
sets of marker, B, 3D coordinates P§ and P} must be translated, so that their centroid coincides with
the origin of the coordinate system pg and p‘g. This is done by subtracting from the point coordinates the
coordinates of the respective centroid ng and uPEV. Second step consists of calculating a covariance
matrix, cv M, followed by the Single Value Decomposition terms VU, followed by the determinant, dt, of
both terms to ensure right-handed coordinate system. Finally, the optimal rotation is calculated, Rﬁ, and
then added to the translation component in order to calculate the transformation matrix between Vicon world

and ToF camera, TS, where I is a 4x4 identity matrix.



86

4. Real Dataset Toolchain

py = P§ — uPy

Py =Py —uPy
coM = (p)T - p5
coM =V .5-UT

dt = det(V - UT)

100

RG=U-10 1 0
00 d

TS =151

Ty =pj -1

TS =T - RS, -TY

VT

Algorithm 4.1.6 shows the entire process of Tp?, spatial calibration. First, the static amplitude frames,

ampy z,, obtained in MATLAB give the visible markers position (2D (Pxy§)y and 3D (P§)y [Fig

ure 4.17A]) wrt. the ToF camera. Second, the static samples from Vicon give the four markers’ 3D position in

each timestamp, (Pg’)t: (Figure 4.17B). Finally, this information from each system is used in equation 4.9

to calculate T (Figure 4.17C shows (P} )¢ being projected into ToF, using T$:).

Algorithm 4.1.6 TS, Calibration

O RN WND =

# Get Pg from amplitude images

# Detect ToF markers (Pmyg)t, from amplitude images amp,s

T,y

(P2y§)y +Ea.4.2(ampy , ) (PeyG), = {=, v}

Bt t/ 2,y Bt

# Convert ToF 2D markers (szg)t’ to 3D markers (Pg)t/

(PS)y + (Pey$),)T - IMc, (PS)y = {=, y, =} (Figure 4.17A)

# Get ng from Vicon markers
(P}év)t/ = {x, y, z}(Figure 4.17B)

# Get TVC‘} from ToF 3D markers (Pg)t/ and Vicon markers (PEV )¢t
TG +Eq.4.9(P§ « (P§)y, PY « (PY),)
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Figure 4.17: Vicon world to ToF camera calibration frames: (A) markers 3D position (Pg)t/ detected in
amplitude frames ampy 24, (B) markers 3D position (P};V)t: detected in Vicon system, and (C) markers
(P¥)p 2D position in amplitude frames using T

4.1.2.5 Awinda-to-Vicon spatial alignment
Awinda Joints to Awinda Head (T'4)

The MVN Awinda body pose is tracked inside the MVN global positioning system. This is possible through
specific proprietary algorithms that estimate the body gait movement. To minimize sources of error from the
MVN Awinda system, one chose to use the relative body pose, removing the global positioning information
and its associated errors. To convert the global body pose into a relative one, a joint of reference (root joint)
needs to be defined. In this case, the head joint was chosen given its direct relation with the Vicon’s head
object. To determine the relative position/orientation of each joint wrt. the head, T4, equation 4.10 is used,
with R4, P4 being the Awinda head joint rotation/position wrt. the Awinda world coordinate system, and
Rj,P; the Awinda joint rotation/position (J representing each of the 18 body joints) wrt. the Awinda world
coordinate system. In its essence, Ty and T4 are comprised by the recorded rotation quaternions ¢y ;,

Pt head, ANd translation Ky j, Ky head that were synchronized in Section 4.1.2.3.

(4.10)
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Awinda Head to Vicon Head (T'Q)

Considering the body pose as being relative to the head (root joint), the alignment between the MVN
Awinda head and the Vicon head needs to be determined. To determine the T’ transformation, each
recording procedure is initiated by a small recording of head rotations in each axis (i.e. flexion/extension,
lateral flexion and rotation). This information is then used to generate a set of points for the Vicon head object

Pp, and the Awinda head joint, P4 (equation 4.11).

P =(0,0,1)
Py=Ry-P (4.11)
Po=R{-P

Each set of points Pgp, P4 corresponds to a vector P being rotated in each timestamp Ay with the head
rotation RA=¢’ head, R}')V=gt: at the specific timestamp. Through the Finite Iterative Closest Point (FICP)
algorithm created by Kroon [98], it is possible to find the optimal rotation, RS, that best aligns both point
clouds that represent the head joint from both systems (Figure 4.18A). With the extra manual translation
of the Vicon head position to the real head position Pf (C1 vertebrae) as it is shown in Figure 4.18B, the

transformation matrix is obtained T'.

Figure 4.18: Awinda head to Vicon head spatial alignment, Tf. (A) shows the rotation Rg alignment, and
(B) shows the translation Pg alignment.

4.1.2.6 Toolchain spatial alignment

With each previous spatial calibration, the human body pose, T’y, can be projected into the ToF camera’s

prespective (equation 4.12).

TS =18 -TY - TS - T (4.12)
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TJC is the combined transformation matrix that spatially aligns each joint from the inertial suit with the
camera world, with Tj4 being the transformation that maps each joints’ position/orientation wrt. to the head
in the inertial suit system, Tf the transformation that maps the head joint from the inertial suit system to
the Vicon one, Tg’ the position/orientation of the head object within the Vicon’s world coordinate system,

Tv?, the transformation that maps the Vicon’s system to the ToF sensor coordinate system.

4.1.3 Rendering (MATLAB)

After data alignment, the toolchain starts rendering the dataset information (Figure 4.19), including: (A)
an amplitude frame; (B) a depth frame; and (C) a 3D point cloud. Moreover, the 2D and 3D body pose of
each human model is generated and exported in JavaScript Object Notation (JSON) format. Each exported

dataset RDy is comprised by the group of dataset information (equation 4.13) for each frame ¢'.

o RDy = {ampt’,aaya deptht’,%y’

pev r = {pcxy , peyy . pCzr £}, (4.13)
(PzyS)e, (pryzJC)v}

Figure 4.19: Rendered frames: (A) amplitude, (B) depth, (C) point cloud. Images (A, B, C) are represented
in color for better visualization.

4.1.3.1 Amplitude frame

The amplitude frame (Figure 4.19A) ampy 44, * = 1,...,. X,y = 1,...,Y, is rendered with the infor-
mation recorded from the ToF camera. Each pixel information reflects the intensity from the object projected

on the pixel in the camera’s XY plane.

4.1.3.2 Depth frame

The depth frame (Figure 4.19B) depthy 44, = 1,...,X, y = 1,...,Y , where X is the camera’s hori-

zontal resolution and Y its vertical resolution, is rendered with the information recorded from the ToF camera,



90 4. Real Dataset Toolchain

with each pixel representing the distance from the object to the projected pixel in the camera’s XY plane.

4.1.3.3 Point cloud

The 3D point cloud (Figure 4.19C) has the Cartesian coordinates xyz of the voxel that was projected in

each pixel, pexy s,peye gpcze f, [ =1,.., X XY.

4.1.3.4 Ground-Truth

The ground-truth information (black squares in Figure 4.19) consists in exporting the pose information
for the human using the ground-truth standard in Table 4.1, with respect to the perspective of each frame
(equation 4.14). With that in mind, two types of ground-truth are possible: 2D pose for amplitude and depth
frames; and 3D pose for the point cloud. Both types of ground-truth consist in the same pose information for

the human, that is a structure comprised of all joints’ pixel, P:cyf;' (2D), or voxel, nyz_? (3D), positions.

Pzyz§ = P¢
T (4.14)
Pxy§ = Payz§ - IMg

Table 4.1: Ground-truth joint label correspondance with MVN simplified ISB model from Table 2.1 used in
ADTF filter from Algorithm 3.1.5.

Ground-truth joints (Index) | Simplified ISB (Index) | Ground-truth joints (Index) | Simplified ISB (Index)
head (1) Head(6) rhand (11)

neck (2) Neck(5) hip (12) L5(0)

chest (3) T38(4) Ipelvis (13) LeftUpperLeg(19)
Ishoulder (4) LeftUpper Arm(12) | rpelvis (14) RightUpperLeg(15)
rshoulder (5) RightUpper Arm(8) | lknee (15) LeftLowerLeg(20)
lelbow (6) LeftForearm(9) rknee (16) RightLowerLeg(16)
relbow (7) RightForearm(13) lankle (17) LeftFoot(21)

Iwrist (8) LeftHand(14) rankle (18) RightFoot(17)

rwirst (9) RightHand(10) Ifoot (19) LeftToe(22)

lhand (10) rfoot (20) RightToe(18)
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4.2 Evaluation results

In this section the toolchain capability to generate real datasets is evaluated. A second evaluation is
performed in terms of human body pose estimation application. All MVN Awinda sensors were updated to
V4.2.1. Motion capture was performed with MVN Studio 4.97.1. Head tracking was performed with Vicon
Nexus 2.7.1 and DataStream SDK V1.2.0. Image capture was performed with libroyale V3.4.0.0.

4.2.1 Toolchain

4.2.1.1 Dataset generation

To evaluate the generation of real datasets, two experiments were established: (1) tightly controlled
evaluation for the same sequence of driving actions for both outside and inside the car (TE1 and TE2,
respectively), while avoiding any type of collision between sensors/straps and external materials; (2) free
movement evaluation for three in-car seated positions (FE1, FE2 and FE3 corresponding to front passenger,
driver and back passenger, respectively), while allowing the subject to interact freely with the scenery. For both
evaluation procedures, the head quaternion behavior for both systems is extracted (Figures 4.20 and 4.21),
associated with a full dataset output from specific timestamps (Figures 4.22 and 4.23).

For the 1% evaluation procedure, the dataset timestamps represent the same actions for inside and
outside the car (Figure 4.22). It is possible to see that extreme head rotations increase the body pose error
due to the head alignment. It is also possible to observe that magnetic distortions are not significant, where
the same actions inside the car can project a body pose similar or better then outside of it.

For the 2™? evaluation procedure, the dataset timestamps represent the best and worst alignments
(Figure 4.23). From the analysis, it is possible to pinpoint the main sources of error that contribute to a

sub-optimal body pose joint projection:
¢ Sources of error identified in the inertial suit evaluation (see Chapter 3);
¢ Absence of projection, due to occlusion of the Vicon’s head object;

¢ High projection error for joints further away from the head joint, due to bad alignment between head

objects (indicated with red highlight in Figure 4.21);

¢ High projection error for the lower body part, due to sensors and straps’ movement as a result of

collisions with seat, car door or steering wheel.
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Figure 4.20: Axis-angle representation between Vicon's head object and Awinda’s head segment: (A) TEI;
(B) TE2. Gray regions highlight the 15¢, 2" and 3" head maximum rotations for each simulated action.
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Figure 4.21: Axis-angle representation between Vicon's head object and Awinda’s head segment: (A) FE1;

(B) FE2; (C) FE3. Blue region highlights the best alignment between both objects, while red region highlights
worst alignment.
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Evaluation Amplitude Point-Cloud

Figure 4.22: Real dataset frames with associated body pose ground-truth. Representation is done considering
the head maximum rotations for each simulated action in each evaluation (Figure 4.20).
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Figure 4.23: Real dataset frames with associated body pose ground-truth. Representation is done considering
the best and worst head alignment in each evaluation (Figure 4.21).

4.2.2 Application to Pose Estimation Problems

To understand the validity of the data being generated with the toolchain, as well as its ability to increase
ML algorithmic accuracy, three distinct experimental scenarios were defined: 2D pose estimation from depth

images; 2D pose estimation from point cloud; and 3D pose estimation from 2D pose.
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4.2.2.1 Evaluation Data

Since the aim is to evaluate the potential advantage of using an in-car focused dataset over a generic
one, samples from the system and from publicly available datasets are required. In this sense, we used two
publicly available datasets, the first being Towards Viewpoint Invariant 3D Human Pose Estimation (ITOP)
[62], containing 17991 real images and corresponding ground-truth from a single subject, S1; the second
was the NTU RGB+D [101], where the first subject, Z; and all of its planes, P, cameras, C', rotations, R and
49 actions, Ay.49 Were used, resulting in 94321 real images and corresponding ground-truth. Our toolchain
generated dataset consists in five recorded subjects, Hy.s, two actions, By.e each, totaling 8754 samples
(i.e. recording compliant with General Data Protection Regulation [GPRD] [Appendix A]).

All datasets are identical in terms of sample data types for depth frame and 3D/2D body pose, giving us the
opportunity to evaluate the first and third experimental scenarios comparitively to each other. The second
experimental scenario permits the assessment of the proposed dataset to estimation problems based on
point clouds. The available samples were divided into 3 groups: (1) a training set, with all public datasets
plus 6322 toolchain samples (from subjects Sh.4); (2) a validation set with 702 toolchain samples (from
subjects S1.4); and (3) a test set with 1730 toolchain samples (from subject Sg performing distinct actions).
To assess the influence of mixing public datasets with the toolchain generated ones, seven sub-evaluations
were established, My.7, for the first and third experiment (Table 4.2). For the second experiment M; sub-
evaluation was used.

The proposed toolchain generated dataset, plus the tools needed to reproduce all experiments, were made

publically available [102].
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Table 4.2: Evaluations related with toolchain and public data quantities. Each M# represents a sub-
evaluation for the assessment of the influence of mixing public datasets with the toolchain generated one.

Evaluation | MoLa R8.7k InCar | ITOP | NTU RGB+D
M1t 6322 0 0

M2} 0 0 94321

M3? 6322 0 94321

M4t 6322 0 94321

M5! 0 17991 | O

M6? 6322 17991 | O

MT! 6322 17991 | O

1200 epochs for the full dataset. 2180 epochs for the public dataset plus 20 for fine-tuning with the toolchain dataset

2D Pose Estimation from Depth Images (RE1)

To evaluate the toolchain generated depth frames and corresponding 2D ground-truth, the Part Affinity
Fields (PAF) [25] method was used. From it, a custom Convolutional Neural Network (CNN) was implemented
consisting only on the first stage of the original PAF CNN. In each sub-evaluation, M#, the method used
the depth frame as input features and the 2D body pose as output labels (Figure 4.24). For all samples, the
depth frame was normalized into a grayscale frame ([0; 1.8] m = [0; 255]), while each 2D joint position was
converted into a 2D heatmap. For metric evaluation, the joint position is estimated through non-maximum
suppression applied to the inferred heatmap. In this experiment, the PCKh measure (in pixels, using a
matching threshold given by 50% of the head segment length) and the Area Under Curve (AUC) were used
as metrics [103]. Table 4.3 summarizes the average results for the full body, with the results for individual
joints being presented in Table 4.4. Figure 4.25A presents the PCKh@0.5 values for the full body for each

sub-evaluation.

2D Pose Estimation from Point cloud (RE2)

To evaluate the toolchain generated point cloud and corresponding 2D ground-truth, the PAF [25] method
was used. In this experiment, the point cloud was used as input features (Figure 4.24). To this end, each point
cloud was normalized (pcz: and pey with [—1.5; 1.5] m = [0; 255], and pcz with [0; 1.8] m = [0; 255])
and converted into a 3-channel matrix. As for RE1, the network’s output was the 2D heatmaps generated

from each joint’s position, with the inferred joint position being computed by non-maximum suppression. The
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same metrics from RE1 were employed. Results are shown in Tables 4.3, 4.4, and Figure 4.25B.

3D Pose Estimation from 2D Pose (RE3)

To evaluate the toolchain generated 3D ground-truth, a 3D pose estimation method [104] was used. The
method uses a 2D body pose as input features (provided as joint pixel coordinates) and the 3D body pose as
output (Figure 4.24). Once again, similar metrics were employed, but in this case PCKh matching threshold

was normalized to a fixed head size of 200 mm. Results are shown in Tables 4.3, 4.4, and Figure 4.25C.

RE2

RE3

Figure 4.24: Visual representation of input features and output used for each experimental scenario RE#:
(RE1) 2D pose estimation from depth images using normalized depth frame as input and 2D body pose as
output; (RE2) 2D pose estimation from point cloud using normalized point cloud as input and 2D body pose
as output; and (RE3) 3D pose estimation from 2D pose using 2D body pose as input and 3D body pose as
output.

Table 4.3: PCKh measure and AUC values averaged over all 14 joints, for the 3 experimental scenarios and
all 7 sub-evaluations. Each M# represents a sub-evaluation for the assessment of the influence of mixing
public datasets with the toolchain generated one. Each RE# represents different pose estimation scenarios.

M1 M2 M3 M4 M5 |M6 | M7
PCKh! | 95.97 | 0.01 | 69.54 | 94.88 | 12.64 | 94.57 | 95.48
RE1
AUC 56.14 | 0.01 | 33.36 | 59.39 | 5.26 | 58.04 | 55.33
PCKh! | 96.47
RE2
AUC 64.43
3 PCKh? | 95.53 | 0.00 | 95.12 | 97.25 | 0.00 | 95.80 | 97.73
RE
AUC 59.87 | 0.00 | 56.81 | 57.68 | 0.00 | 62.07 | 65.63

1 RE1 and RE2 does matching threshold to 26 piaels. 2 RE3 does matching threshold to 200 mm.
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Table 4.4: Evaluation results (PCKh@0.5) per joint group in the three experimental scenarios. Each M#
represents a sub-evaluation for the assessment of the influence of mixing public datasets with the toolchain

generated one. Each RE# represents different pose estimation scenarios.

M1 M2 | M3 M4 M5 M6 M7
Head! 99.88 | 0.00 | 60.00 | 100.00 | 5.00 | 99.48 | 94.68
Shoulder? | 99.87 | 0.02 | 62.89 | 100.00 | 0.00 | 99.87 | 99.85
RE16 | Elbow? 9723 ]0.00 | 79.71 | 99.31 | 40.87 | 95.23 | 9714
Wrist* 6299 | 0.00| 1980 |49.14 | 2593|4435 | 6434
Hip® 100.00 | 0.00 | 93.99 | 100.00 | 0.00 | 99.90 | 99.75
Head! 99.94
Shoulder? | 100.00
RE26 | Elbow? 98.06
Wrist* 59.38
Hip® 100.00
Head! 100.00 | 0.00 | 99.64 | 100.00 | 0.00 | 100.00 | 100.00
Shoulder? | 100.00 | 0.00 | 100.00 | 100.00 | 0.00 | 99.94 | 100.00
RE3" | Elbow? 90.54 | 0.00 | 86.39 |92.76 | 0.00 | 89.06 | 95.94
Wrist! 82.66 | 0.00| 8470 |90.75 | 0.00 | 85.85 | 90.42
Hip® 100.00 | 0.00 | 100.00 | 100.00 | 0.00 | 100.00 | 100.00

1 Head uses head and neck joints. 2 Shoulder uses rshoulder, Ishoulder and chest joints.

3 Elbow uses relbow and lelbow joints. # Wrist uses rwrist and Iwrist joints.  Hip uses rhip, Ihip and pelvis joints.

© RE1 and RE2 does matching threshold to 26 pizels. 7 RE3 does matching threshold to 200 mm
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Figure 4.25: PCKh total for all sub-evaluations, M#, and the three first experimental scenarios, RE#: (A) 2D
pose estimation from depth images (RE1); (B) 2D pose estimation from point cloud (RE2); and (C) 3D pose
estimation from 2D pose (RE3). Color gradient represents different combinations of datasets. Continuous
lines represent one dataset trained for 200 epochs, dotted lines represent two datasets trained in sequence
(1t —180 epochs, 2™¢ —20 epochs), and dashed lines represent two mixed datasets trained for 200

epochs.
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Figure 4.26: PCKh for all sub-evaluations, M#, and the three first experimental scenarios, RE#: (1%
column) 2D pose estimation from depth images (RE1); (2"¢ column) 2D pose estimation from point cloud
(RE2): (3" column) 3D pose estimation from 2D pose (RE3); (1%t row) Head: (2" row) Shoulder; (3¢
row) Elbow: (4" row) Wrist: and (5" row) Hip. Color gradient represents different combinations of datasets.
Continuous lines represent one dataset trained for 200 epochs, dotted lines represent two datasets trained
in sequence (1% —180 epochs, 2% —20 epochs), and dashed lines represent two mixed datasets trained

for 200 epochs.
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4.3 Discussion

In terms of the toolchain output for human body pose detection, it falls behind other methods [51, 49]
when used in an open space. The big novelty and advantage of the proposed toolchain is for the in-car
scenario. Here, the toolchain improves considerably on others that share the same in-car focus [67]. As
mentioned before, two state-ofthe-art motion capture systems (optical and inertial) were fused. By doing
it, their stand-alone limitations were suppressed (marker occlusion, global positioning drift) and their added
benefits increased by creating a motion capture system for highly occluded scenarios. It was possible to
record and project a human motion capture system into an image sensor in an heavily occluded scenario. The
projection is possible through specific calibration procedures that allow for a temporal and spatial alignment
of all recorded systems. Due to this complex pipeline, several sources of error exist, with the major ones being
associated to the inertial motion capture suit (Figure 3.15) and the Awinda to Vicon head spatial alignment
(Figure 4.21). Despite this calibration sensitivity, it was possible to record in-car datasets with proper human
body pose motion capture (Figure 4.23). The toolchain shows robustness to magnetic distortion scenarios,
namely inside the vehicle, where it was possible to observe a performance similar to movements performed
outside the vehicle (Figure 4.22). The toolchain can also be applied in other scenarios where ambient
occlusion is a limitation factor for motion capture.

In terms of data validation, Figures 4.25, 4.26 and Table 4.3 demonstrate the interest in using toolchain
generated data in ML training for the in-car scenario, showing PCKh improvements in all experiments when
adding toolchain generated data. RE1:M1 and RE2:M1 proved that training with specific use-case
datasets can achieve best accuracy (in-car scenario). On the other end, mixed dataset combinations (i.e.
ITOP or NTU RGB+D plus MoLa 8.7k InCar) also performed better then single generic dataset training (e.g.
M2 < M4 and M5 < M) demonstrating again the interest of using specific use-case datasets for train-
ing. Evaluations that rely on fine-tuning also presented the same results (e.g. M2 < M3 and M5 < M6),
meaning that pre-trained models can be fine-tuned with the toolchain’s dataset to achieve good results. Inter-
estingly, besides demonstrating the interest of toolchain generated data for increased algorithmic accuracy,
the present results also seem to suggest that the use of a 3D point cloud as input may lead to a better
pose inference when compared to networks using depth images (see for example the higher AUC values
for RE2:M1 compared with RE1:M1). In the end, for the in-car 2D body pose estimation problem, a
higher PCKh@.5 total score in RE2:M1 (i.e. MoLa 8.7k InCar point cloud based training) of 96.47% and
corresponding AUC of 64.43% was achieved. For the in-car 3D body pose estimation problem, the same

conclusions can be made with regard to using specific use-case datasets vs. generic ones. However, better



4.4 Conclusions 101

results were also achieved when mixing datasets instead of training with the toolchain generated dataset
alone (i.e. RE3:M1 < M6 < MT). In this case, considering both metrics (PCKh@0.5 total and AUC), it
achieved 97.73% and 65.63% respectively for RE3:MT. Finally, Table 4.3 summarizes the results for indi-
vidual joints, being possible to conclude that joints frequently present at the image’s limits (wrists and elbows)
are the most problematic. This may be related with the lower number of training samples with these joints
visible (as they are more frequently outside of the camera’s field-of-view or in the camera’s deadzone). Hip
joints also show similar problematic results, but in this case is related to two types of errors (i.e. Awinda-to-
Vicon spatial alignment [Section 4.1.2.5], and forward kinematics error propagation from head joint [Chapter

3, Section 3.2.4]), creating less stable ground-truth data for these specific joints.

4.4 Conclusions

In this chapter, a novel toolchain for the generation of in-car human body pose datasets is presented
(Appendix B). The toolchain demonstrated to be able to generate datasets through a specific setup consisting
in an inertial suit, a global positioning system and a ToF camera, coupled with a set of calibration procedures.
The motion capture system was thoroughly evaluated and the sources of error were presented. A toolchain
generated dataset is also made publicly available.

In terms of future work, and regarding the calibration procedure, an extra step could be added for the cor-
rection of the initial suit calibration, as previously presented in [65]. This would allow a lower sistematic
error for the projected body pose. Notwithstanding, this step would have to be non-intrusive for the recording
procedure. In terms of dataset quality, there are currently several limitations, mostly coming from the inertial
suit (namely related with sensor fixation and soft tissue movement). This could be solved with future inertial

suits or better initial calibration procedures from the supplier.



Chapter 5

Synthetic Dataset Toolchain

As shown in Chapter 1, given the aimed development pipeline, this chapter is parallel to Chapter 4 and is
a requirement for chapters 6 and 7. Preliminary versions of the work presented in this chapter were presented
in paper [81].

In the first section of this chapter, the synthetic dataset toolchain (previously mentioned in Section 1.5.3)
overview is shown. The three conceptual modules are then presented: the first module shows the human
model creation and its customization aspects (Section 5.1.1); the second module shows how the entire 3D
virtual environment is created, generated and validated through specific collision verifications (Section 5.1.2);
and the third module shows the entire dataset rendering output, focused on image sensor frames and human
body pose ground-truth (Section 5.1.3).

In the second section of this chapter, the synthetic dataset toolchain implementation is shown in-depth.
The automation prespective is presented, with context to the software tools used. The mathematical algoritmic
concept is shown for the complete toolchain automation, as well as for sub-algorithms, such as collision
detection, frame rendering, noise modeling, etc. Algorithmic implementation focuses in mimicking the real
dataset toolchain image sensor characteristics (Section 2.1.3.3). Sub-algorithm algorithm complexity is also
shown for the more complex ones.

In the third section of this chapter, the entire system'’s evaluation and potential interest is shown. Two
evaluation procedures were defined, one focused on the algorithmic performance of the toolchain, and a
second focused on the synthetic data application for human body pose estimation. The first evaluation
procedure (Section 5.3.1) evaluates each sub-algorithm complexity, in order to identify maximum toolchain
performance in regard to user configurations. The second evaluation procedure (Section 5.3.2) shows how
synthetic datasets generated by the toolchain can improve the accuracy of a Machine Learning (ML) based

method for human body pose detection.
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In the forth and fifth sections of this chapter, discussion, conclusions and future work are shown. Results
from evaluation procedures show that the toolchain improves on others, while being the only one focused in
the in-car scenario. Toolchain generated data demonstrated to be valuable for ML based methods, increasing
their detection accuracy, specifically with the 3D point cloud. Future improvements are discussed, specifically

for the most complex sub-algorithms.
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5.1 Toolchain Overview

In this section, the pipeline of the proposed toolchain is described. The proposed pipeline can be divided
into three conceptual modules, as illustrated in Figure 5.1. The first module corresponds to the human
model creation (Section 5.1.1). In this module, different human models are created through the MakeHuman
[105] engine, with the associated skeleton and skin texture. The second module concerns the scene engine
(Section 5.1.2). Using as input the human models created in the first stage, this module is responsible for
the initialization of the scene considering all objects in it (humans, car and camera), followed by the body
pose generation for each human model and associated validation with respect to collisions. Finally, the third
module corresponds to the rendering phase (Section 5.1.3), where specific camera frames and human body
poses are rendered taking into account the camera perspective and customization. This last module also
improves the output data (Time-of-Flight (ToF) images and point cloud) through image processing procedures
(namely using the Neural Style Transfer (NST) technique [106]). Both modules (sections 5.1.2 and 5.1.3) are

based on Blender and Python programming.

Human model creation Scene engine Rendering

Initialization Generation Validation

Section 5.2.1 Section 5.2.2 Section 5.2.3

Figure 5.1: Overview of the toolchain pipeline.

5.1.1 Human model creation

The first step of the proposed toolchain is the creation of different human models using the MakeHuman
[105] engine. Within this human model creation module, a full customization of the model shape is allowed,
through the definition of several parameters, namely body size, body mass, body asymmetry, among others.
In fact, the creation of human models with different characteristics, in terms of their shape, is an important
task in the toolchain. The higher the variability of the different human models, the higher the quality of the
dataset, allowing to give the expected generality for the body pose detection algorithm. This step is fully
automated in the toolchain, as the models are randomly created in the initialization step and customized
through specific parameters accessible to the user.

Each created human model (equation 5.1), mp, is comprised of a full body skin mesh, g™, a full
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body skin texture, nff, and a body skeleton with 6 Degrees-of-Freedom (DoF) per joint, n;?”j’a, with joint posi-
tion/orientation, nz’j, Mh.j,a» @nd Range of Motion (RoM), 75 4, h=1,.,Hj=1,.,Jf a=1,..,Af,
where H represents the number of human models, J f the number of joints that can have freedom of move-
ment in the model, and Af the axis of freedom on the joint. Finally, a human motion profile is defined

within the toolchain, for each human a user input, I‘H is defined (Figure 5.3B) with a Gaussian, I'? or

h,j,a’

incremental, motion profile, an initial body pose, ri associated to each of its joints, 7, axes, a,

inc
h’j’ay
and an RGB and label skin texture, T'}9°, T,

h,j,a’

FH_{Fh]a_{thm h]a} s sz

h,j,a’ ~ h,j,a’

rgb b
0y T} 1)
M= i e = A0 o b 0 T

Even though MakeHuman presents different formats for the body skeleton, the Carnegie Mellon University
(CMU) format was employed given its relationship with the Vicon kinematic fit model (Chapter 2) and the
inherent resemblance with the MVN Awinda Internal Society of Biomechanics (ISB) model (Chapter 2), making
it easier to establish a ground-truth format similar to the real dataset (Table 4.1). Each human label skin
texture is fully segmented according to the different body parts, where this texture is transversal to all body
models, being deformed to fit the different body shapes. The segmented skin labels (i.e. body joints and
body segments) has specific RGB color codes, as illustrated in Figure 5.2 and Table 5.1. This skin does
not exist when the human model is created (i.e. each human model comes with a generic real skin texture
representation), thus its color code and painting needed to be defined/created. Body part segmentation is

not used for the final algorithmic development in this thesis, however it is considered a relevant information

for current [2, 50] and future methods.

Head Right ~ Head Left

Upper Arm Right

eck
Upper Arm Left
Elbow Right Elb;

Figure 5.2: RGB body part segmentation of the human model.
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Table 5.1: RGB code for body part segmentation of human model.

Label RGB Label RGB Label RGB Label RGB

Foot Left | 0x000055 | Thigh Left | OxO0AA55 | Shoulder Left 0x550000 | Wrist Left | Ox55AA00
Foot Right | 0xO000AA | Thigh Right | OxO0OAAAA | Shoulder Right | 0x550055 | Wrist Right | 0x55AA55
Ankle Left | OxO000FA | Hip Left OxOOAAFA | Upper Arm Left | Ox5500AA | Hand Left | Ox55AAAA
Ankle Right | 0005500 | Hip Right | OxOOFAOO | Upper Arm Right | Ox5500FA | Hand Right | Ox55AAFA
Shin Left 0x005555 | Hip Center | OxOOFAB5 | Elbow Left 0x555500 | Neck 0x55FAQ0
Shin Right | 0x0055AA | Torso Left | OxOOFAAA | Elbow Right 0xb55555 | Head Left | Ox55AA5H
Knee Left | OxO055FA | Torso Right | OxOOFAFA | Forearm Left Oxb555AA | Head Right | Ox55AAAA
Knee Right | 0xO0AAQO Forearm Right 0xb555FA

5.1.2 Scene engine

The scene engine module is responsible for the creation of the scene to be rendered. This block is

subdivided into three different parts, namely initialization, generation, and validation. These three stages will

be explained in detail in the next sub-sections. Moreover, this engine requires user input to create the scenes

(equations 5.1, 5.2 and 5.3).

A camera model is chosen (equation 5.2), ¢, with given userdefined camera parameters, I'T, (Fig-

ure 5.3A), including camera resolution, T'X, T'Y, horizontal Field-of-View (FoV)

tation, I'*® and axial noise model, '™ = {T'e, T', T¢}.

FH FoV

FT — {FX,FY, FHFOV,Ftp,FtO,Fn — {Fa’rb’Fc}}

L = {LX, LY, LHFOV’ Lp’ LO, Ln}

. position, T'*?, orien-

(5.2)

A car model (equation 5.3), €, is also given as user input, T'C, to this block (Figure 5.3C), which is

imported to create the realistic 3D car model mesh, I'™, with 6DoF position/orientation, I'P,I'*?, to their

equivalent set or variables from the car model, .

FC — {FCP, FCO, ch}

¢ =1, ¢ "}
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A

C

Figure 5.3; C# HMI user input, T, for scene initialization: (A) camera, I'T, (B) humans, T'H, and (C) car,

re.

5.1.2.1 Initialization

The first step of the initialization stage is to create and position the humans, the camera, and the car

model in the synthetic scenario. Regarding the human models, there is an extra step. Every model comes

with an unrealistic motion profile, in which each joint is comprised of 3 axis with &= 180° of range of motion.

Considering the real anthropometric constraints of the human body [107], the motion profile is modified.

In this sense, each joint axis is restricted to its corresponding human body joint axis (Table 5.2) and RoM,

rm
Mh,ja-

Table 5.2: Axis correspondence between MakeHuman model and real human.

Joint +X +Y +Z

C7 Vertebrae | Flexion -Rotation -Lateral Flexion
L5 Vertebrae Flexion DISABLED | Lateral Flexion
Left Shoulder | Flexion Rotation Abduction
Right Shoulder | Flexion -Rotation Adduction

Left Elbow Flexion Pronation | DISABLED
Right Elbow Flexion Supination | DISABLED
Left Wrist Radial DISABLED | Extension
Right Wrist Radial DISABLED | Flexion

Left Hip Extension | DISABLED | Adduction
Right Hip Flexion DISABLED | Abduction
Left Knee Flexion DISABLED | DISABLED
Right Knee Flexion DISABLED | DISABLED
Left Ankle Flexion Eversion DISABLED
Right Ankle Flexion Inversion DISABLED

5.1.2.2 Generation

After the initialization stage, a new scene is generated, where the human models perform random move-

ments, where they can have Gaussian or incremental profiles.
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If the Gaussian profile is selected, each human has a user-customized motion profile that follows a

g

Gaussian distribution for each joint axis, I, ; . The user is able to customize the distributions’ mean value,

I",:,j,a, and standard deviation, I‘g,j,a. For every new frame generated by the toolchain, a new value is
sampled from these distributions and applied to each joint axis, ng’j’a, in each human model inside the
scene.
If in turn the incremental profile is selected, each human comes with a user customized motion profile
that follows a truth table of possible poses, considering the selected incremental angle for each joint axis,
ﬁl",ﬁa. In the hypothetical situation that the human body would have the same axis of freedom per joint, the
same axis range of motion, nz',;?,a, and the same incremental angle for all joint axis, the number of possible
poses, npy, for each human, b, is given by equation 5.4. This method allows to "brute force” the generation
of human body poses, by increasing or decreasing the incremental angle per joint axis across the entire set

of possible values.

stepp, = %, stepp € N
h (5.4)
. npy = stepid T

5.1.2.3 Validation

After the scene has been generated, it must be validated. The validation process consists in searching
for scene collisions. There are three identified collision types that need to be considered to generate realistic
datasets. These collision types are illustrated in Figure 5.4. The toolchain automatically checks for all colli-
sions after generating all poses, in order to guarantee the realism of the scene and dataset. If there are no
collisions, then the dataset is rendered, otherwise a new scene is generated.

Body to body collisions refer to inner body intersections, and are evaluated for all humans (Figure 5.4A).
This detection inspects the body 3D skeleton mesh, n,‘;", (Figure 5.4D) against the human model skin mesh,
np™. For this detection, the toolchain automatically creates a 3D skeleton for each human model, 173’°, using
the human model skeleton, nzf’j’a, dimensions (joints’ positions and segments’ lengths).

Human to human collisions refer to human intersections, and are evaluated between all humans in the
scene (Figure 5.4B). This detection inspects the human models skin mesh, np™, against each other.

Human to car collisions refer to human to car intersections, and are evaluated for all humans (Figure

5.4C). This detection inspects the human models skin mesh, ng™, against the car model mesh, ¢™.
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A B C D

Figure 5.4: Collision detection types: (A) body to body, (B) human to human, (C) human to car. (D) 3D
skeleton, 17,‘;", created from nz’,},a segments’ lengths and joints’ positions to assist in body to body collision
detection.

5.1.3 Rendering

After scene validation, the toolchain starts rendering the dataset information through Blender proprietary
rendering pipeline (Figure 5.5), and post-processing algorithms (Figure 5.6), including: (1) depth frames
(clean, noise and NST); (2) a 3D point cloud; (3) an RGB frame, which adds extra Blender post-processing
effects to the scene; and (4) a body parts’ segmentation frame. Moreover, the 2D and 3D body pose of each

human model is generated and exported to JavaScript Object Notation (JSON) format.

Figure 5.5: Blender internal rendering nodes. (Top to Bottom): RGB, Depth, Label.
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Figure 5.6: Rendered frames: (A) depth, (B) noise, (C) NST, (D) labels, (E) RGB and (F) point cloud. Depth
images (A, B, C) are represented in color for better visualization. Dots/lines represents the ground-truth (black
> 2D, white -> 3D).

5.1.3.1 Clean depth frame

To render a depth frame (Figure 5.6A), depths,, the toolchain needs to extract the z-channel of the RGB
sensor in Blender through the "RenderlLayers” node (Figure 5.5). This z-channel provides a matrix with the
same size as the RGB sensor, where each pixel information is the distance from the object projected on the

pixel in the camera XY plane.

5.1.3.2 Noise depth frame

The noise frame (Figure 5.6B), is generated using several post-processing effects.
A 2™ degree equation model (equation 5.5), used to generate a Gaussian value for each pixel of the frame,
noisedepth,,. The noise model only relates the axial noise with the depth component, and it does not

consider the angle between the surface normal and the camera’s axes [80].

0py =%+ T x depthy, + T'¢ x depth?
Y Y x,y (55)

noisedepth,., = Gaussian(o < 0,4, p < depthy.,)

Besides general noise modelling, other frame aspects were mimicked. In this sense, specific Gaussian
noise is added to abrupt depth edges (identified using an empirical threshold, th, and kernel, k,w, applied

to an edge image computed by central finite differences [equation 5.6]).
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;

0, noisedepthy, , < noisedepthyiy ytw — th

noisedepth, , = 1 0, notsedepthy , > noisedepthy iy y+o + th (5.6)

noisedepthy ,,
\

A circular crop (equation 5.7) is added to simulate the real ToF images FoV, where x¢,y.,ra represent

the circumference center &y pixel coordinate and radius.

noisedepthy ,, ((x — z.)* + (y — y.)?) < ra®
noisedepth, , = Y (5.7)

0,((z —z)* + (y — ye)?) > ra?

Finally, a dead-zone, dz, and saturation, sat, simulates the real ToF images range (equation 5.8).

noisedepth, ,, dz < noisedepth,, < sat
noisedepth, , = (5.8)

0,dz > noisedepth,, U noisedepth,, > sat

5.1.3.3 NST depth frame

The NST frame (Figure 5.6C) is generated with a NST method [106]. The toolchain generates a new
NST frame, nstdepth,,,, for each synthetic frame, by feeding the network with a real ToF image (Chapter 4)
serving as style, xg, (Figure 5.7B), and the synthetic frame, noisedepth,.,, serving as content, z¢, (Figure
5.7A). The strategy aims to better infer the noise style and add it into the generated synthetic frames (Figure

5.7C).

A B C

Figure 5.7: NST frames: (A) content, (B) style, and (C) resulting NST-based synthetic image.

5.1.3.4 Labels frame

To render a labels frame (Figure 5.6D), labelszy, x = 1,..., X,y =1,...,Y,
N N [0x000000, OxFFFFFF], the toolchain needs to extract the color-channel of the RGB sensor in Blender
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through the "RenderLayers” node (Figure 5.5). This channel gives a matrix with the size of the RGB sensor,
where each pixel information is the RGB color code from the object projected on the pixel. It is important
to use this channel, because it does not use post-processing effects when rendered, such as ray-tracing,
ambient occlusion, ambient light or shadowing, giving a raw RGB code of the projected texture, preserving

the human models’ segmented skin, P}:’ (Figure 5.2).

5.1.3.5 RGB frame

Similar to the labels frame, the RGB frame (Figure 5.6E), RGB;,, =1,.., X, y=1,...,Y,
N N [0x000000, OXFFFFFF] captures the RGB sensor rendering, but in this case it adds all the post
processing effects, in order to improve the scene realism. To capture this information, we need to use
the image-channel of the RGB sensor in Blender through the "RenderlLayers” node (Figure 5.5). Note that,
the toolchain automatically switches the human models skin texture, n,‘;"‘, with a realistic one, l";gb, before

rendering. This skin is pre-selected by the user for each human model.

5.1.3.6 Point cloud

The 3D point cloud, pey, (Figure 5.6F) has the Cartesian coordinates 2yz of the voxel that was projected
in each pixel, pexg,peys,pezy, f =1,..., X x Y. As mentioned before, Blender does not give this infor-
mation in a simple and straightforward way. The toolchain relies on the information of the NST depth frame,
nstdepth,,, the camera’s resolution ¢X and ¥, and its horizontal FoV, tL#FeV" in order to calculate each

voxel position with respect to its pixel projection (equation 5.9), as illustrated in Figure 5.8.

pixel2degree =
X
?) X pizel2degree

Y

Yy — %) X pixel2degree

pcxy = nstdepthy , X (x —
pcyy = nstdepthy, X <

pczy = nstdepthy ,

~pey = {pcxy, peyy, pezy}
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Figure 5.8: ToF 2.5D depth pixel to 3D point-cloud pixel.

5.1.3.7 Ground-Truth

The ground-truth information (black skeleton lines in Figure 5.6) consists in exporting the pose informa-
tion for each human model, with respect to the camera, much like in the real dataset generation toolchain
(Chapter 4). With that in mind, we have 2 types of ground-truth (Figure 5.9): 2D pose for depth (Pmy?)h,
labels and RGB frames; and 3D pose for the point cloud frame (Pmyz_‘f)h, where h represents the hu-
man index for the body pose. Both types of ground-truth consist in the same pose information for each
human model, that is a structure comprised of all joints’ pixel (2D) or voxel (3D) positions. This structure
is directly related to the MakeHuman human model skeleton (Table 5.3). When generating both 2D and
3D ground-truth, the toolchain automatically does the necessary transformations from the global coordinate
system to the camera’s local coordinate system. This transformation is done for each joint in Table 5.3, and

its ground-truth projection can be seen for each human in each frame, as illustrated in Figure 5.6.

Figure 5.9: Ground-truth perspective wrt. ToF image sensor: (A) 2D Ishoulder global coordinates to camera
2D pixel coordinates, and (B) 3D Ishoulder global coordinates to camera local coordinates.
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Table 5.3: Body pose joint label correspondence between ground-truth (Table 4.1) and MakeHuman human
model.

Ground-Truth | MakeHuman | Ground-Truth | MakeHuman
head Head rhand RightFingerBase
neck Neck hip Hips

chest Spinel Ipelvis LeftUpLeg
Ishoulder LeftArm rpelvis RightUpLeg
rshoulder RightArm lknee LeftLeg

lelbow LeftForeArm rknee RightLeg
relbow RightForeArm lankle LeftFoot

Iwrist LeftHand [foot LeftToeBase
rwrist RightHand rankle RightFoot
lhand LeftFingerBase | rfoot RightToeBase

5.2 Implementation Details

Considering the presented methodology, several implementation considerations were made. Although
the toolchain generates data for the mentioned sensors, it does not try to achieve full realism for them, only
adding axial, edge, circular crop, range and stylized noise. The focus is placed in guaranteeing that the data
output is of the same format, putting the biggest effort in the automation of the data generation procedure,
as well as in the validation of all generated data. The toolchain is an interaction between the Graphical User
Interface (GUI) and the toolchain’s internal engines, generating data using three separate engines.

Blender was the selected main engine for the toolchain, given the easy access to 3D customizable
environments, camera customization and rendering, customizable human models interaction, and most
importantly a good interface with Python. This interface also gives an easy access to all Blender embedded
functions, so that all manual user interactions with Blender can be made programmatically. The Central
Processing Unit (CPU) resource’s allocation for each toolchain instance is managed by Blender in the following
manner: one CPU core for the Python engine and the remaining ones for specific Blender rendering functions.

In order to create human models automatically, the MakeHuman engine was selected and embedded into
the toolchain. With its easy Python interface, the toolchain is able to programmatically access its functions
and generate random human models.

The last but not least was the the Python engine, used for the purpose of toolchain automation. Due to

its complex implementation in-depth discussion is presented in Section 5.2.1.
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5.2.1 Python Engine

The second most important engine is the Python engine. This engine is responsible for all the toolchain
automation. At first, it calls and waits for the GUI to finish loading up all the user settings. After this initial
process, it starts constantly interacting with Blender, while generating datasets. With it, it is possible to control
the entire pipeline, from user-specific customization, to scene initialization, generation, validation, and finally

the output rendering.

5.2.1.1 Toolchain automation

In Algorithm 5.2.1, it is possible to understand the entire cycle of automation. The inputs from the

algorithm are the outputs from the GUI, considering the camera, humans and car customization.

Algorithm 5.2.1 Python Engine

1: inputs:

# Get user input
FT
FC
H
Iy
FNF

6: initialize:
# Create camera model
7o ve1T
# Create car model
8: ¢+« r°
# Define initial pose for each human
% Wy T
# Create 3d skeleton for each human

10: nik “— nedeskeleton(nZ{)j’a)
110 white ' < TNF do

12: Alg. 5.2.2(7;5’:3‘&, vy o)

130 ppm el

14: BlenderUpdateScene()

15: collision <—Alg. 5.2.4(nim, nflk)

16: if collision = false then

17: collision «Alg.5.2.5(n5™)

18: if collision = false then

19: collision «Alg. 5.2.6(n;™, ¢™)

20: if collision = false then

21: ot 1

22: depth., (Figure 5.5)

23: labelsy , (Figure 5.5)

24: noisedepthy,, «Alg.5.2.7(depth )
25: nstdepthy  <Alg.5.2.8(noisedepthy y,labelsy y)
26: pey +—Alg. 5.2.9(depthy y, 0)

27 ny™ - Ty90

28: BlenderUpdateScene()

29: RG By, (Figure 5.5)

30: for each h in H do

31: (P2y§)), «Ng. 5-2-10(ni‘f’j,a 0
32: (Pzyz§)) <N 5.2.11(7;;1’7’7.1“, 0
33: end for

34: end if

35: end if

36:  endif

37: end while
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The initialization procedure focuses in loading the GUI settings into Blender environment/variables, in
order to create the 3D scenario that was intended for data generation. An extra step is added to this procedure,
and it consists in the creation of the 3D skeleton for each human, assisting in the body to body collision
detection (Figure 5.4A). After these two procedures, the automated cycle starts, until all valid frames, ¢,
have been rendered. For each rendered frame, the toolchain generates a new pose for each human model,
checks the 3 types of collisions for each human, and if there are no collisions, then it starts rendering the
data frames and ground-truth, while making the proper skin mesh changes for specific image frames. Much
like the real dataset, RDy , in equation 4.13, the synthetic dataset follows the same dataset standard, with
the added frames and per human ground-truth information. Each exported dataset, S Dy, is comprised by

the group of dataset information (equation 5.10).

. SDy = {depthy 4, labelsy 4, noisedepthy ., nstdepthy ., RGBy .,

pcy = {pCfﬂt/,fa pcyw ¢, pczt/,f}a (5.10)

(ny?)tljh, (nyzf)t/7h}

5.2.1.2 Body pose generation

The algorithm for Gaussian body pose generation (Algorithm 5.2.2) uses the information that each human
model has with respect to its joints’ freedom of movement, and the correspondent axis Gaussian/incremental
distribution, in order to generate new angular values for each axis joint. For each human, it cycles through its
joints” and axes, generating random Gaussian/incremental angles. We can consider this algorithm complexity
for the worst case as O(H x Jf x Af), where H, J f and Af are the number of human models, joints’

in the human model, and degrees of freedom in the joint.

Algorithm 5.2.2 Gaussian Body Pose Generation

1: inputs:
bp
Mhj,a
2. 19
2,5, a
for each h in H do
for each 5 in J f do
foreachain Af do

n

-
h,j,a? TF 4.a)

end for
end for

3
4
5
6: "?L,j,a < Gaussian(pu < I’
7
8
9:

end for
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5.2.1.3 Collision detection

As mentioned before, there are 3 types of collision detection built into the toolchain, that guarantee the
quality of the generated dataset. All detections are based on the principle of "overlapping meshes” (Algorithm
5.2.3, and others therein).

If we look into Algorithm 5.2.1, we can see that the collision detection algorithm is called sequentially
for the body-body, human-human and human-car detections, being its performance for the worst case given
by equation 5.11. Note that the implementation allows for improved performance, as collisions are only

evaluated when the previous ones are validated, thus avoiding unnecessary evaluation bottlenecks.

Algorithm 5.2.3 Collision Detection

1: inputs:
Meshy
2. Meshs
3. buhtreel « FromBMesh(Meshy)
4 bohtree2 FromBMesh(Meshy)

5. intersected bvhtreel.overlap(bvhtree2)

Algorithm 5.2.4 Body To Body Collisions

1: inputs:
"

20 gk
3: foreach hin H do
4: i Alg.5.2.3(n3™, nik) then

return true

5 endif
6: endfor
7. return false

Algorithm 5.2.5 Human To Human Collisions

1: inputs:
"™
foreach hin H — 1do
foru < h + 1to H do
if Alg.5.2.3(n;"™, ny™) then

Bwmn

return true
end if
end for

end for

return false

Algorithm 5.2.6 Human To Car Collisions

1: inputs:
nim

2: ¢m
3. foreach hin H do
4 if Alg. 5.2.3(n5™, ¢"™) then

return true

5. endif
6: endfor
7: return false
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body <— body = O(H)
H? + H)

human <— human = O( 5

(5.11)

human <— car =

H)

O(
. collision = O(H?), H — +00

5.2.1.4 Noise Model

In order to use a realistic noise model, we performed a noise regression to a specific ToF camera (Pico
Monstar 105). The method consisted in placing the camera in front of a white wall, at D different distances,
and recording F'r frames for each distance (5 and 100 respectively in our experiments). The standard
deviation of the error is then calculated for each distance a4, d = 1, ..., D (equation 5.12), finally estimating
a regression for the model ™. For the specific case of the ToF camera used, = 1, =5 and I'*=1

as illustrated in Figure 5.10.

Fr

Z depthg gy f
_ =
Mdzy = Fr
Fr
(depthd,a:,y,f - ,ud,:v,y)z (512)
f=1
Oy = Fr—1
X v
2D Ty
P z=1 y=1
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80 10
— 073 —B— noise
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Figure 5.10: Pico Monstar 105 gaussian noise: (A) gaussian noise 4.4, for each distance value in plot (B);
(B) gaussian noise regression, noise = ' =T% 4+ T%. z 4+ T'¢. 22,
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Algorithm 5.2.7 shows the complete noise model added to the noisedepth,,, frame. Circular crop
(equation 5.7) and edge Gaussian noise were empirically set, contrary to noise regression (equation 5.12)
, dead zone and saturation that were set with Pico Monstar 105 Use Case 3 in Table 2.3, representing the

same settings from the real dataset generation toolchain (Chapter 4).

Algorithm 5.2.7 Noise Frame

1: inputs:
depthy 4

noisedepthy < Eq.5.5(depthy ,, ™)
noisedepthg, y < Eq. 5.6(noisedepthy y)
noisedepthy, y < Eq.5.T(noisedepthy,y)

noisedepthy y < Eq.5.8(noisedepthy y, {dz, sat} < UseCase3inTable 2.3)

5.2.1.5 NST Model

To to improve the noise model, a noise stylizing [106] is added on top of the noise model. Spatial control
is customized (Figure 5.11), where guidance channels, T}, are created for each of the VGG19 Convolutional
Neural Network (CNN) layers, I, each being a binary mask image map of values in [0,1]. Three spatial
regions, r, were created (equation 5.13 shows the procedure for content frames, ¢ [Figure 5.7A]) for

windows, TP, car, TP, and human, T}

§
1,labels, , N Table 5.1
SIY =
0,
(
(
1, labels,,, = 0xETETET (5.13)
.. 7"[0 —
0,
(

ST =1 (P T)
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]
‘/\

X5

Figure 5.11: NST spatial control guidance channels frames for input frame: (A to D) Real depth frame, g,
and its 70, T and T2 guidance channels, and (E to H) Synthetic depth frame, z¢, and its T, T and T2
guidance channels.

Through empirical selection, VGG19 layers "conv2_1" and "conv3_1" were used, clayers, for im-
age content, £, and layers "conv2_2", "conv3_4", and "conv4_4" has style layers, slayers, as well as
VGG19 pre-trained weights, weights. This information is used for the nstdepth,, creation as shown in

Algorithm 5.2.8.

Algorithm 5.2.8 NST Frame

1: inputs:

noisedepthy y
2: labelsy 4
3: initialize:
weights <+ VGG19
4: clayers « {conv2_1, conv3_1}
5: slayers < {conv2_2, conv3_4, conv4_4}
6: {12, TP, TP} «Eq.5.13(labelsy, )

7: nstdepthg,y < NST(xc < noisedepthy y,xg < depth,s Eq. 4.13) [106]

s Y

5.2.1.6 Point cloud

Point cloud generation is a simple algorithm (Algorithm 5.2.9) that makes use of equation 5.9, both for
initialization, as well as to calculate the entire voxel projection of each pixel in the nstdepth,, frame. We
can consider its performance for the worst case as O(X x Y), z=1,.., X,y =1,...,Y, where X is

the camera’s horizontal resolution and Y its vertical resolution.
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Algorithm 5.2.9 Point cloud

1: inputs:

nstdepthy y
2.
3. initialize:

pizel2degreein Eq.5.9(LHF°V s LX)

L f«0
X d

. foreachzine o

for each y in Y do

f<f+1

4
5
6
7 pcy inEq.5.9(nstdepthy, y, pixel2degree, f)
8
9 end for

0

—

. end for

5.2.1.7 Ground-truth

Two algorithms were implemented (algorithms 5.2.10 and 5.2.11) for easy transformation from each joint

global coordinates and axes to the cameras local coordinates and axes.

Algorithm 5.2.10 2D Ground-Truth

1: inputs:

”Z,Z,jj,a,
-
3I for each 5 in J f do
4. jointtranslation < nzzl)j,a.zyz.toit'ranslation()
5: projected < bpy_ea;tru;s.object_ut'ils.wo'r'ld_to_ca'me'r'a_view(
bpy.context.scene,
LYz,
jointtranslation)
s < bpy.context.scene.render.resolution_percentage/100

x < projected.x X bpy.context.scene.render.resolution_x X s

(Pzy§)p = {=z,y}

8: Yy < projected.y X bpy.context.scene.render.resolution_y X s
0: endfor

Algorithm 5.2.11 3D Ground-Truth

1: inputs:

bp
Mh,j,a
-
for each 7 in J f do
jointtranslation <+ 7];1’_)]. o TY2.to_translation()
projected < (jointtranslation — v.xyz) X t.matriz_world

x — projected.x

z < projected.z
(Peyz§)p = {w.v. 2}

. end for

3:
4
5
6:
7: y < projected.y
8:
9
0

—
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5.3 Evaluation results

5.3.1 Performance

Given that Blender interacts with Python in a very specific way, the toolchain is limited when trying to use
CPU multitasking inside the Python engine. Each time a toolchain instance is called, threads are allocated to
the Blender engine for embedded functions and rendering, leaving no room or access to Python multitasking
functions. Also, Graphics Processing Unit (GPU) usage is currently of limited access, with the toolchain being
executed without 3D visible environment as it is constrained for specific Blender rendering functions. With all
these considerations, we performed one type of performance evaluation to better understand how to improve
the synthetic data generation throughput, considering the performance of each algorithm. The evaluation
consists in changing the number of human models and the number of toolchain parallel instances. All the
evaluations were performed on a computer with a CPU: i7-7700HQ @3.56GHz, Random-Access Memory
(RAM): 16GB DDR4 @1.2GHz, GPU: GTX1070 @1.443GHz, 8GBytes GGDR5 @2GHz, Storage: Solid-State
Drive (SSD) NVMe @1.693GB/s (Read) @0.869GB/s (Write), OS: Windows 10 Education x64.

5.3.1.1 CPU load

From the results, it was possible to understand that CPU usage is highly dependent on the number of
parallel instances being executed, and not on the number of human models being used (Figure 5.12A). This
corroborates the idea that Blender limits the Python engine with single thread access, something that was
visible when trying to multi-task with specific Python instructions. With the execution of parallel instances,

the operative system can give more thread access to the entire toolchain synthetic data generation.

5.3.1.2 Processing time

Processing time can be divided in two main sequences in Algorithm 5.2.1, collisions (body-body, human-
human and human-car) and rendering. Collision detection performance is highly dependent on the number of
human models (equation 5.11), while rendering is mostly affected by frame resolution O(X x Y’), number
of human models O(H), write latency caused by disk concurrent access and CPU usage when each instance
uses Blender internal render, creating a 100% CPU load spike. In Figure 5.12B, we notice that with the increase
in instances, rendering time increased the most, mostly due to disk concurrent access and the reduced CPU
resources. Collision detection was the least affected, being affected only on the CPU side. When comparing

the increase in human models for each number of instances, it is possible to see that the rendering time
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suffers the least increase, being related with the increase in gound-truth files being generated (one for each
human model). In the case of collision detection, the processing time increases significantly, being related

to the quadratic behaviour in equation 5.11.

g ‘ o \ \ \ T T
£ 300 > /
© E 1— -
S 200 w |
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S 7 PSS
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swol” !

1 2 3 4 5 1 2 3 4 5

Number of toolchain instances % Number of toolchain instances %
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Figure 5.12: Toolchain performance when increasing the number of instances %, for different num-
ber of humans h: (A) total gain gainai; (B) single instance processing time, where dashed —
Collision, solid — Rendering.

5.3.1.3 Toolchain performance

In terms of total toolchain performance, the results show that increasing the number of human models
does reduce the performance for single and multi-instances, and this understanding comes from the previous
analysis on specific algorithms’ performance. However, total toolchain performance achieves higher gains
when increasing the number of parallel instances, starting to saturate when reaching full CPU load, as
illustrated in Figure 5.12A. In terms of absolute performance, the best scenario was achieved when running

5 instances with 1 human model, generating synthetic data at 4.1Hz.

5.3.2 Application to Pose Estimation Problems

To understand the validity of the data being generated with our toolchain, as well as its ability to in-
crease ML algorithmic accuracy, we defined four distinct experimental scenarios: 2D pose estimation from
depth images; 2D pose estimation from point cloud; 3D pose estimation from 2D pose; human body parts

segmentation from depth images.

5.3.2.1 Evaluation Data

To provide the experimental scenarios with valid datasets that allow us to evaluate the advantage of
combining synthetic and real data, we require both real and synthetic samples. In this sense, we used

a publically available dataset MolLa R10k InCar Dataset [108] (generated with the toolchain presented in



124 5. Synthetic Dataset Toolchain

Chapter 4, plus the synthetic dataset generated by the proposed toolchain). The real dataset consists in
three recorded subjects, Sy.3, two redundant actions, Aj.a, each, totaling 10482 samples. In its turn, the
synthetic dataset comprises data generated using seven car models, C' M.z, and eighteen subjects, Z.1s,
with associated Gaussian poses, Npgp, totalling 25200 samples. Both datasets are identical in terms of
sample data types for depth frame (i.e. NST depth frame for the synthetic dataset), point cloud, 2D and
3D body pose, giving us the opportunity to evaluate the three first experimental scenarios in a quantitative
way. Lack of real in-car body parts’ segmentation frames in publically available datasets led us to define
a qualitative evaluation for the fourth experiment. The available samples were divided into 3 groups: (1) a
training set, with all synthetic samples plus 6946 real samples (corresponding to subjects Sy and Sa); (2)
a validation set with 900 real samples; and (3) a test set with 2636 real samples. Groups (2) and (3) use
samples from subject S5 performing distinct actions. To assess the influence of the ratio between real and
synthetic images and the influence of the number of real images available, we trained each network with
different amounts of samples, establishing ten sub-evaluations (Ry.19) for each of the first three experiments

(Table 5.4).

Table 5.4: Evaluations related with real and synthetic data quantities/ratios. Each R# represents a sub-
evaluation for the assessment of the influence of mixing real and synthetic datasets.

Evaluation | Real | Synthetic | Total | Ratio
R1 900 |0 900 1:0
R2 900 | 2700 3600 | 1:3
R3 900 | 4500 5400 | 1:5
R4 900 | 9000 9900 | 1:10
R5 1800 | 0 1800 | 2:0
R6 1800 | 5400 7200 | 2:6
R7 1800 | 9000 10800 | 2:10
R8 1800 | 18000 19800 | 2:20
R9 6946 | O 6946 | 7.7:0
R10 6946 | 25200 25200 | 7.7:28

To account for the stochastic nature of the training, each sub-evaluation was repeated 3 times, using

a different set of samples, with the metrics being averaged over the 3 trained models. For Rg.19, due to
lack of new samples for the different folds, the training was repeated thrice upon shuffling the samples.
The proposed synthetic dataset, plus the necessary tools, to reproduce all experiments were made publically

available [109] (Figure 5.13).



5.3. Evaluation results 125

D E F

Figure 5.13: Synthetic frames: (A) Car A with male, (B) Car B with female, (C) Car C with female, (D) Car D
with male, (E) Car E with female and (F) Car F with male. Depth images (A to F) are represented in color for
better visualization.

5.3.2.2 2D Pose Estimation from Depth Images (SE1)

To evaluate the synthetically generated depth frames and corresponding 2D ground-truth, the Part Affinity
Fields (PAF) [25] method was used. From it, a custom CNN was implemented consisting only on the first
stage of the original PAF CNN. In each sub-evaluation, R#, the method used the depth frame as input features
(raw depth for real dataset, NST depth for synthetic dataset) and the 2D body pose as output labels (Figure
5.14). For all samples, the depth frame was normalized into a grayscale frame ([0; 1.8] m = [0; 255]),
while each 2D joint position was converted into a 2D heatmap. For metric evaluation, the joint position is
estimated through non-maximum suppression applied to the inferred heatmap. In this experiment, the PCKh
measure (in pixels, using a matching threshold given by 50% of the head segment length) and the Area Under
Curve (AUC) were used as metrics [103]. Table 5.5 summarizes the average results for the full body, with
the results for individual joints being presented in Table 5.6. Figures 5.15A and 5.16 present the PCKh@0.5

values for the full body and body parts for each sub-evaluation respectively.

5.3.2.3 2D Pose Estimation from Point cloud (SE2)

To evaluate the synthetically generated point cloud and corresponding 2D ground-truth, the PAF [25]
method was used. In this experiment, the point cloud was used as input features (raw point cloud for real
samples and NST-based point cloud for synthetic samples). To this end, each point cloud was normalized
(pex and pey with [—1.5; 1.5] m = [0; 255], and pez with [0; 1.8] m = [0;255]) and converted into

a 3-channel matrix. As for SE1, the network’s output was the 2D heatmaps generated from each joint’s
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position, with the inferred joint position being computed by non-maximum suppression. The same metrics

from SE1 were employed. Results are shown in Tables 5.5, 5.6, and Figures 5.15B and 5.16.

5.3.2.4 3D Pose Estimation from 2D Pose (SE3)

To evaluate the synthetically generated 3D ground-truth, a 3D pose estimation method [104] was used.
The method uses a 2D body pose as input features (provided as joint pixel coordinates) and the 3D body
pose as output (Figure 5.14). Once again, similar metrics were employed, but in this case PCKh matching
threshold was normalized to a fixed head size of 200 mm. Results are shown in Tables 5.5, 5.6, and Figures

5.15C and 5.16.

5.3.2.5 Human Body Segmentation from Depth Images (SE4)

To evaluate the synthetically generated point cloud and corresponding segmentation frames, the Con-
volutional Networks for Biomedical Image Segmentation (U-Net) [110] method was used (Figure 5.17). The
method was implemented in two stages, where the first stage, St;, infers the human silhuete from the back-
ground, to mask the input image features that are then used on the second stage, Sts, to infer the human
body parts. The method uses the NST point cloud as input features and the labels frame as output labels
(Figure 5.14). For all samples, the point cloud was normalized and converted into a 3-channel matrix, while
each labels frame was converted into a one-hot representation with 8 body parts (each body part's RGB code
was converted into an intensity value [O;N-1], where N represents the body part index). Evaluation is done
qualitatively and results are shown in Figure 5.18 (upon inferring the class [label] with maximum probability

is computed per pixel, generating the final predicted labels frame).
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SE4

Figure 5.14: Visual representation of input features and output used for each experimental scenario S E'#:
(SE1) 2D pose estimation from depth images using normalized depth frame as input and 2D body pose as
output; (SE2) 2D pose estimation from point cloud using normalized point cloud as input and 2D body pose
as output; (SE3) 3D pose estimation from 2D pose using 2D body pose as input and 3D body pose as output;
and (SE4) human body parts segmentation from point cloud images using normalized point cloud as input
and segmentation frame as output.

Table 5.5: PCKh measure and AUC values averaged over all 14 joints, for the 3 experimental scenarios and
all 10 sub-evaluations. Each R# represents a sub-evaluation for the assessment of the influence of mixing
real and synthetic datasets. Each SE# represents different pose estimation scenarios.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

PCKh! | 13.47 | 86.6 | 74.04 | 64.79 | 74.77 | 83.82 | 85.17 | 60.18 | 88.62 | 87.66

°H AUC 442 | 4146 | 3515 | 33.57 | 36.80 | 38.45 | 42.37 | 29.05 | 50.25 | 41.30
PCKh! | 39.57 | 89.58 | 87.99 | 90.67 | 89.97 | 91.00 | 90.89 | 89.79 | 90.32 | 91.97

o AUC 19.62 | 62.36 | 66.55 | 69.05 | 54.98 | 67.86 | 64.71 | 63.57 | 54.52 | 63.61
PCKh? | 79.93 | 90.89 | 91.76 | 92.95 | 79.09 | 91.74 | 92.72 | 93.64 | 92.74 | 95.55

> AUC 25.58 | 35.37 | 33.06 | 37.53 | 22.34 | 31.49 | 32.26 | 38.64 | 29.78 | 39.72

L SE1 and SE2 does matching threshold to 26 piaels. 2 SE3 does matching threshold to 200 mm.
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Table 5.6: Evaluation results (PCKh@0.5) per joint group in the first three experimental scenarios. Each R#
represents a sub-evaluation for the assessment of the influence of mixing real and synthetic datasets. Each
S E# represents different pose estimation scenarios.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Head! 12.81 | 88.76 | 96.77 | 99.63 | 57.55 | 97.72 | 99.04 | 99.71 | 93.30 | 99.73
Shoulder? | 26.41 | 92.85 | 96.82 | 99.07 | 85.19 | 97.86 | 99.29 | 99.32 | 96.54 | 99.74
SE1¢ | Elbow? 12.36 | 92.09 | 90.29 | 56.98 | 82.66 | 86.20 | 82.33 | 50.11 | 92.57 | 82.44
Wristt 042 |338 |494 |8.60 283 | 522 | 766 |9.61 |504 |10.52
Hip® 557 199.79 | 45.81 | 29.21 | 91.95 | 82.37 | 86.86 | 16.36 | 99.88 | 94.00
Head! 36.82 | 99.58 | 99.37 | 99.50 | 99.68 | 99.63 | 99.53 | 99.90 | 9713 | 99.88
Shoulder? | 51.15 | 98.50 | 99.37 | 99.57 | 99.00 | 99.41 | 99.42 | 99.87 | 97.97 | 99.82
SE2¢ | Elbow? 4891 | 89.05 | 79.94 | 92.98 | 91.39 | 94.63 | 93.96 | 87.38 | 94.83 | 97.00
Wrist? 199 | 299 |435 |419 3.03 | 458 |533 |648 |712 |892
Hip® 34.71 1 99.99 | 99.18 | 99.99 | 99.97 | 99.97 | 99.96 | 99.14 | 99.97 | 100.00
Head! 89.34 | 9895 | 99.11 | 99.35 | 83.25 | 98.89 | 99.17 | 99.58 | 98.94 | 99.95
Shoulder? | 86.77 | 98.72 | 98.95 | 99.12 | 84.98 | 98.18 | 98.65 | 99.22 | 98.98 | 99.72
SE37 | Elbow? 7153 | 7711 | 79.59 | 85.00 | 76.66 | 82.50 | 83.86 | 87.15 | 87.09 | 92.70
Wrist* 66.91 | 71.68 | 73.69 | 74.70 | 70.20 | 74.45 | 76.10 | 76.63 | 72.86 | 81.43
Hip® 81.10 | 99.67 | 99.83 | 100.00 | 78.00 | 98.24 | 99.49 | 99.76 | 99.36 | 99.76

1 Head uses head and neck joints. 2 Shoulder uses rshoulder, Ishoulder and chest joints. 3 Elbow uses relbow and lelbow joints. 4 Wrist uses rwrist and lwrist joints.

5 Hip uses rhip, Ihip and pelvis joints. © SE1 and SE2 does matching threshold to 26 pizels. 7 SE3 does matching threshold to 200 mm.
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Figure 5.15: PCKh total for all sub-evaluations, R#, and the three first experimental scenarios, SE#: (A)
2D pose estimation from depth images (SE1); (B) 2D pose estimation from point cloud (SE2); and (C) 3D
pose estimation from 2D pose (SE3). Color gradient represents synthetic data increase with constant real
data. Continuous, dashed and dotted lines represent increasing amounts of real samples (for the same
real-synthetic ratio).
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Figure 5.16: PCKh for all sub-evaluations, I2#, and the three first experimental scenarios, SE#: (1%t column)
2D pose estimation from depth images (SE1): (2™ column) 2D pose estimation from point cloud (SE2):
(37 column) 3D pose estimation from 2D pose (SE3); (1% row) Head: (2™ row) Shoulder; (3" row) Elbow:
(4" row) Wrist; and (5*" row) Hip. Color gradient represents synthetic data increase with constant real
data. Continuous, dashed and dotted lines represent increasing amounts of real samples (for the same
real-synthetic ratio).
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input ﬁ—ﬂ St, W St, ‘—»/output

A

Figure 5.17: Inference pipeline for the experimental scenario SE4. Normalized point-cloud is used as input for
the first U-Net stage, St;, and then masked with its output. The second U-Net stage, Sta, uses the masked
input and inferes the body parts’ labels.

Figure 5.18: SE4 visual representation: first row represents the point cloud input features (represented in
depth frame to improve understanding):; middle row represents infered body parts’ segmentation; and bottom
row represents the label frame. The first two columns represent synthetic samples from the MoLa S25k InCar
Dataset (not used in training), while the last three columns represent real samples from the MolLa R10k InCar
Dataset (no label frames available).

5.4 Discussion

In this chapter, a toolchain capable of generating realistic synthetic human body pose and image data for
the in-car scenario was presented. The toolchain is able to achieve a high throughput for data generation. A
synthetic dataset generated by the toolchain is also made publicly available. It was proved that it is possible
to automate the generation of valid synthetic data for body pose detection algorithms, focused on in-car
environment. The toolchain follows a different approach than others that are focused in real [49, 51] and
hybrid data [70, 74], by simplifying the procedure of generating large amounts of valid data with limited
human, time and hardware resources. Although there is another purely synthetic toolchain [73], to the
author’s best knowledge, this is the first toolchain focused specifically in the in-car scenario.

In terms of data validation, Figures 5.15, 5.16 and Table 5.5 demonstrate the interest in including
synthetic data in ML training, showing PCKh improvements in almost all experiments when adding syn-

thetic data. Some experiments showed that higher ratios would induce overfitting to synthetic data (e.g.
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SE1:R2 > R3 > R4, SE1:R7 > R8). However, this behaviour was not visible across all experiments,
e.g. in SE?2 addition of synthetic samples seem to always improve accuracy, which may be related with the
link between increased complexity of the input (3-channel matrix compared to the 1-channel depth image)
and the need for larger number of training samples. Interestingly, besides demonstrating the interest of
synthetic samples for increased algorithmic accuracy, the present results also seem to suggest that the use
of a 3D point cloud as input may lead to a better pose inference when compared to networks using depth
images (see for example the higher AUC values for SE2 compared with SE1, meaning more detections
for a lower normalized distance). A similar improvement in inference performance when adding synthetic
samples was also observed in SE3. In the end, for the in-car 2D body pose estimation problem, we achieved
higher PCKh@0.5 total score in SE2:R10 (i.e. full dataset training) of 91.97% and corresponding AUC of
63.61%. For the in-car 3D body pose estimation problem, considering both metrics (PCKh@0.5 total and
AUC), we achieved higher score in SE3:R10 with 95.55% and AUC of 39.72%, with an increase of 3%
and 10% in PCKh@0.5 and AUC, respectively, when compared to SE3:R9 (i.e. real data only), meaning a
better 3D joint inference across all thresholds. Finally, Table 5.6 summarizes the results for individual joints,
being possible to conclude that joints frequently present at the image’s limits (wrists and hips) are the most
problematic. This may be related with the lower number of training samples with these joints visible (as
they are more frequently outside of the camera’s FoV or in the camera’s deadzone). Overall, these results
prove the validity of the data being generated and its interest for human body pose detection algorithmic
development.

In terms of body parts’ segmentation, SE4 experimental scenario showed that pure synthetic training
is still capable of achieving good results in real data, however requiring increased method complexity to
cope with lack of noise realism in synthetic data. Indeed, inferred results for unseen synthetic samples are
quite similar to the known label frame (first two columns of Figure 5.18), as a result of similar noise and
background features, while results for real samples present in some cases sub-optimal performance due
to distinct noise/background image features (look to the inference error in hands and head for the last 3
columns in Figure 5.18). Notwithstanding, from the results obtained for SE1 to SE3 (mix of real with
synthetic samples), it is expectable a noticeable improvement if a few real samples are included during

training (which was not available in the present experiments due to lack of ground-truth labels).
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5.5 Conclusions and future work

In this work, a novel toolchain for the generation of realistic synthetic images for human body pose
detection in an in-car environment is presented. A synthetic dataset generated by the toolchain is also made
publicly available. The toolchain demonstrated to be computationally efficient (up to 4 generated frames per
second), while demonstrating its potential for increased algorithmic accuracy during body pose estimation in
an in-car scenario.

In terms of dataset generation performance, several considerations can be made for improvements in
future work. Specific Python functions (Algorithm 5.2.9, equation 5.5) can be rewritten to take advantage
of specific hardware resources or better performing programming languages. In terms of automation, extra
customizations can be added into the toolchain, namely human body and camera Gaussian translation and
rotation. This would allow for faster data customization with reduced manual interaction. Another important
aspect is scene realism, as discriminative algorithms seem to improve their accuracy proportionally to the
training data realism. In this regard, future work may focus on improving the ToF noise characterization or the
used NST methods, as well as the RGB image rendering. The ability to synthetically recreate human behaviour
would be another important feature, enlarging the applicability of our dataset towards other monitoring tasks
(like action recognition). Hereto, fusion of real human motion capture data with synthetic scenarios could be
employed. However, issues such as collision detection between animated models and synthetic car models
would have to be handled. Besides the currently supported pose and segmentation maps, another relevant

output to be added would be the gaze for each human model.



Chapter 6

Algorithm Development

As it was shown in Chapter 1, this chapter is sequential to chapters 4 and 5 in terms of development.
However, its initial tasks are also done in parallel to others. Preliminary versions of the work presented in this
chapter were presented in paper [82].

In the first section of this chapter, the selection and evaluation of multiple state-ofthe-art human body
pose detection methods is shown. In short, four methods were selected (two machine learning and two deep
learning based) and evaluated. Evaluation was performed using a publicly available dataset.

In the second section of this chapter, the best algorithm from Section 6.1 is customized and evaluated
with a manually labeled dataset. For customization, several changes were made: (1) removal of refine-
ment stages for computational optimization; (2) addition of third branch for label detection; (3) training 3D
data augmentation sub-algorithm; and (4) training hiper-parameters tuning. The modified algorithm is then

evaluated, followed by a discussion of its results and main conclusions taken.
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6.1 Algorithm Selection

To develop the human body pose detection method, a strategy was defined. First, it was considered
that the body pose detection algorithm must have a discriminative basis owing to its advantages over the
generative approaches. Secondly, it was decided not to focus only in one methodology, avoiding narrowing
the scope of the investigation. In this sense, the two types of discriminative approaches, namely traditional
machine learning and deep learning, are being studied. Third, they were selected considering their computa-
tional performance, accuracy and feature/label resemblance to our scenario. The research strategy can be

summarized by the following blocks:
¢ Evaluate algorithms with traditional machine learning:

— Evaluate the Deformable Part Models (DPM) [21];

— Evaluate the Random Tree Walks (RTW) [23];
¢ FEvaluate algorithms based on deep learning:

— Evaluate the You Only Look Once (YOLO) [24];

— Evaluate the Part Affinity Fields (PAF) [25].

6.1.1 Selected Methods

As already mentioned, the strategy to develop the body pose detection algorithm, involves implementing
both traditional machine learning and deep learning methods to evaluate the best approach for the present
thesis. Within the traditional machine learning, the DPM [21] and RTW [23] methods were implemented.
Regardind Deep Learning (DL), the YOLO [24] and PAF [25] methods were implemented. In this section, the

fundamental concepts of these methods are presented.

6.1.1.1 Deformable Part Models (DPM)

The DPM method is an object detection system that uses local appearances and spatial relations to
recognize generic objects in an image. Generically, this method consists in the definition of a model that
represents the object, being this model constructed through the definition of a root filter (for the entire object)
and through a set of part filters (for the different parts of the object). These filters are used to study the

features of the image. In specific, the Histogram of Oriented Gradients (HoG) features are computed inside
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each filter to represent an object category. The HoG descriptor computes the gradients of a region of the
image, assuming that the object within the image can be described by its intensity transitions. In the DPM
method, a sliding window approach is used, being the filter applied at all positions of the image. In order
to create the final model, a discriminative approach is used, where the model is learned from labelled data
using only bounding boxes around the object and its parts to represent the filters. This discriminative part of
the method is performed normally using Support Vector Machine (SVM). After this training phase, the model
is used to detect the object in the test image. The detection is performed by convolving the trained model
with the feature map of the test image and by selecting the image with the highest convolution score, as
seen in Figure 6.1. Note that, despite the discriminative basis of the DPM method, this test phase can be
interpreted as fitting the model in the image, which involves generative concepts. In this sense, it is possible

to consider the DPM method as a hybrid methodology.

Root filter response

Combined score

Figure 6.1: Felzenszwalb et al. matching process in the testing phase. Image adapted from [21].

To deal with the variety of the object (e.g. the different poses in a human), a mixture of models was
proposed. In this approach, instead of using only one model to represent the object, a set of models are
constructed by applying different combinations between the deformable parts filters. This concept was used
in [111] for human body pose detection. In this method, the DPM concepts were used to represent the
human body. Moreover, it also uses a pictorial structure framework to represent the model, allowing to
represent the human body by a collection of parts arranged in a deformable configuration. In this pictorial
structure framework, the correct relationships between the different human body parts are established by

applying geometrical constraints that model the human body.
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The DPM method has been used mostly for RGB images (Figure 6.2).

Figure 6.2: Felzenszwalb et al. pose detection results in RGB images using DPM method. Image adapted
from [21].

6.1.1.2 Random Tree Walks (RTW)

The RTW implementation estimates 3D joint positions from depth images. This work is an extension of a
previous one, proposed in [22]. The method proposed by Shotton et al. is based in an efficient Decision Tree
(DT) algorithm for pixel-wise classification/regression. Using simple discriminative depth comparison image
features, this method achieves high-computational efficiency (real time - 200 frames per second (fps)) with
3D translation invariance. Due to the clear advantages of this method in relation with the other state-of-the-
art methods (i.e. trade-off between accuracy and computation time), this strategy was the baseline for a set
of other implementations, namely RTW. Next, the Shotton framework is introduced, which will support the
explanation of the RTW algorithm later. As already mentioned, Shotton’s algorithm is based in a DT strategy.
A detailed explanation about decisions tree can be found in [112]. Briefly, in the training stage of a DT, all

the data (i.e. depth images) are introduced in the root of the tree (Figure 6.3).

A general tree structure

internal o <€— root hode

(split) node

\ terminal (leaf) node

Figure 6.3: A tree is a set of nodes and edges organized in a hierarchical fashion. A DT is a tree where each
internal node stores a weak (or split) function to be applied to the incoming data. Each leaf stores the final
answer (predictor).
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Next, in each node, a weak function represented by specific parameters is used to separate the data in
two groups as different as possible from one another. In the Shotton’s method, these parameters allow the
computation of a feature given by the difference between the depth intensity in two relative positions (i.e.

given by the two defined offsets) from each pixel, w, (Figure 6.4).

A u

[y ()

Figure 6.4: Shotton’s DT example. (A) In each node, a feature given by the difference between the depth
intensity of two relative positions (given by the offsets 6, and do) are computed. The value is then compared
with a threshold, following to the left or right side of the tree; (B) Two feature examples. The circle denotes
the relative points to the evaluated pixel, here represented by a yellow cross. Image adapted from [22].

After that, the result is compared with the threshold, in order to define if it will follow the right or left side.
This strategy is used in the following nodes until reaching a leaf. When the data reaches a leaf, the information
saved in each is different according with the problem type: 1) in the case of a classification problem, the
output of the leaf is a set of probabilities that represent each labelled body part; 2) in a regression problem,
the output of the leaf is a relative distance to each joint of interest (Figure 6.5). Thus, in the end of the
training phase, the information stored is the set of parameters that define each node and the information

that represent each leaf.
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input depth image body parts
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front view side view top view
body joint positions

Figure 6.5: Shotton’s DT implementations: OJR is a regression tree that stores in each leaf an offset for each
joint; BPC is a classification tree that stores, in each leaf, the probability of a pixel being a specific body part.
Note that, the estimation of 3D joint positions using BPC is not direct (needs an additional algorithm). Image
adapted from [22].

In the testing phase, it is expected to evaluate separately each image pixel, «. In each node of the tree,
the feature given by the set of parameters learned in the training phase. After that, the feature is compared
with the threshold in order to define if it will follow the right or left side. This process continues until it reaches
the leaf. In the leaf, the information that is stored, will permit a classification/regression of each pixel, u.
In conclusion, the method uses simple depth pixel comparison features (three arithmetic operations in each
node) making it possible to run in real time.

As mentioned, RTW is an extension of Shotton’s method, differing in the fact that: 1) it does not apply a
pixel-wise regression in all pixels from an image; 2) it trains a tree to estimate the direction that a random point
has for a specific joint, instead of a distance/probability [23]. Briefly, the RTW uses the same tree structure
as Shotton, with simple depth pixel comparison features in each node. Thus, in the training-phase, it will
learn the same parameters (i.e. 2 offsets and 1 threshold). The main difference is that it learns (i.e. stores
in the leaf) the direction that random points have for each specific joint, instead of a distance as Shotton.
In the testing phase, as in Shotton’s implementation, the features given by the difference between the depth
intensity in two relative positions from u is computed. However, note that in RTW just one pixel is evaluated
in each iteration. When it reaches a leaf, it assigns the direction that this specific point has to a specific joint
in the human body. Next, using this direction, the RTW method will iteratively take steps towards the joint
(Figure 6.6A). This method runs in a hierarchical manner, which means that the result position for a joint
will be used as the initial point for the next joint position to be computed (Figure 6.6B). Concluding, RTW
classifies much less points than Shotton’s strategy, achieving an improved computation time (i.e. 1000 fps).

Moreover, this large computational gain is achieved without decreasing accuracy in 3D joints estimation. Due
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to its clear advantages, RTW implementation has the potential to reach the aims of this thesis.

A B

Figure 6.6: RTW method: (A) The red lines represent the RTW method trained to find the head position,
(B) the method starts estimating the belly 3D joint position. The other ones are estimating hierarchically as
represented in the figure. Image adapted from [23].

6.1.1.3 You Only Look Once (Yolo)

YOLO is a deep learning method for detecting objects. Basically it reframes object detection as a single
regression problem, straight from image pixels to bounding box coordinates and class probabilities (Figure

6.7) [24].

Class probability map

Figure 6.7: YOLO method. This detection method works as a regression model. It divides an image into a
SzS grid and for each grid cell predicts nB bounding boxes, confidence for these boxes, and nC' class
probabilities. Image adapted from [24].

YOLO is a single convolutional network that simultaneously predicts multiple bounding boxes and class
probabilities for those boxes. It trains on full images and directly optimizes detection performance. This type

of method has several advantages against others methods, including:

¢ YOLO frames detection as a regression problem, running a new image in its neural network to predict
detections. The base network runs at 45 fps and a fast version (i.e. lighter) runs at more than 150

fps. This way, YOLO can run in real time video.
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¢ Since it sees the entire image during training and testing, it implicitly encodes contextual information

about the classes and therefore considers the image globally when making predictions.

¢ |t learns generalized representations of objects. The moment is trained and tested in natural images,
the YOLO can overcome the best detection methods, such as DPM and R-CNN. Since YOLO is quite

generalist, it is less likely to break when applied to new fields, such as depth images.

This neural network has all the detection components uniformed, and uses all the features of the image to
predict a bounding box. It also predicts all the bounding boxes for all classes in a single image simultaneously.
This method divides the input image in a S x S grid. If the center of the object is inside a grid cell, this cell is
responsible for detecting this object. Each grid cell predicts n.B bounding boxes and the confidence score for
each one of them. The box confidence score é’c, of the box bb in cell ¢, is formally defined by equation 6.1.
If no object exists in the cell, then the confidence score should be zero. Otherwise, the confidence score is
equal to the Intersection Over Union (IOU) between the predicted bounding box and the ground-truth. Each
bounding box predicts 5 values: £z, ¢, t., the and confidence. The ¢, and ¢, are coordinates of the center
of the bounding box relative to the size of the grid. The width t,, and height £, are predicted relative to the
entire image. Finally, the confidence score represents the |OU between the predicted bounding box and the
ground-truth.

) truth
C. = P.(object) - IOU

6.1
pred (6.1)

Each cell in the grid predicts nB probabilities of conditional class, Py.(class, | object). These probe-
bilities are conditioned to the cell containing an object. Only one set of class probabilities per cell is predicted,
regardless of the number of bounding boxes nB. When the image is being tested, the conditional class prob-
abilities and the confidence predictions are multiplied, which allows to assign the specific confidence score

for each bounding box (equation 6.2). Thus, measuring the confidence of classification and localization.

P,(class. | object) - P.(object) - IOUtTUth = P.(class,) - ]OUtTUth
pred pred 6.2)

conditionalclassprobability - boxcon fidencescore = classcon fidencescore

6.1.1.4 Part Affinity Fields (PAF)

PAF method is a deep learning-based framework for multi-person pose estimation in 2D images (Fig-

ure 6.8) [25]. This method uses a two branches network configuration for jointly detecting the joints’ positions
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and the associations between them (Figure 18). In the first branch of the method, a feed-forward network
predicts the confidence maps of body parts’ locations which corresponds the probability maps (Figure 6.8B).
These probability maps are a representation of the confidence of a joint position occurring at each pixel lo-
cation, expressed as a gaussian function. In the second branch of the network, the part affinity vector fields

are constructed, encoding the degree of association between the parts (Figure 6.8).

iy

Part Confidence Maps

Part Affinity Fields

Figure 6.8: PAF method: (A) original image, (B) part confidence map, (C) part affinity fields, and (D) body
pose detection result. Image adapted from [25].

The part affinity fields allow to assemble the joint positions to form a full-body pose, being constructed for
each body limb and encoding both location and orientation information. The two branches of the network are
refined along several stages in an iterative process. Moreover, the predictions of both branches in each stage
of the method are used in the predictions of the following stage, allowing to boost the refinement process

(Figure 6.9).
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Figure 6.9: PAF method. Architecture of the two-branch deep-learning network. Image adapted from [25].

Among the major advantages of this method are its real time performance and high accuracy to detect
multiple persons. In fact, the PAF branch was designed to better deal with an image with more than one
person. In this regard, it is not needed the implementation of a prior person detector method to detect the
joint positions for each person afterwards. This allows to avoid bad detections of the person detector method
while decreasing the computation time. As a disadvantage, this method requires a great deal of data for the

training process. Moreover, the PAF method has only been used for RGB images. However, due to its clear
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advantages, it has the potential to reach the aims of our work, and therefore, the investigation team decided

to exploit and implement this method for depth images, being the results presented later in this report.

6.1.2 Evaluation

In this section, the implemented steps related with the human body pose detection algorithm are de-
scribed. Both DPM, RTW, YOLO and PAF were implemented and tested, being the results presented later in

this section.

6.1.2.1 Dataset

Due to the fact that the work in chapters 4 and 5 was still ongoing and no datasets were available, it was
needed to search for a public dataset that could be used to evaluate and compare the implemented methods.
Between the different datasets found in the literature, it was decided to use the Towards Viewpoint Invariant
3D Human Pose Estimation (ITOP) dataset [62], due to its similarities in features and ground-truth. The ITOP
is a publicly available depth-based human pose dataset that has been used by some state-of-the-art human
pose methods. The dataset consists of 20 people performing 15 action sequences each. Each depth map
(Figure 6.10A), and its respective point cloud (Figure 6.10B), is labelled with the ground-truth that consists in
the pixel-world 2D and real-world 3D joint locations (Figure 6.10C). Moreover, the dataset is divided in training

and test sets, containing each set 40k and 10k images respectively.

fta

Figure 6.10: ITOP dataset: (A) depth image, (B) point cloud, and (C) ground-truth joints.

One drawback found in the ITOP dataset is that some ground-truth joint positions do not fit correctly
with the human body, which can be explained by errors during the ground-truth generation. In this sense, a
method to perform the correction of the displaced joints was first implemented (Algorithm 6.1.1). The goal of
the method is to move the joints placed in the background of the image to the interior of the human body.

For that, the initial step is to compute a mask of the human silhouette (Figure 6.11).
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Algorithm 6.1.1 [TOP DATASET CORRECTION

1:

. RGy

initialize:
# Get the depth and body pose samples from ITOP dataset
2: deptht/’m’y «~— ITOP
3 (P2y§)y + ITOP
# Get the foreground, and remove the background RGt/

RG

: fol :
&y Use the regiongrowing method using the head position (P“’yhead)t' as seed position

< regiongrowing(depth,s seed < (szgead)t/) [113] (Figure 6.11B)

t/x,y ENE
# Remove the floor

1
RGt/ oy < ’ (Figure 6.11C)
0,y > 220
i# Get the pixel connectivity CCyr
CC oy
# Preserve the human silhuete by crossing the pixel connectivity with the head pixel position

<~ RGy n Cct’,m,y n (Pmygcad)t/ (Figure 6.11D)

< bwconncomp(RG ) [114]

LY

# Get the new joint position considering the minimum distance of the joint actual position and the mask

o foreach t’ in (Pxy§ ), do

for each j in (sz?)t/ do
foreach x, y in (RG,/ y N 1) do

(P.ry?)t/ — argmz'n(d((Pmy?)t/ ,{z,y})) (Figure 6.12B)
T,y
end for

end for

end for

Figure 6.11: Human silhouette mask construction: (A) original image, (B) region growing result, (C) floor
elimination, and (D) final mask.

This mask is generated by a region growing approach [113], using the torso position as initial seed point.

After performing the region growing method, a floor elimination strategy is applied to remove the floor regions

that are wrongly classified as human silhouette by the region growing method. Once the human body mask

is generated, the joints that are placed outside the human silhouette are replaced in the nearest position of

the mask. In Figure 6.12, it is possible to visualize the ground-truth of one example image before and after

the

joint position correction.
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A B

Figure 6.12: Correction of ITOP dataset: (A) joint positions before joints correction, and (B) joint positions
after joints correction.

6.1.2.2 Metrics

The evaluation metrics used to assess the methods accuracy were:

* mean average distance, mAD, (equation 6.3): mean average of the Euclidean distance between the
joint position given by the method (PALGs(nyzg")t/), and the joint position in the ground-truth

(Per=(Pzyz§)s).

dj = d(Parc, Par)

ZJ Sr_1d

A _ 7=1 T
mAD -7

(6.3)

* mean average distance for valid joints, mADe™ (equation 6.4): mean average distance after
elimination of wrong detections, T'P. Defines if the joint was correctly detected. If the Euclidian
distance, dj, between the joint position given by the method, Pare, and the joint position of the
ground-truth, Pge, is less than 10 cm, the joint is considered correctly detected. If this condition is

not verified the joint is considered wrongly detected.

)
TP,Parc #0ONPor #0ANd; <10

FN,PGT#(DA((PALg%Q)/\dj>10)\/(PALG:®))

label =
FP Pyrg # 0N Pgr =10 (6.4)
\TN,PALG == @/\PGT :®
J Xh_,d(TP))
mADlOcm — ijl T

J
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* mean average precision, mAPY™ (equation 6.5); mean average precision of joints correctly de-

tected by the method.

ZJ |d; (TP)]
mAPYen _ J=1|d;(TP)|+|d; (FP)| (6.5)
J

» mean average recall for valid joints, mAR, (equation 6.6): mean average percentage of joints detected

by the method.

7 |d; (TP)|
mAR — == |dj(T§>|+\dj(FN>| (6.6)

6.1.2.3 Results

In this subsection, the result of the conducted experiments are presented. Table 6.1 presents and com-

pares the results of each body pose detection method.

Table 6.1: Algorithmic selection evaluation.

DPM RTW | YOLO PAF
RGB ‘ DEPTH | DEPTH | DEPTH | RGB ‘ DEPTH
mAD (cm) 15.61 | 10.69 13.22 15.70 13.34 | 537

mADv'%™ (cm) | 5.86 4.97 4.40 5.68 4.96 3.91
mAP0m (%) 5510 | 70.28 82.69 52.07 68.21 | 89.89
mAR (%) 100.00 | 100.00 | 100.00 | 96.97 100.00 | 100.00

Analysing Table 6.1, it is possible to understand the performance of each method for human body pose
detection.

Performance for the DPM method increased when training in depth images in comparison with training in
RGB. However, the RTW method outperformed the DPM method in both experiments. This may be explained
by the fact that the DPM method is an hybrid approach (mix of generative plus discriminative concepts),
while the RTW method is purely discriminative. This allows the RTW method to be more efficient and less
dependent of a good initial model, while decreasing its susceptibility to local minima and error accumulation.
In this sense, the results presented support the conclusion about the higher performance of the machine
learning methods in relation with the hybrid ones. Despite the good performance of this traditional machine
learning method, a higher performance was found for the deep learning methods, given that the latter do not

require the extraction of hand-crafted features. The features used by the classification process are extracted
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internally by the deep learning method, allowing to decrease the dependence on the user/developer expertise,
and therefore, allowing to achieve more accurate results.

Regarding YOLO method, it is possible to verify that it was not able to achieve results as good as RTW.
However, as mentioned in subsection 6.1.1.3, YOLO is a very generalized method, with a multitude of hyper-
parameters, and may thus require a better tuning to achieve better results for depth images.

Concerning the PAF method, it is possible to verify its superior performance in comparison with the other
studied methods. In fact, the PAF method achieved an average distance lower than 5.5 ¢m and an average
precision of approximately 90%, which is competitive with the results reported in state-of-the-art methods
for body pose estimation in depth images. The better results can be explained by the high accuracy of its
two-branch strategy with iterative refinement, which allows to refine the detection in each iteration. To better
understand the performance of the most accurate detection, an extended analysis of the PAF performance is
presented (Figure 6.16), when comparing with the other methods (Figures 6.13, 6.14 and 6.15). Figure 6.16
presents the PAF depth model boxplots for the metrics of mAD (Figure 6.16D), mAD3™ (Figure 6.16E)
and mAD¥e™ (Figure 6.16F), allowing to analyse the performance of the method in terms of percentiles
and outlier points.

Analysing Figure 6.16, it is possible to verify the good performance of the PAF depth model for all joints,
similarly to the DPM and RTW depth models (Figures 6.13 and 6.14). The head joint presented the best
results, while the feet joints presented the worst. This happens because the head is usually the body part
with more distinguishable features in the depth image. In opposition, the intensity of the feet can be very
close to the intensity of the floor where the person stands, making the method less accurate for these joints.
However, it is important to notice that in this thesis the upper body accuracy has a higher significance than
the lower body accuracy, since the method will be applied in depth images in a car environment.

Due to the good results achieved with the PAF method in the ITOP dataset, it was decided to use this

method as the final one.
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Figure 6.13: DPM error evaluation with ITOP dataset. (A - C) being the DPM with RGB model, (D - F) being
the DPM with depth model, (A and D) represents the entire dataset, (B and E) represents detections under a
threshold of 5 ¢cm, and (C and F) represents detections under a threshold of 10 cm.
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Figure 6.14: RTW error evaluation with ITOP dataset. (A - C) being the RTW with depth model, (A) represents
the entire dataset, (B) represents detections under a threshold of 5ecm, and (C) represents detections under

a threshold of 10 cm.
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Figure 6.15: YOLO error evaluation with ITOP dataset. (A-C) being the YOLO with depth model, (A) represents
the entire dataset, (B) represents detections under a threshold of 5 cm, and (C) represents detections under
a threshold of 10 cm.
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Figure 6.16: PAF error evaluation with ITOP dataset. (A - C) being the PAF with RGB model, (D - F) being
the PAF with depth model, (A and D) represents the entire dataset, (B and E) represents detections under a
threshold of 5 ¢cm, and (C and F) represents detections under a threshold of 10 cm.
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6.2 Algorithm Customization

6.2.1 Methods

The main goal of the proposed method was to accurately detect the human body pose of passengers
inside a car in depth images. Figure 6.17 presents an overview of the proposed method, which is based
on the deep learning-based body pose estimation method presented in  [25] and implemented in Caffe
framework [115]. The proposed method uses as input a depth image, depth,,, of the driver acquired from
a Time-of-Flight (ToF) camera (Figure 6.17A) and as output the location of each joint of the different human
body parts, Pmy?, (Figure 6.17D). To obtain the joints’ positions, a Convolutional Neural Network (CNN) is
used to simultaneously predict a set of heatmaps (one for each body part joint, Figure 6.17B) and a set of
part affinity field vectors that represent the association between the different parts (Figure 6.17C). Since the
in-car environment produces occlusions of some body parts and the Field-of-View (FoV) of commercial depth
sensors may not be enough to visualize all joints once the driver stands near the camera, some joints may
not be detectable in the images. Thus, the proposed network also predicts if a joint is present in the image or
not (henceforward called as label detection branch), which may boost the method’s robustness. Considering
the new Point-of-View (PoV) of the sensor and its focus on a single person, the refinement stages (& > 2)
from the original method were removed (Figure 6.9), decreasing the method’s computational burden and

allowing to achieve a real time performance [116].

A B C D

Figure 6.17: Overview of the proposed method. (A) input depth image, (B) heat map (output of first branch)
for the head joint, (C) part affinity fields (output of second branch) for the association between head and
neck joints, and (D) final human body pose estimation.

In Figure 6.18, the architecture used for the convolutional neural network is presented. As shown in the
figure, the first part of the convolutional network consists in the first ten layers of the VGG-19 [117], which
are used to perform a first analysis of the image, generating a set of feature maps, F'. Next, the network is
split in three branches for the simultaneous learning of the heat maps, the part affinity fields, and the label

detection.
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Figure 6.18: Architecture of the convolutional network used in the proposed method. The coral branch
concerns the learning of the heat maps for body parts’ detection and the blue branch concerns the part
affinity fields for body part associations. Finally, the green branch is related to the label detection for joint

categorization. Image adapted from [25].

Considering the use of the Caffe framework, the full network architecture was implemented in a prototxt

file, I'P [115], where a lower level representation of the architecture can be seen in Figure 6.19, and its

detailed layer dimensions in Table 6.2.
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Figure 6.19: Architecture implementation in prototxt, I'?, represented in lower level. (A) 10 layers of VGG19,
and (B) stage one with three branches: heat maps (L2); part affinity fields (L1); and label detection (L3).

Table 6.2: Architecture implementation in prototxt, I'?, where FC represents fully-connected, C represents
convolution, and P represents pooling.

Name ‘ Type ‘ Size
VGG19

convl_# C 3x3x64
pooll P 2x2
conv2_# C 3x3x128
pool2 P 2x2
conv3_# C 3x3x256
pool3 P 2x2
convd_1:2 C 3x3x512

Stage 1 Input
convd_3_CPM C 3x3x256
conv4_4_CPM C 3x3x128

Part Affinity Fields
convb_1:3_CPM_L1 | C 3x3x128
convh_4_CPM_L1 C 1x1x512
conv5_5_CPM_L1 C 1x1x26

Heat Maps
convb_1:3_CPM_L2 | C 3x3x128
convh_4_CPM_L2 C 1x1x512
conv5_5_CPM_L2 | C 1x1x15

Label Detection

convb_1:3_CPM_L3 | C 3x3x128
convh_4_CPM_L3 C 1x1x256
conv5_5_CPM_L3 | C 1x1x14
fc_# FC 1x100
score_# FC x2
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6.2.1.1 Heat maps for body parts’ detection

One of the branches of the convolutional network is used to predict confidence maps of each human body
part (coral branch shown in Figure 6.18). As previously stated, a confidence map represents the belief that a
body joint occurs in a given image pixel. In this sense, a confidence map can be seen as a 2D gaussian-like
function, where the maximum of the gaussian map represents the ideal joint position. To train the method
to predict heat maps, a loss function, freat, Was applied in the end of this branch to calculate the difference
between predictions and ground-truth. In this case, the ground-truth for the confidence maps was generated
by using manual labeling of the joint positions and constructing a gaussian map around the joint locations.
The loss function for this branch is given by equation 6.7, where n.J represents the number of joints, S; and
S’;‘ are the prediction and ground-truth maps for the part, 3, respectively (S}EPmyg). In the test phase,
the joint position for each body part is given by the maximum of the respective confidence map (i.e. its peak),

after a non-maximum suppression.
nJ
fr=>_ 18 =55l (6.7)
j=1

6.2.1.2 Part affinity fields for body part association

To increase the accuracy of the body part detection, a second branch that measures the association
between each pair of body parts is also included in the convolutional network (blue branch in Figure 6.18).
This association is given by part affinity fields, which consists in a vector field between two body joints that
encodes the direction between one body joint to another (Figure 6.17). The loss function associated to this
branch is given by equation 6.8, where pC' represents the number of connections betwen the different body

parts, P, is the prediction of the part affinity field and Py is the ground-truth for the association.

pC
f=S PP 68)
c=1

Besides refining the inference of the confidence maps during training, owing to the backpropagation
scheme used during it, the part affinity fields are useful when there is more than one person in the image.
Indeed, in this scenario, a confidence map by itself may not be enough for an accurate detection, because
several peaks for the same joint may be detected (one for each person in the image). In this sense, the
association between body parts are crucial to understand which joints belong to the same person. However,

in this work, and given the FoV of the camera used, the focus was place in the detection of one person, and
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therefore, part affinity fields was kept for its role in refining the heat map prediction.

6.2.1.3 Label detection for joint categorization

Owing to the limited size of an in-car environment and to the reduced FoV of the cameras used for
monitoring in this environment, there is a higher probability of certain body joints being outside of the image,
specially the extremity limbs (e.g. the driver can have its arm outside of the lateral window and the associated
joint is therefore not present in the image). It is thus important to understand if the joint is present or not in the
image to increase the accuracy of the human body pose estimation. To deal with this problem, a third branch
was added to the network. This third branch allows to categorize the joint with a different label according to its
existence in the image (i.e. the joint has the label O if it is outside of the image and label 1 if it is inside). This
label detection was achieved by using a set of fully-connected layers to learn the non-linear combinations of
the features, F,, extracted by the convolutional layers (green branch in Figure 6.18). Afterwards, a softmax
layer was used to assign a probablity for the label detection, by taking the output of the fully-connected layers,
logit, and transforming it into a vector with two prediction scores (one for each class ei: present in the image
or not). Each prediction score is given by pei,; in equation 6.9, where ye; ; represents the output of the last
fully-connected layer, logit, for class et, K corresponds to the number of classes (in this case K = 2), and
nJ represents the number of joints. Please note that the sum of the probabilities is equal to 1, and therefore,

the joint’s presence label is given by selecting the class with higher score (i.e. a one-hot encoding is used).

eyci,j

K )

The cross entropy loss function is used for this branch, being given by equation 6.10, where 2. ; is the

Pcij = cL = 17 D) K (6.9)

ground-truth for the probability of each class (0 or 1).

K

J
=2 K Z 8(Peij» tei) (6.10)
j=1 k=

At test time, the prediciton of this third branch is used to verify which heat maps predicted in the first
branch should be evaluated. If the label detection branch predict that the joint is not present in the image,
it is considered not detected and the respective heat map is not evaluated. Otherwise, it is assumed that
the joint is present in the image and its position is given by the maximum of the respective heat map, as
stated in Section 6.2.1.1. The final human body pose estimation is obtained by combining the output of
the three branches. Thus, the overall objective loss function is given by summing the loss of each branch

(equation 6.11).
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f=h+fa+f (6.11)

6.2.2 Experiments

6.2.2.1 Dataset creation

Due to the inexistence of public datasets of depth images in an in-car scenario, it was needed to create a
proprietary dataset, (M Dy in equation 6.12). Owing to the deep learning nature of the method, a massive
amount of data is needed as training data, and therefore, it was needed to create a large dataset. Moreover,
besides the high number of training images, the training dataset must also be variable enough to include the
large number of actions possible in this scenario. In fact, the accuracy of the method is very dependent of the
quality of the dataset. In this sense, a dataset was constructed by acquiring depth images, depthy 4, using
a ToF camera (Section 2.1.3.3) placed near the windshield in front of the driver. For the construction of the
dataset, ten different cars, C'ry.19, Were used to achieve the desired variability in terms of image background.
For each one of the ten cars, five subjects acted as driver, Sy.5, performing different actions, A, inside a
car (e.g. driving, putting the seat belt, picking up the phone, and others) to give the robustness needed for
the dataset. The combination of the different cars and different subjects allowed to construct a dataset with
12200 depth images. The dataset was then divided in training, validation, and testing set with 8820, 1730,
and 1650 images each, respectively. In this work, the training dataset was used to train the method, the
validation set was used to test the progress of the performance of the method during training and to perform
parameter tuning, and the testing set was used for the final validation of the proposed method. Note that
the cars in each set of images differ from each other to achieve an unbiased evaluation. Concerning the
ground-truth for the different body parts, it was constructed by manual labelling of the joint 2D positions,
(Pmyz?)t:, requiring a great amount of human resources and time (=30 seconds per frame, totalising
nearly 33 hours of labelling), Figure 6.20. Note that the performance of the method was only evaluated for
these upper body joints once the lower body parts are naturally occluded when simulating a driving position.

Moreover, the joint categorization (present or not) was also manually defined per image.

. MDy = {depthy 4, (P:cyz?)t/} (6.12)
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Figure 6.20: Real dataset with manual labelling (a black cross per each joint of interest).

6.2.2.2 Dataset augmentation

As above-mentioned, the ground-truth for the training dataset was obtained manually, a tedious and
time-consuming task, which could represent a limitation in terms of the number of training images available.
In this sense, besides the real dataset constructed, and as common in deep learning strategies, a data aug-
mentation layer was implemented, allowing to generate more training images than the ones initally labelled.
Such data augmentation strategy allows to increase the variability of the training dataset. Traditionally, data
augmentation strategies rely on image flip, rotation, and scaling. Although it is an effective way of increasing
image variability during training, such strategies do not modify the depth information of the image. Although
such feature is not so problematic for RGB images, it can be for depth ones, as changing the depth of these
images can be a useful way to simulate different camera positions in the real world (i.e. the distance between
the camera and objects). In this work, the implemented data augmentation layer (CPM_DA) can simulate
these changes in terms of camera’s position, allowing to create images where the objects (i.e. the driver) are
closer or farther from the camera than they were in fact. In Algorithm 6.2.1 the first step for the data aug-
mentation approach is to read the input frame and associated ground-truth that is being feed to the training
pipeline, as well as the 3D data augmentation specific hiper-parameters that were inserted in the prototxt
file, I'P, allowing for easy customizations for each training. Afterwards, the 2.5 depth image (and associated
ground-truth) is converted in a 3D point cloud, using the intrinsic parameters of the camera (equation 6.13).
Upon obtaining the 3D camera coordinates, all points can be transformed by applying a given translation,

moving the 3D point cloud in any direction and in any axis.

Pryz = (Pxy)" - IMc (6.13)

The final step consists in using the intrinsic camera parameters (equation 4.4) to transform the translated
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point cloud into a new 2.5D depth image (equation 6.14). In Figure 6.21, it is possible to visualize two
examples of the result of our data augmentation strategy: one simulates the camera closer to the driver

(Figure 6.21B) and the other simulates the camera located farther from the driver (Figure 6.21C).

Pxy = Pxyz - [Mc (6.14)

Algorithm 6.2.1 PAF CPM_DA

1 initialize:

# Get the depth and body pose sample from cpm_data_transform (CPM_DA)
2. depthy,y < CPM_D A (Figure 6.21A)
3: Pay§ « cPM_DA
# Get the scalling probabilities
og +— I'P
oy — TP
o, < I'P
Pgugment < I'P
Pzxgugment < TP
Pyaugment re
Pzaugment < INg
11 . # Check if there is need to augment
12 i Pawgment > (X ~ U(0, 1)) then

13: # Get new transformation

e S SRS

—

14: if Pogugment > (X ~ U(0, 1)) then

15: try < U(0,04)

16: end if

17 i PYaugment > (X ~ U(0, 1)) then

18: try — U0, oy)

19:  endif

20:  # Pzaugment > (X ~U(0,1)) then

21: try < U0, 0)

22.  endif

23: # Convert 2D coordinates to 3D

24:  depthy . . < Eq.6.13(depthy y)

25: Pa:yz? <—EqA6A13(Pacy§)

26: # Apply 3D transformation to the sample

27 for each u, v, winz, y, z do

28: {z,y, 2} « depthy v, w

29: depthy v,w < {z +tre, y +try, z +trz}
30: end for

31: for each j in J do

32: {z,y,z} + szz§

33: szz? —A{z+try,y+try, z+tr.}
34: end for

35: # Convert 3 coordinates to 2D

36: depthy,, «Eq.6.14(depthy,y, 2) (Figures 6.21B and 6.21C)
37: Pacy? <—Eq.6.14(Pmyz§)

38: endif
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A B C

Figure 6.21: Data augmentation strategy. (A) original depth image, (B) augmented image that simulates the
positioning of the camera closer to the driver, and (C) augmented image that simulates the camera being
located farther from the driver.

6.2.2.3 Implementation details

Regarding all customizations that were mentioned, the definition and optimization of 3D augmentation
parameters, and label detection branch layers, required several evaluations. Other deep learning training
hiper-parameters were also optimized, these are fundamental and can have a significant importance in the
final accuracy of the method. Concerning the learning rate, this parameter was experimentally set to 0.0004.
For the model optimization, the Adam solver [118] was used with a regularization term of 0.01. Note that

these parameters were chosen by evaluating the method in the validation dataset.

3D data augmentation optimization (AE1):

To experimentally define the hiper-parameters inserted onto the prototxt, I'?, four sub-evaluations were
defined, for each the hiper-parameters were changed (Table 6.3) and the joint distance error, mAD, was
evaluated (Table 6.4). Results from AE1 : 4 defined the hiper-parameters used for the CPM_DA algorithm
(Algorithm 6.2.1).

Table 6.3: AE1 sub-evaluation hiper-parameter configurations: Paugment Probability of 3D augmenting (i.e.
changing the input image); PZqugment Probability of translating the camera in the X axis; PYaugment Prob-
ability of translating the camera in the Y axis; P2qugment probability of translating the camera in the Z axis;

o0, standard deviation for the translation in the X axis; o, standard deviation for the translation in the Y axis;
and o, standard deviation for the translation in the Z axis.

Evaluation | P, t | PZougment | PYaugment | PZaugment | 0z | Oy | O
AFE1:1 0

AFE1:2 1 0.1 01 0.8 0.05 | 0.05 | 0.05
AE1:3 038 01 01 038 0.05 | 0.05 | 0.05
AFE1:4 0.8 01 01 0.8 015 | 015 | 0.15
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Table 6.4: AE1 sub-evaluation performance in the evaluation dataset, assessed in terms of distance error
(mAD, pixels).

Evaluation | H N RS |[RE |[RW |LS |LE |LW Cc P RH LH Mean
AE1:1 8.00 | 6.08 | 9.06 | 8.06 | 9.85 | 8.00 | 8.06 | 156.26 | 11.05 | 13.04 | 13.89 | 20.01 | 10.44
AFE1:2 728 | 583|721 | 781 | 11.70 | 6.32 | 7.81 | 16.12 | 10.44 | 10.44 | 12.77 | 21.38 | 9.91
AE1:3 781 | 6.00 | 762 | 7.62 | 10.44 | 700 | 8.06 | 15.81 | 10.05 | 10.30 | 12.17 | 17.69 | 9.55
AFE1:4 707 | 6.00 | 721 | 721 | 10.44 | 6.40 | 7.81 | 15,52 | 10.00 | 11.18 | 12.37 | 16.40 | 9.34

Third branch layer optimization (AE2):

To optimize the third branch defined onto the prototxt, I'?, three sub-evaluations were defined and the
joint distance error mAD was evaluated. (AE2:1) uses the algorithm without third branch, (AE2:2) uses
the algorithm with third branch (Table 6.5) with three labels (visible, occluded, and outside image), (AE2:3)
uses the final algorithm arquitecture shown in Table 6.2. Results from AE?2 : 3 defined the final algorithmic

architecture (Table 6.6).

Table 6.5: AE2:2 third branch architecture implementation in prototxt, I'?, where FC represents fully-
connected, C represents convolution, and P represents pooling.

Label Detection
convh_1:3 CPM_L3 | C | 3x3x128
convb_4_CPM_L3 C | IxIx256
convb_b5_CPM_L3 | C | 1x1x14
fc_# FC | 1x100
score_# FC | 1x3

Table 6.6: AE2 sub-evaluation performance in the evaluation dataset, assessed in terms of distance error
(mAD, pixels).

Evaluation | H N RS | RE RW LS LE Lw C P RH LH Mean

AE2:1 8.00 | 6.08 | 9.06 | 8.06 | 9.85 | 8.00 | 8.06 | 15.26 | 11.05 | 13.04 | 13.89 | 20.01 | 10.44
AE2:2 728 | 583|721 | 781 | 11.70 | 6.32 | 7.81 | 16.12 | 10.44 | 10.44 | 12.77 | 21.38 | 9.91
AE2:3 781 | 6.00 | 762 | 7.62 | 10.44 | 700 | 8.06 | 15.81 | 10.05 | 10.30 | 12.17 | 17.69 | 9.55
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6.2.3 Results

One important task to correctly implement a deep learning strategy is to evaluate the progress of the train-
ing in the validation dataset. Besides being useful to conduct experiments related with the best parameters to
be used in the deep learning strategy, the validation dataset is also needed to detect problems like overfitting
to the training data, which may cause failure of the method when applied in a different set of images. In this
sense, evaluating the method’s performance during training in the validation dataset allows to detect when
the training converges, avoiding overfitting problems. Figure 6.22 presents an example graph showing the

progression of the loss during training in both training and validation datasets.

60 :
——  Train
55 | Validation
o0 |-
45
40 +
35

30 | | | | |
0 20 40 60 8 100 120

Epoch

Loss

Figure 6.22: Method's performance (loss in function of epochs) during training in the training (blue line) and
validation (red line) datasets.

To evaluate the performance of the proposed method in the testing set, PCKh measure (in pixels, using
a matching threshold given by 50% of the head segment length) and the Area Under Curve (AUC) were used

as metrics [103]. Table 6.7 summarizes the average results for the full body, and individual joints.

Table 6.7: Evaluation results (PCKh@0.5) per joint group.

Head' | Shoulder’ | Elbow? ‘ Wrist! ‘ Hip® ‘ Total® ‘ AUCS

99.35 ‘ 99.32 ‘ 9791 ‘ 87.57 ‘ 98.17 ‘ 97.58 ‘ 76.75

1 Head uses head and neck joints; 2 Shoulder uses rshoulder, Ishoulder and chest joints.
3 Elbow uses relbow and lelbow joints; 4 Wrist uses rwrist and Iwrist joints.
5 Hip uses rhip, Ihip and pelvis joints.

6 does matching threshold to 26 pixels (empirical extraction of head segment size).

Figure 6.23 presents the PCKh@0.5 values for the full and individual body parts. Moreover, the results
shown in the table were achieved by the model obtained in the ideal epoch for early training stopping, which

were estimated using Figure 6.22.
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Figure 6.23: PCKh total and per joint groups.

Finally, in Figure 6.24, some example results of the proposed strategy for human body pose estimation

are presented.

Figure 6.24: Qualitative results of the proposed human body pose detection method. The first row presents
examples of good results. In the second row, some examples where the pose estimation failed for a few joints
are illustrated, with the ground-truth pose in dashed lines.

6.2.4 Discussion

This chapter proposed a method for human body pose estimation in an in-car scenario. As stated, an
important study to be performed during the implementation of a deep learning strategy concerns the evolution
of the training. For that, its performance during training must be evaluated in the training and validation
datasets. Analyzing Figure 6.22, it is possible to visualize that the ideal timing for stopping the training would
be approximately around the 60" epoch. After this point of the training, the graph suggests that the model
may start suffering from overfit to the training dataset, resulting in a very good performance for the images
presented in this dataset but a lower or equal performance in the validation dataset. After analyzing the ideal
epoch for early stopping, the model obtained in this epoch was used for the final validation of the method
in the testing set. Analyzing Table 6.7, it is possible to verify the good performance of the human body pose

detection method, with a PCKh@0.5 total and AUC of 97.58% and 76.75% respectively. The worst results
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were obtained for the wrist joints. This can be explained by the fact that these joints are frequenty near the
image’s limits, which can lead to a lower accuracy of the deep learning strategy. Moreover, owing to the
proximity of the camera to the driver, these joints are not always present in the camera’s FoV, which hampers
the training process for these joints. This less accurate detection for these extremity joints can also be
visualized in Figure 6.23. Concerning the computational time required by the method, the proposed human
body pose detection methods takes approximately 60 milliseconds per image, which gives a performance of
16.7 fps, which proves the nearly real time capability of the method, as well as, the compatibility with the
ToF sensor use-case 3 (Table 2.3). Note that this runtime analysis was performed using a NVIDIA GeForce
GTX-1070 Graphics Processing Unit (GPU). Overall, the obtained results suggest the feasibility of using the
proposed method for monitoring passengers inside a car. The output of the proposed method, which is the
joint positions, allows to generate the human body pose for the driver or other passengers, which can give
important information such as who is inside the vehicle or its activity (i.e. what the passenger is doing). The
proposed method, when combined with other post-processing techniques, may thus be used for monitoring
applications, which can be useful for safety issues. Some possible use cases follow. For example, it is
possible to use the information of the human body pose to automatically suppress the airbags of the car in
the presence of a child. Moreover, it is also possible to use the human body pose to estimate the time that
the person will take to pass from an automatic driving to a manual driving, allowing to generate alerts related
to this issue. Concerning the driver’s activity, this information is useful for detecting, for example, violent
actions, which is very important in a Shared Autonomous Vehicles (SAV) context. One important aspect to
take into account in the proposed method is its application in a real setup. In fact, to achieve a real time
estimation of the human body pose inside a car, a high computational power is needed, which can be a
limitation for an in-car scenario. However, the constant growth in computation capability of the technology
already allows the application of the proposed method in a real scenario. Another aspect to take into account
is that the application of software in autonomous cars should follow some existing standards, in order to
ensure its applicability in a real scenario. Nevertheless, all these issues will be addressed in the future to

achieve a technical solution of application of the proposed method in a real scenario.

6.3 Conclusions and Future Work

This chapter presented a framework to detect the human body pose in depth images acquired inside a
car. This method consists in a evaluated/selected deep learning strategy where a new convolutional network

configuration with three branches was used for simultaneous learning of confidence maps for each joint po-
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sition, body parts’ associations, and joint categorization (regarding its existence in the image). The proposed
framework was validated in 1650 depth images, achieving a PCKh@0.5 total and AUC of 97.58% and 76.75%
respectively. Overall, the proposed human body pose estimation method proved to be successful and ac-
curate to detect the driver's pose, while showing a nearly real time performance. In future work, there will
be an extension of the human body pose estimation to more than one person, allowing to monitor not only
the driver but all the car occupants. In addition, one intends to modify it into inferring the 3D joint position,

therefore better exploiting the 3D information provided by the depth image.



Chapter 7

Algorithm Evaluation

This chapter is sequential to Chapter 6 in terms of development, and is the culmination of the entire de-
velopment pipeline shown in Chapter 1. This chapter shows the final evaluation of the selected/customized
algorithm from Chapter 6 with datasets from chapters 4 and 5 to ultimately improve its accuracy and gener-
alization ability in regard to Time-of-Flight (ToF) placement inside the vehicle, subjects and actions.

In the first section of this chapter, a toolchain for algorithmic evaluation is shown. This toolchain allows for
two evaluation modes: (1) qualitative evaluation through online ToF interface; and (2) quantitative evaluation
through offline dataset (i.e. RDy,SDy) interface.

In the second section of this chapter, the customized Part Affinity Fields (PAF) algorithm is evaluated in

three ToF Point-of-View (PoV) scenarios, through a combination of datasets.
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7.1 Evaluation Toolchain

7.1.1 Toolchain Overview

A toolchain was created to evaluate the customized algorithm proposed in Chapter 6, with two modes:

(1) qualitative evaluation through online mode, where it is possible to interface with the ToF sensor and the

algorithm, showing its inference ability with respect to the ToF PoV; and (2) quantitative evaluation through

offline mode, where it is possible to interface with the algorithm and any type of datasets from chapters 4

and 5 to ultimately compute evaluation metrics (as defined in Section 6.1.2.2). Considering the fact that

the toolchain does not require real time access of multiple systems, the entire implementation was done in

MATLAB. Figures 7.1 and 7.2 present a pipeline overview of the two evaluation modes implemented onto the

toolchain.
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Figure 7.1: Algorithmic evaluation toolchain pipeline for online mode.
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Figure 7.2: Algorithmic evaluation toolchain pipeline for offline mode.
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7.1.1.1 Interface

The first conceptual module from the toolchain is the interface, through it the toolchain as access to the
ToF, algorithm, and datasets.

ToF (Section 2.1.3.3) interface is done with the provided SDK (Algorithm 2.1.5), allowing for user-defined,
I'™ use case (Table 2.3) and frame selection, {ampy 4y, depthy 4 4,pcy g} Algorithm interface is done
through Interprocess Communications (IC) [119], to achieve algorithmic language implementation abstrac-
tion. A normalized frame is encoded (i.e. frame,,={amp, ,.depth, ,,pcs}) and sent from the toolchain
into the algorithm, which then infers the human body pose (i.e. 2D Pzy§, or 3D Pxyz§, represented
by Parg) and sends it back to the toolchain. Dataset interface is done through file 10, where any type of

dataset is able to be imported (i.e. RDy,SDy).

7.1.1.2 Online Mode (Qualitative)

In online mode, the toolchain is cyclically sending a user selected frame, fmmem,y, which is normalized
(@mpy,y [0; 500] = [0; 255], depthy,y [0; 1.8] m = [0; 255]) before being sent to the algorithm through

IC. After this interaction, the toolchain receives an inferred 2D body pose (i.e. Parg= Pa:y?) through IC.

7.1.1.3 Offline Mode (Quantitative)

In offline mode, the toolchain imports a full dataset, {RDy,S Dy}, normalizes a set of user selected
frames from the available dataset, frame,,y, (i.e. ampg,, [0;500] = [0; 255]; depth, , nstdepth,,,
[0; 1.8] m = [0;255]; pcf, pcx and pey with [—1.5;1.5] m = [0;255], and pcz with [0; 1.8] m
= [0; 255]) and sends them to the algorithm through IC. After each cycle, the toolchain receives an inferred
2D body pose (i.e. PAL(;E{Pmy?,Pmyz?}) through IC that is stacked onto a sequence of body poses,
{(Pzyz§)p,(Pryz5)wp}. After the entire cycle of interaction between toolchain and algorithm, the toolchain
is able to calculate the metrics specified in Section 6.1.2.2 by comparing the inferred pose with the ground-

truth (i.e. for 2D, Parg=Pxy§, Per=Pxy§ .t =0,...,T).

7.1.1.4 Render

A Graphical User Interface (GUI) is used to render the user selected frames in online (i.e. ampy.y,depthy )
and offline (i.e. ampyydepthyylabels,, noisedepth, ynstdepth,,, RGB;, ,,pcs) modes with
overlaid dataset and algorithmic inferred human body pose, P.'I:y?, Pmyz? An extra rendering function

is available for the offline mode, being possible to calculate (i.e. mAD,mADPt,mAPPt,mAR, where
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I't is a userdefined threshold) and plot, dy j, specific metrics. Figures 7.3A and 7.3B show the rendering

capabilities mentioned.
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Figure 7.3: Algorithmic evaluation toolchain: (A) online evaluation, with ToF and algorithmic interface allow-
ing for qualitative evaluation; and (B) offline evaluation, with dataset and algorithmic interface allowing for
quantitative evaluation.

7.2 Experiments

To consolidate the entire development pipeline presented in Chapter 1, the algorithm from Chapter 6
needs to be trained with a large dataset comprised by samples generated by the toolchains in chapter 4 and
5. In this case, the single experimental scenario considered was the 2D pose estimation from point cloud,

which had presented better results in previous experiments (chapters 4 and 5).

7.2.1 Evaluation Data

In this sense, four previously generated datasets were used, namely two real datasets (generated with
the toolchain presented in Chapter 4): the MolLa R89k InCar Dataset (i.e. an extension to the MolLa R8.7k
InCar dataset [102]); and the MoLa R10k InCar Dataset (which we made public) [108]; plus two synthetic
datasets (generated with the toolchain presented in Chapter 5): the MoLa S25k InCar Dataset (which we
made public) [109]; and the MoLa S63k InCar Dataset.

(RDtl,) MoLa R89k InCar Dataset consists in five recorded subjects, Sy.5, nine redundant actions, Aj.g,
for subjects Sy.4 and eleven, Ay.11, for subject Ss, two car seat positions, Py.9, (i.e. front passenger and
driver), with a front row PoV, totaling 89079 samples. (RDf,) MoLa R10k InCar Dataset consists in three
recorded subjects, Sy.3, two redundant actions, Aj.e, each, with a driver PoV, totaling 10482 samples.
(SDtl,) MoLa S25k InCar Dataset consists in seven car models, C Mjy.7, and eighteen subjects, Z;.18, with
associated Gaussian poses, Npgp, With a driver PoV, totalling 25000 samples. (SD;",) MoLa S63k InCar
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Dataset consists in seven car models, C'My.7, and eighteen subjects, Z3.18, with associated Gaussian poses,
Nhgp, two car seat positions, Py.g, (i.e. front passenger and driver), with a front row PoV, totalling 63000
samples.

Both datasets are identical (i.e. RDy = SDy) in terms of sample data types for depth frame
(depthy 4, = nstdepthy ,,), point cloud (pey,¢), 2D and 3D body pose ((Pzy§ )y, (Pzyz5)w), giving
us the opportunity to evaluate the experimental scenario that presented best results in chapters 4 and 5, (i.e.
the 2D pose estimation from point cloud [section 4.2.2.1 and 5.3.2.3]). To assess the algorithm’s inference
generalization capacities, the training F'T', validation F'E' (Table 7.1) and evaluation F'M (Table 7.2) sets

were divided in three distinct groups: one with ToF front row PoV, one with ToF driver PoV, and one with both.

Table 7.1: Validation sets. (F'E'1) samples with ToF front row PoV; (F E2) samples with ToF driver PoV; and
(F'E3) samples with ToF front row and driver PoV.

RD} RD?
Validation | Setup Samples | Setup | Samples | Total
FFE1 Ss, Aro:11, Pro | 3430 3430
FE?2 S3, Ay