
Universidade do Minho
Escola de Engenharia

Pedro José Silva Pereira

Modern Optimization of Predictive Models:
An Application to Mobile Performance
Marketing

December, 2021U
M

in
ho

 |
 2

02
1

Pe
dr

o
Jo

sé
 S

ilv
a

Pe
re

ira
M

od
er

n
O

pt
im

iz
at

io
n

of
 P

re
di

ct
iv

e
M

od
el

s:
A

n
Ap

pl
ic

at
io

n
to

 M
ob

ile
 P

er
fo

rm
an

ce
 M

ar
ke

ti
ng

Universidade do Minho
Escola de Engenharia
Departamento de Sistemas de Informação

Pedro José Silva Pereira

Modern Optimization of Predictive Models:

An Application to Mobile Performance Marketing

PhD Thesis
Doctoral Program on Information Systems and Technology

Supervisors:
Professor Doctor Paulo Alexandre Ribeiro Cortez
Professor Doctor Rui Manuel Ribeiro de Castro Mendes

December 2021

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e

boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas

no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição
CC BY

https://creativecommons.org/licenses/by/4.0/

ii

A C K N OW L E D G EM E N T S

This PhD journey was undoubtedly a lifetime challenge and I am fortunate to have been surrounded

with incredible people along the way, who taught me so much, and to whom I would like to dedicate

this work.

In the first place, I want to thank to both my supervisors, Professor Paulo Cortez and Professor

Rui Mendes, for the knowledge and experiences shared, for their availability to help, their enormous

patience and for the trust they placed in me. Whenever difficulties emerged, they always had the right

words and advice to motivate and inspire me. It has been a great honour to work with such examples

of professionalism, commitment, ethics and rigor. I would like to give a special thanks to Professor

Cortez, who supervised my MSc thesis and with whom I have been working ever since, for the research

and teaching opportunities provided. He was the responsible for awakening my interest in these areas

and I am truly grateful for that.

To my friends, the older ones and the ones I met during this journey, thank you for the comradeship,

to help me keeping focused, the shared knowledge and professional experiences, for being my source

of confidence and motivation, and for always being present, even when being physically distant. A

heartfelt thank you, I am grateful for sharing this adventure with you! I also would like to thank to

my parents and brother, who always supported and encouraged me during this PhD project, providing

everything they could to watch me succeed.

Finally, I owe a few appreciation words to my Machine Learning research colleagues, with whom

I have been working during the last two years, for the great team working environment and for their

contribution to my professional growth.

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

iv

A B S T R A C T

The increase of mobile devices usage has leveraged digital business opportunities, particularly in the

advertising sector. In particular, the Mobile Performance Marketing (MPM) industry has been a tar-

get of vast investments in the last years. This industry deals with advertising campaigns (owned by

advertisers) presented on digital spaces (owned by publishers), such as mobile applications. In short,

users are redirected to campaign pages in order to access publishers content. Between advertisers

and publishers, intermediary companies perform matching between users and campaigns, by means

of a Demand-Side Platform (DSP), aiming to lead the users to a purchase. However, the currently used

mechanisms to perform this matching are rather rigid, using eventual profit or simple statistical rules

to select the campaign to be displayed, instead of using other data attribute relationships. Overall, this

DSP assignment method tends to produce a tiny conversion rate (e.g., 1%) between user redirects and

purchases. Thus, improving the DSP performance with the application of a Machine Learning (ML)

approach could potentially improve this business.

ML has proved to be extremely important in several domains, by being able to extract complex pat-

terns from data and providing useful insights to decision makers. During this PhD, we particularly

address the multi-objective Modern Optimization of predictive models, a much less researched topic

when compared with traditional ML approaches. In particular, we use Evolutionary Algorithms (EAs) to

design and evolve ML models, using MPM as the final (and target) use case. At an initial stage of this

PhD thesis, when we did not had access to MPM data, we addressed a distinct ML use case. In effect,

we proposed several neuroevolution models for multi-step ahead time series Prediction Intervals (PIs),

based on a Pareto-based multi-objective EA that simultaneously considered PI coverage and width. This

research included the proposal of a novel and robust evaluation method for multi-objective ML models,

which vertically aggregates similar solutions using the Wilcoxon median and 95% confidence intervals.

At a later stage, when MPM data was available, we developed two innovative approaches for the design

and creation of Evolutionary Decision Trees (EDTs), using a multi-objective implementation of Grammat-

ical Evolution (GE) that simultaneously considered EDTs predictive performance and complexity. Using

a realistic and robust experimentation, with real-world data from the OLAmobile company, we have

shown that the proposed GE is capable of evolving valuable prediction models for the MPM domain.

Keywords: Multi-Objective Machine Learning, Evolutionary Algorithms, Mobile Performance Marketing

v

R E S UM O

O aumento na utilização de dispositivos móveis alavancou oportunidades de negócios digitais, par-

ticularmente no setor da publicidade. Em particular, a indústria de Mobile Performance Marketing

(MPM) tem sido alvo de grandes investimentos nos últimos anos. Esta indústria lida com campanhas

publicitárias de advertisers, apresentadas em espaços digitais de publishers, como aplicações móveis.

Em suma, os utilizadores são redirecionados para páginas de campanhas de modo a poderem aceder

ao conteúdo dos publishers. Entre advertisers e publishers, empresas intermediárias direcionam uti-

lizadores para campanhas, utilizando Demand-Side Platforms (DSPs), com o intuito de os levar a re-

alizar uma compra. Contudo, os mecanismos utilizados atualmente para realizar este direcionamento

são bastante rígidos, utilizando o eventual lucro ou regras de estatística simples para selecionar a

campanha a apresentar, ao invés de utilizarem outras relações entre os atributos de dados. No geral,

o método atualmente utilizado pelo DSP tende a produzir uma reduzida taxa de conversão entre uti-

lizadores redirecionados e compras efetuadas (e.g., 1%), que poderia ser melhorada com a aplicação

de uma abordagem de Machine Learning (ML).

O ML já provou ser extremamente importante em diversos domínios, sendo capaz de extrair padrões

complexos dos dados e fornecer informação útil para a tomada de decisão. Durante este doutoramento,

abordamos a Otimização Moderna e multiobjetivo de modelos preditivos, um tópico ainda pouco inves-

tigado. Em particular, utilizamos Algoritmos Evolucionários (AEs) para criar modelos de ML, utilizando

o MPM como principal caso de estudo. Inicialmente, quando ainda não tínhamos acesso a dados de

MPM, abordamos um caso de estudo de ML distinto. Na realidade, propusemos diferentes modelos

Neuroevolucionários para previsão de intervalos (PIs) em séries temporais, recorrendo a um AE multi-

objetivo que simultaneamente considerava o erro e a largura dos mesmos. Esta investigação incluiu a

proposta de ummétodo robusto para a avaliação de modelos multiobjetivo de ML, que agrega soluções

usando a mediana de Wilcoxon e intervalos de 95% de confiança. Posteriormente, quando os dados de

MPM estavam disponíveis, desenvolvemos duas abordagens inovadoras para a criação de Árvores de

Decisão, utilizando um AE multiobjetivo que considerava simultaneamente o desempenho preditivo e

a complexidade destas. Com uma experimentação robusta e realista, mostramos que as abordagens

propostas são capazes de evoluir modelos preditivos valiosos para este domínio.

Keywords: Machine Learning Multiobjetivo, Algoritmos Evolucionários, Mobile Performance Market-

ing

vi

C O N T E N T S

i I n t r o d u c t i o n A n d Ba ck g r o u n d

1 I n t r o d u c t i o n 2

1.1 Motivation 2

1.2 Objectives 4

1.3 Research Methodology 6

1.4 Contributions 8

1.5 Thesis Organization 10

2 Ba ck g r o u n d 12

2.1 Introduction 12

2.2 Big Data 13

2.3 Data Mining 15

2.3.1 Supervised Learning 16

2.3.2 Unsupervised Learning 16

2.3.3 Reinforcement Learning 17

2.3.4 Offline and Online Learning 17

2.3.5 Learning Algorithms 18

2.4 Modern Optimization 21

2.4.1 Blind Search 22

2.4.2 Local Search 23

2.4.3 Population-Based Search 23

2.4.4 Multi-objective Optimization 27

2.5 Optimization Of Predictive Models 28

2.5.1 Neuroevolution 28

2.5.2 Genetic Programming and Grammatical Evolution 30

2.6 Mobile Performance Marketing 34

2.7 Optimization Of Predictive Models In Performance Marketing 36

2.8 Summary 39

ii M a i n B o d y

3 Mu l t i - s t e p T ime S e r i e s P r e d i c t i o n I n t e r v a l s U s i n g Ne u r o e v o l u t i o n 42

3.1 Introduction 42

3.2 Materials And Methods 44

vii

con t en t s viii

3.2.1 Time series datasets 44

3.2.2 Forecasting methods 45

3.2.3 Evaluation 51

3.3 Results 53

3.3.1 Experimental setup 53

3.3.2 Forecasting methods 55

3.3.3 Computational effort and training optimization examples 59

3.4 Conclusions 60

4 Mu l t i - o b j e c t i v e G r amma t i c a l E v o l u t i o n O f D e c i s i o n Tr e e s Fo r Mob i l e

Ma r ke t i n g U s e r C o n v e r s i o n P r e d i c t i o n 63

4.1 Introduction 63

4.2 Materials And Methods 67

4.2.1 Mobile Performance Marketing data 67

4.2.2 Multi-objective Grammatical Evolution Decision Trees 69

4.2.3 Comparison methods 73

4.2.4 Evaluation 74

4.3 Results 76

4.4 Conclusions 82

iii C o n c l u s i o n s

5 Con c l u s i o n s 86

5.1 Overview 86

5.2 Discussion And Future Work 88

References 91

iv A p p e n d i c e s

a E v o l t r e e : U s e r Manu a l 103

a.1 Overview 103

a.2 Installing 104

a.3 Quick Start 104

a.3.1 Load Example Data 104

a.3.2 Offline Learning: Fit EDT and EDTL models 106

a.3.3 Online Learning: Fit EDT and EDTL models 107

a.4 Citation 109

L I S T O F F I G U R E S

Figure 1 Illustration of the OLAmobile business. 3

Figure 2 Design Science Research Process Model. 6

Figure 3 Big Data Process. 14

Figure 4 Example of a Decision Tree. 18

Figure 5 Basis of Support Vector Machines. 19

Figure 6 Examples of Neural Network topologies. 21

Figure 7 Investment on mobile advertising industry since 2007. 35

Figure 8 Time series plots. 46

Figure 9 The base Neural Network model for LUBE and M2LUBET. 47

Figure 10 Example of a Pareto front. 50

Figure 11 Example of the radial slices and clustering strategies for ensemble model

selection. 51

Figure 12 Schematic of the rolling window procedure. 52

Figure 13 Example of the forecasting results for MLUBET method. 53

Figure 14 Forecasting results for non-ensemble methods. 56

Figure 15 Forecasting results for ensemble methods. 58

Figure 16 Examples of the obtained multi-step ahead Prediction Intervals. 59

Figure 17 Evolution of Pareto front for MLUBET and M2LUBET methods. 61

Figure 18 Schematic of the proposed MGEDTL approach. 72

Figure 19 Complexity Wilcoxon confidence intervals of AUC median values. 77

Figure 20 Example of a generated Python code and the corresponding DT. 78

Figure 21 Evolution of the best AUC values of the ML classifiers models. 79

Figure 22 Evolution of the hypervolume values of the GE algorithms. 79

Figure 23 The effect of seeding a population. 80

Figure 24 Example of ROC and ALIFT curves for GE algorithms. 81

Figure 25 User Manual: GE-based Decision Tree example. 103

Figure 26 User Manual: ROC curve for EDTs in offline learning task. 107

Figure 27 User Manual: ROC curve for EDTs in online learning task. 109

ix

L I S T O F TA B L E S

Table 1 Description of the selected time series datasets. 45

Table 2 Summary of the main parameters used in Neuroevolution work. 54

Table 3 Selected number of hidden nodes for distinct base learner models. 55

Table 4 Median hypervolume test values for neuroevolution methods. 57

Table 5 Computational effort for all the base learner methods. 60

Table 6 Summary of the related work. 65

Table 7 Summary of the collected Mobile Marketing data. 68

Table 8 Description of Mobile Marketing data attributes 68

Table 9 Description of RW data and GE generations used. 75

Table 10 Extreme left 𝑥−axis AUC values from Figure 19. 78

Table 11 Computational effort for all Machine Learning classifiers. 82

x

A C R O N Y M S

ACO Ant Colony Optimization.

AI Artificial Intelligence.

ANN Artificial Neural Network.

API Application Programming Interface.

AUC Area Under the Curve.

BNF Backus–Naur Form.

cgNEAT content-generating NeuroEvolution of Augmenting Topologies.

CPA Cost Per Acquisition.

CPC Cost Per Click.

CPI Cost Per Install.

CPM Cost Per Mille.

CPV Cost Per View.

CRISP-DM CRoss-Industry Standard Process for Data Mining.

CTR Click Through Rate.

CVR Conversion Rate.

CWC Coverage Width-based Criterion.

DE Differential Evolution.

DL Deep Learning.

DM Data Mining.

DSP Demand-Side Platform.

DSRM-IS Design Science Research Methodology for Information Systems.

DT Decision Tree.

EA Evolutionary Algorithm.

EANN Evolutionary Artificial Neural Network.

EC Evolutionary Computation.

EDA Estimation of Distribution Algorithm.

EDT Evolutionary Decision Tree.

FNN Feedforward Neural Network.

GA Genetic Algorithm.

xi

Acronyms xii

GE Grammatical Evolution.

GEP Gene Expression Programming.

GNARL GeNeralized Acquisition of Re-current Link.

GP Genetic Programming.

HyperNEAT Hypercube-based NeuroEvolution of Augmenting Topologies.

ICT Information and Communication Technology.

IDF Inverse Document Frequency.

IS Information System.

IT Information Technologies.

JSON JavaScript Object Notation.

KDD Knowledge Discovery from Databases.

LE Lamarckian Evolution.

LR Logistic Regression.

LTV Lifetime Value.

LUBE Lower and Upper Bound Estimation.

LUBEX Lower and Upper Bound Estimation eXtension.

MGEDT Multi-objective Grammatical Evolution Decision Tree.

MGEDTL Multi-objective Grammatical Evolution Decision Tree Lamarckian evolved.

ML Machine Learning.

MLP Multilayer Perceptron.

MLUBE Multi-objective evolutionary algorithm Lower and Upper Bound Estimation.

MMNEAT Modular Multi-objective NeuroEvolution of Augmenting Topologies.

MO Multi-Objective Optimization.

MOEA Multi-Objective Evolutionary Algorithm.

MSE Mean Squared Error.

NB Naive Bayes.

NEAT NeuroEvolution of Augmenting Topologies.

NMPIW Normalized Mean Prediction Interval Width.

NN Neural Network.

NSGA-II Non-dominated Sorting Genetic Algorithm II.

PCP Percentage Categorical Pruning.

PI Prediction Interval.

PICE Prediction Interval Coverage Error.

Acronyms xiii

PICP Prediction Interval Coverage Probability.

PMBGA Probabilistic Model-Building Genetic Algorithm.

PROMOS PRediction and Optimization of MObile Subscription marketing campaigns.

PSO Particle Swarm Optimization.

R&D Research and Development.

RBF Radial Basis Function.

RF Random Forest.

RNN Recurrent Neural Network.

ROC Receiver Operating Characteristic.

rtNEAT real-time NeuroEvolution of Augmenting Topologies.

RW Rolling Window.

SEEA Simple Elitist Evolutionary Algorithm.

SLP Single Layer Perceptron.

SMOTE Synthetic Minority Oversampling Technique.

SOM Self-Organized Map.

SPEA 2 Strength Pareto Evolutionary Algorithm 2.

SVM Support Vector Machine.

TSF Time-Series Forecasting.

TWEANN Topology and Weight Evolving Artificial Neural Network.

XAI Explainable Artificial Intelligence.

XB XGboost.

Part I

I N T R O D U C T I O N A N D B A C KG R O U N D

1

I N T R O D U C T I O N

1.1 Mo t i v a t i o n

Advances in Information Technologies (IT) led to an exponential increase on the amount of produced and

stored data. In particular, the growth on smart devices usage (e.g., tablets, smartphones) contributed to

this data growth and also leveraged new business opportunities for digital markets, including advertising.

Particularly, a market termed Performance Marketing, or Performance-based Advertising, has been a

target of attention and investments in the last few years (Statista, 2021). In this market, advertising

campaigns are displayed to users, intending to lead them to purchase a product or subscribe a service

(resulting in a conversion). This PhD thesis presents an application of modern optimization of predictive

algorithms to the mobile sector of Performance Marketing, collaborating with a company that operates

in this sector (OLAmobile). Their business, illustrated in Figure 1, comprehends 4 main stakeholders:

advertisers, publishers, users and intermediary entities, such as the company under study. Advertisers

are entities with ad campaigns regarding their products or services and that need popular digital spaces

(e.g., news websites, online mobile games) to display their campaigns. Publishers own these digital

spaces and attract a vast audience of users to their content. Demand-Side Platforms (DSPs), owned

by intermediaries, are platforms responsible for matching users to advertisements, aiming to lead the

to a conversion (purchase or subscription) and for assuring the respective monetization flows (e.g., for

the publishers).

OLAmobile operates in the Mobile Performance Marketing industry since 2011, being responsible

for redirecting quality users to their partners/advertisers mobile services campaigns. In this market,

compensation only occurs if mensurable metrics are presented, which means that this company is paid

for each succeeded purchase or service subscription, in what is termed as Cost Per Acquisition (CPA)

or Cost Per Install (CPI). Campaigns are displayed to users through a smart link, and each time they

click on it, a new event called redirect is generated and stored. This event consists in redirecting the

user to the campaign page, where a different event can be performed: a sale. There are different types

of sales, namely product purchases (e.g., mobile games, musics) or service subscriptions (e.g., news,

ringing sounds), with the latter being of greater interest to advertisers, since users perform continuous

payments in order to maintain the subscription. Advertisers hire intermediary companies based on

2

1.1. Motivation 3

Figure 1: Illustration of the OLAmobile business.

their DSP performance, often using: a Click Through Rate (CTR) measure, which corresponds to the

number of user clicks on campaigns divided by the number of times these were presented; and a user

Conversion Rate (CVR), which measures the probability that a particular user will perform a conversion

after clicking an ad link. Thus, a good DSP performance in terms of both CTR and CVR increases the

chances of conversions and, consequently, increases profits for 3 of the main stakeholders (advertisers,

publishers and intermediaries).

In the particular case of the OLAmobile company, several million redirects are generated hourly,

from which only a small percentage (around 1%) originates a conversion and there is a limited set of

information that can be used, due to technological and privacy limitations. Moreover, according to

OLAmobile specialists, neither the company nor its main direct and indirect competitors use Machine

Learning (ML) techniques in their DSP to match a campaign to a given user, nor do they present the

more relevant product to the users. Instead, mobile campaign selection is performed based on eventual

profit in case of a conversion, which benefits the exhibition of higher profitable campaigns. Hence,

improving the DSP process of matching users to campaigns of their interest would have a direct impact

on this market and may yield a noticeable competitive edge to this industry. In this doctoral thesis,

we address this particular Mobile Performance Marketing issue, using OLAmobile data, by optimizing

Predictive ML models using Modern Optimization approaches.

In the past, several studies adopted Modern Optimization to design predictive models, outperforming

traditional ones (Stanley and Miikkulainen, 2002; Mendes et al., 2002; Cortez and Donate, 2014;

Donate and Cortez, 2014; Ojha et al., 2017; Pereira et al., 2017). However, most of the proposed

methods on these studies are evaluated in static environments with smaller amounts of data, when

compared with the Mobile Performance Marketing industry. In effect, this industry deals with high-

speed Big Data, with several campaigns often emerging and disappearing, and the DSP has a limited

time to provide a correct campaign, specifically 10 milliseconds. Thus, during this PhD, we intend

1.2. Objectives 4

to focus on the research and development of an advanced ML system, involving learning algorithms

(e.g., Artificial Neural Networks (ANNs), Decision Trees (DTs)), trained using relevant state-of-the-art

modern optimization methods (e.g., Evolutionary Algorithms (EAs)). The goal is to optimize, using

Evolutionary Computation (EC), predictive models that allow to perform the optimal matching between

the advertised product and the interested and relevant audience to that product. In particular, we

focus on multi-objective implementations, aiming to deal with two or more measures that may fit the

company requirements. Moreover, although EAs tend to be reasonable in terms of computational cost

(Michalewicz et al., 2006), these methods are slower when compared with traditional ML algorithms

and the mobile marketing industry has tight time limitations. Therefore, we intend to explore parallelism

approaches to address this issue and fulfill the company’s requirements.

1.2 Ob j e c t i v e s

This doctoral thesis was partially developed under a Research and Development (R&D) project named

PRediction and Optimization of MObile Subscription marketing campaigns (PROMOS)1, related with the

use of Artificial Intelligence (AI) and Modern Optimization applied to the Mobile Performance Marketing

industry, born from a consortium between OLAmobile company and University of Minho. Before this

project, companies operating in this sector, not only OLAmobile but also its partners and competitors,

resort to simple mathematical formulas based on predefined variables to redirect their users to the most

appropriate product campaign. In particular, the used data attributes only consider user information

(e.g., country, operative system) and the campaign selection is based on the eventual obtained profit

in case of a purchase.

With this approach, campaigns regarding higher profitable products have a higher probability of be-

ing displayed, even though it may not be the more interesting option for the end user. Moreover, this

method is currently translated in a success CVR rate of nearly 1% between redirects and purchases.

Since compensation only occurs when a user performs a purchase, augmenting this rate would directly

increase profit for companies as OLAmobile. Hence, developing a more accurate method would have

a direct influence on business, not only for the company under study, but also for other intermedi-

ary companies, advertisers and publishers. According to OLAmobile, neither the company nor their

competitors used any type of ML to perform the matching between users and advertisements. There-

fore, during the execution of this project, it is expected to develop a novel learning method to perform

this matching, fulfilling the Mobile Performance Marketing industry requirements, using OLAmobile

to apply such method. Under this context, there is a set of scientific objectives and business- and

technological-related requirements associated with this doctoral thesis.

1 https://promos.dsi.uminho.pt/en

https://promos.dsi.uminho.pt/en

1.2. Objectives 5

Themain goal of this thesis is to give a strong contribution to the body of knowledge regarding modern

optimization of predictive models, using EC, with a particular focus in multi-objective tasks. Traditional

ML approaches are not able to deal with these tasks, thus, using EC to optimize ML algorithms is the

core of this thesis. To achieve this contribution, current state-of-the-art Modern Optimization algorithms

applied to predictive models will be researched and evaluated under the Mobile Performance Marketing

context, using the OLAmobile data. Our purpose is to develop a novel online learning model, capable of

automatically learn form high-speed big data streams, taking advantage of multicore technology in order

to be scalable and to guarantee a prediction response time inferior to 10 milliseconds. Furthermore, it

is intended to use predictive models, automatically optimized by multi-objective EAs, providing accurate

and real-time predictions, in order to perform the matching of users and product campaigns of their

interest.

There are some important smaller objectives associated with this main objective and relative to

Mobile Performance Marketing business and technological requirements, including:

• Extend the number and quality of used attributes for training the developed model. Currently,

OLAmobile only uses a small set of fixed variables regarding user information (e.g., country,

devices’ operative system, mobile operator). During this research project, we intend to explore

other attributes, namely advertisers and publishers information. Thus, by using a wider set of

useful data, we expect to achieve better predictive performance.

• Design an efficient architecture for the parallelism approach. As already mentioned, the DSP

must provide an advertisement to be presented within 10 milliseconds. Therefore, considering

the computational limitations associated with the project computational server and the higher

computational costs associated with EA, a smart use of hardware must be performed.

• Perform a robust and reliable evaluation of the developed model. To ensure the quality of our

model, we intend to perform a robust benchmark comparing our algorithm with current state-

of-the-art ML algorithms, considering at least two metrics: model predictive performance and

computational cost.

• Provide explainable predictions to provide insights to OLAmobile experts. This objective requires

the optimization of white-box predictive models (e.g., decision trees). By providing explainable

predictions, the company decision makers are able to extract useful knowledge regarding their

business.

• Enhance company’s current metrics (e.g., CVR). This objective is directly related to model’s

performance, thus, performing a better matching between users and campaigns would reflect

an improvement on its metrics and profits.

1.3. Research Methodology 6

1.3 Re s e a r ch Me t h o d o l o g y

Considering the nature of this research project, which involves the development of an artifact – a ML

model – to address a specific problem, the adopted approach is Design Research. In particular, Design

Science Research Methodology for Information Systems (DSRM-IS) was the chosen methodology for

this project, and it consists in a set of techniques and analytic perspectives to develop Information

System (IS) research. DSRM-IS, presented in Figure 2, is divided in 5 steps: Awareness of Problem,

Suggestion, Development, Evaluation and Conclusion. Current section details how each of these steps

were applied on this project’s development.

Figure 2: Design Science Research Process Model [taken from (Vaishnavi and Kuechler, 2004)].

The increased usage of mobile devices over the last years has led to vast opportunities for the Mobile

Performance Marketing industry, which consists on displaying useful advertisements to users, on their

mobile devices, aiming to lead them to perform a purchase. However, these opportunities also brought

challenges regarding a real-time data treatment and mining. Currently, only nearly 1% of user clicks

on a product campaign are converted into a sale, which is a tiny success percentage. Furthermore,

companies operating on this marketing sector do not choose campaigns to be presented to users

based on the possible interest, but, instead, on an eventual profit to the company. The methods used

to perform this mapping between users and products are outdated, which justifies a small percentage of

purchases face to the number of displayed campaigns. The first step of this project was the awareness

of this issue, combined with the analysis of the current state of the art, which led to realizing that this

1.3. Research Methodology 7

situation could be improved if a different approach was used, and contributions could be made both in

terms of business and body of knowledge. Hence, the formulated problem includes dealing with high-

speed dynamic data at a real-time level by using non-traditional ML algorithms that can automatically

give better advertisements suggestions to users, leading them to perform a purchase and, therefore,

increasing some important companies metrics and, consequently, the profit. Moreover, exploring and

implementing these algorithms could also lead to innovative contributions to the ML subject. Thus, a

solution was thought and formulated, which leads to the next step of the methodology.

The second DSRM-IS step aims to suggest a solution for the identified problem, which should then

be implemented and evaluated, aiming to increase the existing body of knowledge and contribute to

solving the mentioned problem. Regarding this doctoral project, the suggested solution consists on us-

ing Modern Optimization algorithms to evolve predictive models, intending to improve their predictive

performance on this type of marketing data, taking into consideration a set of limitations, including com-

putational costs, real-time need for an accurate prediction, business needs and scientific contributions.

Specifically, multi-objective Genetic Algorithms (GAs) were considered to create and train predictive

models, such as DTs and Neural Networks (NNs). This decision was taken based on state-of-the-art

studies showing the flexibility and success of these approaches in different contexts (Mendes et al.,

2002; Cortez and Donate, 2014).

After these two mentioned steps were accomplished, the next step concerns with the development

of an innovative automatic ML modeling. It should be noted that DSRM-IS methodology is cyclic, which

means that previous phases are not changeless or permanent, thus, can be (and were) modified

when required. The development was produced in an iterative way, by testing different Modern Opti-

mization techniques, Data Mining (DM) models and the combination of both, considering the defined

requirements. In addition, different parallelism approaches were also considered, with the purpose of

improving the system’s efficiency (e.g., response time). For developing this system, the R and Python

programming languages were used, due to their flexibility and success for different DM tasks. The

output of this step was an IS artifact: the automatic ML algorithm, created using a multi-objective EA.

Throughout the development phase, the system was evaluated under different metrics (e.g., predic-

tive performance, computational effort, prediction model complexity), such that it can be compared

with relevant state-of-the-art baseline models. In order to do so, traditional ML algorithms were also

implemented and tested. Then, a set of statistic tests were used to compare both implementations,

aiming to increase the confidence on the results, producing a robust and fair comparison. In particular,

we were able to produce an innovative and robust multi-objective result comparison method, detailed

further on this document.

Finally, the last step of this methodology is achieved when the evaluated model accomplishes results

that are considered satisfactory. On this project, satisfactory would mean that the developed system

would have a better performance, statistically confirmed, when compared with the existing methods in

a robust benchmark, fulfilling all established objectives. Since the DSRM-IS denotes a cyclic process,

1.4. Contributions 8

several iterations can be (and were) needed until we consider that success was achieved. Then, clos-

ing conclusions will be withdrawn, which often includes scientific publications. In effect, this project

presented its research work in two JCR Q1 Journals and one conference, as detailed in the following

section.

1.4 C o n t r i b u t i o n s

This doctoral thesis was partially developed under the PROMOS R&D project, with a 3 year duration,

in collaboration with OLAmobile, a company operating on Mobile Performance Marketing industry. In

parallel with this thesis, another PhD thesis was developed, addressing the same issue and using the

same data, but employing a different approach. Particularly, this thesis main goal relies on the contri-

butions to the body of knowledge of Modern Optimization of predictive models, with a special focus in

multi-objective optimization tasks, while the other one pays a particular attention to data preprocessing

and the use of Deep Learning architectures for binary and ordinal classification tasks. In effect, both

approaches were associated with OLAmobile, and therefore had to comply with the PROMOS project

requirements. Nevertheless, during the project’s first year, which also corresponded to this doctoral

thesis first year, there was no available data regarding the specific OLAmobile use case. In effect, an

Application Programming Interface (API) was being developed by the company with the purpose of

allowing the collection of OLAmobile real-world data. Hence, we decided to start the PhD work with

the exploration of a multi-objective EA for optimizing ML models, which is the main topic of this disser-

tation, giving particular focus to Multilayer Perceptron (MLP) NN and using nine time series datasets

from several real-world domains. The purpose was to gain insights on the application of multi-objective

GA for optimizing ML models for supervised learning tasks, as well as to develop a robust and reliable

evaluation method for multi-objective ML tasks.

Under this context, this thesis first contribution is a set of neuroevolution methods for multi-step

ahead time series Prediction Intervals (PIs) using Non-dominated Sorting Genetic Algorithm II (NSGA-II).

The purpose was to build PI, minimizing two different metrics regarding the achieved PIs: Normalized

Mean Prediction Interval Width (NMPIW) and Prediction Interval Coverage Error (PICE). Specifically, we

proposed 6 Evolutionary Artificial Neural Network (EANN)-based Multi-objective evolutionary algorithm

Lower and Upper Bound Estimation (MLUBE) methods, termed M2LUBET1, M2LUBET2, MLUBEXT,

MLUBEXT2, M2LUBEXT and M2LUBEXT2. Furthermore, we also developed an innovative and robust

evaluation method that uses a Rolling Window (RW) procedure with several iterations. Considering

that GA are population-based and NSGA-II provides a set of Pareto-based solutions, analysing results

from several iterations of RW is not an easy task. Therefore, our evaluation method aggregates similar

solutions in one of the metrics and estimates Wilcoxon median values and 95% confidence intervals

for each set of solutions. This way, the obtained graphics are more visually friendly and easily un-

derstandable, allowing a simple comparison between different Multi-Objective Evolutionary Algorithm

1.4. Contributions 9

(MOEA) solutions. The work mentioned here is detailed in Chapter 3 and has resulted in the following

publication of a conference paper and a journal article:

• Pedro José Pereira, Paulo Cortez, Rui Mendes. Multi-objective Learning of Neural Net-

work Time Series Prediction Intervals. EPIA Conference on Artificial Intelligence 2017:

561-572.

• Paulo Cortez, Pedro José Pereira, Rui Mendes. Multi-step Time Series Prediction Intervals

Using Neuroevolution. Neural Computing and Applications 32(13): 8939-8953 (2020).

After these contributions, several preliminary experiments were conducted by applying a Grammati-

cal Evolution (GE) to design and evolve different supervised ML algorithms for a user CVR binary clas-

sification, using OLAmobile data. In the previous experiments, our base learner was a fixed-topology

NN. Yet, considering that the other PhD thesis associated with the PROMOS R&D project was exploring

Deep Learning architectures, we decided to try different base learners. Although it is not reflected on

this document, several attempts were performed aiming to create and evolve Logistic Regression and

Symbolic Regression models using GE. However, after several attempts that required several months

of work, the obtained results were not considered satisfactory. Thus, we opted in a later PhD stage to

change the target base learner, focusing on DTs. The motivations to choose this variety of model relied

on its popularity in classification tasks and its easier interpretability when compared with other ML

models (e.g., Random Forest). Moreover, we found some state-of-the-art works that used EAs to evolve

DTs. Thus, our next contribution focuses on the application of GE-based DT for binary classification

tasks (mobile user CVR prediction).

Chapter 4 meticulously describes our contributions for the Mobile Performance Marketing industry

in the form of two novel approaches: Multi-objective Grammatical Evolution Decision Tree (MGEDT) and

Multi-objective Grammatical Evolution Decision Tree Lamarckian evolved (MGEDTL). The former uses

a multi-objective pure GE method, while the latter takes advantage of Lamarckian Evolution process,

using traditional DTs. Both these multi-objective approaches design and evolve Evolutionary Decision

Trees (EDTs) that are able to deal with high-speed big data streams, taking advantage of parallelism

techniques during the GE evaluation process, considering two relevant metrics: predictive performance

and complexity. The first is measured in terms of Area Under the Curve (AUC), which is flexible to

unbalanced data, and the last is measured in terms of tree nodes, where lower values represent simpler

solutions. Furthermore, we applied a random data sampling technique during this process, ensuring

that our methods are not harmed by unbalanced datasets, as the ones provided by OLAmobile. By

using our previously developed evaluation method, we performed a robust benchmark comparing our

approaches with different ML algorithms, namely traditional DT, Random Forest and Deep Learning,

achieving quite interesting results. Although we do not directly provide a campaign to a user, our EDT,

similarly to regression trees, outputs a numerical probability of a user to purchase a given product.

1.5. Thesis Organization 10

With this approach, we can test from around 5 thousand (with MGEDTL) to 2 million (with MGEDT)

different campaigns within the OLAmobile 10 milliseconds time limitation. Then, the campaign with

the highest probability to originate a conversion can be selected and displayed to the user. Moreover,

the work developed in Chapter 4 originated a Python module named evoltree, available on PyPi2 and

GitHub3, whose user manual can be found in Appendix A, and also led to the following journal article

publication:

• Pedro José Pereira, Paulo Cortez, Rui Mendes. Multi-objective Grammatical Evolution of

Decision Trees for Mobile Marketing User Conversion Prediction. Expert Systems with

Applications 168: 114287 (2021).

1.5 T h e s i s O r g a n i z a t i o n

This dissertation is composed by 4 main parts, which include 5 chapters and 1 appendix. The first part

is composed by Chapters 1 (Introduction) and 2 (Background), providing, respectively, an introductory

description of the addressed problems during this thesis and the relevant state-of-the-art. In particular,

Chapter 2 is divided in two main contents. The first concerns with a theoretical introduction with a few

relevant concepts regarding the subjects addressed during this project, namely Big Data (Section 2.2),

Data Mining (Section 2.3) and Modern Optimization (Section 2.4). During these sections, the main

concern is to provide an introduction to the mentioned topics. The second Chapter 2 content consists

of a state-of-the-art analysis of recent and important practical studies related with the application of

learning methods to different domains, as well as describing the Mobile Performance Marketing indus-

try. Specifically, Section 2.5 describes how optimization algorithms are used to create and/or evolve

different predictive algorithms, with a particular focus in the Neuroevolution and Genetic Programming

(GP) and GE subjects; Section 2.6 describes the industry studied during this PhD, its main stakeholders

and commonly used metrics by companies as OLAmobile; Section 2.7 presents current studies on the

Mobile Performance Marketing and similar areas, using ML algorithms and, in some cases, Modern

Optimization, aiming to identify research gaps; finally, Section 2.8 presents the final conclusions, as

well as the research path we intend to follow.

In terms of the second part, composed by Chapters 3 and 4, it describes the main experimental

work developed during this doctoral project. Chapter 3 is based on a journal article (Cortez et al.,

2020), published during this PhD project. During this chapter, we detail our proposed multi-objective

Neuroevolution methods for multi-step ahead time series PI. This work is a continuation from a previous

work (Pereira et al., 2017) and it was developed in an initial phase of this project, during which there

was not any available data from OLAmobile. Thus, it was developed with the purpose of gaining insights

2 https://pypi.org/project/evoltree/
3 https://github.com/p-pereira/evoltree

https://pypi.org/project/evoltree/
https://github.com/p-pereira/evoltree

1.5. Thesis Organization 11

with the multi-objective modern optimization of predictive models. Moreover, during this chapter we

proposed an innovative evaluation method for multi-objective results and that was used later in the work

developed in the next chapter. Turning to Chapter 4, it is based on our core journal publication regard-

ing the contributions in the Mobile Performance Marketing industry (Pereira et al., 2021), including

work also developed during this PhD. More specifically, we developed two novel multi-objective ap-

proaches for designing and evolving EDT, using predictive performance and complexity as goals. Both

approaches use a multi-objective NSGA-II-based GE python implementation, one with pure GE method

and one including a Lamarckian Evolution. The EDT were evaluated using the innovative method de-

veloped in Chapter 3 work, assuming real-world Mobile Performance Marketing datasets provided by

OLAmobile. Furthermore, this chapter provides a robust benchmark, comparing results achieved by

our proposed approaches with 3 ML algorithms, namely traditional Decision Trees, Random Forest and

Deep Learning.

The third part comprehends Chapter 5 (Conclusions). Here, the main conclusions of this doctoral

project are discussed, as well as its limitations and possible directions of future work. Finally, the

last part (Appendix A) includes a user manual for the developed Python module, regarding the work

presented in Chapter 4.

2

B A C KG R O U N D

2.1 I n t r o d u c t i o n

The present chapter reviews the relevant state-of-the-art works, concerning the use of Modern Optimiza-

tion for designing predictive models, using Big high-speed Data, applied to the Mobile Performance

Marketing industry. Thus, it starts explaining the search strategy, followed by a theoretical introduction

where the main concepts and models are addressed, then explaining the area under study and, lastly,

analyzing developed work on this area, aiming to find a research gap that we intend to fulfill. Several

studies were proposed regarding Data Mining applications for numerous subjects, including marketing,

economics, finance, etc., which simplified the process of finding relevant literature about it. Hence, this

literature review was divided in two main stages: theoretical introduction to the subject, where main

concepts are described, and practical studies, which describes the relevant works conducted.

For the theoretical introduction, the majority of used references were mainly in books. Part of the

used books were provided by the supervisors (e.g., (Cortez, 2021)), and the remaining were found

online in databases, such as Google Scholar1 and Google Books2. The used terms for the bibliographic

search were: “Big Data”, “Data Mining”, “Knowledge Discovery from Databases”, “Data Mining Mod-

els”, “Neural Networks”, “Modern Optimization”, “Metaheuristics”, “Neuroevolution”, among others.

Found references on this search were used to write the following sections and related with: Big Data

(Section 2.2), Data Mining (Section 2.3) and Modern Optimization (Section 2.4). Although it is not

directly reflected in the mentioned sections, some Massive Online Open Courses (MOOCs) were at-

tended as a supplement for this first stage, with the purpose of providing important insights related

to a few relevant subjects, including Neural Networks, Metaheuristics and Multi-Objective Optimization.

The used platforms to attend these courses were Data Camp3 and Coursera4.

Regarding the second stage of this literature review search, the purpose was to find practical stud-

ies concerning the optimization of predictive models for big data sets, particularly, in the marketing

industry. Furthermore, this search was extended to similar areas due to the lack of proposed stud-

1 https://scholar.google.pt
2 http://books.google.pt
3 http://datacamp.com
4 http://coursera.org

12

https://scholar.google.pt
http://books.google.pt
http://datacamp.com
http://coursera.org

2.2. Big Data 13

ies in this area. The used databases for this search were Google Scholar, Science Direct5, Scopus6

and IEEE Xplore7. Within these databases, the used terms were more specific, including: “Evolving

Neural Networks”, “Neuroevolution”, “Genetic Algorithms and Neural Networks”, “Evolutionary Com-

putation and Neural Networks”, “Big Data and Neural Networks”, “Data Streams Prediction”, “Mobile

Performance Marketing”, “User Intention Prediction”, “NEAT”, “NEAT Supervised Learning”, ”Genetic

Programming”, ”Grammatical Evolution”, ”Island Model”, among several others. In each search, when

possible, filters were applied regarding the study year, in order to select the more recent works (mostly

in the last 10 years). Moreover, it was also applied a filter to select journal papers and Web of Science

Journal Rank8 was used to select the papers from the best journals. Finally, based on the abstract and

conclusions sections, and sometimes the results, the retrieved papers were selected or discarded. This

search allowed to find related studies in terms of optimization of machine learning algorithms, used in

Sections 2.5 and 2.7, as well as regarding mobile performance marketing and similar industries, used

in Section 2.6. Based on the analysed studies, final conclusions are withdrawn and a research gap is

identified in Section 2.8.

2.2 B i g D a t a

Several advances in Information Technologies (IT) have allowed the gathering and storing of virtually

any type of data with a minimum effort, which leads to a huge increase in terms of data volume to

be stored. There were several attempts to estimate and predict data volume and its growth, given its

importance on multiple fields.

In 2016, Dhaenens and Jourdan estimated that, by 2020, 40 zettabytes (40 trillion gigabytes) of data

would be produced. However, recent forecasts (Holst, 2021) show that this amount was surpassed in

2019. Furthermore, Holst estimates that this value will increase more than 4 times by 2025. Social

networks and traffic management, in a smart city context, are examples of systems that generate vast

volumes of data in a matter of seconds. For instance, according to Domo’s Data Never Sleeps 8.0

report (Domo, 2021), in 2020, every minute 500 hours of videos were uploaded to Youtube, 41.7

million messages were shared on WhatsApp, 147 thousand photos were uploaded to Facebook and

3.8 thousand dollars were spent on mobile apps.

The produced data is not anymore limited to text and numerical values recorded in structured

databases, but also huge amounts of unstructured data, in several formats (e.g., as documents, im-

ages, audio files and even videos), generated by a countless number of devices, including smartphones,

sensors, GPS devices or cameras. This huge amount of data, generated by several devices in a great

velocity, leads to a subject well known as Big Data.

5 http://sciencedirect.com
6 http://scopus.com
7 http://ieeexplore.ieee.org
8 https://mjl.clarivate.com/home

http://sciencedirect.com
http://scopus.com
http://ieeexplore.ieee.org
https://mjl.clarivate.com/home

2.2. Big Data 14

Figure 3: Big Data Process [adapted from (Dhaenens and Jourdan, 2016)].

There are many definitions for Big Data, however, the most popular and frequently used (Loshin,

2013) belongs to Gartner and states: “Big Data is high-volume, high-velocity and high-variety informa-

tion assets that demand cost-effective, innovative forms of information processing for enhanced insight

and decision making” (Gartner Research, 2012). The definitions change with authors, yet, there are 3

dimensions (3 V’s), that seem to be agreed by the majority, as Big Data common properties: Volume,

Velocity and Variety. Volume is related to the amount of data that is created and collected, which usually

shows an exponential growth in terms of size; velocity concerns with the dynamics associated with the

data volume, i.e., data streams coming in different speeds and different quantities, often needing to be

processed and treated in nearly real-time; variety involves having several sources generating different

types of semi-structured or unstructured data, such as text, log files, audio, among others (Morabito,

2015; Dhaenens and Jourdan, 2016). More recently, two more V’s (dimensions) have been considered:

Veracity and Value. The former addresses the data quality and the latter the additional value produced

from collected data, which is the main interest of collecting it. Thus, Big Data does not refer only to a

vast volume of data, but mainly with its complexity (Dhaenens and Jourdan, 2016). If data is coming at

a regular velocity and in a structured way, complexity would not be considered higher when compared

to unstructured data arriving in an unpredictable speed and with lower volume.

According to Dhaenens and Jourdan (2016), there are 3 main challenges regarding Big Data (Fig-

ure 3): data generation and acquisition, data storage and management and data analysis. The first

challenge does not address how to generate and acquire data, since recent technology (e.g. digital

2.3. Data Mining 15

sensors) allows doing it easily. Instead, it concerns with what information is interesting to record or

measure. Data storage and management becomes a challenge when relational databases are no

longer efficient, mostly due to the lack of capability to adapt to Big Data, i.e., this type of databases

cannot deal with Big Data specificities, such as scalability (physical infrastructure limitations), variety

of data (including unstructured data) and data velocity (non-synchronous acquisition). Consequently,

non-relational database technologies have been developed, such as NoSQL, that do not depend on

static tables. Examples of these technologies are key-value pared databases, document databases –

structured using JavaScript Object Notation (JSON) –, columnar or column-oriented databases (such

as HBase), among others. Finally, the last challenge is concerned with knowledge extraction from data,

which can be divided into 3 levels: reports, multi-level analysis and complex analysis.

This research project does not address problems concerning data generation and acquisition, since

the used data is provided by the Mobile Performance Marketing organization, which will be described

in Section 2.6. Considering this Big Data context, data storage and management will inevitably be a

technological problem to take into account. Yet, it is not considered our main focus. Instead, the main

objective is focusing the third Big Data challenge: complex analysis. This subject aims to discover

unknown patterns in data, which is often known as Data Mining, and will be explored throughout this

document.

2.3 D a t a M i n i n g

Considering the vast amount of data existing nowadays, it is important to give it a meaning, i.e., to

extract knowledge and useful information from it, which is the purpose of Data Mining (DM). As a

scientific interdisciplinary subject, DM does not have a globally agreed definition. Nevertheless, it is

commonly defined as the process of extracting knowledge from a set of data (Hand et al., 2001; Han

et al., 2011; Leskovec et al., 2014; North, 2012; Dhaenens and Jourdan, 2016; Sugiyama, 2016), where

knowledge if often represented in terms of models or patterns. In some cases, DM is considered a

synonym for Knowledge Discovery from Databases (KDD) and for Machine Learning (ML), in other

cases ML is considered a stage of DM process, which is considered an essential mathematical step

of KDD. In this project, it will be considered that DM and KDD are both synonyms for the process

of extracting interesting, useful and valid patterns from datasets supporting decision-making, with ML

being a key technology used to achieve it (North, 2012; Sugiyama, 2016).

The term DM, which can be traced to the late 1980s (North, 2012), is an analogy to gold extraction,

with knowledge being the gold and data being the rocks (Han et al., 2011) and it consists in 6 main steps:

data cleaning, data integration, data selection, data transformation, data mining/modeling, model

evaluation and knowledge presentation. In 1999, a standardized approach to Data Mining known as

CRoss-Industry Standard Process for Data Mining (CRISP-DM) (North, 2012) emerged, which is often

2.3. Data Mining 16

used for DM projects and that also consists in 6 steps: business understanding, data understanding,

data preparation, modeling, evaluation and deployment.

ML can be defined as a set of methods for data analysis and modeling that are based on Artificial

Intelligence (AI) and the idea behind it is to try to imitate natural intelligence, where learning tends to

be based on the use of examples, counter-examples and exceptions (Nettleton, 2014). Depending on

learning objectives and the type of data, there are three main types of ML that can be used: Supervised

Learning, Unsupervised Learning and Reinforcement Learning.

2.3.1 Supervised Learning

Supervised learning is the most common type of ML and the way it works is similar to a teacher-student

relation, where the computer is the student and the user is the teacher (Sugiyama, 2016). Briefly, the

user feeds the computer with examples and counter-examples so that the computer learns a mapping

between input and output values with the purpose of obtaining generalization ability, so it can map

unseen inputs to its expected outputs. Considering a face recognition example, giving some examples

of pictures with faces and counter-examples without faces (training set), the computer should learn to

recognize a face. When new pictures are given to the computer (test set), it should be able to generalize

and know whether there is a face in the picture or not.

Within supervised learning, there are two main tasks, classification and regression, depending on

the target. The first is used when the target is a class (discrete value) and the later when the target is

a numerical value. A classification example can be to classify wine quality (good or bad) based on its

components, where the target is “good” or “bad”. Considering the same case, a regression example

would be to predict the wine quality in a numerical value. Choosing a ML model often depends whether

the target is a class or numerical. However, there are models that, although they are more commonly

used in one task, can be used in both, namely Decision Tree (DT), Support Vector Machine (SVM) and

Neural Network (NN). A brief description of these models is provided further on this document.

2.3.2 Unsupervised Learning

Unlike supervised learning, unsupervised does not have labeled data, i.e., it is not possible to directly

map an input to its output. Therefore, the idea of a teacher-student relation is not applied here. On

the other hand, the purpose of this kind of learning is to find different patterns of data, including

the aggregation of instances in different groups (or clusters) based on their similarities (Torgo, 2010).

This process is called clustering, but there are other unsupervised learning tasks, such as outlier and

anomaly detection.

2.3. Data Mining 17

Unsupervised learning can also be useful when complementing supervised learning, for instance

by using as a preliminary approach to analyze the data. Moreover, organizations can use clustering

for grouping their clients into clusters and understanding similarities and patterns that are not easily

detected. K-means and self-organizing maps (a special type of neural networks) are algorithms that

can be used for these tasks.

2.3.3 Reinforcement Learning

Reinforcement learning describes a learning problem characteristic of autonomous agents interacting in

an environment where the algorithms seek to learn how to map from states to actions by maximizing the

reward received over time (Sammut and Webb, 2017). Returning to the teacher-student idea mentioned

in supervised learning and applying it to reinforcement learning, the teacher evaluates the student’s

behavior and gives feedback about it (Sugiyama, 2016), instead of giving him/her the correct answer

(class or numerical value that should had predicted). A common example used to describe this kind of

learning is driving a car, where the student has an action (turn the wheel to left, for instance) and his

action will be translated in a change in the environment (the car moving), which will either be rewarded

or penalized depending on whether it was the correct action or not.

This sort of approach is often used for automatic game players, where the player receives a penalty

or reward when performing a given move and, therefore, ends up learning how to play, even without

previous knowledge about the game. This type of learning can also be applied to decision support by

penalizing or rewarding the algorithm for each decision it makes. NN are often used in reinforcement

learning by combining them with evolutionary algorithms, for example. These approaches will be

described in Section 2.5.1.

2.3.4 Offline and Online Learning

So far, the mentioned learning approaches were described in a static perspective, which means that

the algorithms learned from data that was already stored. This approached is named offline learning,

also known as batch learning, and it does not have to do with the learning approach (e.g., supervised),

but instead with the used data and its environment, which does not require a continuous learning pro-

cess. In offline learning, the algorithm accepts a single dataset, corresponding to a set or sequence of

observations, it produces its model and does no further learning (Sammut and Webb, 2017). However,

in a Big Data complex environment, this option is often not reliable, since the data is continuously

arriving with new variables, new values and different contexts, and offline learning algorithms do not

quickly adapt to this constantly changing environment. Due to these limitations, a different approach

is needed, and it is called online learning.

2.3. Data Mining 18

In online learning, the data is continuously arriving in data streams, this means that training samples

are provided in smaller sets (e.g., one observation at time) in a sequential manner, and the algorithm

needs to make predictions or choices on it. After a set of predictions or choices, models are retrained,

aiming to learn new changes on context or environment from newer observations. This kind of ap-

proach is useful when the training sample is too large and it cannot be stored (Sugiyama, 2016) or

when dealing with complex and constantly changing environments, such as the Mobile Performance

Marketing domain.

2.3.5 Learning Algorithms

Depending on the task, there are several possible choices concerning the used algorithms. In effect,

there are several algorithms that can be used in supervised learning (both for regression and classifica-

tion tasks), such as DT, SVM and NN. Furthermore, there are several NN adaptions, that can be used

for supervised, unsupervised and reinforcement learning. A brief description of these models is given

in this section.

Decision Trees

Although it can also be used for regression tasks, DT, also called classification trees, are very popular for

classification tasks, since they tend to provide an human understandable explanation for their patterns,

i.e., it is relatively simple to understand why a given set of inputs were mapped to an output (Dhaenens

and Jourdan, 2016). As the name suggests, a DT is composed by decision branches, which are read

from top to bottom, and contain a true/false condition. The decision to follow a given path is based

on that condition’s result and, in case it is a classification problem, the path should lead to a class.

Figure 4 presents a very simple example of a decision tree, with the top rectangle being the root node,

the other rectangle being an internal node, the arrows being branches and the circles being leaf (or

terminal) nodes.

Figure 4: Example of a Decision Tree.

2.3. Data Mining 19

In a few words, constructing a decision tree consists in recursively dividing a training set until each

division contains entirely, or primarily, examples from one class and each internal node has a split

point, which determines how the data should be divided further (Turban et al., 2010).

Support Vector Machines

As a result of its strong theoretical background and successful application to several domains, for

both regression and classification tasks, SVM have the been center of attention for different research

communities (Torgo, 2010). This method converts the original data into a high-dimensional space, so

it can be possible to apply linear models to obtain a separating hyperplane. The mapping between the

original and the new high-dimensional space is done using kernel functions.

Considering Figure 5 and a binary classification example, the left image contains two lines: A and

B. Line B is closer to critical boundary instances (support vectors) from both classes (white and red

points), so, when new examples arrive, it is more likely to fail classifying them when compared with

line A, this means, the new points are more likely to fall on the wrong side of the separator (Battiti and

Brunato, 2017). The idea behind SVM is to insert the hyperplane (right image, blue rectangle) between

the support vectors of each class, separating them, and then maximize the margin, which corresponds

to the distance between line A to the support vectors.

Figure 5: Basis of Support Vector Machines [taken from (Battiti and Brunato, 2017)].

Although SVMs training phase can be extremely slow, it is highly accurate, it can model complex

nonlinear decision boundaries and it is less prone to overfitting (Han et al., 2011). Besides, a SVM

key point is that is maximizes the geometric margin and minimizes classification error simultaneously

(Dhaenens and Jourdan, 2016).

Neural Networks

NN, or Artificial Neural Network (ANN) are a mathematical model that seeks to replicate the human

brain’s processing system and are capable of learning with experience. The human neural system is

composed by 100 billion computing units (called neurons) and about one quadrillion connections (Battiti

2.3. Data Mining 20

and Brunato, 2017). Traditional ANN are composed by three or more layers, each containing a group of

neurons (or nodes) interconnected among them by using connection weights (a numerical value) that

is changed during the NN learning phase. The human brain intelligence is due to its massively parallel

neurons, whose system is commonly known in the jargon by network architecture or topology, and a

proper design of an ANN can offer significant improvements in its learning (Ojha et al., 2017).

A NN topology has to do with the number of layers, the neurons present in each layer and its

connections. For supervised learning tasks, NN have input and output layers and the number of nodes

in each is dependent on the number of variables (also known as features) – where the training data is

fed to the network – and the number of outputs (targets), respectively (Torgo, 2010). The remaining

layers are called hidden layers and it is the user who defines the number of hidden layers, such as

the number of neurons in each layer. This number is very context-dependent, i.e., there is not a

correct number of layers and nodes to be used in all problems, it depends on the data and problem

complexity. Thus, based on the number of layers, nodes and the way they are connected, NN have

different designations.

The simplest form of a NN model is a Single Layer Perceptron (SLP) – proposed in the 50s – which

is only composed by an input and an output layer. From a ML perspective, the model is only capable

of making linear mappings from a set of inputs to a set of outputs (Neukart, 2017; Ojha et al., 2017).

A Multilayer Perceptron (MLP) NN was proposed in the 70s to deal with this limitation by including one

or more hidden layers between the input and output ones. These two types of ANN can be categorized

as Feedforward Neural Network (FNN), which means that connections between neurons does not form

a cycle and go from input to output layer, in this ”forward” order. Radial Basis Function (RBF) NN

(proposed in the 80s) and SVM (proposed in the 90s) are special types of three-layer FNN, capable of

solving both regression and classification tasks, for supervised learning (Ojha et al., 2017). Furthermore,

deep neural networks (or deep learning) are also a successful kind of NN topology, recently gaining a

huge popularity due to its success in diverse ML competitions, that can have more than thousands of

neurons and layers. However, this can bring great impact in the learning speed. There are also FNN

that can be used in unsupervised learning tasks, such as Kohenen’s Self-Organized Map (SOM) and

learning-vector-quantization, both proposed in the 80s and both with only two layers, capable of solving

pattern recognition and data compression tasks (Ojha et al., 2017).

Another NN architecture is called Recurrent Neural Network (RNN), or feedback network model and,

unlike FNN, these networks have feedback connections, this means, connections between nodes can

form cycles (Ojha et al., 2017). Hopfield Network and Boltzmann Machine (both proposed in the 80s)

are two examples of RNN, both being good at the application of memory storage and remembering

input-output relations (Ojha et al., 2017). Figure 6 presents some examples of the distinct NN types,

with grey circles representing input nodes, yellow circles hidden nodes, orange circles output nodes

and arrows and straights representing connections between them.

2.4. Modern Optimization 21

Figure 6: Examples of Neural Network topologies [adapted from (Santos, 2016)].

Considering a FNN neuron, the weighted sum of inputs, and optionally a bias value is added in order

to shift this sum, yields a value known as neuron’s stimulus or inner potential (Volna, 2010). Thus, a

traditional FNN’s learning phase corresponds to the optimization of connection weights (and optionally

bias values) to minimize a predefined error metric. This optimization is often performed using an

algorithm called Backpropagation. Typically, when this learning phase occurs the topology is already

fixed and weights and biases are the only values updated. Yet, there are recent studies that consider

both weight and topology as an optimization problem, which can bring great advantages, as can be

seen in Section 2.5.

2.4 Mod e r n Op t im i z a t i o n

Before explaining the concept of modern optimization, it is important to understand its origins. Opti-

mization is a fundamental topic of operations research, which consists on applying scientific methods

and techniques to decision making problems and in establishing the best or optimal solutions. Oper-

ations research beginnings can be traced to the 40s, during the second world war, where the British

military needed to allocate their scarce and limited resources (airplanes, radars, submarines) to several

activities and they called upon a team of mathematicians to develop methods for solving this problem

in a scientific way. The result of this research were a set of methods, nowadays known as classical

techniques, such as linear programming, that helped Britain win the air battle (Rao, 2019).

Optimization is the process of obtaining the best result under a set of circumstances and it consists

on finding the conditions that give the maximum (or minimum) value of a function (Rao, 2019; Cortez,

2021). Currently, several real-world tasks can be viewed as optimization problems and, thus, optimiza-

tion techniques are used in several domains, namely Engineering, Finance, Marketing and Science.

2.4. Modern Optimization 22

In the last decade, a new class of optimization methods that is conceptually different from classical

techniques has emerged and is called Modern Optimization (Michalewicz et al., 2006; Cortez, 2021),

also known as Metaheuristics or Modern Heuristics.

This type of optimization algorithms, contrasting with classic ones, are general purpose solvers,

which means that they can be applied to a wide range of problems (often complex) (Cortez, 2021).

In particular, modern optimization techniques often do not guarantee that the optimal solution will

be found, but instead they achieve high-quality solutions that satisfy the user’s needs with less com-

putational effort. There are only two things to be specified when using these methods: representation

of the solution and evaluation function (Cortez, 2021). The former concerns with the search space

and its size, and there are several ways of representing solutions, namely binary, integer and real val-

ues, characters, matrix, lists and even a combination of those; the later consists in defining a way of

measuring and comparing the quality of solutions, which is often translated into a numerical value (the

objective) that is intended to be maximized (or minimized) by the algorithm. After solving these issues,

the algorithm will start its search for a solution (or a set of solutions) and the way to do this depends

on the type of search, that can be blind, local or population-based.

2.4.1 Blind Search

The type of search defines how the method will generate the next solution in order to improve its

objective. When assuming a full blind search approach, it will exhaustively search for all possible

alternatives, without using knowledge from previous solutions (Cortez, 2021). This kind of approach

is not feasible for most real-world problems since the search space is continuous or too large. Blind

search can only be applied to discrete search spaces and can be easily encoded in two ways (Cortez,

2021). The first is by defining the full search space in a matrix, where each solution corresponds to a

row and the algorithm sequentially tests each row. The second is by recursively organizing the search

space as a tree, where branches denote possible values for variables and all solutions appear at the

leafs.

Considering the search space as a tree, the algorithm can be depth-first, which starts at the tree’s

root and goes through each brand as far as possible before backtracking, or breadth-first, which also

starts on the root but searches all succeeding nodes at the first level, and then the next succeeding

nodes, until the nodes from the last level, or a stop condition, is found (Cortez, 2021). As pure blind

search is not feasible in most of the optimization problems, the algorithms are usually adapted with the

purpose of reducing the search space by, for instance, limiting the number of levels that the algorithm

can search in a tree. Grid Search and Monte Carlo Search (also known as random search) are popular

examples of these methods with a reduced search space.

2.4. Modern Optimization 23

2.4.2 Local Search

Global optimum is the best solution in the entire search space and it can be found if the size of the

search space is small or if the whole space is tested. However, this approach is often considered

unfeasible, so the concept of neighborhood is used. It consists on searching for the next solution in a

subset of the search space close to the previous solution. Yet, this approach can cause the algorithm

to be trapped in a local optimum, which is the best solution in the neighborhood, instead of finding the

global optimum (Michalewicz et al., 2006). Local search, also called single-state search, consists on

searching the neighborhood of a solution, instead of searching the entire search space.

Local optimization techniques bring, however, a trade-off between the size of the neighborhood and

the feasibility of the search (Michalewicz et al., 2006). In one hand, if the neighborhood’s size is small,

the algorithm may be able to search all solutions quickly, thus, increasing the probability of being

trapped in a local optimum. On the other hand, if the neighborhood is too large, although it reduces

that probability, it could become impossible to compute given the amount of solutions to be tested.

Unlike blind search techniques, modern optimization ones (either local or population-based search)

use the previous solution for generating the next one, which is called guided search. The first solution

can be generated using previous knowledge about the optimization problem or randomly (Cortez, 2021).

What differentiates the algorithms is how the next solution is generated and what is kept from the

previous one. Examples of local optimization algorithms are Hill Climbing, Simulated Annealing and

Tabu Search. Hill Climbing stands for climbing up a hill, assuming that is solving a maximization

problem, until a local optimum is found. Simulated Annealing, proposed in the 80s, is inspired in a

metallurgy process that consists in heating a material and making its temperature to decrease slowly to

allow atoms having a good organization that would correspond to an optimum (Dhaenens and Jourdan,

2016). Tabu Search, also proposed in the 80s, is similar to Hill Climbing, yet, in some cases, it accepts

non-improving neighborhoods in order to escape local optimum.

2.4.3 Population-Based Search

So far, the presented methods used only a single search point in each search. Population-based search,

on the other hand, uses a pool of competing solutions called population, which tends to require more

computational effort when compared with a simple local method, but also tends to reach more global

optimization values (Cortez, 2021). Population-based methods tend to explore more distinct regions of

the search space and most of them are based on analogies to natural concepts (similar to Simulated

Annealing). This type of methods can be divided in two main categories (Dhaenens and Jourdan, 2016):

Evolutionary Algorithm (EA) and Swarm Intelligence.

2.4. Modern Optimization 24

Evolutionary Algorithms

Evolutionary algorithms belong to the field of Evolutionary Computation (EC), which addresses the

computational methods inspired in the process and mechanism of biological evolution by means of

the natural selection theory by Charles Darwin. Natural selection accounts for the variety of life and

its suitability (adaptive fit) for the environment and its evolution mechanisms describe how evolution

occurs through the modification and propagation of genes (Brownlee, 2011). These methods share a

similar structure and have a biological terminology associated with it, some of them stated as follows,

according to Luke (2013):

• Individual - a candidate solution;

• Child and parent - child is the adjusted copy of a candidate solution (its parent);

• Population - pool of individuals;

• Fitness - evaluation function;

• Evaluation or fitness assessment - computing the fitness of an individual;

• Selection - process of selecting individuals according to their fitness;

• Mutation - performing slight changes to individuals;

• Crossover - generation of children through the combination of two or more parents;

• Breeding - producing one or more children from a population of parents;

• Genotype, genome or chromosome - individual’s data structure;

• Gene - slot position of a genome/chromosome/genotype;

• Allele - value for a gene;

• Phenotype - how individual operates during evaluation;

• Generation - one cycle of evolution (selection, breeding, crossover, mutation) and evaluation.

There are several algorithms within the EA class and they differ from one another in the type of

solutions and the way they are generated. The most popular algorithms from this class are Genetic

Algorithm (GA), Differential Evolution (DE), Estimation of Distribution Algorithm (EDA), Genetic Pro-

gramming (GP) and Grammatical Evolution (GE). GAs, the most used within the EAs, were proposed

in the 70s and initially worked only with binary representations (Dhaenens and Jourdan, 2016). These

algorithms are inspired by population genetics and evolution at population level, where individuals

2.4. Modern Optimization 25

contribute with their genetic material, proportional to their suitability to the environment, in form of

offspring (Brownlee, 2011). GA’s objective is to maximize the fitness of the population, by selecting a

set of successful individuals, based on their fitness, for creating descendants that will be inserted into

the new population. Currently, GA is no longer limited to binary representations, so it can deal with

other type of representations (e.g., numerical values) and it can be used in DM problems, as it will be

shown further on this document.

DE, developed in the 90s, has been successfully applied to solve continuous optimization problems

(Cortez, 2021). Similar to GA, this method evolves a population of individuals, where each individual

is encoded by a vector of real values. The main difference when compared to GA are the mutation

and crossover operators. Mutation in DE consists in the use of arithmetic operators to generate new

solutions. The advantage of using DE is that only few control parameters are required, so it is easy to

tune (Dhaenens and Jourdan, 2016).

EDAs, also known as Probabilistic Model-Building Genetic Algorithm (PMBGA), were proposed in the

mid-90s and are optimization methods that combine ideas from EC, ML and Statistics (Mühlenbein and

Paass, 1996). EDA iteratively makes a probabilistic estimation of promising solutions (good individuals),

using them to create new individuals, instead of using crossover and mutation operators as GA and

DE, and it can lead the search towards interesting areas from the search space. These algorithms

can perform an effective search and have been applied to a wide range of problems, however, several

questions are still open regarding their behavior.

GP, proposed in the 90s, is a modern optimization method that, instead of numerical optimization,

is used for automatic programming or discovering mathematical functions (Koza, 1993). It uses a tree

representation, with the leaves representing variables and constants and the internal nodes represent-

ing functions or operators. In GP, individuals are themselves programs. As GA, GP is often used for

DM and ML tasks, however, it has a high computational cost due to its high search space.

Finally, GE is also a global optimization technique within the class of EA, quite similar to GP since

it is also used for evolving computer programs (Ryan et al., 1998). Yet, unlike GP that performs

the evolutionary process on the actual programs, GE does it on variable-length integer chromosomes,

similar to classic EA. In GE, a mapping process is employed to generate programs in any language

by using integer chromosomes to select production rules in a defined grammar. The result is the

construction of a syntactically correct program to be evaluated by a fitness function (O’Neill and Ryan,

2003). Although GE solutions are syntactically correct, they are often more complex than needed. This

phenomenon, known as bloat, leads to an unnecessary increase of the computational cost.

EA is not limited to the mentioned examples. Although these are the most widely used algorithms,

there are other interesting ones within this class that work with parallelism. In particular, distributed

GA is an example of this type of algorithms, that are designed to divide a population across computer

networks, or even computational units, allowing to process different individuals in parallel and trading

2.4. Modern Optimization 26

information between each processing unit (Brownlee, 2011). These type of algorithms are often termed

Island Models, considering each processing unit as an island.

Swarm Intelligence

Besides EA, there is another important class of naturally inspired algorithms termed Swarm Intelligence,

which refers to algorithms or distributed problem-solving devices inspired on the collective behavior of

insect colonies and other animal societies, such as ants, bees, bats, fish, birds, among others. Swarm

Intelligence algorithms work with a set of simple particles (individuals) that interact with each other

and with the environment, leading to a global and self-organized behavior. Although several different

analogies were proposed, such as bee colony optimization, artificial immune systems and bat algorithm,

the two most famous ones are Ant Colony Optimization and Particle Swarm Optimization methods

(Dhaenens and Jourdan, 2016).

Ant Colony System belongs to Ant Colony Optimization (ACO) methods, proposed in the 90s, and

it is based on the social behavior of ants, specifically, on their communication for finding the path to

food. Briefly, real ants walk randomly in different directions in the environment in order to find food

and, once one of them finds it, starts releasing pheromone particles on the path from the food source

to the nest. Eventually, other ants find the pheromone and start going also through that path, laying

down more pheromone, ending up with the whole population of ants following that path (Brownlee,

2011). Artificial ants have a similar behavior, where each ant (individual) is evaluated and is associated

with a type of pheromone-based fitness, where higher levels of pheromone implies better performance.

Finally, ants will deposit pheromone on the path they travelled, based on the quality of the solution

found. New solutions will be created influenced by the pheromone in those paths (Michalewicz et al.,

2006). Unlike the GA, these methods do not use mutation and crossover operators to generate new

solutions, but instead the levels of pheromone on the edges of the graph.

Particle Swarm Optimization (PSO), also proposed in the 90s (Kennedy and Eberhart, 1995), is

inspired by the social behavior of some animals (e.g., fish, birds) of widely searching for food or pro-

visions. In a metaphoric perspective, particles in the swarm (individuals in the population) follow the

swarm’s fitter members biasing their movement toward historically good areas on the environment, the

search space (Mendes et al., 2004). Regarding the PSO algorithms, it consists on randomly generat-

ing autonomous particles in the search space, associating a velocity to each, its location in the search

space, memory to keep track of its best solution and the global best. Then, the optimization process

changes the velocity of each particle toward the individual and global best position, considering the

social influence between particles. PSO has also been used for DM tasks (Mendes et al., 2002), as it

will be shown further on this document.

2.4. Modern Optimization 27

2.4.4 Multi-objective Optimization

So far, despite their differences, all the addressed optimization algorithms aim to optimize a single

objective. However, more complex situations often demand a different approach, which includes more

than one objective to be optimized. For instance, minimizing the number employees in a store and

maximizing the store’s profit, or minimizing both a distance to travel and the time spent. This approach

is termed multi-objective, which consists in simultaneously minimizing (or maximizig) two or more dif-

ferent objectives. Often, this approach includes dealing with a trade-off between them, i.e., considering

a minimization task for two objectives, minimizing one of them will increase the other’s value, and vice-

versa. There are three approaches to deal with multi-objective optimization problems (Cortez, 2021):

weighted-formula, lexicographic and Pareto.

The weighted-formula approach, also termed priori approach, is the simplest, easy to implement

and it consists in assigning a weight to each objective, combining them in a single metric. Considering

a quality metric 𝑄, the different goals 𝑔1, 𝑔2, … , 𝑔𝑛 and the assigned weights 𝑤1, 𝑤2, … , 𝑤𝑛, the

quality metric is often calculated using one of the following formulas (Cortez, 2021):

𝑄 = 𝑤1 × 𝑔1 + 𝑤2 × 𝑔2 + ⋯ + 𝑤𝑛 × 𝑔𝑛

𝑄 = 𝑔𝑤1
1 × 𝑔𝑤2

2 × ⋯ × 𝑔𝑤𝑛𝑛

Although it is a simple solution, it has some issues associated with it. First, it is difficult to define

the ideal weights to each objective, often requiring domain knowledge. Second, the weight definition

task is often carried based on intuition, which negatively influences the result. Lastly, the fact that

despite all objectives are being considered, only one variable is being optimized, often leads to the loss

of possible trade-offs between them.

Similar to weighted-formula, the lexicographic approach gives a different importance to each goal.

The difference between these approaches is that the latter ranks the objectives by priority and optimizes

first the objective with higher priority, then the others. When two solutions are compared, if the first

solution has a better metric value for the higher priority goal than the second solution, then the second

is not considered despite the other goals’ metric values. This approach has the same problems as

weighted-formula concerning the priority rank to be defined a priori, however, the lexicographic approach

does not mix non-commensurable criteria in the same formula (Cortez, 2021).

Lastly, the Pareto approach, when compared with the other approaches, brings more advantages and

it is truly multi-objective, since it optimizes all objectives separately and simultaneously. This approach

uses the concept of dominance, i.e., considering two different solutions, one dominates the other only

if the first solution has a better metric value for one of the objectives and the remaining are either better

or equal. Thus, the Pareto approach returns a set of non-dominated solutions (called Pareto’s front)

instead of a single one, allowing users to choose which one fits best their requirements. This type of

2.5. Optimization Of Predictive Models 28

approach does not need a priori weights or priorities to be defined and, since it deals with a population

of solutions, EA have been a popular choice to generate Pareto optimal solutions. There are several

Multi-Objective Evolutionary Algorithm (MOEA), such as Simple Elitist Evolutionary Algorithm (SEEA),

Strength Pareto Evolutionary Algorithm 2 (SPEA 2), yet the Non-dominated Sorting Genetic Algorithm

II (NSGA-II) is the most widely used (Dhaenens and Jourdan, 2016) and it works as a classical GA with

the particularity of handling multiple objectives with a Pareto approach.

2.5 Op t im i z a t i o n O f P r e d i c t i v e Mod e l s

So far, several DM and Modern Optimization approaches and algorithms were addressed individually.

Yet, this project aims to explore combinations of both, using Modern Optimization, in particular EA, to

optimize DM models. The purpose is to increase the body of knowledge on this subject, by develop-

ing innovative methods, and use them to solve real-world complex problems, including a recent and

interesting issue in the area of Mobile Performance Marketing (described in Section 2.6). Therefore,

the current section describes current state-of-the-art approaches used on the modern optimization of

predictive models topic, with a particular focus in EA used in two popular ML algorithms (one black-box

and another white-box), namely NN and DT.

2.5.1 Neuroevolution

NN have been a target of great research, concerning the three types of learning (supervised, unsuper-

vised and reinforcement learning), mostly due to advances and great achievements by Deep Learning

in different subjects (e.g., anomaly detection, image classification, audio signal processing). Recently,

there has been a particular interest on Evolutionary Artificial Neural Network (EANN), which uses EAs

for adjusting NN parameters. Similar to other DM models, NNs have a set of parameters that are typi-

cally fixed during its training phase, including the activation functions and the number of hidden layers

and/or nodes in each layer (its topology), called hyperparameters. NNs also have a set of parameters

that are adjusted during the training phase (weights and bias numeric values), that are traditionally

adjusted using the backpropagation algorithm. These parameters can also be tuned using modern

optimization algorithms, in particular, EAs. Neuroevolution is the subject that concerns with both NN

topology (e.g., number of layers, nodes and connections between them) and weight and bias values

optimization, either separately or simultaneously, using EAs.

Neuroevolution is a subfield of AI and ML whose goal is to trigger an evolutionary process similar to

the human brain inside a computer. However, the human brain has an architecture with one quadrillion

connections (Battiti and Brunato, 2017) that keeps changing along with time. Yet, in computer science,

most of the times the network topology is fixed beforehand by the use, based on experience, and only the

2.5. Optimization Of Predictive Models 29

weight and bias values are adjusted during the network training phase. Usually, this phase corresponds

to the optimization of these numerical values based on a predefined loss function, typically using

backpropagation algorithm. However, there are two main disadvantages when using this approach: loss

functions are quite inflexible and the optimization algorithm can be trapped on local minima, therefore

harming the network learning phase. Nevertheless, both these issues can be tackled by using EAs

instead of backpropagation, since these algorithms are global optimizers and their evaluation function

is completely flexible and is defined by the user (see section 2.4.3). Moreover, when using multi-

objective algorithms (e.g., NSGA-II), several goals can be considered (e.g., predictive performance and

model’s complexity).

Ojha et al. (2017) developed a review of 20 years of research concerning optimization of FNN using

Modern Optimization algorithms, where the authors enumerate several implementations of EA for neu-

roevolution tasks. Concerning using fixed topologies, which is the more common approach, Ojha et al.

stated that conventional algorithms, such as backpropagation, are outperformed by EA, mainly due to

the lack of ability to escape local minima. There are several studies addressing the NN parameters

optimization using Modern Optimization algorithms, for both single and multi-objective tasks, including

Simulated Annealing (Budinich, 1996; Rere et al., 2015), PSO (Zhang et al., 2007), GA (Ruiz et al.,

2018), NSGA-II (Furtuna et al., 2012) and, more recently, multi-objective DE (Kaur and Singh, 2021).

Furthermore, these algorithms have been evaluated over different domains for supervised ML tasks,

namely classification (Tirumala, 2020; Kaur and Singh, 2021), regression (Guijo-Rubio et al., 2020) and

time-series forecasting (Mason et al., 2018). Additionally, several methods capable of simultaneously

evolving both topology and weights of NNs were proposed, and this approach is designed as Topology

and Weight Evolving Artificial Neural Network (TWEANN). There are many implementations of TWEANN,

including, but not limited to, GeNeralized Acquisition of Re-current Link (GNARL), proposed in the 90s

(Angeline et al., 1994), Cellular Encoding, also proposed in the 90s (Gruau, 1994), and NeuroEvolution

of Augmenting Topologies (NEAT), proposed in the 2000s (Stanley and Miikkulainen, 2002). Due to its

popularity and effectiveness, NEAT was evaluated over several ML problems, most of them related to

reinforcement learning tasks, and a few extensions emerged from the original algorithm.

NEAT is a GA-based algorithm that performs evolution of a FNN phenotype as a whole and applies

special mutation and crossover operators in the network’s nodes and connections (Ojha et al., 2017).

According to Stanley (2017), part of NEAT’s success relies on the ability of starting simply and increas-

ing complexity over the generations. To do so, Stanley and Miikkulainen designed the algorithm to

start with a simple SLP network, which means that it had only the input and output layers, and use

mutation and crossover operators to increase the number of neurons, add connections between them

and update their weight and bias values. Furthermore, Stanley states that this strategy used by the

NEAT algorithm can end up creating a deep NN (Deep Learning) with hundreds of layers and neurons.

In terms of its applications, most of them are reinforcement learning tasks, with a strong presence

of videogame’s automatic players (Kristo and Maulidevi, 2016; Pham et al., 2018). Regarding NEAT’s

2.5. Optimization Of Predictive Models 30

extensions, several variants were proposed for playing videogames. For instance, content-generating

NeuroEvolution of Augmenting Topologies (cgNEAT) was used in Galactic Arms Race (Hastings et al.,

2009), real-time NeuroEvolution of Augmenting Topologies (rtNEAT) in the NERO videogame (Stanley

et al., 2006) and in Open Racing Car Simulator (Cardamone et al., 2010), while its multi-objective ex-

tension termed Modular Multi-objective NeuroEvolution of Augmenting Topologies (MMNEAT) was used

in Ms. Pac-Man (Schrum and Miikkulainen, 2014). Outside the domain of videogames, there is a suc-

cessful extension also proposed by Stanley et al. (2009), termed Hypercube-based NeuroEvolution of

Augmenting Topologies (HyperNEAT), that can evolve high-dimensional NN and its weights are evolved

as a function of geometry. Furthermore, with HyperNEAT, the authors were able to evolve a NN with

hundreds of thousands to millions of connections (Stanley, 2017).

Even though TWEANN were very successful and their strength was proven several times in rein-

forcement learning tasks, this strength has not been yet demonstrated for supervised ML tasks. On

the opposite, considering the particular case of strategic decision-making problems, both NEAT and

HyperNEAT were not able to achieve the same success (Kohl and Miikkulainen, 2009; Lowell et al.,

2011). Furthermore, HyperNEAT has been evaluated over the image classification problem and results

show that it is better than others ML algorithms for feature selection, but was not successful as a clas-

sifier (Verbancsics and Harguess, 2015). Notwithstanding, a few studies have used both NEAT and

HyperNEAT, and even an extension named Learning-NEAT, for classification problems and achieved

interesting results (Chen et al., 2009; Pereira et al., 2019).

2.5.2 Genetic Programming and Grammatical Evolution

The previous section addressed the neuroevolution topic, where a particular focus was given to the

creation and optimization of NNs using EAs. Nevertheless, modern optimization algorithms can also be

used to design different ML algorithms (e.g., decision trees or symbolic regression). During this doctoral

project we focused on two EAs in particular: Genetic Programming (Koza, 1990) and Grammatical

Evolution (Ryan et al., 1998). The main reason for this selection lays on their domain-independent

evolutionary process based either on a syxtax tree or on a user predefined grammar (Bianco et al.,

2017), which allows flexibility to be applied to any issue. Both of these approaches have been used

for different supervised machine learning tasks (Loveard and Ciesielski, 2006; Ashofteh et al., 2015;

Fitzgerald et al., 2015), thus, the current section addresses this subject.

Regarding the use of GP, it typically comprehends the definition of a few operators with different

arities. If the arity is zero, the value can, for example, come from attribute values and operators that

have arities bigger than zero can combine these values, for instance using mathematical operators.

For instance, Cortez (2021) presents how GP can be used to approximate mathematical functions, par-

ticularly the Rastrigin function by using the R programming language, with a few arithmetic operators:

addiction, subtraction, multiplication and division. Concerning the use of GP for supervised learning

2.5. Optimization Of Predictive Models 31

tasks, two main approaches have been proposed (Iqbal et al., 2017): symbolic regression and classifi-

cation. The former consists on the generation of mathematical functions able to map a set of inputs to

the respective numeric output and it has been reported to achieve quite interesting results (Chen et al.,

2019; Zhong et al., 2020; Ben Chaabene and Nehdi, 2021). On the other hand, several studies were

proposed using GP as a classifier system, where its output can be a class or a class probability, by

using GP trees as decision trees (Khoshgoftaar et al., 2003; Lee, 2006; Pradhan et al., 2012). Addition-

ally, GP has also been applied to image classification tasks, being able to simultaneously apply feature

selection, feature construction and class prediction, achieving competitive results when compared with

other image classification algorithms (Bianco et al., 2017; Iqbal et al., 2017). Furthermore, different

multi-objective extensions were proposed and evaluated under both regression (Ashofteh et al., 2015;

Mehr and Nourani, 2017) and classification tasks (Zhao, 2007; Kessentini and Ouni, 2017). Due to its

flexibility, GP can also be used for ML model optimization problems. For instance, Suganuma et al.

(2017) used Cartesian GP with the purpose of defining Convolutional NNs topology and Zameer et al.

(2017) used GP to build NN ensembles, combining their outputs.

In terms of GE, which is also a popular evolutionary computation technique (Bartoli et al., 2020), it

is capable of evolving complete programs in any language, based on a user-defined context-free gram-

mar (Ryan et al., 1998). In GE, genotypes, bit or integer strings, are mapped into the corresponding

phenotypes, strings of a computer program, using a grammar in Backus–Naur Form (BNF), which

provides this technique a greater flexibility when compared with GP. It has been used in a wide range

of problems (Bartoli et al., 2020), however, the current section focuses on machine learning tasks.

Identically to GP, GE is also capable of evolving symbolic regression expressions (Sotelo-Figueroa et al.,

2018; Bartoli et al., 2020; Nicolau and Agapitos, 2021). In particular, Nicolau and Agapitos (2021)

performed a benchmark over 43 symbolic regression problems, using both GP and GE, aiming to find

which function sets led to better generalisation performance, achieving quite interesting results. In

terms of neuroevolution tasks, different studies have been proposed recently, using GE for both NN

topology optimization (Quiroz-Ramírez et al., 2018; de Lima and Pozo, 2019) and TWEANN (Ahmadizar

et al., 2015; Assunção et al., 2017). Specifically, Ahmadizar et al. claim to have obtained a good gen-

eralization ability in the GE-based networks. On the other hand, considering the grammar flexibility, GE

has also been used for designing different classifiers (Fitzgerald et al., 2015; Nyathi and Pillay, 2018; Tz-

imourta et al., 2018) and has achieved competitive results when compared with multiple state of the art

algorithms (Ahmadizar et al., 2015). Particularly, a special focus has been given to the creation and evo-

lution of decision trees using GE in recent years (Fitzgerald et al., 2015; Rivera-López and Canul-Reich,

2018; Chabbouh et al., 2019; Czajkowski and Kretowski, 2019a). Such approaches consist in using

GE to generate if-then rules, similar to DT, which is implemented by defining the grammar accordingly.

Moreover, multi-objective approaches have been proposed recently (Chabbouh et al., 2019; Czajkowski

and Kretowski, 2019b), considering either classification metrics and model complexity. The purpose of

2.5. Optimization Of Predictive Models 32

this approach is to achieve both high-quality and low-complexity decision tree classifiers. This subject

is explored later on this document.

Regarding GA’s evolutionary process, there are two additional interesting theories: Baldwin’s and

Lamarck’s. Both of them combine GA with local-search methods. The former uses a local search

during its evolutionary process, but changes on solutions are discarded, i.e., new solutions are not re-

encoded nor kept during the remaining generations of algorithm’s evolution. Thus, the local search is

only used to improve the fitness of the evaluated solutions. The later, on the opposite, applies changes

on solutions, be re-encoding the new solution and replacing the original one, in order to positively

influence the evolution across the remaining generations. The Lamarckian approach was used in a

neuroevolution problem presenting quite interesting results in (Cortez et al., 2002), supporting that

this approach is quite interesting when performing a modern optimization of ML algorithms. In terms

of comparison between both approaches, Rocha et al. (2004) used both, also in a neuroevolution task

and compared results. According to the authors, the Baldwin effect presented greater improvements

when comparing to a Lamarckian approach for their particular problem (Rocha et al., 2004). On the

other hand, Mingo et al. (2013) performed the same comparison using an extension of GE combined

with reinforcement learning, obtaining better results with the Lamarckian evolution. During this project,

it is intended to address these GA hybrid approaches and compare to the original one, aiming to

understand mains advantages and disadvantages.

Despite all mentioned advantages of using GP and GE, including the quite competitive results for

ML tasks when compared with traditional algorithms, there is also a few disadvantages. An issue

associated with both these methods is the code growth, often called bloat or survival of the fattest

(Eiben and Smith, 2015). This phenomenon is observed when program trees tend to grow unnecessarily

during the evolution process without corresponding to an increase in fitness, ending up generating non-

functional code. Although the final solution is still effective and syntactically correct, it is not efficient

since, in most cases, having more code leads to an increase on computational costs, and smaller code

presents better generalization than longer code. Furthermore, according to Soule and Foster (1998),

who studied bloat effects on GP, the code growth is associated with a slight preference for the larger

of two programs created during the crossover. While defending that this overall growth does not affect

the evolution of effective programs, they also state that non-functional code shielding functional code

from the harmful effects of crossover may also decrease the chances of helpful crossovers to occur,

leading to a stagnation on the GP evolutionary process (Soule and Foster, 1998).

Recently, several studies have emerged analysing the impact of bloat in both GP (Doerr et al., 2017;

Juárez-Smith et al., 2019; Liang et al., 2020) and GE (Azad and Ryan, 2018; O’Neill and Brabazon,

2019; Hemberg et al., 2019). Such studies consider changes on the GA operators (mutation, crossover)

or on the chosen arithmetic operators (in case of GP) or grammars (in case of GE). A way to escape the

bloat problem is to repair the solution, removing the useless code, re-encode it and replace the bloated

solution with the new one, so it can be passed to the following generations. This is a non-trivial task,

2.5. Optimization Of Predictive Models 33

since it involves automatically analysing the produced code (phenotype-level) and understand which

pieces of it are redundant or useless, so it can be removed. A simpler way is to penalize solutions’

fitness based on its size, benefiting, thus, smaller solutions. To do so, in some cases it might be

necessary to estimate the minimum size necessary for a solution that is able to solve the problem,

which also is not an easy task, for instance, when DT are being evolved. Yet, if a Pareto-based multi-

objective algorithm is considered, the complexity of a solution can be used as a fitness metric, along

with other metrics, and all used metrics can be optimized simultaneously. With this kind of approach, it

is not necessary to estimate a minimum reasonable solution size, since the Pareto-based approaches

will prioritize smaller solution sizes with a similar performance in the remaining metric (or metrics).

During this doctoral project, it is intended to approach the bloat issue by using one of these last two

approaches.

Another great disadvantage associated with both these methods is related to high computational

costs (Suganuma et al., 2017; Fenton et al., 2017). Assuming a context where ML models are being

evolved by GP or GE, the evaluation of solutions consists in using the designed models to perform

predictions on a set of training data and measure its quality based on a predefined metric (e.g., Area

Under the Curve (AUC), Mean Squared Error (MSE)). Considering that both GP and GE are population-

based optimization algorithms, which means that a set of solutions are evolved instead o a single one,

this evaluation process can be quite expensive in terms of execution time. Moreover, these performance

issues accentuate when larger sets of data are used. This doctoral project is associated with a complex

real-world Big Data problem that includes, among others, time limitations (see Section 2.6). Therefore,

during this project it will be necessary to deal with such issue.

The use of parallelism during the evaluation process is a simple, effective and popular way to deal

with performance issues in GP and GA. Furthermore, this solution has been considered in the past for

implementing GE in the Python programming language (Fenton et al., 2017). This parallelism approach

consists in simply splitting the charge for multiple available cores, which in this specific problem implies

sending a group of individuals to be evaluated simultaneously in different cores and, then, collect the

results and continue with the evolution process. This approach, although it seems quite simple, may

bring great advantages in terms of execution time and does not influence the fitness values. However,

there is another parallelism approach used in GA that can bring great advantages not only in terms

of computational costs, but also in terms of solution’s fitness, named Island Model (Corcoran and

Wainwright, 1994). The island model consists in having a set of cores evolving simultaneously their

own population (islands) and periodically share the best solutions between the islands (migration),

replacing the worst ones. With this approach, the concept of species is introduced, which refers to

each population in each island. Since the individuals are evolved simultaneously and separately, in

theory, each core is evolving a population with different characteristics, which increases the diversity

of solutions. Island Model GA diversity was proven to lead to higher quality solutions when compared

to the original GA (Corcoran and Wainwright, 1994; Whitley et al., 1998). In particular, Tsoulos et al.

2.6. Mobile Performance Marketing 34

(2008) proposed an Island Model GE-based model for creating and evolving NN, which was evaluated

under 9 regression and 9 classification popular datasets and compared with 4 state-of-the-art methods

for NN training. Quite interesting results were achieved, with the proposed method outperforming all

other methods in all datasets, proving the strength of their method. During this PhD it is expected to

explore and implement at least one of the mentioned parallelism alternatives to tackle the GA-based

algorithms computational cost issue, thereby, fulfilling the project time requirements.

2.6 Mob i l e Pe r f o rman c e Ma r ke t i n g

So far, several techniques were addressed regarding ML and Modern Optimization, both separately

and combined, and some of their applications were also mentioned. Nevertheless, during this doctoral

project we intend to address a specific problem in mobile performance marketing industry, often called

performance-based advertising on mobile devices. Therefore, this section describe this problem, as

well as how we intend to address it.

The mobile advertising industry is experiencing a considerable growth due to the great increase in

mobile devices usage, being estimated at 100 billion dollars worldwide in 2016 (Du et al., 2016). Fur-

thermore, according to Statista (2021), this industry has been target of great investments worldwide,

that has been increasing over the last years as it can be seen in Figure 7. The mobile advertising

business has 4 main stakeholders: users, publishers, advertisers and intermediary entities that own

Demand-Side Platforms (DSPs), such as OLAmobile, the company associated with this project. Pub-

lishers own popular digital spaces (e.g., news websites, online video games services) that attract a vast

audience of users. Advertisers own marketing campaigns regarding products or services that they want

to sell. Intermediary entities are responsible for linking publishers to advertisers using digital platforms

(DSPs). In this market, compensation only occurs when there is a conversion, i.e., when a product or

service is acquired by the user, or when mensurable metrics are presented. Common pricing models

and metrics used in this kind of advertising include (Yuan et al., 2012; Du et al., 2016):

• Cost Per Mille (CPM) - price for showing 1000 impressions (advertisement displays) to poten-

tial customers;

• Cost Per Click (CPC) - price for each ad click, even though user clicks may not lead to a

purchase;

• Cost Per Acquisition (CPA)/Cost Per Install (CPI) - price for any type of purchase or

application installation after the click;

• Cost Per View (CPV) - price for every single ad display, usually in the form of pop-up or full-

screen;

2.6. Mobile Performance Marketing 35

• Click Through Rate (CTR) - ratio between the number of ad clicks and the number of impres-

sions;

• Conversion Rate (CVR) - percentage of clicks that originated a purchase over the total number

of clicks;

Figure 7: Investment on mobile advertising industry since 2007 [taken from (Statista, 2021)].

Compensation only occurs when conversions occur and the corresponding transaction is performed

by advertisers to publishers and DSP owners. Publishers can be compensated by requiring users to

click in a dynamic ad prior to accessing their contents. These ads are provided by the DSP, thus, their

goal is to perform a good match between users and advertisement campaigns, aiming to increase

conversions. Whenever a publicity campaign is presented and the user clicks on it, a dynamic link

is activated and a redirection occurs, leading the user to the campaign page, so that the user can

purchase the product or service. This redirection process is called redirect and is stored along with

some user’s information, such as the country where the access to that page happened and the user’s

device operative system. Whenever a redirect gives origin to a sale (conversion), the information is also

stored with details about it, including the amount paid, the product or service acquired, the redirect

that originated the sale, among other useful data attributes. Intermediary companies as OLAmobile

intend to have a DSP that is able to automatically perform matches between users and campaigns,

in order to increase users clicks and conversions and, consequently, increasing their revenues. There

are two main types of conversions: sale and subscription. The former regards with product or service

acquisition that lead to a single payment (e.g., songs, extra lives on video games), while the latter

2.7. Optimization Of Predictive Models In Performance Marketing 36

concerns with medium and long-term services with periodic payments (e.g., weekly news subscription).

In case of subscriptions, advertisers concede a fixed value to the revenue, regardless of user’s will

to continue with the subscription. In these cases, an important term to consider is customer Lifetime

Value (LTV), which stands for the value of a customer considering possible future interactions that could

be translated into benefit (Moro et al., 2015). Concerning the profit, both advertisers, publishers and

intermediary organizations have greater benefits with long-term subscriptions. However, most of the

purchases are single and often low-valued payments.

These markets are highly dependent of the DSP’s performance, both in terms of choosing the right

campaign and response time, since theses systems are responsible for matching users with useful ad

campaigns within a 10 ms limit. Yet, according to OLAmobile business experts, nowadays DSP use

generalist advertisements to present to users, based on the potential profit that publishers can achieve,

which means that campaigns that generate higher revenue have higher possibility to be presented,

although it may not fit to the user profile. Furthermore, currently this company has a very small

conversion rate, with only approximately 1% of redirects originating sales. During this doctoral project,

it is expected to use AI techniques to perform a match between users and campaigns, thus, increasing

the DSP performance and, consequently, all involved entities’ profits. Under this context, a key issue

for the implementation of a DSP expert system is the design of a prediction model for the user CVR,

which is often modeled as a binary classification task (“sale”, “no sale”), aiming to estimate if a user

will produce a conversion once a redirect occurred.

The mobile user CVR prediction task is nontrivial due to four main reasons (Matos et al., 2019a): it

involves big data, with millions of redirects being generated every day; most redirects (e.g., 99%) do

not result in conversions (it is a highly unbalanced task); only a limited set of input features is available

(due to privacy and technology issues); and most features are categorical and contain a high cardinality

(with hundreds or thousands of levels). Therefore, we intend to address the mentioned issues by using

Modern Optimization algorithms for evolving MLmodels due to their success and flexibility, as presented

in previous sections. Moreover, considering that different metrics are associated with this market, we

also wish to explore multi-objective optimization algorithms. Following this rationale, the next section

will present how similar problems were approached before, aiming to gain insights on the subject and

find gaps in research that need to be fulfilled.

2.7 Op t im i z a t i o n O f P r e d i c t i v e Mod e l s I n Pe r f o rman c e Ma r ke t i n g

Considering previous sections about the DM and EA algorithms, combinations of both and the mo-

bile performance marketing problem, this section aims to present related studies and introduce a few

problems that are intended to be addressed during this project. As previously mentioned, performance

marketing industry deals with huge amounts of unbalanced data every day, particularly the organization

under study deals with millions of records hourly. Traditional ML techniques have shown to be highly ac-

2.7. Optimization Of Predictive Models In Performance Marketing 37

curate in previous studies, however, dealing with such amounts of data brings other challenges beyond

fitting such models to data. For instance, there are few traditional ML implementations that include

parallel or distributed computation. Furthermore, most traditional algorithms are often evaluated under

offline learning scenarios and, whenever online learning scenarios are considered, even if simply simu-

lated, only a few models (e.g., deep learning) are capable of storing the knowledge obtained in previous

training iterations and use it when fitting to new sets of data. The use of GA-based implementations

allows to deal with such issues and, due to the evaluation function flexibility, it is possible to consider

any possible metric or metrics (using multi-objective implementations), which is a great advantage over

traditional ML algorithms.

Agarwal et al. (2014) presented a platform termed LASER, used for a social network advertising,

using logistic regression and a set of techniques to ensure scalability and real-time responses. The

purpose was to predict CTR for ads and their system was tested it in both offline and online learning

environments. Moreover, the authors addressed the problem of having large amounts of unbalanced

data on online advertisement industry, achieving good results (around 78% of AUC). To reinforce the

importance of time limitations in terms of predictions, Agarwal et al. presented an approach based on

the “better wrong than late” philosophy, explaining that is preferable to perform an incorrect prediction

than not being able to predict in feasible time. Other studies addressed such challenges of dealing with

mining high-speed data (Domingos and Hulten, 2000; Gaber et al., 2005; Krempl et al., 2014), yet, the

unbalanced data issue and the performance marketing context were not considered. In 2015, Deng

et al. developed a study where they proposed a framework for mobile advertising and marketing that

was capable of suggesting an advertisement to a given user. The authors focused their study mainly

in the Big Data component, developing only a pilot system where traditional ML algorithms such as

decision trees and K-means are considered. Nevertheless, no specific metrics were presented and

preliminary tests were performed using offline data and using only features concerning user’s location.

In a similar context, Moro et al. (2014) studied a bank telemarketing campaign that consisted in

calling possible customers trying to sell a bank product. The study’s purpose was to predict the tele-

marketing call success, i.e., if the customer would, or not, purchase the product. Although it is a

quite different industry from OLAmobile’s, and Modern optimization was not considered, the authors

addressed an interesting goal, that is similar to the related studies on this subject (Du et al., 2016):

predict user intention to purchase a product/service based on the user profile and call context. Fur-

thermore, the same authors applied the customer LTV concept to the telemarketing campaign (Moro

et al., 2015), which has shown to obtain increased advantages in terms of the predictive performance.

Recently, a preliminary study addressing the specific OLAmobile DSP was conducted by Du et al.

(2016), where the authors intended to predict whether a given user’s intention to perform a purchase,

once an campaign is displayed. Considering that only 1% of presented ads originate sales, this was

considered a non-trivial ML task. In this study, authors used traditional ML algorithms, namely Logis-

tic Regression (LR), Naive Bayes (NB) and Random Forest (RF), and were able to achieve very good

2.7. Optimization Of Predictive Models In Performance Marketing 38

results, measured in terms of AUC. During this doctoral project, other studies were conducted using

OLAmobile data and addressing different issues (Matos et al., 2018, 2019a,b). In these studies, dif-

ferent data preprocessing strategies were employed, including data balancing (e.g., Synthetic Minority

Oversampling Technique (SMOTE)) and label encoding techniques (e.g., Inverse Document Frequency

(IDF), One-Hot Encoding). Furthermore, other ML algorithms were used and compared, namely LR,

RF, XGboost (XB), OzaBoost, DecisionStump, Random Hoeffding Trees (Matos et al., 2018) and Deep

Learning (DL) (Matos et al., 2019a,b). Nevertheless, none of these studies addressed the usage of a

Modern Optimization to automatically design ML models.

The discussed research works have dealt with data streams, predictive models in mobile perfor-

mance marketing or in similar marketing areas. Nonetheless, only traditional ML techniques were

used and optimization methods, particularly metaheuristics, were not considered. Regarding this in-

dustry and even similar ones, previous to this PhD work, we did not find any studies that adopted

Metaheuristics to design ML models. However, Trawinski (2013) used a GA to evolve an ensemble

of fuzzy systems, which consisted in splitting the problem in smaller pieces and use one model for

each piece. Their model was evaluated using data streams, related to a real estate market, compar-

ing with other approaches, using statistical tests, and proving that the ensemble approach can be

quite useful for complex online learning problems. Moreover, during the execution of this PhD project,

Pereira et al. (2017) performed a preliminary study, also using the OLAmobile data, and that applied

two neuroevolution state-of-the-art models, namely NEAT and HyperNEAT, comparing both with LR.

NEAT implementation outperformed LR in terms of AUC, yet at the expense of a considerably higher

computational cost.

Real-time biding is a popular approach associated with the mobile marketing industry that also

addresses the problem of dealing with Big Data streams in a real-time environment. Considering

that publishers are constantly renting their digital spaces, advertisers need to pay attention to what

is happening by continuously monitoring publishers’ metrics and prices, so that they do not lose a

good business opportunity for displaying their campaigns. For instance, if an application or website is

getting a sudden audience increase, it can be a good opportunity to rent that digital space there for

presenting campaigns. These situations give origin to a real-time auction process, where the best bid

gets the space for advertising. Du et al. (2017), using OLAmobile data, proposed a system, using a

reinforcement learning approach, that used the number of clicks as a reward, i.e., the purpose was to

select a digital space that would increase the number of clicks (redirects) on advertisements. In this

study, Du et al. stated that their system outperformed the state-of-the-art bidding functions, concerning

the number of clicks, for a low budget limit. Although this study addresses a mobile advertising industry

problem associated with OLAmobile, it falls outside the scope of this doctoral project, which intends to

explore Modern Optimization of ML models applied to supervised learning tasks.

2.8. Summary 39

2.8 S umma r y

The current chapter presented the main background knowledge of this thesis. During this doctoral

project, we address a relevant issue in the mobile advertising industry where the purpose is to display

interesting marketing campaigns to mobile devices’ users, leading them to perform a purchase. This

market has been gaining an increased attention and investment over the last years, boosted by the

exponential increase of mobile devices usage (e.g., smartphones, tablets). In particular, we will use

OLAmobile data, noting that it corresponds to a relevant company operating in this market that is

responsible for matching users with relevant advertisements. The company deals with million hourly

records related with displayed campaigns to mobile users, from which only a small percentage, nearly

1%, ends in conversions (sales). Considering the requirements associated with the Mobile Performance

Marketing issue, we intend to address this issue by using Modern Optimization algorithms applied to

ML models. In particular, we consider Evolutionary Algorithms, since they are easily adaptable to any

problem and have been proven to be quite good in ML tasks. Therefore, we introduce the concepts of

the three main topics during current chapter:

• Big Data (section 2.2) – although this project’s main focus is associated with a ML task, the

studied company deals with high-velocity and high-volume data, coming from different sources in

a constantly changing environment, which is an inevitable technological issue to consider during

this project. Thus, this section introduced useful concepts about this topic.

• DataMining (section 2.3) – considering that this thesis explores the optimization of predictive

models, during this section main DM and ML concepts are broadly introduced. To do so, different

types of learning and a few popular learning algorithms are presented, with the focus being on

the theoretical basis.

• Modern Optimization (section 2.4) – this section presents useful concepts related with the

main focus of this thesis. Here, several optimization algorithms are introduced, from traditional

to evolutionary ones, organized by the type of search. Furthermore, different multi-objective

approaches are presented as well as possible algorithms to be considered.

After presenting the main theoretical concepts, the following ones concern with their applications in

recent and related studies. The purpose is to understand how current state-of-the-art works applied the

mentioned algorithms to identical ML tasks and business issues, and identify research opportunities.

Therefore, the remaining sections of current chapter are organized as follows.

• Optimization of Predictive Models (section 2.5) – during this section, we focus on the

use of EA for creating and evolving two particular ML models: NN and DT. The former, included

in the Neuroevolution topic, presents different studies that optimize both the NN weights and

architecture, either separately or simultaneously. From these studies it is possible to notice that

2.8. Summary 40

Neuroevolution is being the target of great interest, mostly due to the Deep Learning success,

however, most of them are related to reinforcement learning tasks. Regarding DT, two popular

and flexible EAs were addressed: GP and GE. In most of the studies, these methods were used to

create symbolic regression expressions with only a few of them exploring the creation of white-box

models like DT. Furthermore, the studies considering multi-objective optimization approaches are

scarce, even though they can be quite interesting in the addressed context. Finally, we highlight

the great computational cost associated with these algorithms and parallelism alternatives to

tackle this issue.

• Mobile Performance Marketing (section 2.6) – this section details the performance mar-

keting industry, with a particular focus in the company under study and its requirements. The

increasing interest and consequent investments on this industry is highlighted here, as well as

common pricing models and metrics used.

• Optimization of Predictive Models in Performance Marketing (section 2.7) – finally,

this section presents some important works using ML techniques on the marketing industry, not

limited to mobile devices. We present multiple studies, some of them developed in collaboration

with OLAmobile by other fellow researchers along with this doctoral project. Nevertheless, we

emphasize the lack of studies using EA for optimizing predictive models for supervised learning

tasks, both in the mobile performing marketing industry and similar ones.

Throughout this chapter, several studies have been presented using ML algorithms to address dif-

ferent issues in marketing industries. However, to the best of our knowledge, there is not an existent

approach that deals with optimization of these models, in particular by using Evolutionary Algorithms,

in a constantly changing Big Data environment, that is able to deal with data unbalancement or in

mobile marketing industry, nor in similar industries. Therefore, this PhD project intends to fill this gap,

developing an optimization of predictive models and evaluating it using the OLAmobile DSP datasets.

In particular, we intend to give particular focus to multi-objective approaches of EA, which can be quite

useful to the mentioned company, and to the use of parallelism strategies, in order to fit the DSP

temporal requirements.

Part II

M A I N B O D Y

3

MU LT I - S T E P T I M E S E R I E S P R E D I C T I O N I N T E R V A L S U S I N G

N E U R O E V O L U T I O N

3.1 I n t r o d u c t i o n

Time-Series Forecasting (TSF), which models an event based on its past observations, is a crucial ele-

ment to support decisions in several real-world domains, such as agriculture, economics, production,

commerce and marketing (Makridakis et al., 1998). In particular, multi-step ahead TSF is useful for

supporting tactical decisions, such as planning production resources or designing a marketing cam-

paign several months in advance. TSF is usually modeled as a single point prediction task. However,

Prediction Intervals (PIs), set in terms of lower and upper bonds for the forecasts, are also invaluable

in decision making, allowing to better estimate the uncertainty associated with key decision variables.

For instance, a PI can be used to define what-if decision scenarios for the worst and best cases. As

explained in (Khosravi et al., 2011), a PI includes more sources of uncertainty when compared with

statistical confidence intervals, since it includes not only noise but also error measurements, lack of

input data and even TSF model misspecification.

Due its importance, there is a vast scientific literature that addresses single point TSF, set in terms of

twomain approaches: Statistical and Soft Computing methods. Statistical methods are often developed

within the field of Operations Research and are based on mathematical expressions (Chatfield, 2000).

Popular examples include the Holt-Winters method and the ARIMA methodology (Makridakis et al.,

1998). Soft Computing approaches are more related with the fields of Computer Science and include a

range of distinct methods, such as (Stepnicka et al., 2013; Cortez and Donate, 2014): Neural Networks

(NNs), fuzzy techniques, Support Vector Machines (SVMs), Evolutionary Computation (EC) and even

hybrid combinations of the previous methods. In particular, several works have used EC to successfully

optimize NNs for single point TSF (Peralta Donate and Cortez, 2014; Chandra and Chand, 2016), in a

hybrid combination that is known as neuroevolution (Floreano et al., 2008).

This chapter addresses PI TSF using NNs, which is a much less researched topic and that involves

two main measures of quality: PI coverage and width (Khosravi et al., 2011; Ak et al., 2013). The

former is set in terms of number of point forecasts included in the PI, while the latter is defined by

42

3.1. Introduction 43

upper and lower bond overall difference. These measures often conflict. For instance, reducing a PI

width tends to decrease the PI coverage. Thus, a trade-off needs to be set between the two measures.

Prior to the year of 2011, several methods were proposed for regression PI using a NN as the base

learner model. For example, a Bayesian method was used in 1992 to assign error bars to the NN

predictions (MacKay, 1992). The method requires a high computational effort due to the calculation

of derivatives and the Hessian matrix. The delta technique was proposed in 1996 (Chryssolouris et al.,

1996). The technique contains two main limitations, it uses a linear NN model and it assumes that

noise is normally distributed. The bootstrap is a more simpler approach that is more suited for small

datasets (Heskes, 1996; Dybowski and Roberts, 2000). It assumes an ensemble of NN, each trained on

bootstrap replicates of the training set. One limitation of bootstrap is that its adaption to the multi-step

forecasting domain is non trivial, since there is a chronological order in the training series elements and

boostrapping such elements would lead to sequential information loss. More importantly, as argued

in (Khosravi et al., 2011), the Bayesian, delta and bootstrap methods contain two methodological

drawbacks: the NN model was trained to optimize the single point prediction and not the PI; and the

obtained intervals were only assessed using PI coverage but not width. In contrast, recent works (e.g.,

LUBE, LUBEX, MLUBE) assume a more natural approach where the PIs are directly optimized when

fitting the NN and consider both coverage and with PI quality measures (Khosravi et al., 2011; Rana

et al., 2013; Ak et al., 2013, 2015). In this chapter, we follow this natural approach, putting a stronger

focus on two key state of the art PI models (LUBE and MLUBE) that were proposed for regression and

that are extended for multi-step ahead TSF.

In 2011, the Lower and Upper Bound Estimation (LUBE) method was originally proposed for regres-

sion tasks (Khosravi et al., 2011). LUBE uses a Multilayer Perceptron (MLP) NN with two output nodes

that correspond to the lower and upper PI values. LUBE optimizes a single and nondifferentiable objec-

tive function called coverage width-based criterion, which combines both coverage and width. Thus, a

simulated annealing metaheuristic was used to train the NN weights instead of the conventional back-

propagation algorithm. When compared with traditional PI methods (delta, Bayesian and bootstrap) in

regression tasks, the LUBE method achieved competitive results. In 2013, an extension of the LUBE

method was proposed for one-step ahead TSF PI prediction (Rana et al., 2013). The extension, named

Lower and Upper Bound Estimation eXtension (LUBEX), included a time lag feature selection and usage

of an ensemble of NNs, where the upper and lower values were computed as the average of several

individual NN outputs.

The first neuroevolution approach for PI was proposed in 2013, aiming also at regression tasks

and defined by a direct encoding, where the weights of a fixed LUBE NN architecture were optimized

using a Multi-Objective Evolutionary Algorithm (MOEA) (Ak et al., 2013). The proposed Multi-objective

evolutionary algorithm Lower and Upper Bound Estimation (MLUBE) achieved interesting results in

two tasks related with oil and gas deposition rates, although the model was not compared with LUBE.

Nevertheless, MLUBE is more theoretically sound, since it evolves a Pareto front, thus simultaneously

3.2. Materials And Methods 44

improving both coverage and width objectives, while LUBE only optimizes a single coverage/width

trade-off. Later on, in 2015 (Ak et al., 2015), the same MOEA method was also adapted to fit NN to

interval-valued time series data. Unlike LUBE, the base NN contained only an output node and the

PI was obtained by feeding first the lower input values to the NN and then the upper inputs. Such as

in LUBEX, only one-step ahead PI were considered. The proposed MOEA method compared favorably

against an input-valued LUBE for wind speed data, although only a single run was executed and no

statistical test was adopted.

In our preliminary work (Pereira et al., 2017), we extended both LUBE and MLUBE for multi-step TSF

PIs and performed comparative experiments over four times series. The comparison comprised a more

robust evaluation methodology that included the realistic rolling window procedure (Tashman, 2000)

and the Wilcoxon nonparametic statistical test (Hollander et al., 2013). In this chapter, we present a

more comprehensive set of PI TSF methods, putting an emphasis on neuroevolution approaches. The

set of PI methods include: adaptations of LUBE, LUBEX and MLUBE for multi-step TSF (LUBET, LUBEXT

and MLUBET), a two phase learning MLUBE (M2LUBET) and new ensemble neuroevolution versions

(MLUBEXT, M2LUBEXT). We also perform a wider comparative study, using a robust evaluation and

nine time series from distinct real-world domains (e.g., Agriculture, Retail, Tourism).

The current chapter is organized as follows. Subsection 3.2.1 presents first the time series data.

Then, the forecasting methods are described in Subsection 3.2.2. In particular, single-point NN TSF

is briefly presented in Subsection 3.2.2. To better describe all PI adaptations and aiming at self-

containment, Subsection 3.2.2 first details the LUBE original model and then its LUBET and LUBEXT

extensions. Similarly, Subsection 3.2.2 introduces first MLUBE and then its time series and ensemble

variants: MLUBET, M2LUBET, MLUBEXT, M2LUBEXT, MLUBEXT2 and M2LUBEXT2. Next, Subsec-

tion 3.2.3 explains the evaluation procedure. Subsection 3.3 details the performed experiments and

obtained results, with both single NN and ensemble NN methods. Finally, Subsection 3.4 summarizes

the work developed and withdraws the main conclusions.

3.2 Ma t e r i a l s A n d Me t h o d s

3.2.1 Time series datasets

This work addresses seasonal series, since multi-step forecasts are particularly relevant for these types

of cycle patterns, which are expected to reoccur in the future. Moreover, seasonality is common in

several real-world domains (e.g., monthly sales or quarterly production numbers) (Makridakis et al.,

1998). Table 1 presents the main characteristics of the nine time series that were selected from

distinct domains and with different characteristics. As shown in Figure 8, in addition to the seasonal

component the datasets exhibit distinct trend components: some present a growth trend (e.g., gas,

pass, water), some are more stationary (e.g, MG, suns) and crad presents a changing trend effect.

3.2. Materials And Methods 45

Seven series (cradfq, gas, pass, pigs, suns, usauto, water) were retrieved from the well known Time

Series Data Library (TSDL) public repository (Hyndman, 2010), while MG is a chaotic series (Glass and

Mackey, 1977) and store was collected and detailed in (Cortez et al., 2016). Except for MG, all series

are from real-world domains. As argued in (Peralta Donate and Cortez, 2014), such real-world datasets

are often affected by external phenomena, such as economical cycles or meteorological conditions,

making them interesting series that are more difficult to predict.

Table 1: Description of the selected time series datasets (𝐿 – series length, 𝐾 – seasonal period, 𝑊 – rolling
window size, 𝑆 – rolling window step).

Series Description (location; years) 𝐿 𝐾 𝑊 𝑆
cradfq Monthly highest radio broadcasting freq. (Washington, D.C., USA; 1934-1954) 240 12 199 1
gas Monthly gasoline demand, in gallon millions (Ontario, Canada; 1960 – 1975) 192 12 151 1
MG Mackey-Glass synthetic chaotic series (–;–) 783 17 505 9
pass Monthly airline passengers, in thousands (–; 1949-1960) 144 12 103 1
pigs Monthly number of pigs slaughtered (Victoria, Australia; 1980-1995) 188 12 147 1
store Daily number of customers that entered a sports store (Portugal; 2013) 257 7 221 1
suns Yearly number of sunspots (–; 1700-1988) 289 10 220 2
usauto Monthly auto registration numbers, in thousands (USA; 1947-1968) 264 12 193 2
water Monthly water usage, in ml/day (London, Ontario, Canada; 1966-1988) 276 12 205 2

3.2.2 Forecasting methods

Single point forecasting

Time series consists of several time ordered values related with the same event: 𝑦1, 𝑦2, ..., 𝑦𝐿, where

𝐿 is the length of the series. An autoregressive forecasting model produces the estimate ̂𝑦𝑡+1:

̂𝑦𝑡+1 = 𝑓 (𝑦𝑡−𝑘𝐼+1, ..., 𝑦𝑡−𝑘1+1) (1)

where 𝑓 is the forecasting function (e.g., linear regression, NN), 𝑡 is the current time (associated with
the last known value 𝑦𝑡) and 𝑘𝑖 denotes a time lag. Often, a sliding time window with {𝑘1, ..., 𝑘𝐼}
time lags is used to create supervised training cases to fit the learning methods (e.g., MLP, support

vector machine), thus using a soft computing approach to define the 𝑓 function. For example, if the

{1, 3} window is used for the series 51, 112, 153, 174, 225 (𝑦𝑡 values), then two training cases can be

generated: (5,15) → 17 and (11,17) → 22.

The fully connected MLP is a popular NN for single point TSF (Cortez et al., 2012; Stepnicka et al.,

2013; Peralta Donate and Cortez, 2014). The regression model is often set in terms of: an input layer

3.2. Materials And Methods 46

0 50 100 150 200

4
6

8
10

12

cradfq

0 50 100 150
10

00
00

15
00

00
20

00
00

25
00

00

gas

0 200 400 600 800

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

MG

0 20 40 60 80 100 120 140

10
0

20
0

30
0

40
0

50
0

60
0

pass

0 50 100 150

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

pigs

0 50 100 150 200 250
0

50
00

10
00

0
15

00
0

store

0 50 100 150 200 250 300

0
50

10
0

15
0

suns

0 50 100 150 200 250

20
0

40
0

60
0

80
0

10
00 usauto

0 50 100 150 200 250

10
0

15
0

20
0

water

Figure 8: Time series plots (𝑥-axis denotes the time period 𝑡, 𝑦-axis the time series 𝑦𝑡 value).

with 𝐼 inputs, the sliding window time lags; a hidden layer with 𝐻 hidden nodes and logistic activation

functions; and an output layer with one output linear function node. The forecasts are given by:

b𝑦𝑡+1 = 𝑤2∶0,1 + ∑𝐻
𝑗=1 𝑆(𝑤1∶0,𝑗 + ∑𝐼

𝑖=1 𝑦𝑡−𝑘𝑖
𝑤1∶𝑖,𝑗) × 𝑤2∶𝑗,1 (2)

where 𝑤𝑚∶𝑖,𝑗 denotes the weight connection with from layer 𝑚 − 1 and node 𝑖 to layer 𝑚 and node 𝑗
(if 𝑖 = 0 then it is a bias connection) and 𝑆 the logistic (sigmoid) function: 𝑆(𝑥) = 1

1+𝑒−𝑥 . Figure 9

shows several examples of 𝑤𝑚∶𝑖,𝑗 weight connections.

Ensembles can be used to combine predictions from several forecasting models. Often, ensembles

achieve better performances when compared with their individual prediction models (Dietterich, 2000;

3.2. Materials And Methods 47

Yu et al., 2017). In particular, ensemble averaging is a simple and popular approach to combine

regression outputs from several learning models (Oliveira et al., 2017). For example, such ensembles

have been used to combine single point time series predictions from distinct MLPs (Cortez et al., 2012).

To perform multi-step forecasting, several predictions are made at time 𝑡, from ̂𝑦𝑡+1 (1-ahead) to

̂𝑦𝑡+ℎ (ℎ-ahead, where ℎ is the forecasting horizon). A popular method to achieve multi-step predictions

is to use iterative feedback (Peralta Donate and Cortez, 2014). Under this method, the model produces

first an 1-ahead forecast. Then, this forecast is used as the last input of the forecasting function to

generate the 2-ahead prediction, and so on.

w

w

2:1,1

Input Layer Hidden Layer

w

w

1:I,1

1:I,H

2:H,2

1

2

w
1:1,1

1

2

w
2:0,1

Output Layer

t

t..
.

..
.

+1

+1

+1

max=U

min=L

y
t−k1

y
t−k2

y
t−kI

+1

H

..
.

..
.

w

w

w

1:I,1

1:I,H

1

2

w
1:1,1

Output Layer

2:1,1

t

t

2

1

3

Input Layer

t

w
2:H,3

Hidden Layer

..
.

..
.

..
.

..
.

+1

y

y
t−k2

y
t−kI

H

+1

+1

min=L

max=U

y

+1

+1

+1

t−k1

Figure 9: The base Neural Network model for LUBE (left) and M2LUBET (right, first phase fixed weights in gray
color).

Single objective prediction interval methods

This subsection starts by detailing the LUBE model, which is a fundamental NN structure used by all

PI methods explored in this chapter. LUBE (Khosravi et al., 2011) was the first proposed method to

directly optimize PIs. It uses a base learner that is similar to the single point TSF MLP (subsection 3.2.2),

except that the output layer now contains two linear nodes with the lower (𝐿𝑡) and upper (𝑈𝑡) prediction

interval (PI) bounds, as shown in the left of Figure 9. The number of weights that are optimized is

#𝑤LUBE = (1 + 𝐼) × 𝐻 + (1 + 𝐻) × 2 (3)

where the +1 term is due to the use of bias weights (𝑤𝑚∶0,𝑗), # is the cardinality operator and 𝑤M is

the vector that contains all fitted weights (𝑤𝑚∶𝑖,𝑗) for method M. The NN is trained using a simulated

annealing that minimizes the Coverage Width-based Criterion (CWC):

3.2. Materials And Methods 48

𝑐𝑖 =
⎧{
⎨{⎩

1 if 𝑦𝑖 ∈ [𝐿𝑖, 𝑈𝑖]
0 else

𝑃𝐼𝐶𝑃 = 1
𝑛 ∑𝑛

𝑖=1 𝑐𝑖
𝑁𝑀𝑃𝐼𝑊 = 1

𝑅×𝑛 ∑𝑛
𝑖=1 𝑈𝑖 − 𝐿𝑖

𝐶𝑊𝐶 = 𝑁𝑀𝑃𝐼𝑊(1 + 𝛾(𝑃𝐼𝐶𝑃)𝑒−𝜂(𝑃𝐼𝐶𝑃−𝜇))

(4)

assuming the prediction interval (PI) of [𝐿𝑖, 𝑈𝑖] for time period 𝑖, where 𝐿𝑖 and 𝑈𝑖 denote the lower

and upper bounds, 𝑐𝑖 is the coverage function, 𝑛 is the number of PI estimates, 𝑃𝐼𝐶𝑃 is the Predic-

tion Interval Coverage Probability (PICP), 𝑁𝑀𝑃𝐼𝑊 is the Normalized Mean Prediction Interval Width

(NMPIW), 𝑅 is the range of the target, 𝜂 and 𝜇 are constants, and 𝛾 is confidence level step function

(𝛾 = 0 if PICP ≥ 𝜇; otherwise 𝛾 = 1). When PICP is higher than the confidence level (𝜇), CWC
produces a small value that is equal to the NMPIW, otherwise the PICP is considered unsatisfactory

and CWC increases exponentially due to the value of 𝛾.
LUBEX is an extension of LUBE that adopts a time lag feature selection and an ensemble averaging

(Rana et al., 2013). The latter feature works by first storing the best 𝑁𝑅 solutions when executing the

simulated annealing optimization of LUBE. Then, the PI ensemble is produced by averaging the upper

and lower estimates of the distinct 𝑁𝑅 models.

The 𝜇 and 𝜂 constants are hyperparameters that define how much penalty is given to PI with a low

coverage. In (Khosravi et al., 2011), authors assumed the values 𝜇 = 0.90 and 𝜂 = 50 that highly

penalize PI with a coverage probability lower than 90%. Our claim is that optimizing a single measure,

such as CWC, is a more limited approach when compared with the multi-objective neuroevolutionary

approaches (subsection 3.2.2), since it ignores distinct coverage-width trade-offs. Given that we need

to fix a priori the 𝜇 and 𝜂 constants for optimizing LUBEX, in this work we assume the default 𝜂 = 50
and 𝜇 = 0.90 values proposed in (Khosravi et al., 2011). To achieve a fair comparison, both LUBE and

LUBEX are trained with the same inputs (generated by the sliding window with 𝐼 time lags). To set the
best number of hidden nodes (𝐻), the training data is first split into training and validation sets. Then,

a grid search is used to explore distinct 𝐻 values and select the minimum 𝐶𝑊𝐶 validation network.

After setting 𝐻, the NN is retrained with all training data.

To facilitate the metaheuristic optimization, we do not assign fixed roles to the two output nodes.

Instead, the lower and upper values are automatically set as the minimum and maximum of the output

vales. For example, consider a NN with a base structure similar to the left of Figure 9. For a particular

time series input window, the NN could return the pair of values (230 – first output node, 137 –

second output node). If the NN output node roles were previously fixed to the lower (first output)

and upper (second output) then the interval would be infeasible, with 𝑈𝑡 < 𝐿𝑡. In contrast, the

flexible minimum and maximum role assignment leads to a feasible interval: [min(230, 137) =
137,max(230, 137) = 230].

3.2. Materials And Methods 49

LUBE was originally proposed for regression tasks, while LUBEX only handled one-step ahead TSF.

In previous work (Pereira et al., 2017), we adapted both methods to perform multi-step ahead TSF

PI. The adaptation, termed here LUBET and LUBEXT, assumes computing the next ahead estimate

as the middle of the PI: ̂𝑦𝑡+𝑖 = (𝑈𝑡+𝑖 + 𝐿𝑡+𝑖)/2, where 𝑖 ∈ 1, ..., ℎ and 𝐿𝑡+𝑖 and 𝑈𝑡+𝑖 represent

the predicted lower and upper bounds for time 𝑡 + 𝑖. Similarly to the single point multi-step TSF, an

iterative feedback of the ̂𝑦𝑡+𝑖 values is used to generate the 𝑖-ahead PI and middle values.

Neuroevolution prediction interval methods

In this subsection, the evolutionary multi-objective method (MLUBE) (Ak et al., 2013) is first presented,

since it is the base model for all proposed neuroevolution TSF PI methods. MLUBE was originally

proposed for regression tasks and it uses the same fixed LUBE NN architecture and a direct real-valued

representation chromosome with a total of #𝑤MLUBE = #𝑤LUBE (Equation 3) weights. The weights are set

by using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Srinivas and Deb, 1994) to evolve

a Pareto front that contains all nondominated solutions, i.e., the best multi-objective trade-offs. We

adopt the NSGA-II algorithm for the multi-objective optimization because it was used in (Ak et al., 2013,

2015) and we wish to have a fair experimental comparison, thus using the same algorithm to compare

the distinct MLUBE based methods (MLUBET, M2LUBET, MLUBEXT and M2LUBEXT).

The NSGA-II algorithm optimizes a population with a size of 𝑃𝑠 individuals that are initially set ran-

domly, where each individual (or solution) is composed of a vector of real values (the NN weights).

In each new generation, new individuals are created by using two genetic operators (Srinivas and

Deb, 1994): a single-point crossover, with a crossover probability of 𝑃𝑐; and polynomial mutation,

with a mutation probability of 𝑃𝑚. Then, all individuals are evaluated, using two fitness functions:

Prediction Interval Coverage Error (PICE) = 1 − 𝑃𝐼𝐶𝑃 (the PICE) and 𝑁𝑀𝑃𝐼𝑊 (the PI width). The

NSGA-II algorithm selects for the next generation the best fitted individuals by using a non-dominated

Pareto sorting approach and that considers both fitness functions. This allows the algorithm to evolve

iteratively a Pareto front, until it is stopped after 𝐺 generations.

The LUBE method uses an internal validation procedure to select the best number of hidden nodes

(𝐻) based on the single objective 𝐶𝑊𝐶 metric. MLUBE also uses a similar 𝐻 value procedure but

with an adapted selection criterion. Since MLUBE simultaneously evolves two objectives (𝑃𝐼𝐶𝐸 and

𝑁𝑀𝑃𝐼𝑊), instead of 𝐶𝑊𝐶 we use the highest hypervolume (Beume et al., 2009) selection criterion,

which correlates with interesting Pareto fronts. In effect, the hypervolume is a popular measure used

to compare Pareto fronts generated from distinct optimizations and it is computed by considering a

reference point. Figure 10 shows an example Pareto front. Often, the reference point is set as the

worst solution. In this work, we assume such worst point reference as 100% PICE and 100% NMPIW,

i.e., (1, 1). Thus, the ideal hypervolume value is 1.0. Since MLUBE was originally only proposed for

3.2. Materials And Methods 50

regression tasks, we also adapted this method for multi-step PI (denoted by the term MLUBET), where

the middle of the PI is used to provide iterative feedback values (̂𝑦𝑡+𝑖) (Pereira et al., 2017).

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PICE

N
M

P
IW

●

hypervolume=0.57

Pareto front

reference point (1,1)

Figure 10: Example of a Pareto front with five PI coverage and width trade-offs (white circles) and its hypervolume
value when using the (1,1) reference point.

.

In our previous work (Pereira et al., 2017), we introduced two variants for MLUBET, both based on a

2-phase learning (M2LUBET). The first phase involves a backpropagation training of a single point TSF

MLP, with one output node (subsection 3.2.2). Then, the obtained weights are fixed (gray connections

shown at the right of Figure 9). In the second phase, two additional output nodes, and their respective

connection weights, are added to the model, in order to allow the estimation of the lower and upper

values. Next, the new second phase weights (𝑤2∶𝑖,𝑗, 𝑗 ∈ {2, 3}) are optimized using NSGA-II (black

connection weights shown at the right of Figure 9). Thus, the multi-objective optimization is performed

over a smaller search space when compared with MLUBET, since #𝑤M2LUBET = (1 + 𝐻) × 2.
The difference between the two variants (M2LUBET1 and M2LUBET2) is related with the generation

of multi-step PI. M2LUBET1 uses the first output node to directly generate the ̂𝑦𝑡+𝑖 estimates, while

M2LUBET2 uses the middle PI point (average of the second and third outputs). In this work, we only

consider M2LUBET2 as the M2LUBET representative, since it adopts the same multi-step approach

used by other methods (e.g., LUBET, MLUBET) and it provided better results in the preliminary experi-

ments conducted in (Pereira et al., 2017).

The ensemble averaging adopted by LUBEX provided better PI results in terms of the single CWC

criterion (Rana et al., 2013). Inspired in this result, we propose new ensemble versions for neuroevo-

lution PI methods. These ensemble adaptations are more complex than LUBEX, since multi-objective

methods optimize a Pareto curve, with distinct coverage-width trade-offs. Thus, 𝐾𝐶 ensembles need

to be built, each one related with a distinct optimization region. To achieve this, we first store all Pareto

curve solutions achieved during the NSGA-II evolution. Then, we split the optimized coverage-width

space into 𝐾𝐶 zones according to two main strategies: radial slices and clustering. The former strat-

3.2. Materials And Methods 51

egy considers all evolved Pareto curve points, dividing them into 𝐾𝐶 equal sized radial slices (left of

Figure 11). The latter approach clusters the most recent Pareto curve points (from the last 𝐿𝐺 gener-

ations, which tend to include points closer to the best Pareto front) into 𝐾𝐶 groups using the k-means

algorithm (Witten et al., 2011) (right of Figure 11). Next, we select the best set of 𝑁𝑅 MLPs for each of

the 𝐾𝐶 zones. In both strategies, the selected 𝑁𝑅 models are the ones that are farther away from the

(1,1) reference point, using the Euclidean distance, in coverage-width space. Finally, the PIs of these

𝑁𝑅 models are then averaged (as in LUBEX), in order to compute the ensemble PI. In this chapter,

the radial slice ensembles for MLUBET and M2LUBET are termed MLUBEXT and M2LUBEXT, while

the clustering ensembles are denoted as MLUBEXT2 and M2LUBEXT2.

●

●

●

●●
●

●

●
●

●

●
●

●

●
● ●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
● ●

●

●

●●

●

●

●

● ●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PICE

N
M

P
IW

●

●
●

●

●●●●
●
●

●●●●● ●●●●● ●●● ●●●
●

●●
●

●●
●● ●●●●

●●●●●●● ●
●●

●
●●●

●●●●

●
●●●●

●● ●● ●●
●●●● ●● ●

●●
●

●
●

●●●
●

●
●

● ●●●●●
●

●
●●

●
●

● ●●●●●
●

●
●●

●
●

● ●●●
●●●● ●

●●
●●●● ● ●

●●
●●●● ● ●

●●
●●●● ●● ●●● ●● ●

●●● ●● ●●●● ●● ●
●●●●● ●● ●●●●● ●● ●
●●●● ●●●● ●● ●●●●●● ●● ●
●●● ●● ●●●●● ●● ●●●●

●
●●● ●● ●

●●●● ●●●●●● ●● ●●●●
●

●
●

●●● ●● ●●●● ●●●●● ●● ●●●●
●

●
●

●
●

●●● ●● ●●●● ●●●●● ●● ●●●●
●

●
●●

●
●

●●● ●● ●●●● ●●●●● ●● ●●●●
●

●
●●●

●
●

●●● ●● ●●●● ●●●●● ●● ●●●●
●

●
●●●●

●
●

●●● ●● ●●●● ●●● ● ●●● ●●●
●●● ●●●●●●● ● ●● ●●●● ●●●●●●

●●●
● ●●● ●●

●●●●●●
● ●● ●●

●● ●●
●●●●
●●●

● ●●● ●●
●● ●●

●● ●
● ●●

●●●
● ●●● ●●

●● ●●
●● ●

● ●● ●●
●●●

● ●●●
●● ●● ●

●● ●●
●● ●●● ●● ●

● ●●●
●●●●● ●● ●

●● ●●
●● ●●● ●● ●

● ●●●
●●●●● ●● ●

●● ●●
●● ●●● ●● ●

● ●●●
●●●● ●● ●● ●

●● ●● ●●●●● ●●●●
●●●● ●●● ●● ●

●●● ●● ●● ●●●● ●●●●
●●●● ●●● ●● ●

●●● ●● ●● ●●●●● ●●●● ●●●● ●●
●●● ●● ●● ●●●●● ●●●● ●●● ●● ●●
●●● ●● ●● ●●●●●● ●●●● ●●● ●● ●●
●●● ●● ●● ●●●●●●● ●●●● ●●● ●●●● ● ●●
●● ●●● ●●●● ●●● ●●●● ● ●●●● ● ●●
●● ●●● ●●●● ●●● ●●●● ● ●

●
●●● ● ●●●●● ●

●
●●● ●●●●● ● ●

●●
●●● ● ●●●●● ●

● ●●
●●● ●●●●● ● ●

●●
●●● ● ●●●●● ●

● ●●●
●●● ●●●●● ● ●

●
●

●
●●● ● ●●●● ●● ● ●● ●●●●● ● ●

●
●

● ● ●●
●

●●● ●●● ●● ●●● ● ●● ●●●●● ● ●
●

●●●● ●● ● ●●
●

●●● ●●●● ●●●●●● ●● ●
●

●●

●
●

●

●
●

●

●
●

●
●●● ●●●

●●
● ●●●

● ●

●

●●
● ● ●●●●

● ●
●

●●
● ●●●●●●

● ●
●

●●●●● ● ●
●●●

●
●●● ●

●
●●●●

●●
●●

●●●
●

● ●
●

●●
●

●● ●
● ●

●
●●

●●●
●

●● ●
● ●

●
●

●
●

●●●● ●●
●

●
●

●● ●● ●

●
●● ● ●● ●●● ●

●
●●

● ●●●●●●
● ●●●

● ●●●●●●●
● ●●●

● ●●●●●●●
● ●●●

● ●●● ●●●●●
● ●●●

● ●●● ●●●●●●
● ●●●

● ●●● ● ●●●●●●
● ●●●

● ●●● ● ●●●●●●●
● ●●●

● ●●● ● ●●●●●●
● ●●

● ●●● ●●●●●●
● ●●●

● ●●● ●
●

●●●●●
● ●● ●●

● ●● ●
●

●
●

●●●●
● ●●●● ●●

● ●● ●
●

●
●

●
●

●●●●
● ●● ●● ●●

● ●● ●
●

●
●●

●
●

●●●●
● ●● ● ●●● ●●

● ●● ●
●

●
●● ●

●
●●● ● ●● ● ●● ●●● ●●● ●

●●●● ●●● ●● ● ●●● ●●● ●●● ●
●● ●● ●●● ●● ● ●●● ●●● ●●● ●● ●● ●● ●

●●● ●
●● ●● ●● ●● ●

●●
●

● ●
●● ●● ●●

●●● ●● ●
●●

● ●●
● ●

●● ●● ● ●●●●● ●● ●
●

● ●●●
●

●● ●● ● ●●●
●

●●●●●● ●● ●● ● ●●● ●● ●● ● ●● ●●
●

●●● ●
●

●●●●●● ●● ●● ● ● ●●●● ●● ●● ● ●● ●●
●

●● ●●● ●
●

●●●●●● ●● ●● ● ● ●●●●● ●● ●● ● ●● ●●
●

●● ●●● ●
●

●●●●●● ●● ●● ● ● ●●●●●● ●● ● ●● ●●
●

●● ●●● ● ●●●●●● ●● ● ●●●● ●● ● ●● ●●●● ●●● ● ●●●●●● ●● ● ●●●● ●● ● ●● ●●●● ●●● ● ●●●●●● ●● ● ●
● ● ●●● ●● ● ●●●

● ●● ●●●● ●● ● ●●●●●● ● ●●●● ●●●●● ●● ●●●● ●●●●●
●

●●
●●●●●●● ● ●●●●● ●● ●● ●● ● ●●●● ●●● ●● ●● ●● ● ●● ●●● ●●● ●● ●● ●●●● ●● ●● ●● ●●●●● ●● ●● ●●●●● ●●●● ●● ●● ●●●●●●● ● ●●●●● ●● ●● ●●●●● ●●●● ●● ●● ●●●●●● ● ●●● ● ●●●●● ●●● ●●●●●●●●

●
●

●

●
●

●●
●

●

●
●

●
●

● ●

●

●

●

●

●●
● ●●

●
●

●
● ●●●●●● ● ●
●

●●

●
●

●●

●
●

●

●
●

● ●
●

●
●● ●

●●
●●

● ●
●● ●

●●
●● ●

●●
●

●
● ●

●
● ●

● ●
●●

●
●

●● ●
●●

●

●
●●●

●
●
●●

●
●

●● ●
●

●
●

●
●

●

●
●●●

●
●
●● ● ●●●● ●●●●

●
● ● ●

●
●●●

●●
● ●

●●
●●

● ●
●●●

● ●
●●●

●●
●●● ●●●

●● ●●●
● ●●●

●●●●●
● ●

●●
●●

● ●●●●●● ●●●
● ●

●● ●
●

●●
●●

● ●●●
●

●
●●

●●
●

●
●

●●●
●

●
●

● ●●
●

●
●●

● ●● ●
●

●●●
●

●
●● ●●

● ●
●

●●
● ●● ●

●
●

●●
●

●●
●

●
●● ●●●

●●●
● ●● ●

●
●

●●
●

●
●

●●
●

●
●●●●

●●
● ●● ●

●
●

●●
●

●●
●

●●
●

●
●●●●

●
●

●
● ●● ●●

●●
●

● ●●
●

●●
●●●●

●
●

●●
●

●
●●

●
● ●

●
●●

●
●●

●
●

● ●
●

●●
●●●

●
● ●

●●
●●

●
●● ●

● ●
● ●●

●●
●●●

●
● ●

●
●

●●
●●

●
●● ●

● ●
● ●●●

●●
●●●

●
● ●

●●
● ● ●
●● ●●

●●
●

●● ●
●● ●

●●●●● ●
●●●

●
●

●●
●● ●●

●●●● ●●
●

●
●● ●

●● ●● ●●●● ●●●●● ●
●●●

●
●

●
●● ● ●
●●

●●●● ●
●

●
●● ●

●● ●● ●●● ● ●●●●
●● ●●●●● ●

●●●
●

●
● ● ●

●

●●●●●
●● ●

●● ●● ●●● ●
●● ● ●
●

●●● ●● ●●●●● ●
●●●

● ● ● ● ●

●
● ●

●

●●●●●
●

●● ● ●●●● ● ●
●

●●
●

●●● ● ●●● ●
●

● ● ● ● ●

●
●●● ●

●

●●●●●
●

●● ● ●●● ● ●
●

●●
●

●
●

●●●
● ●● ● ●●● ●

● ● ●
●

●
●●● ●

●

●
●●●
●● ● ●●● ●●

●●●
●

●
● ●● ● ●

●
●●

● ●● ● ●●● ●
● ● ●

●

●
● ●●

●
●

●

●
●●●
●● ● ●●● ●●

●●
●

●●●
●●

● ● ●
●

●●
● ●● ● ●●● ●

● ● ●
●

●● ●
●

●●●●●●
●● ● ●●● ●●

●● ●●●
●●●●

● ● ●●●
● ●● ● ●●● ●

● ● ●●● ●
●●●●

●●●●
●

●● ●●● ●●● ●●●
●●

●
●●

● ● ●●●●● ● ●●●
●

●●● ●
●●●

●
●●●

●●●●
●

●● ●●● ●●● ●●●
●●

●●●
●●

● ● ●●●●● ● ●●●
●

●●● ●
●●

●●
●●

●●●●
●

●● ●●● ●●● ●●●
●●

●●

●
●

●

●● ● ●●●
● ●●

●
●●● ●

●●
●●

●

●● ●●●
●

●●●
●●●●●

●
●

●●
●

●
●

●

●● ●● ●●
●

●●●●●

●
● ●

●
●●●

●

●● ●●●
●

●●●●●●

●
●●

●●
●

●
●●

●

●● ● ●●
●

●●●●●

●
●●

●
●

●
●●

●

●● ● ●
●

●●●●

●
●●

●
●

●● ● ●
●●

●

●●● ●●●

●
●

●●
●

●

●● ●● ●●

●
●●

●●● ●● ● ●
●●

●

●●● ●●●

●
●

●●
●

●

●● ●● ●●

●
●●

●●● ●
●

●● ● ●
●●

●

●●● ●●●

●
●

●●
●

●

●● ●● ●●

●
●●

●●● ●
●●

●● ● ●
●●

●

●●● ●●●

●
●

●

●●
●

●
●

●● ●●

●
●●

●●● ●
●

●
●

●● ● ●
●●

●

●●●●

●
●

●

●
●

●

●
●

●

●● ●●

●
●●

●
● ●

●
●● ●

●
●●

●
●●

●
●●●

●
●

●

●
●●●

●

●
●

●

●● ●
●●

● ●
●

●●
●

● ●
●

●●
●●

●●●

●
●

●

●
●●

●●● ●●
●

●
●

●

●● ●
●●

● ●
●

●
●

●

●●
●

●
●●

●●
●●

●
●

●

●
●●●●●●●●● ●● ●
●

●

●

●●
● ●

●

●
●●

●
●

●

●●
●

●
●

●●

●

●●●●●●●
●●●●

●
●●

●

●
●

●

●●

●
●●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●●
●●

●●●
●● ●

●

●
●

●

●● ●
●

●●

●
●

● ●

●
●

●● ●
●

●
●●●

●
●

● ●●●●●

●

● ●●●●●●

●●
●

●

● ●●●
●

●●

●
●

●
●

●●

● ●
●

●●
●●

●
●

●●
●●

●
●

●●

●
●

●
●●

●
● ●

●
●

●

●●

●
●

●●
●

●●
●

● ●
● ●●

●●
●

●● ●
●●●●

●
●●

●
● ●

● ●

●

●●
●●

●
●● ●

●●
●

●●
●

●●
● ●

● ●

●

●●

●

●●
●●

●● ●
●●

●●
●

●
●●

●●
●●

●

●

●●
●

●

● ●
● ●

●
●

●
●●

●
●

●

●●
●●

●

●
●●

●
●●●

●

●

●●

●
●

●
●●

●
●

●

●●●
●●●

●
●

●●
●●

●●●

●
●

●
●

●
●

●
●

●

●●●

●●
●●

●●●
●●

●

●●●

●
●

●
●

●●
●

●
●

●

●●●

●
●●

●●●●
●●

●

●●●

●
●

●
●

●
●

●
●

●
●

●

●●●

●
●●

●● ●
● ●●

●●
●

●●●

●
●

●
●

●
●●

●
●

●
●

●

●●●

●
●●

●●●
●

●
●

●
● ●●

●●
●

●●●

●

●
●

●
●●

●
●

●

●

●●●

●
●●

●●●
●

●
●●●

●

●
● ●●

●

●

●●●

●

●
●

●
●●●

●
●

●
●

●

●●●

●●
●

●

●
●●

●

●
●●

●

●
● ●●

●●●

●
●

●
●

●●
●

●
●●

●
●

●
●

●●

●●
●

●

●
●●

●

●●

●
●●

●

●
● ●●

●●

●
●

●
●

●●
●

●●
●

●●
●

●
●

●

●●

●●
●

●

●
●●

●

●●●

●

●

●
●●

●
● ●●●

●
●

●
●●

●

●

●
●●

●
●

●
●●●

●
●

●●
●

●

●

●● ●●
● ●●

●●
●

●

●●●●
●

●●
●

●
●

●

●

●
●●

●
●●●●

●
●●

●●●
●●

●
●●●

● ●●

● ●
●

●●●●
●

●●
●

●

●

●
●●

●●

●

●

●
●●

●
●●●●

●
●●

●●●
●●●

●
●

●
● ●

●●●
● ●

●●

●●●●●●
●

●

● ●●●●

●

●
● ●●●●

●●
●●

●●●
●●

●

●●

●

●
● ●

●●●
● ●

●
●●●●●

●

●

● ●●● ●
●

●●●

●

●
● ●●●●●

●
●

●●

●
●

●●●●●●
●

●

● ●●
●

●●
●

● ●
●

●●●

●

●
● ●●●●●

●
●

● ●
●

●
●

●
●

●●●●
●

●

●

●●●●
●

●

●
● ●●

●

●
●

●●●●
●

●

●
●

●
●●

●
●

●

●
●

●●●●
●

●

●

●●●
●

●●●

●
● ●

●

●
●

●●●●
●

●

●
●

●●

●

●

●
●

●
●

●●●●
●

●
●● ●●●●

●● ●
●

●
●●

●
●●

●

●●

●

●●
●

●●
●

●
●● ●●●●●●

●● ●
●

●
●●

●
●●

●

●●

●

●●
●

●●
●

●
●● ●●●●

●

●●●
●● ●

●
●

●●
●●

●●

●●
●●

●
●

●● ●●●●

●●

●●●
●● ●

●
●

●●
●●

●● ●

●●
●●

●
●

●● ●●●●

●●●

●●●
●● ●

●
●

●●
●●

●●●● ●

●●
●

●
●

●● ●●●●

●●●●●

●●●
●● ●

●
●

●
●●

●●●●●

●● ●●● ●●●●

●●●●●●

●●●
●● ●●●●

●●
●

●

●●

●● ●●● ●●●●

●●

●●●
●● ●●●●

●●

●
●

●● ●
●

●●
● ●●● ●●●●

●
●●●

●●●
●● ●●

●●

●
●●●●● ●

●

●●
● ●● ●●●●

● ● ●●●●

●●●
●● ●●

●●

●
●●●●● ●

●

●●
● ●● ●●●●

● ● ●
●

●●●

●●●
●● ●●

●●

●
●●

●●● ●
●

●●
● ● ●●●●

● ●●●● ●●

●●●
●●●

●●
●● ●●●

● ●
●●

● ● ●●●

● ●●●●● ●●

●●●
●●

●●
●●

●●●●
● ●

●●
●

●●●

● ●●●●●●●●
●●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●●
●

● ●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●●

●

●

●
●
●

●

●

●●

●

●●
●●

●●

●

●

●

●●

●●
●●
●

●●●
●●

●●

●
●

●

●

●●

●
●●

●

●

●
●

●●●

●

●

●

●●

●
●

●

●

●●

●

● ●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●
●

●
●

●●●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●
●

●
●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●
●

●●

●
●

●

●
●

●

●
●

●●
●

●
●

●

●

●

●●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●
●

●

●●

●●

●
●

●

●
●

●

●
●

●
●●

●

●
●

●

●●

●

●

●

●●
●●

●

●
●

●

●

●

● ●
●

●●

●

●

●

●

●

●●●

●
●

●

●

●●●
●●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●●●●

●
●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●
●

●●
●

●
●●

●
●

●

●
●●

●

●

●

●

●●

●

●●

●

●

●

●

● ●
●

●

●
●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●●

●●

●
●

●●

●
●●

●●●
●●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●
●●

●●

●●●
●●

●

●●

● ●●
●●●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●●●
●●●

●●●●

●
●

●●●●

●
●

●●●

●

●
●

●
●

●

●

●

●

●
●
●

●●

●
●

●
● ●●●

●
●

●●●

●
●

●

●
●

●
●

●●●

●
●

●●●●
●

●
●

●●

●
●

●

●

●

●

●

●
●
●

●

●

●
● ●●●

●
●

●●●

●
●●

●
●

●

●

●●
●

●●●

●
●

●●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●
● ●●●

●
●

●●

●
●●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●●
●

●

●

●●

●●●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●
●●

●

●
●● ●

●

●

●●
●

●●

●

●

●

●
●

●●

●

●
●

●

●●

●
●

●

●●●

●
●●

●

●
●● ●

●

●●
●●● ●

●

●●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●

●●
●

●●

●
● ●

●

●
●

●
●

●

●
●

●
●

●

●

●●

●

●

●
●

●
●

●

●
●

●
●

●

●●
●

●●●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●● ●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●●
●

●

●
●

●

●●

●

●
●

●

●●

●
●

●
●

●
●

●
●

●
●

●

●●

●
●

●

●

●●

●

●
●

●
●

●

●
●

●
●

●

●●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●●

●●

●●●
●

●

●●

●
●

●●●

●●

●●

●

●

● ●

●

●

●

●

●●

●

●●●
●

●

●●

●
●●

●●●●

●

●●

●

●

●

●

●●
●

●
● ●●

●

●

●

●

●

●●

●●●●
●

●

●
●

●

●

●

●
●

●●

●●

●

●

●●●●
●

●
●

●

●●
●

●

●
●

●●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●●
●

●

●
●

●●

●

●

●

●

●●
●

●

●
●

●●

●

●

●●

●●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●●●
●

●

●

●

●
●●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

●
●●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

● ●

●●
●

●
●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PICE

N
M

P
IW

●●●
●●●

●
●

●
●● ●●● ●

●
● ●●●

●

● ●●●

●
●

●
●

●● ●
●

●

●
●●● ●

●●
●

●●

●●●
●

●
●●

●●

●
●●

●●●●●●●

●
●●●●●●

●● ●
●●●

●

●●●●●●●

●●
●

●
●

●●

Figure 11: Example of the radial slices (left) and clustering (right) strategies for ensemble model selection (𝐾𝐶 =
5 and 𝑁𝑅 = 7; the analyzed Pareto points are in gray; the left graph ensemble regions are separated
by radial slices, while each right graph cluster is denoted by a distinct symbol; the selected𝑁𝑅models
are in black).

3.2.3 Evaluation

Forecasting methods are often compared using a time ordered holdout, where the data is split into

training and test elements (Cortez et al., 2012). In this work, we adopt the more robust and realistic

rolling window estimation (Tashman, 2000), which allows the generation of several training and testing

iterations. The rolling window contains three main parameters (Figure 12): 𝑊 – the size of the training

window; ℎ – the number of multiple step ahead predictions; and 𝑆 – the step size, i.e., the number of

window elements are updated in each new iteration. In the first iteration, the training set is composed

of the oldest 𝑊 elements of the time series and it is used to fit the PI method, which estimates,

at time 𝑡 = 𝑊, 1 to ℎ multistep ahead PI. Then, the PICE and NMPIW forecasting measures are

3.2. Materials And Methods 52

computed using the time series test samples from time 𝑡 + 1 to 𝑡 + ℎ. In the next iteration, the

training window is updated by deleting its oldest 𝑆 values and adding the more recent 𝑡+𝑆 time series

observations. The forecasting model is then retrained and at time 𝑡 = 𝑊 + 𝑆 new ℎ multi-step ahead

forecasts and performance measures are computed, and so on. In total, the rolling window produces

𝑈 = (𝐿 − (𝑊 + ℎ − 1))/𝑆 iterations.

Full time series with elements

1

2

U

3

...

Training Test

Training

Training

Training

Test

Test

Test

......

Iterations W

Time

h

S

S

L

Figure 12: Schematic of the rolling window procedure.

In order to achieve a more fair comparison, the same inputs are used for all tested PI methods,

assuming a sliding time window with all time lags up to 𝐼 = 𝐾 + 1 (𝑘𝑖 ∈ {1, 2, ..., 𝐾, 𝐾 + 1}), which
allows the inclusion of the seasonal pattern (𝐾) plus a possible trend (Stepnicka et al., 2013). Table 1

presents the 𝐾 values for the selected time series.

The number of MLP hidden nodes (𝐻) is fixed for each PI basemodel (LUBET, MLUBET or M2LUBET).

To reduce the computational effort, 𝐻 is only optimized during a preprocessing stage that is performed

before the rolling window execution. Using the first training data (oldest 𝑊 time series observations),

the optimization uses a grid search where several 𝐻 values are tested by splitting the data into fitting

(oldest 70% elements) and validation (recent 30% values) sets. Given that the MLP training is stochastic,

a total of 𝑅 runs are executed for each 𝐻 value. Then, the 𝐻 value is selected, by considering the best

average CWC (LUBET, LUBEXT) or hypervolume (other methods) validation measures, and the normal

rolling window procedure is executed.

To compare the PI methods, the test set results need to be aggregated, since there are 𝑈 test sets.

For the multi-objective methods, this results in𝑈 distinct Pareto fronts. Moreover, some non-dominated

solutions in the training sets can correspond to dominated points in test sets. As such, the full PI test

results often contain several width values for the same coverage, as shown in Figure 13. Thus, the

statistical comparison of PI methods is non trivial. Inspired by Receiver Operating Characteristic (ROC)

curve vertical aggregation (Fawcett, 2006), we propose a similar procedure to compare the PI results

from all 𝑈 iterations. The results are first aggregated vertically, where for each different PICE value the

NMPIW median and respective 95% confidence intervals are estimated, according to the nonparametic

Wilcoxon test (Hollander et al., 2013). An example of such median curve is shown in Figure 13. Finally,

the overall hypervolume is computed using the estimated Pareto median curve and the adopted (1,1)

reference point.

3.3. Results 53

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●●●
●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●●
● ●

●
●

●

●

●
●

●
●●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

● ●
●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

● ●
●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●
● ● ●

●

●
●●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
40

00
60

00
80

00

pigs

PICE

N
M

P
IW

Figure 13: Example of the forecasting results for MLUBET using the pigs dataset (full test results are in gray; the
estimated median curve is in black).

3.3 Re s u l t s

3.3.1 Experimental setup

The experiments were carried out using the R computational environment (R Core Team, 2016) and

run on a dedicated Linux Intel Xeon 1.7 GHZ server. In particular, the MLP backpropagation, simulated

annealing and NSGA-II fit was performed using the nnet, optim and nsga2 functions from the nnet1,
stats2 and mco3 R packages.

In forecasting experimental comparisons, it is quite common to have several modeling parameters.

Since its computationally unfeasible to test all parameter combinations, some values need to be fixed

using reasonable assumptions (Hand, 2006). In this work, we adopted the setup that is summarized

in Table 2 and that is detailed in the next paragraphs. To compare the methods in a fair way, we used

the same evaluation procedure for all PI methods (rolling window parameters, same number of inputs).

Furthermore, when possible, we adopted the default algorithm parameters, as suggested in the state

of the art works (e.g., Khosravi et al. (2011); Rana et al. (2013)) or when implemented in the R tool.

Similarly to Khosravi et al. (2011), the number of NN hidden nodes (𝐻) is set by using an internal grid

search while the ensemble parameters (𝑁𝑅, 𝐾𝐶, 𝐿𝐺) were set using preliminary experiments.

The R environment default parameter values include: crossover probability of 𝑃𝑐=0.7, mutation

probability of 𝑃𝑚=0.2, population size of 𝑃𝑠=100 and maximum of 𝐺=100 generations for NSGA-II;

and 100 epochs of the BFGS backpropagation algorithm used in the first of the two-phase learning

methods. The simulated annealing was set with the values adopted in Khosravi et al. (2011); Rana

1 https://cran.r-project.org/web/packages/nnet/index.html
2 https://rdocumentation.org/packages/stats/versions/3.6.2
3 https://cran.r-project.org/web/packages/mco/index.html

https://rdocumentation.org/packages/stats/versions/3.6.2
https://cran.r-project.org/web/packages/mco/index.html

3.3. Results 54

et al. (2013) (initial temperature of 5.0 and 𝜂 = 50 and 𝜇 = 0.90) and it was stopped after 𝐺 =
100 × 100 = 10, 000 iterations, which corresponds to the same level of NSGA-II searched solutions.

Preliminary experiments were held to test several numbers of multilayer perceptrons (e.g., 𝑁𝑅 ∈
{5, 7, 9, 11}) for the ensemble methods and using only the first rolling window training data for series

cradfq and MG. Better validation results were achieved for the value 𝑁𝑅 = 7, which was kept fixed for
all ensemble methods and time series. In case of the neuroevolution ensemble methods, the coverage-

width space was divided into 𝐾𝐶 = 25 regions, which allows to define a large number of trade-offs.

We also explored slight different values (e.g., 𝐾𝐶 = 23, 𝐾𝐶 = 27) in preliminary experiments but no
substantial differences were achieved and thus we kept the initial 𝐾𝐶 = 25 setup. For the clustering

ensemble partition method, 𝐿𝐺 was set to the last 25 generations.

Table 2: Summary of the main parameters used in this study.

Context Parameter setup
Time series seasonal period 𝐾 is specific to each series (Table 1)

Rolling window
𝑊 and 𝑆 were adjusted (Table 1) to achieve 𝑈 =30 iterations
The horizon ℎ is set equal to the seasonal period 𝐾

Inputs The number of inputs is 𝐼 = 𝐾 + 1 Stepnicka et al. for LUBE and MLUBE

LUBE
Simulated annealing with initial temperature of 5.0
Simulated annealing stopped after 10,000 iterations
Evaluation function of 𝐶𝑊𝐶 with 𝜂 = 50, 𝜇 = 0.9 Khosravi et al.; Rana et al.
Hidden nodes set by internal validation with 𝐶𝑊𝐶 criterion (𝐻 ∈ {0, ..., 9})

MLUBE
NSGA-II with 𝑃𝑠 = 100, 𝑃𝑐 = 0.7, 𝑃𝑚 = 0.2
NSGA-II stopped after 𝐺 =100 generations
Two evaluation functions: 𝑃𝐼𝐶𝐸 and 𝑁𝑀𝑃𝐼𝑊
Hidden nodes set by internal validation with hypervolume (𝐻 ∈ {0, ..., 9})

Ensembles
𝑁𝑅 = 7 prediction models and 𝐾𝐶 = 25 regions (preliminary experiments)
most recent 𝐿𝐺 = 25 Pareto fronts used by the clustering ensembles

The training data was first standardized to a zero mean and one standard deviation (Hastie et al.,

2009). Also, all initial MLP weights were randomly set within the range [−1, 1]. In case of NSGA-II,

this means that the lower and upper gene bounds were also set within this range. After training the

models, the MLP outputs were post-processed with the inverse of the standardized function.

The rolling window evaluation procedure was defined with a reasonable large number of iterations

(𝑈 = 30) and its window and step size parameters (𝑊 and 𝑆) were adjusted to the time series

length, as presented in Table 1. The forecasting horizon was set equal to the seasonal cycle (ℎ = 𝐾).

For instance, the next 12 PIs are estimated for the monthly series, which corresponds to a full year

prediction.

3.3. Results 55

Regarding the search of best hidden nodes (𝐻), a total of ten searches were performed using the

training data of the first rolling window iteration, in a grid search that ranged from 𝐻 = 0 (simpler

linear regression) to𝐻 = 9 (more complex MLP). Each hidden node configuration was trained 𝑅 = 10
times and the average validation estimation measure (CWC or hypervolume) was used to select the

best configuration. A grid search was performed for each different base learner, resulting in the three

hidden node selections (for LUBET, MLUBET and M2LUBET based models) presented in Table 3. For

all series, the single-objective models (LUBET) favor small networks, with just one hidden node. In

contrast, larger models are chosen when using the two neuroevolution base models (MLUBET and

M2LUBET), ranging from 𝐻 = 4 to 𝐻 = 9.

Table 3: Selected number of hidden nodes (𝐻) for the distinct base learner models.

Series LUBET MLUBET M2LUBET
cradfq 1 7 6
gas 1 6 7
MG 1 8 9
pass 1 5 8
pigs 1 6 5
store 1 5 7
suns 1 7 9
usauto 1 7 6
water 1 5 4

3.3.2 Forecasting methods

Since we compare a large number of PI methods, we first analyze the non-ensemble methods and

then the ensemble based ones. Figure 14 shows the non-ensemble method results in terms of the

Wilcoxon estimated median Pareto curve and its respective 95% confidence intervals. The coverage-

width forecasting graphs clearly show that LUBET is outperformed by both MLUBET and M2LUBET

methods for all time series, even in the low coverage error (PICE) region, which is the area favored

by the CWC criterion. In most cases (e.g., cradfq, gas, mg, pass, gas, pass, usauto, water), the

neuroevolution results are considerably better, with higher than 0.2 point differences when compared

with LUBET in terms of NMPIW for the same PICE value. Moreover, the 95% confidence intervals do not

overlap, showing statistically significant differences. Regarding the neuroevolution method comparison,

the performances are more similar, presenting smaller differences that depend on the dataset and

PICE region analyzed. For instance, M2LUBET shows a substantial improvement over MLUBET for

a PICE value around 0.1 for the water series but then a better performance is achieved by MLUBET

3.3. Results 56

for PICE values higher than 0.2. For MG and usauto datasets, M2LUBET is consistently better for a

large PICE region, while MLUBET outperforms M2LUBET in the same consistent way for pass. The

estimated hypervolume values are presented in Table 4, revealing that each method has three best

results (cradfq, pass and water for MLUBET; MG, gas and usauto for M2LUBET) and there are three

ties. However, the median over all time series favors M2LUBET by 0.06 percentage points.

●●●●●●●●●●●●●●

●●●●●

●●●●

●●

●●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

cradfq

PICE

N
M

P
IW

●●●●●●●●●●●●●●

●●●●●

●●●●

●●

●●●●

●

●●●

●●
●●

●●●

●●
●●●

●●

●●

●●●

●●●

●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●

●●●

●● ●●●

●●●

●●

●● ●●

LUBET
MLUBET
M2LUBET

●●

●●

●●

●●●●●●

●●●●●

●●●●

●●●●
●●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

gas

PICE

N
M

P
IW ●●

●●

●●

●●●●●●

●●●●●

●●●●

●●●●

●●

●

●●

●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●

●●●

●●●

●●●

●●

●●●
●●

●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●

●●●

●●●

●●

●●●
●●

●●

●●●

●●

LUBET
MLUBET
M2LUBET

●●●●●
●●●●●

●●●●●●●● ●●●●●●●

●●
●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mg

PICE

N
M

P
IW

●●●●●
●●●●●

●●●●●●●● ●●●●●●●

●●
●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●

●●●

●●

●●●

●●●

●●●

●●

●●●

●●

●●●

●●●
●●

●●●●●●●●●●

●●●●

●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●

●●●

●●

●● ●●●

●●

●●

●●●

●●●

●●

●●

LUBET
MLUBET
M2LUBET

●●

●●

●●●

●●●

●●●●●●●●●

●● ●●●

●●●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5 pass

PICE

N
M

P
IW

●●

●●

●●●

●●●

●●●●●●●●●

●● ●●●

●●●●●

●

●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●
●●●

●●●
●●●

●●

●●●
●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●

●●●

●●●

●●

●●●
●●

LUBET
MLUBET
M2LUBET

●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

pigs

PICE

N
M

P
IW

●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●
●●

●●

●●●

●●

●●

●●

●●●

●●●

●●
●●●

●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●

●●

●●

●●●

●●●

●●●

●●

LUBET
MLUBET
M2LUBET

●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

store

PICE

N
M

P
IW

●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●

LUBET
MLUBET
M2LUBET

●●●●●

●●●●

●●●●●●●

●●●●●●●●●●

●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

suns

PICE

N
M

P
IW

●●●●●

●●●●

●●●●●●●

●●●●●●●●●●

●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●
●●

●●

●●●

●●●

●●●

●●●

●●●

●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●

●●

●●●

●●

●●●

●●●

LUBET
MLUBET
M2LUBET

●●

●

●●●●●●

●●●

●●●
●●●●●

●

●●● ●●●●●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 usauto

PICE

N
M

P
IW

●●

●

●●●●●●

●●●

●●●
●●●●●

●

●●● ●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●● ●●●

●●●

●●

●●

●●

LUBET
MLUBET
M2LUBET

●●

●●●●

●●●●

●●●●●

●●

●●●●●●

●●●●
●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

water

PICE

N
M

P
IW

●●

●●●●

●●●●

●●●●●

●●

●●●●●●

●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●●

●●

●●

●●

●●●
●●●

●●●

●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●●

LUBET
MLUBET
M2LUBET

Figure 14: Forecasting results for non-ensemble methods (points denote the Wilcoxon median values and
whiskers represent the respective 95% confidence intervals).

Similar results are achieved for the ensemble methods. As shown in Figure 15, the neuroevolution

methods have a clear superiority when compared with LUBEXT, presenting high differences in several

cases, such as cradfq, gas, pass, usauto and water. Also, the distinct neuroevolution ensembles have

closer performances, whose differences depend on the time series and PICE region analyzed. For

3.3. Results 57

Table 4: Median hypervolume test values for the neuroevolution methods (best values in bold).

Non-ensemble Ensemble

Series MLUBET M2LUBET MLUBEXT M2LUBEXT MLUBEXT2 M2LUBEXT2
cradfq 0.58 0.56 0.58 0.57 0.56 0.56
gas 0.55 0.57 0.56 0.47 0.57 0.48
MG 0.60 0.68 0.60 0.65 0.62 0.62
pass 0.65 0.61 0.63 0.61 0.66 0.59
pigs 0.52 0.52 0.52 0.51 0.52 0.48
store 0.73 0.73 0.72 0.72 0.72 0.72
suns 0.69 0.69 0.68 0.68 0.68 0.67
usauto 0.62 0.69 0.59 0.63 0.61 0.67
water 0.79 0.74 0.79 0.75 0.78 0.75
median 0.62 0.68 0.60 0.63 0.62 0.62

instance, the two-phase learning ensembles (M2LUBEXT and M2LUBEXT2) are consistently better than

other neuroevolution methods for MG data, while the single phase methods (MLUBEXT and MLUBEXT2)

are significantly better for the water series. In addition, M2LUBEXT2 provides the best performance for

usauto data. The type of region split used for ensemble selection (radial slices versus clustering) does

not seem to produce distinctive forecasting behaviors. In several cases, the respective median Pareto

curves are aligned. For example, MLUBEXT and MLUBET2 show very similar curves for cradfq, MG, gas,

usauto and water. The same similarity effect is visible for M2LUBEXT and M2LUBEXT2 on the series

pass and water. The global hypervolume values (Table 4) confirm that there does not seem to be any

single superior strategy for ensemble creation. In effect, the best hypervolume performance depends

on the dataset analyzed: MLUBEXT – cradfq and water; MLUBEXT2 – gas and pass; and M2LUBEXT

– MG; M2LUBEXT2 – usauto. The median values over all series (last row of Table 4) denote small

differences, with the overall median values ranging from 0.60 (MLUBEXT) to 0.63 (M2LUBEXT).

When considering the comparison of non-ensemble versus ensemble methods, the results from

Table 4 tend to favor the former ones. Indeed, MLUBET or M2LUBET present identical or superior

median hypervolume. The only exception occurs with the pass series, where MLUBEXT2 produces the

best value. Moreover, MLUBET is only outperformed by its ensemble variants in three cases (MG, gas,

pass), while M2LUBET is only surpassed in two datasets (cradfq and water). In addition, the median

values over all series show identical (MLUBET and MLUBEXT2) or superior (MLUBET versus MLUBEXT;

M2LUBET versus any of its ensemble variants) performances. When considering all methods and

hypervolume values, the best results are obtained by M2LUBET, since it ranks first in six of the nine

tested datasets and it also provides the highest overall median value.

3.3. Results 58

●●●●●●●●●●●●●●●●

●●●● ●●●●
●●●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

cradfq

PICE

N
M

P
IW

●●●●●●●●●●●●●●●●

●●●● ●●●●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●

●●●

●●

●●●

●●

●●●

●●
●●

●●●●●

●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●

●●●

●●●
●●●

●●●

●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●● ●●●

●●

●●●

●●●
●●

●●●
●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●

●●

●●●

●●● ●●

LUBEXT
MLUBEXT
M2LUBEXT
MLUBEXT2
M2LUBEXT2

●●●●●●●●

●●●●●●●

●●●●●●●●●

●●●

● ●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mg

PICE
N

M
P

IW

●●●●●●●●

●●●●●●●

●●●●●●●●●

●●●

● ●●

●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●●

●●●

●●
●●

●

●●●

●●●●●

●●●●●●●

●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●● ●●

●●
●●

●●

●●

●●

●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●●

●●●

●●

●●

●●

●●

●●
●●

●

●●●

●●●●●● ●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●●●
●●

●●●

●●

●●
●●●

LUBEXT
MLUBEXT
M2LUBEXT
MLUBEXT2
M2LUBEXT2

●●●

●

●●
●●●●●●

●●

●●●●●●●

●●●●●

●

● ●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

gas

PICE

N
M

P
IW

●●●

●

●●
●●●●●●

●●

●●●●●●●

●●●●●

●

● ●

●

●
●●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●
●●●

●● ●●●

●
●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●

●●

●●
●●●

●●

●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●● ●●●

●●

●●

●●
●●

●●●

●

●●●●

●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●● ●●

●●●
●●● ●●

LUBEXT
MLUBEXT
M2LUBEXT
MLUBEXT2
M2LUBEXT2

●

●●●

●●●

●●●●●

●●●●●●●●●

●●●

●●●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

pass

PICE

N
M

P
IW

●

●●●

●●●

●●●●●

●●●●●●●●●

●●●

●●●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●

●●
●●●

●●●

●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●
●●

●●

● ●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●

●●●

●●●

●●
●●●

●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●
●●

●●●

●●●
●●

LUBEXT
MLUBEXT
M2LUBEXT
MLUBEXT2
M2LUBEXT2

●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

pigs

PICE

N
M

P
IW

●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●
●●●

●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●

●●●

●●●

●●

●●●

●●●

●●

●

●●●●

●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●

●●

●●●

●●

●●●

LUBEXT
MLUBEXT
M2LUBEXT
MLUBEXT2
M2LUBEXT2

●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●

●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

store

PICE

N
M

P
IW

●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●

●●●

●●

●●●

●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●●●

●●●

●●

●●

LUBEXT
MLUBEXT
M2LUBEXT
MLUBEXT2
M2LUBEXT2

●●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

suns

PICE

N
M

P
IW

●●●●●●●

●●●●●●

●●●●●●

●●●●●●●

●●●
●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●●●

●●

●●

●●

●●●

●●
●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●

●●

●●●

●●●

●

●●●●●●●●

●●●●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●

●●

●●

●●

LUBEXT
MLUBEXT
M2LUBEXT
MLUBEXT2
M2LUBEXT2

●●

●

●●●●

●●●●

●●●●

●●●

●●

●●●●

●●

●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

usauto

PICE

N
M

P
IW

●●

●

●●●●

●●●●

●●●●

●●●

●●

●●●●

●●

●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●

●●●

●●

●●●

●●●

●●

●●●●●●●●●●●

●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●●●

●●●

●●

●●

●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●● ●●●

●●●

●●●

●●●

●

●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●

●●

●●●

●●

LUBEXT
MLUBEXT
M2LUBEXT
MLUBEXT2
M2LUBEXT2

●●●

●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

water

PICE

N
M

P
IW

●●●

●●

●●●●●

●●●●●

●●●●●

●●●●●●

●●●

●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●

●●●●

●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●● ●●●

●●●

●●●

●●●

●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●

●●●

●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●

●●●

●●
●●●

●●

●●

●●

LUBEXT
MLUBEXT
M2LUBEXT
MLUBEXT2
M2LUBEXT2

Figure 15: Forecasting results for ensemble methods (points denote the Wilcoxon median values and whiskers
represent the respective 95% confidence intervals).

To demonstrate the achieved multi-step forecasts, Figure 16 shows examples of twelve multi-step

ahead PI that were computed for two series. The top plots present the MLUBEXT2 predictions for the

pass series, while the bottom present the M2LUBET predictions for the usauto data. For each series,

two types of forecasts are exemplified (left graphs have smaller PICE values, right graphs have larger

ones), allowing to visually compare different coverage-width trade-offs.

3.3. Results 59

●

●
●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

30
0

35
0

40
0

45
0

50
0

pass and M2LUBEXT2: PICE=0.25 NMPIW=0.26

horizon (h−ahead predictions)

tim
e

se
rie

s
va

lu
es

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

30
0

35
0

40
0

45
0

50
0

pass and M2LUBEXT2: PICE=0.33 NMPIW=0.17

horizon (h−ahead predictions)
tim

e
se

rie
s

va
lu

es

●
●

● ●

● ●
● ●

● ● ●
●

●

●

●
●

● ● ●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

50
0

60
0

70
0

80
0

90
0

usauto and M2LUBET: PICE=0.08 NMPIW=0.38

horizon (h−ahead predictions)

tim
e

se
rie

s
va

lu
es

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

60
0

65
0

70
0

75
0

80
0

85
0

90
0 usauto and M2LUBET: PICE=0.33 NMPIW=0.14

horizon (h−ahead predictions)

tim
e

se
rie

s
va

lu
es

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

Figure 16: Examples of the obtained multi-step ahead prediction intervals (solid line denotes the true values;
dashed lines represent the upper and lower prediction intervals).

3.3.3 Computational effort and training optimization examples

The extra computational effort for producing ensembles is negligible when compared with non-ensemble

PI method training. Thus, we compare only the computational demand of each PI base learner method

and whole rolling window procedure, as detailed in Table 5. The time elapsed values confirm that single-

objective methods (LUBET) are faster, requiring around half of the computational effort when compared

with the neuroevolution methods. This was an expected result, since LUBET base methods only use

one hidden node while other methods use larger 𝐻 values (Table 3). Furthermore, M2LUBET base

methods require around 20% more computational power when compared with the MLUBET ones. More

3.4. Conclusions 60

importantly, the computational effort for all PI methods seems highly correlated with the series length,

presenting smaller values for the shorter time series (pass) and the highest value for the largest one

(MG). Also, it should be noted that the required effort is reasonable for current computer processors.

For instance, a single iteration of the rolling window procedure requires just around 8 minutes (498 s)

for the largest series (MG) and most demanding method (M2LUBET).

Table 5: Computational effort for all the base learner methods (in seconds, rows are sorted according to increas-
ing Lenght values).

Series Base Learner Methods

Name Length LUBET MLUBETM2LUBET
pass 144 1936 3009 3997
pigs 188 2341 4285 5130
gas 192 2379 3977 5306
cradfq 240 2810 5036 6463
store 257 3064 6060 7475
usauto 264 2804 5139 6338
water 276 2863 5376 6721
suns 289 3066 5759 7317
MG 783 5718 11686 14950
median 257 2810 5139 6463

To demonstrate the quality of the neuroevolution optimization, Figure 17 presents examples of the

Pareto front convergence for series cradfq and the MLUBET and M2LUBET methods during the first

rolling window iteration. In the plots, lines denote the full Pareto front while individual points represent

a PI coverage-width trade-off. Also, a gradient coloring was used and that ranges from light gray (first

generation) to black (last generation). Both plots reveal a substantial Pareto curve improvement over

the optimization. In particular, the training hypervolume increased from 0.54 to 0.83 (MLUBET) and

from 0.60 to 0.92 (M2LUBET), when considering the first and last generations of the NSGA-II evolution.

Moreover, the final Pareto curves are nonlinear and mostly convex, meaning that NSGA-II managed to

optimize, under a single pass, an interesting range of PI trade-offs that would outperform any linear

weighted combination method (e.g., 𝛼 × 𝑃𝐼𝐶𝐸 + (1 − 𝛼) × 𝑁𝑀𝑃𝐼𝑊, 𝛼 ∈ [0, 1]).

3.4 C o n c l u s i o n s

Time series forecasting (TSF) is an important field of research that models past temporal patterns of a

phenomenon (e.g., production levels or sales) in order to predict its future values. In particular, multi-

step ahead forecasts, computed several time periods in advance (e.g., weeks or months), are useful to

3.4. Conclusions 61

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PICE

N
M

P
IW

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PICE
N

M
P

IW

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
● ●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●●
●

●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

● ●●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●

●

●

●
● ●●

●●
●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●
●

●● ●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●
● ●

●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●●

●

●
●

●

●

●

●● ●●

●

●

●

●●

●

●●●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●

●
●

●

●
●●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

● ●

●

●
● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●●●

●

●● ●

●
●

●

● ●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●
●●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●

● ●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●
●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●
●

●

●

●
●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●●

●
●

●

●

●
●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●
●

● ●

●

●●

●

●

●

●●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●●

●
●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●
●

●● ●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●
●

●●●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●●●

●●

●
●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●●
●

● ●

● ● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●●

●●

●
●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●
●●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●●
●

●●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 17: Evolution of the Pareto front for MLUBET (left) and M2LUBET (right) methods and cradfq series.

support tactical decisions, such as planning production resources. Given the importance of TSF, several

single point prediction methods have been proposed, including statistical (e.g., Holt-Winters, ARIMA)

and soft computing (e.g., neural networks, support vector machines, fuzzy techniques) approaches.

However, there has been much less research that deals with TSF prediction intervals (PIs). And PIs are

useful to reduce uncertainty associated with decision making. For example, it can be used to define

best and worst what-if scenarios related with strategic decisions.

This chapter addresses this research gap, focusing in soft computing approaches for multi-step

TSF PIs. In particular, we adapt and compare a comprehensive set of neural network methods that

directly optimize PIs, which includes the lower upper bound estimation method for multi-step TSF

(LUBET), the LUBET ensemble extension (LUBEXT) and two neuroevolution methods, namely the multi-

objective evolutionary algorithm LUBE (MLUBET) and a two-phase learning MLUBET (M2LUBET). We

also present new neuroevolution ensemble variants based on two multi-objective split methods: radial

slices (MLUBEXT and M2LUBEXT) and clustering (MLUBEXT2 and M2LUBEXT2).

The PI methods were compared using a robust evaluation that considered a rolling windows proce-

dure, nine time series with distinct characteristics and from distinct real-world domains, two PI criteria

(coverage and width) and the Wilcoxon statistic. The obtained results reveal a superior performance of

the neuroevolution multi-objective methods when compared with the single objective methods (LUBET

and LUBEXT), even when considering the range of models associated with smaller coverage errors.

In general, the non-ensemble variants produced similar or slight better results when compared with

their ensemble versions. Overall, the best results were achieved by M2LUBET. This method requires

a slight computational effort increase when compared with MLUBET. Nevertheless, such effort is still

affordable (e.g., requiring around 8 minutes of computation to process a time series with around five

3.4. Conclusions 62

hundred elements) and thus we recommend M2LUBET as the best option for multi-step TSF PI with

neural networks.

In future work, we intend to research if better PI ensemble performances can be achieved by exploring

other PI aggregation functions, such as usage of an average weighting or stacking (Witten et al., 2011).

Also, to speedup the computation, we wish to explore multi-core parallel processing (e.g., island models)

(Sudholt, 2015).

We highlight that the work described in the current chapter was developed during a preliminary stage

of this doctoral project, when the business requirements from the OLAmobile company, associated with

the PRediction and Optimization of MObile Subscription marketing campaigns (PROMOS) Research and

Development (R&D) project, were being discussed and there was no Mobile Performance Marketing

data available for research purposes. Although the developed TSF PI methods could be implemented

for the analyzed Mobile Marketing domain (e.g., predicting the total number of redirects and sales),

such approach was not considered a priority by the OLAmobile company. In effect, the scope of the

PROMOS project was based on a distinct Machine Learning (ML) task: mobile user Conversion Rate

(CVR) prediction. Nevertheless, this was our first work in the multi-objective optimization of predictive

models that led to an important scientific contribution. Moreover, some of the researched methods were

adopted in the following PhD user CVR work (presented in Chapter 4). In particular, we used the same

NSGA-II multi-objective algorithm to create and optimize Decision Trees, becoming the search engine of

the adopted Grammatical Evolution (GE) (Ryan et al., 1998). Furthermore, we used the innovative and

robust evaluation approach described on this chapter, with multiple iterations rolling windows procedure,

two conflicting goals and a novel vertical result aggregation using a Wilcoxon statistic test.

4

MU LT I - O B J E C T I V E G R A MM AT I C A L E V O L U T I O N O F D E C I S I O N T R E E S FO R

M O B I L E M A R K E T I N G U S E R C O N V E R S I O N P R E D I C T I O N

4.1 I n t r o d u c t i o n

The massive usage of mobile devices (e.g., smartphones, tablets) is increasing the value of the mobile

advertising industry, which was estimated at 100 billion dollars worldwide in 2016 (Du et al., 2016). In

the particular domain of Mobile Performance Marketing, users are matched to advertisements through

Demand-Side Platforms (DSPs), involving several types of mobile market players: users, publishers

and advertisers. Publishers own popular digital spaces (e.g., news websites, online game services)

that attract a vast audience of users to their content. Advertisers own marketing campaigns regarding

products or services that they want to sell. DSPs allow the market to function by linking publishers

to advertisers through a digital platform. Publishers can be funded by requiring users to click in a

dynamic ad prior to accessing their contents. If a user activates a dynamic link then a redirect data

event is generated. In these markets, compensation only occurs when there is a conversion, when a

product or service is acquired by the user. If there is a conversion, a portion of the advertiser’s profit is

automatically returned to the publisher, and the DSP company also receives a base fee. Thus, the DSP

goal is to perform a good match between users and advertisement campaigns, in order to increase

conversions. Under this context, a key issue for the implementation of a DSP expert system is the

design of a prediction model for the user Conversion Rate (CVR), which is often modeled as a binary

classification task (“sale”, “no sale”), aiming to estimate if a user will produce a conversion once a

redirect occurred.

The mobile user CVR prediction task is nontrivial due to four main reasons (Matos et al., 2019a): it

involves big data, with millions of redirects being generated every day; most redirects (e.g., 99%) do not

result in conversions (it is a highly unbalanced task); only a limited set of input features are available

(due to privacy and technology issues); and most features are categorical and contain a high cardinality

(with hundreds or thousands of levels). Despite these issues, several attempts for CVR prediction have

been performed, using different types of Machine Learning (ML) models. The first attempts involved

more rigid and linear models, such as Poisson regression and Logistic Regression (Chen et al., 2009).

63

4.1. Introduction 64

These models are easy to interpret but usually provide limited prediction performances. Thus, recent

CVR prediction studies use more flexible ML algorithms, such as: Random Forests (Du et al., 2016);

Gradient Boosting Decision Trees (Zhang et al., 2014); Bagging, Stacking and Voting ensembles (King

et al., 2015); XGBoost (Matos et al., 2018); Deep Learning (Matos et al., 2019a); and Neuroevolution

(evolutionary optimization of neural network models) (Pereira et al., 2019). Yet, all these flexible ML

approaches use black-box prediction models (Cortez and Embrechts, 2013), which are more difficult

to be interpreted by Mobile Marketing domain experts. In effect, model interpretability, often termed

Explainable Artificial Intelligence (XAI) (Arrieta et al., 2020), is a key element that helps to determine if

a prediction model makes sense and can be trusted. Moreover, a human interpretable model can be

used in posterior analysis (e.g., to help in the design of successful future marketing campaigns).

Decision Trees (DTs) are well-known ML models, particularly used in classification tasks (e.g., CART,

ID3, C4.5 algorithms), due to their fast training time and good interpretability (Hastie et al., 2009;

Witten et al., 2011). However, in complex classification tasks the predictive performance is often lower

than achieved by other ML methods. To improve the classification results, one research direction was

to propose DT ensembles, in which several trees are combined into a single model. This resulted

in popular predictive models (e.g., Random Forest, XGBoost) but at the cost of losing interpretability.

Another research approach is to adopt a single decision tree and improve the fitting algorithm in order

to provide a higher predictive performance. For instance, by using Evolutionary Computation (EC),

such as proposed in (Motsinger-Reif et al., 2010; Fitzgerald et al., 2015; Rivera-López and Canul-Reich,

2018; Chabbouh et al., 2019; Czajkowski and Kretowski, 2019a).

According to Barros et al. (2012), there are two main types of evolutionary design of DTs for classifi-

cation: axis-parallel and oblique. In the former, a single attribute is used to split the data in each node,

while in the latter there is a combination of two or more attributes in each split node. In some stud-

ies (Czajkowski and Kretowski, 2010; Barros et al., 2011), a combination between these two is used,

named mixed trees, where each split node can contain either a single attribute or a combination of

multiple attributes. Axis-parallel DTs are popular in literature because they are easier to interpret when

compared with oblique DTs (Barros et al., 2012). This work follows the research direction of using EC

to evolve axis-parallel DTs. The associated state-of-the-art works are summarized in Table 6, ordered

by publication year and with some characterizing elements:

T – the type of DT (Axis-Parallel, Oblique or Mixed);

EC – the type of EC algorithm used;

V – if a variable-length DT representation was adopted;

GOAL – the optimization main goal;

CM – the adopted DT complexity measure;

4.1. Introduction 65

MO – if a Multi-Objective Optimization (MO) algorithm was used;

LE – if a Lamarckian Evolution (LE) was included;

DATA – the highest dataset size (total number of instances).

Table 6: Summary of the related work. The following are the keywords used in the table:
𝑎 Decision Tree type : A – Axis-Parallel, M – Mixed, O – Oblique.
𝑏 Evolutionary Computation method: DE – Differential Evolution, GDT – Global Decision Tree, GE -
Grammar Evolution, GP - Genetic Programming, EA – Evolutionary Algorithm.
𝑐 Variable-length Decision Tree (DT) representation.
𝑑 Goal: PP – Predictive performance, MC – Model Complexity.
𝑒 Complexity Measure: C – coding region size, D – Tree depth, N – number of nodes.
𝑓 Multi-objective Optimization method: N2 – NSGA-II, N3 – NSGA-III.
𝑔 Lamarckian Evolution (LE).
ℎ Highest dataset size (K means thousands of records).

Study T𝑎 EC𝑏 V𝑐 Goal𝑑 CM𝑒 MO𝑓 LE𝑔 Dataℎ

Czajkowski and Kretowski (2010) M EA PP,MC N 22.54K
Motsinger-Reif et al. (2010) O GE ✓ PP 1.00K
Barros et al. (2011) M GP ✓ PP,MC N 4.94K
Czajkowski and Kretowski (2013) O EA PP,MC N 8.65K
Jankowski and Jackowski (2014) A EA PP,MC D 12.83K
Fitzgerald et al. (2015) M GE ✓ PP 1.00K
Rivera-López and Canul-Reich (2018) A DE PP 5.47K
Chabbouh et al. (2019) O EA PP N3 4.17K
Czajkowski and Kretowski (2019a) A GDT ✓ PP,MC 0.25K
Czajkowski and Kretowski (2019b) O,M EA PP,MC N N2 58.72K
This work A GE ✓ PP,MC C,N N2 ✓ 6360.10K

This work, represented by the last row of Table 6, explores a Grammatical Evolution (GE) approach

(Ryan et al., 1998). GE shares some similarities with Genetic Programming (GP) (Koza, 1993) and Gene

Expression Programming (GEP) (Ferreira, 2001), since all these approaches optimize programs (Guogis

and Misevicius, 2014). The main difference is that GE evolves programs in an arbitrary language based

on a grammar. In past studies, GE has been applied to optimize ML models with different application

purposes, including the creation of neural logic networks for bankruptcy prediction (Tsakonas et al.,

2006) and the automatic design of Neural Networks for classification tasks (Ahmadizar et al., 2015). GE

is particularly suited for variable-length solution representations, which is the case of a DT. Indeed, GE

was used to evolve DTs in (Motsinger-Reif et al., 2010; Fitzgerald et al., 2015), outperforming standard

DT algorithms (e.g, C4.5, CART) in several classification tasks. The advantage of using GE is that no

limiting threshold needs to be set a priori, which is a limitation of the fixed-length tree representations

4.1. Introduction 66

used in (Rivera-López and Canul-Reich, 2018; Chabbouh et al., 2019). An important distinctive aspect

of our work is the type of EC goal. Most related works from Table 6, including the ones that use

GE (Motsinger-Reif et al., 2010; Fitzgerald et al., 2015), only focus on predictive performance and not

interpretability. These two goals are usually conflicting and thus a trade-off often needs to be set. In

(Czajkowski and Kretowski, 2010; Barros et al., 2011; Jankowski and Jackowski, 2014; Czajkowski and

Kretowski, 2013, 2019a), this issue was addressed by using a single fitness function with an additive

weighted formula. The problem with this approach is that it is only possible to optimize a single trade-off

on each run and the fitness weights need to be set in advance.

A more natural approach, followed in our work, is to adopt a MO using a Pareto front, simultaneously

maximizing the predictive performance and minimizing the DT complexity. In effect, we adopted the MO

GE proposed by (Colmenar et al., 2011), that adapted the Non-dominated Sorting Genetic Algorithm II

(NSGA-II) algorithm (Srinivas and Deb, 1994) to be the evolutionary engine of the GE. As far as we know,

there are no studies that use a MO approach to optimize both classification performance and complexity

for axis-parallel DTs. A MO was used in (Chabbouh et al., 2019) to evolve DTs but it only optimized

predictive performance measures (Precision and Recall), while in (Czajkowski and Kretowski, 2019b) a

MO was adopted to optimize oblique and mixed DT model complexity and predictive performance for

regression tasks. Moreover, LE can use a local learning procedure to accelerate evolution, where the

improved solution is encoded back into the chromosome (Cortez et al., 2002). Our work is the only

study that introduces a LE, which uses a fast local ML search to improve the GE solutions. In Mingo

et al. (2013), a similar approach was used with GE but with a non supervised local learning procedure

applied in a reinforcement learning context. Finally, we note that all related work studies from Table 6

worked with datasets with a few hundred or thousands of examples. The specific mobile CVR prediction

task addressed in this paper involves a higher magnitude of order, namely millions of training records.

To cope with such “big data”, in the sense that the datasets that are too big to be dealt with standard

evolutionary DT methods, our GE approach includes two specific mechanisms: the use of a balanced

sampling over the training data during the fitness evaluation; and a parallel evaluation of the population

individuals by means of multi-core processors. As shown in Section 4.3, this allows to deploy a timely

feasible solution for the analyzed Mobile Marketing domain.

The reason for minimizing the DT complexity is twofold. Firstly, a less complex tree will imply a

better model interpretability, since it will be easier to understand by domain experts. Secondly, trees

encoded by a lower number of genes are faster to build, thus reducing the prediction time used by the

algorithm. This last reason is very important for the Mobile Marketing domain, since we aim to perform

predictions in real-time.

In this chapter, we propose a MO based GE to evolve DTs for the Mobile Performance Marketing

domain. To measure the effect of a LE, we explore two main variants: a pure GE method (MGEDT)

and a GE that uses local learning to further improve the evolved solutions (MGEDTL). Both MGEDT and

4.2. Materials And Methods 67

MGEDTL are tested using recent real-world DSP data, provided by a marketing company and compared

with traditional decision trees, a Random Forest and Deep Learning. The main contributions are:

I) we propose a MO approach that optimizes both the classification performance and model inter-

pretability using GE under two main variants (MGEDT and MGEDTL);

II) we adopt a robust experimentation procedure, using big data from a real-world Mobile Marketing

DSP provider (with 6 million data records) and a realistic rolling window evaluation (Oliveira et al.,

2017), with several training and test iterations;

III) we compare the proposed GE methods with a standard decision tree, a Random Forest and a

state-of-the-art Deep Learning method (Matos et al., 2019a); and

IV) we discuss how the best evolved DT is useful in the analyzed application domain (Mobile Perfor-

mance Marketing).

Current chapter is organized as follows. Section 4.2 presents the Mobile Performance Marketing data,

the classification algorithms (including MGEDT and MGEDTL) and the evaluation procedure. The results

are presented and analyzed in Section 4.3. Finally, Section 4.4 draws the main conclusions and

suggestions of future work.

4.2 Ma t e r i a l s A n d Me t h o d s

4.2.1 Mobile Performance Marketing data

This research was conducted during a R&D project that involved a worldwide Mobile Marketing company

(OLAmobile). The collected data was retrieved from the company data center cloud system, containing

two main data events: redirects and sales. A redirect event record is generated each time a user

clicks on a dynamic link related with an advertisement. The user is forwarded to a mobile marketing

campaign. A sale event only occurs if the redirect originates a conversion (e.g., product purchase or

service subscription). The DSP supported by the marketing company generates millions of redirects

per day. Only a few thousands of these redirects produce a sale.

The DSP from OLAmobile works under two different traffic models: BEST and TEST. In an initial

phase, new marketing campaigns are put in a TEST mode, in which the DSP randomly assigns an ad

to a user. Then, after obtaining a minimum number of conversions, the best campaigns are put in a

BEST mode, in which the DSP uses simple statistics computed using past results to match ads with

users. For instance, it can select the ad with the best previous sales for a particular mobile carrier.

We collected all the DSP data events that were generated during a four day period, from 15th to 18th

of November of 2019 (Table 7). Most of the analyzed DSP traffic belongs to the BEST mode (64.5%).

4.2. Materials And Methods 68

Only a tiny fraction of the user clicks result in a conversion. As expected, a higher CVR is produced with

BEST traffic (2.8%) when compared with the TEST mode (1.0%). User CVR prediction is thus a highly

unbalanced task.

Table 7: Summary of the collected Mobile Marketing data.

Mode Redirect events Sale events
BEST (64.5%) 4,076,375 (97.2%) 112,532 (2.8%)
TEST (35.5%) 2,283,725 (99.0%) 22,769 (1.0%)
Total 6,360,100 (97.9%) 135,301 (2.1%)

After collecting data, we merged the two data event records for each traffic mode. As explained

in the previous section, due to privacy issues and technological constrains, the number of collected

Mobile Marketing features is quite reduced. For instance, it is not possible to identify a single user

and memorize any of its temporal purchasing behaviour. Thus, the DSP can only work with indirect

and immediate context features (retrieved once the user clicks a dynamic link), which are presented in

Table 8. There are a total of ten input attributes related with the user, publisher and advertiser (column

Context) and one target binary output (𝑌). All inputs are categorical. Some present a high cardinality,

such as the mobile operator (with 446 different levels for TEST traffic and 418 for BEST) and advertiser

campaign code (with 1,268 and 1,147 levels).

Table 8: Description of Mobile Marketing data attributes

Context Attribute Description (TEST levels, BEST levels, examples)

user

country user country (222, 219, {"Brazil","Spain"})
region user region (22, 24, {"Asia","Europe"})
browser browser name (13, 14, {"Chrome","Safari")
operator mobile carrier (446, 418, {"Vodafone","WiFi"})

publisher
partner publisher code (160, 162, numeric)
account publisher type (10, 9, {"Marketer","Network"})
manager manager code (10, 11, numeric)

advertiser
campaign ad campaign code (1268, 1147, numeric)
vertical ad type: 11 and 12 (e.g., {"video","mainstream")
application product code (729, 785, numeric)

target 𝑌 if there is a sale (2, 2, {"yes","no"})

A high categorical cardinally increases the computational complexity, in terms of both memory and

processing effort of the ML algorithm. Thus, during the preprocessing step, we applied the Inverse

Document Frequency (IDF) transform to all inputs. The IDF transform was proposed in (Campos et al.,

2016) and produced good results in our previous work (Pereira et al., 2019). This transform converts

4.2. Materials And Methods 69

a categorical feature into a numeric value by assigning each level according to 𝐼𝐷𝐹(𝑥) = ln(𝑁
𝑓𝑥

),
where 𝑁 is the total number of instances and 𝑓𝑥 is the number of occurrences of level 𝑥. Levels

with higher frequency have transformed values close to 0, while levels that rarely appear tend to the

maximum value of 𝑙𝑛(𝑁), for 𝑓𝑥 = 1. When applying the IDF transform, each level and respective

transformation is stored in memory, thus enabling each mapping to be applied to test (unseen) data.

It should be noted that due to the steady flow of new campaigns, unseen levels can appear on the test

data. These new levels were replaced by the highest 𝑙𝑛(𝑁) value found in the training data, which

corresponds to an infrequent training set IDF value. Our IDF implementation is available at the cane

Python module1.

4.2.2 Multi-objective Grammatical Evolution Decision Trees

GE is an evolutionary algorithm proposed in 2001 by O’Neill and Ryan (O’Neill and Ryan, 2001). It

is capable of evolving a program that is based on a provided grammar. A GE starts by generating an

initial population of solutions, often randomly generated, each corresponding to an array of integers

(genome), that will be used to generate the program (phenotype). GE uses an evolutionary algorithm,

which includes two phases in each generation (iteration): evolution and evaluation. The latter consists

in evaluating the population of solutions, based on a provided fitness function, while the former is

composed by a set of operations: selection, crossover and mutation. In a GE algorithm, evolution

is applied directly to the genome, while evaluation is applied to the phenotype. Thus, to obtain the

phenotype from the evolved genome, GE applies a mapping process between the two phases.

The GE mapping process uses the genome integer values to select rules from a context-free Backus–

Naur Form (BNF) grammar, which contains a set of symbols, that can be terminal or non-terminal,

each of which is composed by a set of production rules. Terminal symbols are items that can appear

in the language (e.g, +, -), while non-terminals are variables that can be expanded in one or more

terminal or non-terminal symbols (O’Neill and Ryan, 2003). The mapping process begins at the start

symbol and stops when a complete program is formed, i.e., there are no more non-terminals to be

expanded. The procedure implies expanding each non-terminal by selecting the production indicated

by the chromosome. For each value 𝑉 and if there are 𝑃 productions (numbered 0, 1, … , 𝑃 − 1) for
a given non-terminal, the 𝑅-th production is used where 𝑅 is the remainder of the division of 𝑉 by 𝑃.

In this work, we developed Multi-objective Grammatical Evolution Decision Tree (MGEDT), a multi-

objective algorithm that uses GE to create and evolve DTs for Mobile Marketing user CVR prediction. A

DT is composed by a set of decision nodes, where binary (true or false) conditions are applied, defining

a path until a leaf node is reached, which returns the expected output. We feed our Evolutionary

Decision Tree (EDT) with a set of data records. For each record and decision node, we compare a value

1 https://pypi.org/project/cane/

https://pypi.org/project/cane/

4.2. Materials And Methods 70

from a specific feature with a constant value, defined by GE, until a leaf is achieved. A leaf returns

the probability 𝑝 of occurring a conversion, i.e., the probability of class “sale”, with 𝑝 ∈ [0, 1]. Our
BNF grammar encodes a Python subset that is capable of representing a DT that returns the sale

probability 𝑝 (for 𝑌 = yes). The rationale behind showing our grammar and the subsequent Python

implementation is to illustrate the power of GE. When compared with GP or GEP, GE has the advantage

of allowing an easy customization to a given problem or programming language by simply modifying

the grammar used. Thus, the associated GE phenotype is a piece of Python code that can be executed

in order to obtain the predicted sale probability 𝑝.

⟨result⟩ ::= numpy.where(𝑥[⟨idx⟩] ⟨comparison⟩ ⟨value⟩, ⟨result⟩, ⟨result⟩)
| (⟨leaf⟩)

⟨value⟩ ::= ⟨digits⟩.⟨digits⟩ | ⟨digits⟩

⟨leaf⟩ ::= 0.⟨digits⟩ | 1

⟨digits⟩ ::= ⟨digits⟩⟨digit⟩ | ⟨digit⟩

⟨digit⟩ ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

⟨comparison⟩ ::= == | < | > | <=

⟨idx⟩ ::= country | region | ... | application

The numpy.where(cond, expression1, expression2) is a Python function that computes a typi-

cal if-else control instruction, returning expression1 if cond is true, else it returns expression2. The

comparison used in cond assumes the typical Python logical operators (e.g., ==, <). The object

x represents a vector with the IDF values of the redirect input attributes from Table 8 (<idx>) for a

particular instance or redirect.

For example, the expression numpy.where(x[country]<1,0,1) returns 0 if the IDF trans-

form of the user country is lower than 1, otherwise it returns 1. Given that the IDF encoded levels are

previously stored, the decision tree node tests can be easily interpreted as membership set operations.

For the same example, if the term country denotes the user x[country] value and the IDF levels

lower than 1 correspond to the countries of Brazil and Spain, then the decision test sale probability

rule is equivalent to: if country ∈ {”Brazil”,”Spain”} then 0%. The BNF grammar assumes a recursive

definition <result>, which allows the creation of an arbitrary chain of if else executions, thus creating a

DT. The leaves (<leaf>) of the tree include a real value, between 0.0 and 1.0 (𝑝). Only zero or positive
real values are allowed, which is consistent with the IDF transform used to preprocess the attributes

(Section 4.2.1). The real values use a recursive definition of <digits>, thus it can include a variable

size of digits. Section 4.3 provides an example of a tree generated by GE (Figure 20).

A brief illustration of the genotype to phenotype mapping is given below:

4.2. Materials And Methods 71

88 208 89 47 111 131 135 84 181 130 175 231 ...

The associated expansion using the grammar is:

<result>
numpy.where(x[<idx>]<comparison><value>,<result>,<result>) [1st prod., 88%2=0]
numpy.where(x["country"]<comparison><value>,<result>,<result>) [idx 10th prod., 208%11=10]
numpy.where(x["country"]<<value>,<result>,<result>) [comparison 2nd prod., 89%4=1]
numpy.where(x["country"]<<digits>,<result>,<result>) [value 2nd prod., 47%2=1]
numpy.where(x["country"]<<digit>,<result>,<result>) [digits 2nd prod., 111%2=1]
numpy.where(x["country"]<1,<result>,<result>) [digit 2nd prod., 131%10=1]
numpy.where(x["country"]<1,(<leaf>),<result>) [result 2nd prod., 135%2=1]
numpy.where(x["country"]<1,(0.<digits>),<result>) [leaf 1st prod., 84%2=0]
numpy.where(x["country"]<1,(0.<digit>),<result>) [digits 2nd prod., 181%2=1]
numpy.where(x["country"]<1,(0.0),<result>) [digit 1st prod., 130%10=0]
numpy.where(x["country"]<1,(0.0),(<leaf>)) [result 2nd prod., 175%2=1]
numpy.where(x["country"]<1,(0.0),(1)) [leaf 2nd prod., 231%2=1]

The expansion stops after the first 12 bytes, since there are no more non-terminals to expand. This

corresponds to the size of the coding region. The remaining genotype corresponds to a non-coding

region that is ignored.

In this work, we also propose a hybrid learning Multi-objective Grammatical Evolution Decision Tree

Lamarckian evolved (MGEDTL) approach, which combines both global (provided by the GE) and local

search (provided by a standard DT algorithm fit), aiming to improve the quality of the solutions. Our

Lamarckian approach is applied to all individuals of the GE population. First, a random decision node

from an individual tree 𝑇 is selected and the associated subtree 𝑆 is extracted. The training records

that fall into subtree 𝑆 are used to fit a new subtree 𝑆′ by using a conventional DT algorithm. In

particular, we used CART, as implemented in the popular sklearn Python ML module (using its default

parameters) (Pedregosa et al., 2011). Then, the newly obtained subtree 𝑆′ is inserted into a tree 𝑇′,

which is identical to 𝑇 except that 𝑆 is replaced by 𝑆′. The new obtained solution is evaluated and,

if a higher predictive performance is achieved, it will replace the original individual representation. To

achieve this, we have implemented an inverse mapping process that is able to obtain the genome from

the phenotype, so that both can be stored and, thus, solutions generated by our local search procedure

can be incorporated back into the GE. Figure 18 exemplifies how the proposed LE works.

The two GE variants (MGEDT and MGEDTL) adopt a MO approach, based on the NSGA-II adaptation

proposed by (Colmenar et al., 2011). The adaptation performs a Pareto front MO and it was set to

simultaneously optimize two goals (the fitness functions): the DT predictive performance, measured

using Area Under the Curve (AUC) of the well-known Receiver Operating Characteristic (ROC) curve

(Fawcett, 2006; Du et al., 2016; Matos et al., 2019a); and the DT complexity, measured as the number

of genes used by the GE representation, i.e., the size of the coding region.

By assuming class probabilities (𝑝 ∈ [0, 1]) at the leaves (and not pure class labels), the optimized
DTs resemble regression trees applied to a binary classification context. The advantage is that the

obtained DTs are more flexible, allowing to easily compute the AUC measure and also define different

4.2. Materials And Methods 72

...

Selection

Lamarckian

Decode

Learning

Encode

Population

Crossover

Mutation

New subtree

Chosen subtree

Figure 18: Schematic of the proposed MGEDTL approach.

sensitivity and specificity trade-offs for the same fitted model. Indeed, the ROC curve is a popular

analysis for classification tasks (Fawcett, 2006). If a classifier outputs a class probability 𝑝 then the class
can be interpreted as positive if 𝑝 > 𝐾, where𝐾 is a fixed decision threshold, otherwise it is considered

negative. The ROC curve shows the performance of a binary classifier across all 𝐾 ∈ [0, 1] values,

plotting one minus the specificity (𝑥-axis) versus the sensitivity (𝑦-axis). The overall discriminatory

performance is given by 𝐴𝑈𝐶 = ∫1
0 𝑅𝑂𝐶𝑑𝐾. The AUC measure provides two main advantages:

First, quality values are not affected if the classification data is unbalanced (Fawcett, 2006). Our

Mobile Marketing data is highly unbalanced, thus a useless classifier that always predicts “no sale”

(𝑌 = no) can obtain a classification accuracy of 99%. In contrast, the AUC value for the same “dumb”

classifier would be 50%, which corresponds to a random discrimination. Second, the AUC values have

a easy human interpretation. Often, the AUC values can be interpreted as (Fan et al., 2006; Gonçalves

et al., 2020): 50% – performance of a random classifier; 60% – reasonable; 70% – good; 80% – very

good; 90% – excellent; and 100% – perfect. The AUC is computed using several data records, thus its

computation requires some effort (this issue is further addressed in the last paragraph of this section).

The adopted MO implemented using the PonyGE2 Python module (Fenton et al., 2017) only handles

minimization. Thus, the predictive performance goal was adapted as to minimize the symmetrical of

the AUC: −1 × 𝐴𝑈𝐶.
Regarding the complexity, we adopt the coding region size, i.e., the number of genes of the GE

representation that was used for creating the tree, as a proxy of the DT complexity. Similarly to the

information entropy concept proposed by Shannon (1948), we consider the coding region size an in-

teresting complexity measure since it represents the minimum amount of integers that are needed to

represent a DT. Smaller values correspond to simpler models that are therefore more easy to interpret.

4.2. Materials And Methods 73

There are two main advantages for using this complexity measure: its computation is very fast when

using the adopted GE implementation (PonyGE2); and it puts a pressure to reduce several of the DT ele-

ments, including the number of DT nodes and also the number of digits used by the numeric constants

(e.g., favoring 0.2 when compared with 0.19987). This pressure prevents bloat, which corresponds to

an unnecessary growth of the program size without any improvement in the classification performance

(Doerr et al., 2017).

In terms of implementation, all code was developed in the Python programming language. We used

scikit-learn (Pedregosa et al., 2011) for standard DT and to calculate performance metrics, the Ply

module (Beazley, 2001) for the inverse-mapping process (from phenotype to genome) and the PonyGE2

package (Fenton et al., 2017) to implement the GE algorithm. Any EC algorithm typically contains a

number of hyperparameters that needs to be set by the user. In this study, we have adopted the default

PonyGE2 values, which includes: subtree crossover (matching non-terminal nodes of ancestor subtrees)

with a crossover probability of 75%; subtree mutation (random replacement of a subtree) with a mutation

probability of 100%; selection uses the NSGA-II selection that performs a Pareto tournament selection

on 2 individuals and an elitism of 10 individuals. Using previous Mobile Marketing data (collected in the

year of 2018), we have performed preliminary experiments to adjust the population size to 100 and the

number of generations to 100. Higher values did not improve the results but substantially enlarged the

computational effort. Additionally, we incorporated the same training data sampling scheme proposed

in (Pereira et al., 2019). In each generation, we randomly sample 𝑛 =1,000 positive (𝑌 = yes) and

𝑛 =1,000 negative (𝑌 = no) records from the training data, thus individuals are only evaluated using

these 2,000 examples. This allows to deal with the unbalanced target issue and also to speed up the

DT fitting for big data. Regarding the computational effort, since the evaluation of each individual is an

independent process, we also employ parallelism by evaluating multiple individuals simultaneously in

different cores, aiming to reduce the overall execution time.

4.2.3 Comparison methods

For comparison purposes, we have selected three methods: a standard DT, a Random Forest (RF) and

a Deep Learning (DL) model. The DT is a white-box model based on the CART algorithm and the same

IDF categorical transform, implemented in the scikit-learn Python module (Pedregosa et al., 2011). The

RF is an ensemble method that combines a large set of 𝑇 decision trees, where each tree depends on

a random sample of features and training examples (Breiman, 2001). Similarly to the standard DT, the

RF model uses the IDF categorical transform and the scikit-learn module Python implementation, set

with its the default values (e.g., ensemble with 𝑇 = 100 trees). As for the DL, it uses the state-of-the-art

model proposed in (Matos et al., 2019a). This DL is based on a deep multilayer perceptron architecture

with: 9 hidden layers, with 1024, 512, 256, 128, 64, 32, 16, 8 and 2 hidden nodes that use the ReLU

activation function; 1 output node with the logistic function; and dropout values of 0.5 and 0.2 applied

4.2. Materials And Methods 74

in the fourth and sixth hidden layers. The DL is trained using the AdaDelta gradient function and the

stochastic gradient decent method. In terms of the categorical transform, the best DL results were

achieved with a variant of the one-hot encoding called Percentage Categorical Pruning (PCP), which

merges the 10% less frequent levels into a single level before applying the one-hot transform. Moreover,

the DL proposed includes a reuse mode that dynamically adapts the network to new batches of training

data (without resetting the previous learned weights). In (Matos et al., 2019a), the DL reuse architecture

outperformed both a logistic regression and a Convolutional Neural Network (CNN).

Regarding the model complexity in the DT experiments, when computing the coding of region size

measure, we converted the fitted trees to our GE grammar, using the inverse mapping process that

was implemented for the MGEDTL algorithm. This allows the computation of the same complexity

measure (C) used by the MGEDT and MGEDTL algorithms, which is the number of genes in the GE

coding region. Regarding the RF model, the overall coding of region size (C) and number of nodes (N)

complexity measures are computed as the sum of the complexities (C or N) of the RF individual trees.

Since this procedure can not be applied to DL, we opted to compute, as a reasonable alternative, the

DL complexity in terms of the number of connection weights, which correspond to the total number of

neural network adjustable parameters (Bianchini and Scarselli, 2014).

4.2.4 Evaluation

In the Mobile Performance Marketing domain, since compensation only occurs when a product or

service is purchased, it is crucial to present the right advertisement to the users. This is often translated

into a binary CVR prediction goal that estimates the conversion probability for a given user and is used to

rank a set of active candidate advertisement campaigns. To be useful for the DSP, the prediction model

should issue real-time predictions, allowing to select an advertisement in less than 10 milliseconds.

Another goal is to provide a human understandable model, which will help increase the acceptance of

the ML model by the DSP managers and also helps the design of future campaigns. Simpler models,

which are more easy to be interpreted, also provide faster prediction responses. In this work, the

prediction goal is measured by the −1 × 𝐴𝑈𝐶 statistic and the interpretability goal is assessed by the

number of GE genes in the GE coding region (denoting this as C measure). Both goals are minimized

by the GE. Since the complexity goal can vary by different orders of magnitude, from a few dozens

to hundreds of thousands, we apply the base 10 logarithm to facilitate the analysis of the complexity

results. To further compare the complexity of the tree-based models, we also adopt the standard

number of tree nodes (N) measure (Czajkowski and Kretowski, 2010; Barros et al., 2011). Given that

we work with big data and there are real-time prediction requirements, we also track the training and

test computational effort, measured in terms of elapsed time (in seconds).

To evaluate our models, we adopt the realistic Rolling Window (RW) scheme (Tashman, 2000; Oliveira

et al., 2017). The RW is realistic because it simulates a dynamic scenario in which several models

4.2. Materials And Methods 75

are trained and tested through time. It also provides several executions, allowing the computation of

aggregate results using a statistical confidence measure. Similarly to what is proposed in (Cortez et al.,

2020), in this paper we use the Wilcoxon nonparametric test to compute the median and corresponding

confidence intervals at the 95% level. After a consultation with the Mobile Marketing experts (from the

DSP company), we have set a realistic RW scheme that assumes a temporal window of 2 days of

training data and a subsequent window of 6 hours of testing data. In the first iteration, the oldest 2

day redirects are used to fit the ML algorithm and then tested in the next 6 hours of test (unseen) data.

In the second iteration, the training data is slided, where the oldest 6 hours of redirects are discarded

and the previous test data is added. The ML is retrained and then a new set of predictions (up to 6

subsequent hours) is produced, and so on. In total, this leads to 7 iterations (column Iter.), as may

be seen in Table 9. The RW was executed separately for each traffic type (TEST and BEST), since each

traffic mode uses a different DSP matching algorithm and set of marketing campaigns.

Table 9: Description of RW data and GE generations used.

Mode Iter. Date
Records

Generations
Train Test

BEST

1 17/11/19 06:00 1,069,684 163,877 100
2 17/11/19 12:00 1,227,072 174,192 25
3 17/11/19 18:00 1,392,913 208,410 25
4 18/11/19 00:00 1,522,014 179,684 25
5 18/11/19 06:00 1,494,620 167,019 25
6 18/11/19 12:00 1,487,351 191,811 25
7 18/11/19 18:00 1,485,581 1,040,142 25

TEST

1 17/11/19 06:00 588,413 102,745 100
2 17/11/19 12:00 689,687 99,656 25
3 17/11/19 18:00 787,714 121,299 25
4 18/11/19 00:00 874,832 113,289 25
5 18/11/19 06:00 873,808 90,969 25
6 18/11/19 12:00 869,030 103,266 25
7 18/11/19 18:00 865,884 577,216 25

In each of the 7 RW iterations, the IDF transform is applied to the data, taking no previous assump-

tions. Similarly to what is done using the reuse DL model, the GE models are readjusted between two

consecutive RW iterations. This is achieved by using a seeding initialization, in which the last optimized

population, obtained in the previous RW iteration, is used as the initial population of the current RW

iteration. Thus, GE only needs to create completely random populations in the first RW iteration. By

reusing the solutions, the GE does not need a large number of generations to achieve a quality perfor-

4.3. Results 76

mance (as shown in Section 4.3). Therefore, we decreased the stopping criterion, lowering the number

of maximum generations to 25 after the first RW iteration (as shown in Table 9).

4.3 Re s u l t s

All experiments were conducted using code written in the Python programming language. The GE and

DT were executed using a dedicated Linux Intel Xeon 1.7 GHZ server, where 25 cores were used by each

GE experiment. The DL experiments were conducted on a personal computer with a NVIDIA Geforce

GTX 1060 GPU using the Keras and Tensorflow libraries, aiming to decrease the computational cost.

Figure 19 presents the overall RW test data results in terms of the BEST (left) and TEST (right) traffic

modes. Each plot was build by using the same evaluation procedure proposed by Cortez et al. (2020).

First, the test set predictions for each iteration were used to compute individual curves, in terms of the

predictive performance (−AUC) and ML complexity. Then, curves were aggregated vertically, by fixing

a −AUC value and computing the respective Wilcoxon median and 95% confidence intervals for the

complexity. In Figure 19, the top plots present the C complexity (coding region size), while the bottom

graphs show the N complexity (number of nodes, shown for all tree-based methods). To facilitate the

visualization, the complexity values were transformed using a logarithm of base 10.

Figure 19 confirms that there is a trade-off between predictive performance and MLmodel complexity.

For both MGEDT and MGEDTL, the simplest models (with less than 10 genes, C measure) provide a

low quality performance, typical of a random classifier, while high quality predictions (e.g., AUC higher

than 90%) are obtained by more complex DT, with around 10,000 genes used by MGEDTL. The two GE

methods have different performances. For both traffic modes and for the same predictive performance

level, MGEDT optimizes simpler models when compared with MGEDTL (with a statistical significant

difference). However, MGEDT is not capable of achieving a wider AUC range such as MGEDTL does.

Table 10 shows the highest AUC median values for each ML method, corresponding to the extreme

left 𝑥−axis point values from Figure 19. From the table, it is clear that MGEDTL reaches the best

AUC for BEST (92.0%, tied with RF) and second best AUC for TEST data (92.0%). In contrast, MGEDT

provides the worst discrimination (when compared with other methods), reaching 80.0% (BEST traffic)

and 76.0% (TEST traffic). Moreover, Figure 19 shows an interesting correlation between the C and

N complexity measures, given that the tree-based models show N complexity differences that are

similar to the ones obtained using the C measure. It is also interesting to notice that very competitive

results were achieved by the MGEDTL approach when compared with the DT, RF and DL methods. The

DL provided the third best (AUC of 89.9% for BEST traffic) and best (AUC of 93.1% for TEST traffic)

predictive results. As for the RF, it obtained the best AUC result (92.0%, tied with MGEDTL) for BEST

data and third best AUC value (88.2%) for TEST data. Yet, the DL and RF models are more complex

(around 2/3 orders of magnitude) than the trees evolved by MGEDTL. As for DT, it provided the fourth

4.3. Results 77

100 90 80 70 60 50
0

1

2

3

4

5

6

7

8

C
om

pl
ex

ity

100 90 80 70 60 50

MGEDT MGEDTL DL DT RF

-AUC

100 90 80 70 60 50

0

1

2

3

4

5

6

C
om

pl
ex

ity

100 90 80 70 60 50

MGEDT MGEDTL DT RF

-AUC

Figure 19: Complexity Wilcoxon confidence intervals of the AUC median values for all RW iterations for the BEST
(left plots) and TEST (right plots) traffic modes. The top two graphs show the C complexity, while the
bottom two graphs plot the N complexity (both shown at the 𝑦−axis and using a base 10 logarithm
scale).

4.3. Results 78

best AUC result for both traffic types (AUC values of 89.8% for BEST and 82.4% for TEST). And the

fitted trees are much more complex (around 1.5 orders of magnitude) than the MGEDTL evolved ones.

Table 10: Extreme left 𝑥−axis AUC values from Figure 19 (best value in bold; relative rank of the ML method is
shown in parentheses).

ML method

Mode DT RF DL MGEDT MGEDTL
BEST 89.8% (4) 92.0% (1) 89.9% (3) 80.0% (5) 92.0% (1)
TEST 82.4% (4) 88.2% (3) 93.1% (1) 76.0% (5) 92.0% (2)

To better understand the complexity values, we selected the solutions with the highest complexity

in each iteration for each tree-based model and estimated the median number of decision split nodes

(i.e., numpy.where instructions) for the BEST and TEST traffic modes. MGEDT presents the lower

median number of decision nodes (with 3 for BEST and 1 for TEST), followed by MGEDTL (with 367 for

BEST and 864 for TEST) and then DT (with 10,303 for BEST and 8,413 for TEST). For demonstrative

purposes, Figure 20 shows an example of a GE generated solution in terms of its Python code (left)

and a plot of the associated DT (right). This solution includes a total of 4 numpy.where instructions,
which correspond to 4 decision tree nodes. An example of an easy interpretable rule that can be

extracted from the DT is: if partner ∈ { "0"} andmanager ∈ { "1"} and operator ∈ { "Vodafone",
"Orange", …} then 𝑝 = 30%. In this rule, the "0" and "1" terms denote numeric identification

labels and the set { "Vodafone", "Orange", …} includes a total of 272 different mobile operators.
This DT was optimized by the MGEDTL method, during the last iteration of the RW procedure (described

in Section 4.2.4) for BEST traffic. The coding region has a size of 74 genes and obtained an AUC of

77%.

)

numpy.where(x[’manager’] <= 1,

numpy.where(x[’app’] < 34, (0.95), (0.6)),

numpy.where(x[’partner’] > 2.32,

(1)

true false
partner>2.32

app>34
true

manager<=1
true

operator<=2

decision node

false

leaf

numpy.where(x[’operator’] <= 2, (0.5), (0.3)), 0.95

 0.3

 0.6 1.0

 0.5

Figure 20: Example of a generated Python code (left) and the corresponding DT (right).

Two figures are presented to show the evolution of the ML algorithms through time. First, Figure 21

plots the highest AUC test values obtained for each algorithm during the RW iterations for the BEST

(left) and TEST (right) data. The GE algorithms tend to have a stable performance through time. As

for the DL model, it suffers a decay in performance during the third and fourth RW iterations for

the BEST traffic. Aligned with overall results of Figure 19, the best global AUC performances are

4.3. Results 79

provided by the MGEDTL, RF and DL algorithms, with DT presenting similar best AUC results for the

BEST traffic. Second, Figure 22 plots the hypervolume of the GE algorithms through the RW iterations.

Hypervolume is a popular approach to compare Pareto fronts using a single measure and it is computed

by considering a reference point, which is regarded as the worst possible solution (Beume et al., 2009).

In this work, the reference point was set as -50% AUC and a complexity of 5 (when using the logarithm

of base 10). This assumes that the perfect solution is the -100% AUC and 0 complexity point. For BEST

mode (left of Figure 22), both curves are very close, with MGEDTL presenting 4 (of 7) best hypervolume

values. Regarding the TEST mode (right of Figure 22), the Lamarckian variant obtains a better overall

hypervolume curve.

1 2 3 4 5 6 7
70

75

80

85

90

95

100

AU
C

1 2 3 4 5 6 7

MGEDT MGEDTL DL DT RF

RW Iteration

Figure 21: Evolution of the best AUC values of the ML classifiers models for BEST (left) and TEST (right) traffic
(𝑥-axis denotes the RW iteration and 𝑦-axis the 𝐴𝑈𝐶 value).

1 2 3 4 5 6 7

85

90

95

100

105

110

115

H
yp

er
vo

lu
m

e

1 2 3 4 5 6 7

MGEDT MGEDTL

RW iteration

Figure 22: Evolution of the hypervolume values of the GE algorithms for BEST (left) and TEST (right) traffic (𝑥-axis
denotes the RW iteration and 𝑦-axis the 𝐴𝑈𝐶 value).

4.3. Results 80

Figure 23 plots the best -AUC fitness values that were evolved during the training GE generations

for two initialization strategies and MGEDT: seeding, that reuses the best trees from the previous RW

iteration; and no seeding, that performs a random population initialization. Each curve is computed

as the average over the last six RW iterations (when there are dynamic time data updates). Figure 23

demonstrates the value of seeding, since this strategy produces better fitnesses during the whole

evolution procedure.

0 5 10 15 20 25
Generations

70

65

60

55

50

-A
U

C

No seed Seeding

Figure 23: The effect of seeding a population (average of best AUC values for the last 6 RW iterations).

To demonstrate the quality of the GE predictive performance, Figure 24 details the respective ROC

(left) and accumulated LIFT (right) curves that correspond to the best AUC trees that were obtained

during the last RW iteration for the test (unseen) BEST traffic data. The ROC curves show a very good

discrimination, with AUC values of 92.6% (MGEDTL) and 80.1% (MGEDT) that are much better than the

random classifier (baseline, with AUC of 50%), confirming also that the predictive model performs well

when faced with unbalanced test data. The LIFT curve is a popular analysis tool in themarketing domain

(Moro et al., 2014). The accumulated curve plots the test samples sorted by the classifier probabilities

(decreasing order) in the 𝑥-axis and the percentage of user positive responses (conversions) in the 𝑦-
axis. The Area of the LIFT curve (ALIFT) shows how good the classifier distinguishes positive examples

from all examples. Figure 24 shows that the very good AUC results correlate with similar ALIFT values

(92.1% for MGEDTL) and (79.6% for MGEDT), which are very useful for the analyzed marketing domain.

For instance, the LIFT curves show that if just 20% of the users were redirected to an advertisement

(which would highly reduce the irritation of users that visit a publisher), then 90% and 60% of the

conversions would be obtained by using the MGEDTL and MGEDT tree models.

In order to understand the computational effort, the training and testing times were monitored for

all ML methods. Table 11 presents the average measured results (for all RW iterations) for each traffic

4.3. Results 81

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

MGEDT: AUC=80.12
MGEDTL: AUC=92.59
baseline

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample size
R

es
po

ns
es

MGEDT: ALIFT=79.63
MGEDTL: ALIFT=92.07

Figure 24: Example of ROC (left) and accumulated LIFT (right) curves for the GE algorithms and BEST traffic.

type in terms of: Training time (in s); Prediction time for one redirect (in 𝜇s); and Campaigns,

the number of different campaigns that could be analyzed within the 10 ms (10,000 𝜇s) DSP response
time for matching an advertisement to a user when she/he clicks on a dynamic link. As expected,

the faster training time method is provided by the standard DT, followed by the DL and RF. The GE

methods require a higher training time, specially the Lamarckian variant (MGEDTL). Nevertheless, this

algorithm is still affordable to be used in a real DSP environment, since it only requires a maximum

training time of 116 minutes to be trained with two days of DSP data. And the GE training results could

be substantially improved if a higher number of cores were used. For example, since the population

size is 100 and 25 cores were used so far, the training time could be potentially reduced by a factor

up to 4 if 100 cores were available. The most important constraint is the real-time DSP restriction for

performing user-advertisement matches (10 ms limit). The prediction time results favor the GE and

standard DT methods, with MGEDT obtaining the best predictive response times, followed by DT and

MGEDTL. On average, the models evolved by MGEDT can be used to analyze the impressive number

of 2 and 5 million campaigns, while MGEDTL evolved trees allow a selection among around 7 and 5

thousand campaigns. In contrast, DL (the slowest prediction time method) can only test around 200

campaigns, while RF (second slowest model) can handle around 500 campaigns. While there might

be other computations performed by the DSP, these results are consistent with a real-time usage of

the trees evolved by the GE methods, since there are typically around 400 (BEST) to 600 (TEST) active

campaigns that need to be analyzed by the DSP.

The selection of the best approach is dependent on the Mobile Marketing DSP manager needs. The

non GE approaches (DT, RF and DL) have the disadvantage of maximizing only one trade-off between

predictive performance and model complexity (single point at Figure 19). In contrast, the GE methods

4.4. Conclusions 82

Table 11: Computational effort for all ML classifiers (average results using all RW iterations, best times in bold).

Mode Model Training (s) Predict (𝜇s) Campaigns

BEST

MGEDT 893.13 0.005 2,000,000
MGEDTL 6970.52 1.433 6,978
DL 48.19 44.000 227
DT 8.98 0.241 41,493
RF 277.66 20.589 486

TEST

MGEDT 488.08 0.002 5,000,000
MGEDTL 5662.30 2.032 4,921
DL 34.72 56.000 178
DT 4.19 0.236 42,372
RF 132.64 18.358 545

perform a simultaneous optimization of both performance and ML complexity, obtaining a Pareto curve

of ML models that provides more choices for the decision maker. If a high quality user conversion pre-

diction model is needed, then the Lamarckian GE (MGEDTL) is an interesting option, since the evolved

trees provide similar performances to the best DL/RF methods (Table 10) but much faster predictive

responses, thus allowing to analyze more mobile campaigns (Table 11). In effect, Figure 19 confirms

that MGEDTL evolves the least complex models for the Pareto trade-offs with AUC values ranging from

around 80% to 92%. However, if very fast prediction or more interpretable models are needed (e.g., for

design of new campaigns), then the pure GE algorithm is advised. In practice, both algorithms can be

used by the marketing managers, who can select different trade-offs according to their real-time ML us-

age needs. Indeed, the GE results (predictive performance, complexity and computational effort) were

shown to the DSP company managers, who provided a very positive feedback. In effect, the company

plans to integrate the GE algorithms in their DSP platform.

4.4 C o n c l u s i o n s

The Mobile Performance Marketing industry value is increasing due to a worldwide usage of mobile

devices (e.g., smartphone, tablet). It consists of markets supported by Demand-Side Platforms (DSP),

which match advertisement to dynamic links activated by users. In these markets, monetary compen-

sation only occurs when there is a product or service acquisition (the conversion). A crucial DSP expert

system design issue is the nontrivial task of user Conversion Rate (CVR) prediction, that consists of

selecting the best advertisements (with highest conversion probability) for each user, thus improving

the overall CVR.

4.4. Conclusions 83

In this chapter, we address the user CVR prediction task, which involves several quality measures:

the predictive performance of the Machine Learning (ML) classifier, the interpretability of the fitted

model and real-time DSP advertisement match responses (e.g., under 10 ms). We consider recent

real-world big data from a worldwide Mobile Marketing company (OLAmobile), which includes around

6 million of data events under two main traffic modes: TEST and BEST.

In terms of the ML classifiers, we propose a new Multi-objective Optimization (MO) approach to

create and evolve Decision Trees (DT) using a Grammatical Evolution (GE). In particular, we explore

two GE variants: MGEDT – a pure GE; and MGEDTL – a GE that uses a Lamarckian Evolution (LE),

in which a local search method (CART algorithm) is applied to a randomly selected subtree and the

improved solutions are encoded back into the GE genome. Both variants are capable of evolving DT with

an arbitrary size and perform a simultaneous optimization of the predictive performance, measured

by the AUC metric, and complexity, measured by the size of the genome tree (the coding region).

Moreover, the two GE methods can cope with big data by using a sampling mechanism of training data

and parallelism with multi-core processors.

To validate the proposed GE algorithms, a realistic Rolling Window (RW) evaluation was adopted, that

included two days of training data and six hours of test data, a total of seven training and test iterations

were executed. The two GE variants were compared with a standard DT (CART), a Random Forest and

a state-of-the-art Deep Learning (DL) algorithm. Overall, competitive results were achieved by the GE

methods. In effect, the MGEDTL obtaining the best predictive performance versus complexity trade-offs

for the 80% to 92% AUC range, with around 10,000 GE genes in the coding region, while the MGEDT

resulted in simpler trees for the range between 50% and 80%. As for the computational effort, both GE

have affordable training times (e.g., 116 minutes when using around 1 million training records). More

importantly, they evolve trees that have real-time prediction responses, where thousands of campaigns

can be analysed by the best evolved trees. Depending on the Mobile Marketing manager needs, both

GE methods can be used in a real DSP environment. If the pressure is set to increase user CVR,

then MGEDTL is the best option, as it provides an excellent predictive performance (e.g., AUC of 92%).

However, if interpretability (e.g., to help in the design new campaigns) or very fast prediction response

times are valuable, then MGEDT provides better tree trade-offs (e.g., AUC of 80% and complexity tree

with around 50 genes).

The GE results were shown to the analyzed DSP company, which found them very interesting. For

instance, the current matching algorithm used by the DSP has a random performance (AUC of 50%)

for the TEST data. The proposed GE methods provide a substantial predictive improvement. In effect,

the highest performing trees result in a predictive performance that presents a 42 (MGEDTL) and a 30

(MGEDT) percentage point difference when compared with the DSP algorithm. Moreover, the results

show that high quality AUC predictive models correlate with interesting accumulated LIFT curves. For

example, during the last RW iteration for BEST traffic, the tree evolved by MGEDTL with the highest

AUC (92.6%) produced an excellent LIFT (area of 92.1%), which indicates that it is possible to obtain

4.4. Conclusions 84

90% of the conversions if only 20% of the users were redirected to an advertisement. Thus, there is

a potential to highly reduce the irritation of users that visit a publisher while only slightly reducing the

profit. In effect, if a significantly lower, albeit more selective, number of advertisement matches were

adopted then probably a higher audience would be captured by the publishers, which would result in

a higher monetary compensation for the DSP players (DSP provider, publishers and advertisers).

An additional and important advantage of the proposed GE algorithms is related with the future

deployment and maintenance of the DSP ML classifiers. Some ML algorithms require a nontrivial

hyperparameter selection. For instance, a DL architecture is often set by ML experts, since it contains

a large number of setup values, including the neural network topology configuration. Mobile Marketing

data has high velocity and there are dynamic market and DSP changes, such as new campaigns,

changes in the online buying behaviors and new DSP features. Since the proposed GE performs an

automatic design of the DTs, it would be much easier for the DSP developers to continuously create

new data-driven models, more adjusted to their needs.

In future work, we wish to test the proposed GE methods in a real DSP environment, tracking the

quality of the evolved models during a longer time period. Indeed, the analysed DSP company plans

to perform such an implementation. During this implementation, we believe it would be interesting

to perform a code optimization, by making use of more efficient parallelization implementations (e.g.,

Apache Spark). Also, we intend to further validate the proposed GE approach to build generic DTs

by analyzing classification datasets from distinct domains. Another interesting research direction is to

adapt the MO GE approach to other classification tasks (e.g., multi-class, ordinal). Finally, we wish to

test different representations with the GE, such as symbolic regression expressions or neural networks.

Part III

C O N C L U S I O N S

5

C O N C L U S I O N S

5.1 O v e r v i ew

The advances in Information and Communication Technology (ICT), associated to the easy access to

mobile devices (e.g., smartphones), leveraged diverse digital marketing business opportunities, namely

in the advertisement sector. In particular, Mobile Performance Marketing has been a target of vast

investments over the last years (Statista, 2021). This market, also known as Performance-based Adver-

tising, is related with the presentation of product and services campaigns in mobile devices. It involves

4 main stakeholders:

• Advertisers – entities that wish to sell mobile products, or offer service subscriptions. To do so,

they rent digital spaces where their campaigns can be presented, only paying for it when there

are measurable results.

• Publishers – owners of digital spaces, usually with a vast audience of users to whom campaigns

can be presented to. They rent digital spaces to advertisers that will present their marketing

campaigns by means of a smart link.

• Users – owners of mobile devices who are presented with advertisements whenever they are

accessing interesting publisher services (e.g., surfing through websites or playing video games).

In some cases, users are forced to click in the campaigns in order to continue accessing the

desired content, being redirected to an ad campaign page.

• Intermediary companies – entities that act as brokers and that are responsible for matching

users with interesting campaigns, with the purpose of leading them to perform a purchase or

subscription (conversion). These companies often own Demand-Side Platforms (DSPs), which

are platforms responsible for automatically selecting an advertisement to be presented to users.

In Mobile Performance Marketing, the revenue flows from the user, when she/he buys or subscribes

a product or service, to the advertiser. Then, a part of this revenue is automatically returned to the

publisher by means of the DSP. The DSP also receives a small percentage of the revenue, in order

86

5.1. Overview 87

to finance the intermediary companies. It is important to notice that this business represents a very

low risk to the advertisers, since the compensation only occurs whenever a product is acquired or a

service is subscribed. Therefore, improving the DSP performance when matching users to campaigns

can have a direct impact in the profits for the three involved entities (advertisers, publishers and DSP

companies).

This doctoral thesis was partially developed under a Research and Development (R&D) project

termed PRediction and Optimization of MObile Subscription marketing campaigns (PROMOS), born

from a consortium between University of Minho and OLAmobile, an organisation that owns a DSP and

operates in the Mobile Performance Marketing as an intermediary company. When this project started,

back in 2017, OLAmobile specialists performed a market analysis with their partners and competitors,

concluding that none of them presented the more interesting campaign to users. Instead, the adver-

tisement selection was performed based on static business rules based on simple statistics (e.g., past

performance of a campaign for a particular mobile operator and country). This approach results on

a tiny percentage (nearly 1%) of user conversions. Therefore, the main goal of the PROMOS project

was the improvement of mobile user Conversion Rate (CVR) rate, and consequently several other met-

rics associated with this industry, by applying Artificial Intelligence (AI) technologies, more specifically

Machine Learning (ML), to the process of matching users to campaigns.

Over the last years, ML technologies have been widely used in several domains, presenting highly

successful results. However, traditional ML approaches present difficulties when handling vast data

records. Furthermore, recent studies have shown the strength of combining Modern Optimization,

particularly Evolutionary Algorithms (EAs), to optimize different ML models, outperforming traditional

approaches (Stanley and Miikkulainen, 2002; Mendes et al., 2002; Cortez and Donate, 2014; Donate

and Cortez, 2014; Ojha et al., 2017; Pereira et al., 2017). These algorithms are easily adaptable to

any specific problem (Cortez, 2021) and tend to provide good results with a reasonable computational

cost (Michalewicz et al., 2006). Thus, during this PhD thesis we explored EAs for optimizing predictive

models adapted for the described Mobile Performance Marketing user CVR task. In particular, we have

considered multi-objective approaches, namely Non-dominated Sorting Genetic Algorithm II (NSGA-II),

allowing us to simultaneously optimize more than one goal.

This thesis main objective was to give a strong contribution to the body of knowledge of using Modern

Optimization to automatically design predictive models. In particular, the analyzed Mobile Performance

Marketing domain contains several ML challenging issues, namely: it involves big data, since typically

millions of clicks are generated every hour; only a tiny amount of user clicks are converted into a sale;

due to technological constrains and privacy issues (e.g., it is not possible to identify a single user), only

a limited set of data features is available; all considered data features are categorical and several of

these features present a large cardinality, with hundreds or thousands of levels. To handle this complex

domain, we focused on multi-objective ML tasks, in order to achieve more flexible predictive models

that could satisfy the Mobile Marketing needs. We note that at an initial stage of this PhD work, we did

5.2. Discussion And Future Work 88

not have access to OLAmobile DSP data. Thus, we first explored a multi-objective Modern Optimization

of a distinct ML task: the design of Neural Networks (NNs) for time series Prediction Intervals (PIs).

Later, once the DSP data was made available, we reused the gained multi-objective experience (e.g.,

usage of the same NSGA-II algorithm) to the main PhD task: the prediction of mobile user CVR. As

explained in Chapter 1, a different base learner (Decision Trees (DTs)) was adopted during this step.

The specific contributions of this thesis are:

• We propose 6 multi-objective neuroevolution Multi-objective evolutionary algorithm Lower and

Upper Bound Estimation (MLUBE) methods for multi-step ahead time series PIs based on Evolu-

tionary Artificial Neural Network (EANN). These methods used the NSGA-II algorithm to minimize

both the Normalized Mean Prediction Interval Width (NMPIW) and Prediction Interval Coverage

Error (PICE) quality measures.

• We designed a novel robust evaluation method for multi-objective ML tasks that vertically ag-

gregates similar solutions (based on a chosen metric) using Wilcoxon median values and 95%

confidence intervals. This evaluation method allows an easy result comparison between sev-

eral optimized multi-objective solutions, as achieved when using multiple Rolling Window (RW)

iterations.

• We propose two multi-objective Grammatical Evolution (GE)-based approaches for designing and

evolving DTs. One of them (Multi-objective Grammatical Evolution Decision Tree (MGEDT)) uses a

pure GE method, while the other (Multi-objective Grammatical Evolution Decision Tree Lamarck-

ian evolved (MGEDTL)) takes advantage of Lamarckian Evolution. Both of them are able to deal

with high-speed unbalanced data, take advantage of multi-core processing, and were applied to

Mobile Performance Marketing data. Furthermore, we performed an empirical comparison be-

tween the proposed GEs and several ML algorithms, namely DT, Random Forest (RF) and Deep

Learning (DL), using our novel multi-objective evaluation method.

5.2 D i s c u s s i o n A n d Fu t u r e Wo r k

During the first year of this PhD project, there was no available data regarding the Mobile Performance

Marketing industry, since OLAmobile was still developing an Application Programming Interface (API) to

perform a data collection process for the research purposes. In that period, we chose to start exploring

a multi-objective optimization of EANN for PI, giving continuation of our previous work in the area of

evolving ML predictive models. The purpose was to gain further insights and skills on this subject,

which could be useful once OLAmobile data was collected and the final R&D PROMOS requirements

were established. Our developed work led to one Q1 Journal article (Cortez et al., 2020) and one

5.2. Discussion And Future Work 89

conference paper (Pereira et al., 2017), where we proposed different neuroevolution models and a

novel and feasible evaluation method for multi-objective ML tasks, as described in Chapter 3.

While interesting results were obtained by the neuroevolution MLUBE methods, we did not directly

apply these to the Mobile Performance Marketing domain. In effect, once we had access to OLAmobile

business requirements and associated data, these methods felt outside the R&D PROMOS scope since

time series forecasting could not directly impact on ad selection for a particular user. Nevertheless, in

future research, the proposed neuroevolution models could be more easily adapted for regression tasks

that could impact the Mobile Performance Marketing domain. For instance, by addressing the user CVR

prediction goal as an ordinal classification, such as performed by Matos et al. (2019b), namely a five

class prediction (”no sale”, ”very low”, ”low”, ”medium” or ”high”), or even as a pure regression task

(0 if ”no sale”, else the value of the conversion).

In a later step of the PhD execution, once OLAmobile data was available, and considering that

another PhD thesis related to the R&D PROMOS project was being developed using NNs, in particular

DL architectures, we decided to change the base learner, i.e., the ML model to be designed and evolved

by the EAs. Thus, we performed several preliminary experiments using Genetic Programming (GP) and

GE to design and evolve Logistic Regression and Symbolic Regression models. The purpose was to

predict if a conversion would occur once a user is redirected to a campaign page. While this goal

was addressed as a binary classification task, the model output was a class probability, since it was

considered more informative (e.g., to rank different campaign ads) and it also allows the estimation

of the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) analysis, which

measures the quality of a binary class discrimination prediction regardless of the data unbalancing.

Recent studies proposed similar approaches to different domains, achieving interesting results (Nyathi

and Pillay, 2018; Tzimourta et al., 2018; Nicolau and Agapitos, 2021). Yet, and despite having explored

several modeling attempts, we were not able to achieve quality results with these base learners when

applied to the Mobile Performance Marketing data. Due to the temporal restrictions of this PhD thesis

and following on some recent state-of-the-art works, which applied EAs to evolve DTs (e.g., Chabbouh

et al. (2019), Czajkowski and Kretowski (2019a)), we opted to change the target base learner, resulting

in the work detailed in Chapter 4. Nevertheless, the usage of GE to evolve distinct learners, such

as symbolic expressions (Azad and Ryan, 2018) or neural networks (de Lima and Pozo, 2019), is an

interesting future research direction.

After changing our base learner to DTs, motivated by its popularity in classification tasks, capability to

produce human understandable models and also building upon some recent similar works (e.g., (Chab-

bouh et al., 2019), (Czajkowski and Kretowski, 2019a)), we were able to provide interesting research

contributions both to the scientific community and to the Performance Marketing Industry. In particu-

lar, we developed two GE-based approaches to design and evolve DTs, simultaneously maximizing its

predictive performance and minimizing its complexity, as detailed in Chapter 4. Both approaches gen-

erate solutions able to deal with high-speed unbalanced data in online learning environments, taking

5.2. Discussion And Future Work 90

advantage of multi-core processing techniques. Using our innovative evaluation method, we performed

a benchmark empirical study, comparing our results with two state-of-the-art tree-based ML algorithms

(DT and RF) and a DL architecture proposed by Matos et al. (2019a), leading to the core publication of

this PhD thesis (Pereira et al., 2021). While we have applied our Evolutionary Decision Trees (EDTs) to

a binary classification task, the obtained output is a probability associated with the chance of occurring

a conversion, and this probability can be used to rank alternative ad campaigns. In effect, using the

evolved DTs and assuming a 10 millisecond DSP maximum response time for a single dynamic ad

click assignment, we can test from around 5,000 (with MGEDTL) to 2,000,000 (with MGEDT) different

campaigns and select the one with the highest probability of conversion. These results were shown to

the OLAmobile company, which provided a very positive feedback. In effect, the company is currently

implementing the proposed EDT algorithms in their DSP platform. Moreover, for a broader usage of

our EDTs, we have created a publicly available Python module with our implementations and that can

be installed via Pypi1 or GitHub2 (Appendix A presents the user manual). In effect, we believe there

is a huge potential for the usage of the proposed EDTs for other ML application domains that involve

classification tasks (e.g., direct marketing, credit score assignment).

While reviewing the studies related with the Modern Optimization of predictive models, particularly

in terms of EDTs, we found interesting approaches applied to different domains. We have chosen

to evolve axis-parallel DTs, since these type of DT are more easily understandable. Nevertheless, it

should be noted that there are some related works that obtained interesting results using different

tree representations (e.g., oblique, mixed) (Chabbouh et al., 2019; Czajkowski and Kretowski, 2019b).

Therefore, we intend to address these tree representations in future work. In addiction, we also wish to

explore different parallelism approaches, namely the Island Model that already proved its advantages

both in terms of speed and on the convergence of the evolutionary process (Corcoran and Wainwright,

1994; Whitley et al., 1998).

Nowadays business needs often involve dealing with two or more important goals. Despite the actual

huge interest on the ML topic, particularly in DL, most ML prediction models cannot naturally handle

conflicting multi-objective tasks. During this PhD thesis, we were able to identify and fulfill a gap in

the Mobile Performance Marketing industry, also achieving relevant scientific contributions in the multi-

objective Modern Optimization of predictive models (including the prediction of time series intervals).

However, there is some scarcity of studies proposing Pareto-based solutions for multi-objective ML

tasks, particularly concerning its use for tackling the complexity problem that is inherent from bloat

problems. This work addresses this problem successfully and opens new research venues in this area.

1 https://pypi.org/project/evoltree/
2 https://github.com/p-pereira/evoltree

https://pypi.org/project/evoltree/
https://github.com/p-pereira/evoltree

R E F E R E N C E S

Agarwal, D., Long, B., Traupman, J., Xin, D., and Zhang, L. (2014). LASER: a scalable response
prediction platform for online advertising. In Carterette, B., Diaz, F., Castillo, C., and Metzler, D.,
editors, Seventh ACM International Conference on Web Search and Data Mining, WSDM 2014, New
York, NY, USA, February 24-28, 2014, pages 173–182. ACM.

Ahmadizar, F., Soltanian, K., AkhlaghianTab, F., and Tsoulos, I. (2015). Artificial neural network develop-
ment by means of a novel combination of grammatical evolution and genetic algorithm. Engineering
Applications of Artificial Intelligence, 39:1–13.

Ak, R., Li, Y., Vitelli, V., Zio, E., López Droguett, E., and Magno Couto Jacinto, C. (2013). NSGA-II-trained
neural network approach to the estimation of prediction intervals of scale deposition rate in oil & gas
equipment. Expert Systems with Applications, 40(4):1205–1212.

Ak, R., Vitelli, V., Zio, E., and Member, S. (2015). An Interval-Valued Neural Network Approach for Un-
certainty Quantification in Short-Term Wind Speed Prediction. IEEE Transactions on Neural Networks
and Learning Systems, 26(11):2787–2800.

Angeline, P. J., Saunders, G. M., and Pollack, J. B. (1994). An evolutionary algorithm that constructs
recurrent neural networks. IEEE Transactions on Neural Networks and Learning Systems, 5(1):54–
65.

Arrieta, A. B., Rodríguez, N. D., Ser, J. D., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-Lopez,
S., Molina, D., Benjamins, R., Chatila, R., and Herrera, F. (2020). Explainable artificial intelligence
(XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion,
58:82–115.

Ashofteh, P.-S., Haddad, O. B., and Loáiciga, H. A. (2015). Evaluation of climatic-change impacts
on multiobjective reservoir operation with multiobjective genetic programming. Journal of Water
Resources Planning and Management, 141(11):04015030.

Assunção, F., Lourenço, N., Machado, P., and Ribeiro, B. (2017). Towards the evolution of multi-
layered neural networks: A dynamic structured grammatical evolution approach. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, July 15-19,
2017, GECCO ’17, page 393–400. Association for Computing Machinery.

Azad, R. M. A. and Ryan, C. (2018). Comparing methods to creating constants in grammatical evolution.
In Ryan, C., O’Neill, M., and Collins, J. J., editors, Handbook of Grammatical Evolution, pages 245–
262. Springer.

Barros, R. C., Basgalupp, M. P., de Carvalho, A. C. P. d. L. F., and Freitas, A. A. (2012). A survey
of evolutionary algorithms for decision-tree induction. IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 42(3):291–312.

Barros, R. C., Ruiz, D., and Basgalupp, M. P. (2011). Evolutionary model trees for handling continuous
classes in machine learning. Information Sciences, 181(5):954–971.

Bartoli, A., Castelli, M., and Medvet, E. (2020). Weighted hierarchical grammatical evolution. IEEE
Transactions on Cybernetics, 50(2):476–488.

Battiti, R. and Brunato, M. (2017). The LION way. Machine Learning plus Intelligent Optimization.
LIONlab, University of Trento, Italy.

Beazley, D. (2001). Ply (python lex-yacc). http://www.dabeaz.com/ply.

91

References 92

Ben Chaabene, W. and Nehdi, M. L. (2021). Genetic programming based symbolic regression for shear
capacity prediction of sfrc beams. Construction and Building Materials, 280:122523.

Beume, N., Fonseca, C. M., López-Ibáñez, M., Paquete, L., and Vahrenhold, J. (2009). On the com-
plexity of computing the hypervolume indicator. IEEE Transactions on Evolutionary Computation,
13(5):1075–1082.

Bianchini, M. and Scarselli, F. (2014). On the complexity of neural network classifiers: A compari-
son between shallow and deep architectures. IEEE Transactions on Neural Networks and Learning
Systems, 25(8):1553–1565.

Bianco, S., Ciocca, G., and Schettini, R. (2017). Combination of video change detection algorithms by
genetic programming. IEEE Transactions on Evolutionary Computation, 21(6):914–928.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Brownlee, J. (2011). Clever Algorithms: Nature-Inspired Programming Recipes. Lulu.com, 1st edition.

Budinich, M. (1996). A self-organizing neural network for the traveling salesman problem that is com-
petitive with simulated annealing. Neural Computation, 8(2):416–424.

Campos, G. O., Zimek, A., Sander, J., Campello, R. J. G. B., Micenková, B., Schubert, E., Assent, I.,
and Houle, M. E. (2016). On the evaluation of unsupervised outlier detection: measures, datasets,
and an empirical study. Data Mining and Knowledge Discovery, 30(4):891–927.

Cardamone, L., Loiacono, D., and Lanzi, P. L. (2010). Learning to drive in the open racing car simulator
using online neuroevolution. IEEE Transactions on Computational Intelligence and AI in Games,
2(3):176–190.

Chabbouh, M., Bechikh, S., Hung, C., and Said, L. B. (2019). Multi-objective evolution of oblique
decision trees for imbalanced data binary classification. Swarm and Evolutionary Computation,
49:1–22.

Chandra, R. and Chand, S. (2016). Evaluation of co-evolutionary neural network architectures for time
series prediction with mobile application in finance. Applied Soft Computing, 49:462–473.

Chatfield, C. (2000). Time-series forecasting. CRC Press.

Chen, Q., Xue, B., and Zhang, M. (2019). Improving generalization of genetic programming for sym-
bolic regression with angle-driven geometric semantic operators. IEEE Transactions on Evolutionary
Computation, 23(3):488–502.

Chen, Y., Pavlov, D., and Canny, J. F. (2009). Large-scale behavioral targeting. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France,
June 28 - July 1, 2009, pages 209–218. ACM.

Chryssolouris, G., Lee, M., and Ramsey, A. (1996). Confidence interval prediction for neural network
models. IEEE Transactions on Neural Networks and Learning Systems, 7(1):229–232.

Colmenar, J. M., Risco-Martín, J. L., Atienza, D., and Hidalgo, J. I. (2011). Multi-objective optimization of
dynamic memory managers using grammatical evolution. In Krasnogor, N. and Lanzi, P. L., editors,
13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, Proceedings, Dublin,
Ireland, July 12-16, 2011, pages 1819–1826. ACM.

Corcoran, A. L. and Wainwright, R. L. (1994). A parallel island model genetic algorithm for the mul-
tiprocessor scheduling problem. In Berghel, H., Hlengl, T., and Urban, J. E., editors, Proceedings
of the 1994 ACM Symposium on Applied Computing, SAC’94, Phoenix, AZ, USA, March 6-8, 1994,
pages 483–487. ACM.

Cortez, P. (2021). Modern Optimization with R. Springer.

References 93

Cortez, P. and Donate, J. P. (2014). Global and decomposition evolutionary support vector machine
approaches for time series forecasting. Neural Computing and Applications, 25(5):1053–1062.

Cortez, P. and Embrechts, M. J. (2013). Using sensitivity analysis and visualization techniques to open
black box data mining models. Information Sciences, 225:1–17.

Cortez, P., Matos, L. M., Pereira, P. J., Santos, N., and Duque, D. (2016). Forecasting store foot traffic
using facial recognition, time series and support vector machines. In International Joint Conference
SOCO’16-CISIS’16-ICEUTE’16 - San Sebastián, Spain, October, 2016, volume 527 of Advances in
Intelligent Systems and Computing, pages 267–276.

Cortez, P., Pereira, P. J., and Mendes, R. (2020). Multi-step time series prediction intervals using
neuroevolution. Neural Computing and Applications, 32(13):8939–8953.

Cortez, P., Rio, M., Rocha, M., and Sousa, P. (2012). Multi-scale internet traffic forecasting using neural
networks and time series methods. Expert Systems, 29(2):143–155.

Cortez, P., Rocha, M., and Neves, J. (2002). A lamarckian approach for neural network training. Neural
Processing Letters, 15(2):105–116.

Czajkowski, M. and Kretowski, M. (2010). Globally induced model trees: An evolutionary approach. In
Schaefer, R., Cotta, C., Kolodziej, J., and Rudolph, G., editors, Parallel Problem Solving from Nature -
PPSN XI, 11th International Conference, Kraków, Poland, September 11-15, 2010, Proceedings, Part
I, volume 6238, pages 324–333. Springer LNCS.

Czajkowski, M. and Kretowski, M. (2013). Global induction of oblique model trees: An evolutionary
approach. In Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L. A., and Zurada,
J. M., editors, Artificial Intelligence and Soft Computing - 12th International Conference, ICAISC 2013,
Zakopane, Poland, June 9-13, 2013, Proceedings, Part II, volume 7895, pages 1–11. Springer LNCS.

Czajkowski, M. and Kretowski, M. (2019a). Decision tree underfitting in mining of gene expression data.
an evolutionary multi-test tree approach. Expert Systems with Applications, 137:392–404.

Czajkowski, M. and Kretowski, M. (2019b). A multi-objective evolutionary approach to pareto-optimal
model trees. Soft Computing, 23(5):1423–1437.

de Lima, R. H. R. and Pozo, A. T. R. (2019). Evolving convolutional neural networks through grammatical
evolution. In López-Ibáñez, M., Auger, A., and Stützle, T., editors, Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO 2019, Prague, Czech Republic, July 13-
17, 2019, pages 179–180. ACM.

Deng, L., Gao, J., and Vuppalapati, C. (2015). Building a big data analytics service framework for
mobile advertising and marketing. In First IEEE International Conference on Big Data Computing
Service and Applications, BigDataService 2015, Redwood City, CA, USA, March 30 - April 2, 2015,
pages 256–266. IEEE Computer Society.

Dhaenens, C. and Jourdan, L. (2016). Metaheuristics for Big Data. Computer Engineering Series:
Metaheuristics Set. John Wiley & Sons, Ltd.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Kittler, J. and Roli, F., editors,
Multiple Classifier Systems, First International Workshop, MCS 2000, Cagliari, Italy, June 21-23,
2000, Proceedings, volume 1857 of Lecture Notes in Computer Science, pages 1–15. Springer.

Doerr, B., Kötzing, T., Lagodzinski, J. A. G., and Lengler, J. (2017). Bounding bloat in genetic pro-
gramming. In Bosman, P. A. N., editor, Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2017, Berlin, Germany, July 15-19, 2017, pages 921–928. ACM.

References 94

Domingos, P. M. and Hulten, G. (2000). Mining high-speed data streams. In Ramakrishnan, R., Stolfo,
S. J., Bayardo, R. J., and Parsa, I., editors, Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, Boston, MA, USA, August 20-23, 2000, pages
71–80. ACM.

Domo (2021). Data never sleeps 8.0.

Donate, J. P. and Cortez, P. (2014). Evolutionary optimization of sparsely connected and time-lagged
neural networks for time series forecasting. Applied Soft Computing, 23:432–443.

Du, M., Sassioui, R., Varisteas, G., State, R., Brorsson, M., and Cherkaoui, O. (2017). Improving real-
time bidding using a constrained markov decision process. In Cong, G., Peng, W., Zhang, W. E., Li, C.,
and Sun, A., editors, Advanced Data Mining and Applications - 13th International Conference, ADMA
2017, Singapore, November 5-6, 2017, Proceedings, volume 10604 of Lecture Notes in Computer
Science, pages 711–726. Springer.

Du, M., State, R., Brorsson, M., and Avanesov, T. (2016). Behavior profiling for mobile advertising. In
Proceedings of the 3rd IEEE/ACM International Conference on Big Data Computing, Applications
and Technologies, BDCAT 2016, Shanghai, China, December 6-9, 2016, pages 302–307. ACM.

Dybowski, R. and Roberts, S. (2000). Confidence intervals and prediction intervals for feed-forward
neural networks. Clinical Applications of Artificial Neural Networks, pages 298–326.

Eiben, A. E. and Smith, J. E. (2015). Introduction to Evolutionary Computing, Second Edition. Natural
Computing Series. Springer.

Fan, J., Upadhye, S., and Worster, A. (2006). Understanding receiver operating characteristic (roc)
curves. Canadian Journal of Emergency Medicine, 8(1):19–20.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874.

Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., and O’Neill, M. (2017).
Ponyge2: grammatical evolution in python. In Genetic and Evolutionary Computation Conference,
Berlin, Germany, July 15-19, 2017, Companion Material Proceedings, pages 1194–1201. ACM.

Ferreira, C. (2001). Gene expression programming: A new adaptive algorithm for solving problems.
Complex Systems, 13(2).

Fitzgerald, J. M., Azad, R. M. A., and Ryan, C. (2015). GEML: evolutionary unsupervised and semi-
supervised learning of multi-class classification with grammatical evolution. In Proceedings of the
7th International Joint Conference on Computational Intelligence (IJCCI 2015) - Volume 1: ECTA,
Lisbon, Portugal, November 12-14, 2015, pages 83–94. SciTePress.

Floreano, D., Dürr, P., and Mattiussi, C. (2008). Neuroevolution: from architectures to learning. Evo-
lutionary Intelligence, 1(1):47–62.

Furtuna, R., Curteanu, S., and Leon, F. (2012). Multi-objective optimization of a stacked neural network
using an evolutionary hyper-heuristic. Applied Soft Computing, 12(1):133–144.

Gaber, M. M., Zaslavsky, A. B., and Krishnaswamy, S. (2005). Mining data streams: a review. SIGMOD
Record, 34(2):18–26.

Gartner Research (2012). IT Glossary.

Glass, L. and Mackey, M. (1977). Oscillation and chaos in physiological control systems. Science,
197:287–289.

Gonçalves, S., Cortez, P., and Moro, S. (2020). A deep learning classifier for sentence classification
in biomedical and computer science abstracts. Neural Computing and Applications, 32(11):6793–
6807.

References 95

Gruau, F. (1994). Neural network synthesis using cellular encoding and the genetic algorithm.

Guijo-Rubio, D., Durán-Rosal, A., Gutiérrez, P., Gómez-Orellana, A., Casanova-Mateo, C., Sanz-Justo,
J., Salcedo-Sanz, S., and Hervás-Martínez, C. (2020). Evolutionary artificial neural networks for
accurate solar radiation prediction. Energy, 210:118374.

Guogis, E. and Misevicius, A. (2014). Comparison of genetic programming, grammatical evolution
and gene expression programming techniques. In Dregvaite, G. and Damasevicius, R., editors,
Information and Software Technologies - 20th International Conference, ICIST 2014, Druskininkai,
Lithuania, October 9-10, 2014. Proceedings, volume 465, pages 182–193. Springer CCIS.

Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques, 3rd edition. Morgan
Kaufmann.

Hand, D., Mannila, H., and Smyth, P. (2001). Principles of Data Mining Cambridge, volume 2001.
Springer, London.

Hand, D. J. (2006). Classifier technology and the illusion of progress. Statistical science, pages 1–14.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd Edition. Springer Series in Statistics. Springer.

Hastings, E. J., Guha, R. K., and Stanley, K. O. (2009). Automatic content generation in the galactic
arms race video game. IEEE Transactions on Computational Intelligence and AI in Games, 1(4):245–
263.

Hemberg, E., Kelly, J., and O’Reilly, U. (2019). On domain knowledge and novelty to improve program
synthesis performance with grammatical evolution. In Auger, A. and Stützle, T., editors, Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO 2019, Prague, Czech Republic,
July 13-17, 2019, pages 1039–1046. ACM.

Heskes, T. (1996). Practical confidence and prediction intervals. In Mozer, M., Jordan, M. I., and
Petsche, T., editors, Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA,
December 2-5, 1996, pages 176–182. MIT Press.

Hollander, M., Wolfe, D. A., and Chicken, E. (2013). Nonparametric statistical methods. John Wiley &
Sons.

Holst, A. (2021). Amount of data created, consumed, and stored 2010-2025.

Hyndman, R. (January, 2010). Time Series Data Library. http://robjhyndman.com/TSDL/.

Iqbal, M., Xue, B., Al-Sahaf, H., and Zhang, M. (2017). Cross-domain reuse of extracted knowledge
in genetic programming for image classification. IEEE Transactions on Evolutionary Computation,
21(4):569–587.

Jankowski, D. and Jackowski, K. (2014). Evolutionary algorithm for decision tree induction. In Computer
Information Systems and Industrial Management - 13th IFIP TC8 International Conference, CISIM
2014, Ho Chi Minh City, Vietnam, November 5-7, 2014. Proceedings, volume 8838 of Lecture Notes
in Computer Science, pages 23–32. Springer LNCS.

Juárez-Smith, P., Trujillo, L., Valdez, M. G., de Vega, F. F., and de la O, F. C. (2019). Local search
in speciation-based bloat control for genetic programming. Genetic Programming and Evolvable
Machines, 20(3):351–384.

Kaur, M. and Singh, D. (2021). Multi-modality medical image fusion technique using multi-objective
differential evolution based deep neural networks. Journal of Ambient Intelligence and Humanized
Computing, 12(2):2483–2493.

References 96

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of International
Conference on Neural Networks (ICNN’95), Perth, WA, Australia, November 27 - December 1, 1995,
pages 1942–1948. IEEE.

Kessentini, M. and Ouni, A. (2017). Detecting android smells using multi-objective genetic program-
ming. In 4th IEEE/ACM International Conference on Mobile Software Engineering and Systems,
MOBILESoft@ICSE 2017, Buenos Aires, Argentina, May 22-23, 2017, pages 122–132. IEEE.

Khoshgoftaar, T. M., Liu, Y., and Seliya, N. (2003). Genetic programming-based decision trees for soft-
ware quality classification. In 15th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2003), 3-5 November 2003, Sacramento, California, USA, pages 374–383. IEEE Computer
Society.

Khosravi, A., Nahavandi, S., Creighton, D., and Atiya, A. F. (2011). Lower upper bound estimation
method for construction of neural network-based prediction intervals. IEEE Transactions on Neural
Networks, 22(3):337–346.

King, M. A., Abrahams, A. S., and Ragsdale, C. T. (2015). Ensemble learning methods for pay-per-click
campaign management. Expert Systems with Applications, 42(10):4818–4829.

Kohl, N. and Miikkulainen, R. (2009). Evolving neural networks for strategic decision-making problems.
Neural Networks, 22(3):326–337.

Koza, J. R. (1990). Concept formation and decision tree induction using the genetic programming
paradigm. In Schwefel, H. and Männer, R., editors, Parallel Problem Solving from Nature, 1st
Workshop, PPSN I, Dortmund, Germany, October 1-3, 1990, Proceedings, volume 496 of Lecture
Notes in Computer Science, pages 124–128. Springer.

Koza, J. R. (1993). Genetic programming - on the programming of computers by means of natural
selection. Complex adaptive systems. MIT Press.

Krempl, G., Zliobaite, I., Brzezinski, D., Hüllermeier, E., Last, M., Lemaire, V., Noack, T., Shaker, A.,
Sievi, S., Spiliopoulou, M., and Stefanowski, J. (2014). Open challenges for data stream mining
research. SIGKDD Explorations, 16(1):1–10.

Kristo, T. and Maulidevi, N. U. (2016). Deduction of fighting game countermeasures using neuroevolu-
tion of augmenting topologies. In 2016 International Conference on Data and Software Engineering
(ICoDSE), pages 1–6.

Lee, W. (2006). Genetic programming decision tree for bankruptcy prediction. In Proceedings of the
2006 Joint Conference on Information Sciences, JCIS 2006, Kaohsiung, Taiwan, ROC, October 8-11,
2006. Atlantis Press.

Leskovec, J., Rajaraman, A., and Ullman, J. D. (2014). Mining of Massive Datasets, 2nd Ed. Cambridge
University Press.

Liang, J., Liu, Y., and Xue, Y. (2020). Preference-driven pareto front exploitation for bloat control in
genetic programming. Applied Soft Computing, 92:106254.

Loshin, D. (2013). Big Data Analytics. Morgan Kaufmann.

Loveard, T. and Ciesielski, V. (2006). Representing classification problems in genetic programming.
In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), vol-
ume 2, pages 1070–1077 vol. 2.

Lowell, J., Grabkovsky, S., and Birger, K. (2011). Comparison of NEAT and hyperneat performance on
a strategic decision-making problem. In Watada, J., Chung, P., Lin, J., Shieh, C., and Pan, J., editors,
Fifth International Conference on Genetic and Evolutionary Computing, ICGEC 2011, Kinmen, Taiwan
/ Xiamen, China, August 29 - September 1, 2011, pages 102–105. IEEE Computer Society.

References 97

Luke, S. (2013). Essentials of Metaheuristics (Second Edition). Lulu.com.

MacKay, D. J. C. (1992). The evidence framework applied to classification networks. Neural Computa-
tion, 4(5):720–736.

Makridakis, S., Weelwright, S., and Hyndman, R. (1998). Forecasting: Methods and Applications. John
Wiley & Sons, New York, USA, third edition.

Mason, K., Duggan, J., and Howley, E. (2018). Forecasting energy demand, wind generation and
carbon dioxide emissions in ireland using evolutionary neural networks. Energy, 155(16):705–720.

Matos, L. M., Cortez, P., Mendes, R., and Moreau, A. (2018). A comparison of data-driven approaches
for mobile marketing user conversion prediction. In 9th IEEE International Conference on Intelligent
Systems, IS 2018, Funchal, Madeira, Portugal, September 25-27, 2018, pages 140–146. IEEE.

Matos, L. M., Cortez, P., Mendes, R., and Moreau, A. (2019a). Using deep learning for mobile marketing
user conversion prediction. In International Joint Conference on Neural Networks, IJCNN 2019
Budapest, Hungary, July 14-19, 2019, pages 1–8. IEEE.

Matos, L. M., Cortez, P., Mendes, R. C., and Moreau, A. (2019b). Using deep learning for ordinal
classification of mobile marketing user conversion. In Intelligent Data Engineering and Automated
Learning - IDEAL 2019 - 20th International Conference, Manchester, UK, November 14-16, 2019,
Proceedings, Part I, volume 11871 of Lecture Notes in Computer Science, pages 60–67. Springer.

Mehr, A. D. and Nourani, V. (2017). A pareto-optimal moving average-multigene genetic programming
model for rainfall-runoff modelling. Environmental Modelling and Software, 92:239–251.

Mendes, R., Cortez, P., Rocha, M., and Neves, J. (2002). Particle swarms for feedforward neural
network training. In Proceedings of the 2002 International Joint Conference on Neural Networks.
IJCNN’02 (Cat. No.02CH37290), volume 2, pages 1895–1899 vol.2.

Mendes, R., Kennedy, J., and Neves, J. (2004). The fully informed particle swarm: Simpler, maybe
better. IEEE Transactions on Evolutionary Computation, 8(3):204–210.

Michalewicz, Z., Schmidt, M., Michalewicz, M., and Chiriac, C. (2006). Adaptive Business Intelligence.
Springer-Verlag Berlin Heidelberg.

Mingo, J. M., Aler, R., Maravall, D., and de Lope Asiaín, J. (2013). Investigations into lamarckism,
baldwinism and local search in grammatical evolution guided by reinforcement. Computing and
Informatics, 32(3):595–627.

Morabito, V. (2015). Big Data and Analytics: Strategic and Organizational Impacts. Springer Interna-
tional Publishing.

Moro, S., Cortez, P., and Rita, P. (2014). A data-driven approach to predict the success of bank
telemarketing. Decision Support Systems, 62:22–31.

Moro, S., Cortez, P., and Rita, P. (2015). Using customer lifetime value and neural networks to improve
the prediction of bank deposit subscription in telemarketing campaigns. Neural Computing and
Applications, 26(1):131–139.

Motsinger-Reif, A. A., Deodhar, S., Winham, S. J., and Hardison, N. E. (2010). Grammatical evolution
decision trees for detecting gene-gene interactions. BioData Mining, 3:8.

Mühlenbein, H. and Paass, G. (1996). From recombination of genes to the estimation of distributions
i. binary parameters. In Voigt, H., Ebeling, W., Rechenberg, I., and Schwefel, H., editors, Parallel
Problem Solving from Nature - PPSN IV, International Conference on Evolutionary Computation. The
4th International Conference on Parallel Problem Solving from Nature, Berlin, Germany, September
22-26, 1996, Proceedings, volume 1141 of Lecture Notes in Computer Science, pages 178–187.
Springer.

References 98

Nettleton, D. (2014). Commercial Data Mining: Processing, Analysis and Modeling for Predictive Ana-
lytics Projects. Morgan Kaufmann.

Neukart, F. (2017). Reverse Engineering the Mind: Consciously Acting Machines and Accelerated
Evolution. Springer.

Nicolau, M. and Agapitos, A. (2021). Choosing function sets with better generalisation performance
for symbolic regression models. Genetic Programming and Evolvable Machines, 22(1):73–100.

North, M. (2012). Data Mining for the Masses. Global Text Project.

Nyathi, T. and Pillay, N. (2018). Comparison of a genetic algorithm to grammatical evolution for auto-
mated design of genetic programming classification algorithms. Expert Systems with Applications,
104:213–234.

Ojha, V. K., Abraham, A., and Snásel, V. (2017). Metaheuristic design of feedforward neural networks:
A review of two decades of research. Engineering Applications of Artificial Intelligence, 60:97–116.

Oliveira, N., Cortez, P., and Areal, N. (2017). The impact of microblogging data for stock market
prediction: Using twitter to predict returns, volatility, trading volume and survey sentiment indices.
Expert Systems with Applications, 73:125–144.

O’Neill, M. and Brabazon, A. (2019). Mutational robustness and structural complexity in grammatical
evolution. In IEEE Congress on Evolutionary Computation, CEC 2019, Wellington, New Zealand, June
10-13, 2019, pages 1338–1344. IEEE.

O’Neill, M. and Ryan, C. (2001). Grammatical evolution. IEEE Transactions on Evolutionary Computa-
tion, 5(4):349–358.

O’Neill, M. and Ryan, C. (2003). Grammatical evolution - evolutionary automatic programming in an
arbitrary language, volume 4 of Genetic programming. Kluwer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830.

Peralta Donate, J. and Cortez, P. (2014). Evolutionary optimization of sparsely connected and time-
lagged neural networks for time series forecasting. Applied Soft Computing, 23:432–443.

Pereira, P. J., Cortez, P., and Mendes, R. (2017). Multi-objective learning of neural network time series
prediction intervals. In Progress in Artificial Intelligence - 18th EPIA Conference on Artificial Intel-
ligence, EPIA 2017, Porto, Portugal, September 5-8, 2017, Proceedings, volume 10423 of Lecture
Notes in Computer Science, pages 561–572. Springer.

Pereira, P. J., Cortez, P., and Mendes, R. (2021). Multi-objective grammatical evolution of decision trees
for mobile marketing user conversion prediction. Expert Systems with Applications, 168:114287.

Pereira, P. J., Pinto, P., Mendes, R., Cortez, P., and Moreau, A. (2019). Using neuroevolution for
predicting mobile marketing conversion. In Progress in Artificial Intelligence, 19th EPIA Conference
on Artificial Intelligence, EPIA 2019, Vila Real, Portugal, September 3-6, 2019, Proceedings, Part II,
volume 11805 of Lecture Notes in Computer Science, pages 373–384. Springer.

Pham, S., Zhang, K., Phan, T., Ding, J., and Dancy, C. L. (2018). Playing SNES games with neuroevolu-
tion of augmenting topologies. In McIlraith, S. A. and Weinberger, K. Q., editors, Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 8129–8130. AAAI
Press.

References 99

Pradhan, M., Bamnote, G., Tribhuvan, V., Jadhav, K., Chabukswar, V., and Dhobale, V. (2012). A
genetic programming approach for detection of diabetes. International Journal of Computational
Engineering Research, 2(6):91–94.

Quiroz-Ramírez, O., Espinal, A., Ornelas-Rodríguez, M., Domínguez, A. R., Sánchez, D., Soberanes, H.
J. P., Carpio, M., Mancilla-Espinoza, L. E., and Ortíz-López, J. (2018). Partially-connected artificial
neural networks developed by grammatical evolution for pattern recognition problems. In Castillo, O.,
Melin, P., and Kacprzyk, J., editors, Fuzzy Logic Augmentation of Neural and Optimization Algorithms:
Theoretical Aspects and Real Applications, volume 749 of Studies in Computational Intelligence,
pages 99–112. Springer.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria.

Rana, M., Koprinska, I., Khosravi, A., and Agelidis, V. G. (2013). Prediction intervals for electricity load
forecasting using neural networks. In The 2013 International Joint Conference on Neural Networks,
IJCNN 2013, Dallas, TX, USA, August 4-9, 2013, pages 1–8. IEEE.

Rao, S. S. (2019). Engineering Optimization: Theory and Practice. John Wiley & Sons, Ltd.

Rere, L. R., Fanany, M. I., and Arymurthy, A. M. (2015). Simulated annealing algorithm for deep
learning. Procedia Computer Science, 72:137 – 144.

Rivera-López, R. and Canul-Reich, J. (2018). Construction of near-optimal axis-parallel decision trees
using a differential-evolution-based approach. IEEE Access, 6:5548–5563.

Rocha, M., Cortez, P., and Neves, J. (2004). Evolutionary neural network learning algorithms for
changing environments. World Scientific and Engineering Academy and Society Transactions on
Systems, 3(2):596–601.

Ruiz, L. G. B., Delgado, R. R., Cuéllar, M. P., and del Carmen Pegalajar, M. (2018). Energy consump-
tion forecasting based on elman neural networks with evolutive optimization. Expert Systems with
Applications, 92:380–389.

Ryan, C., Collins, J. J., and O’Neill, M. (1998). Grammatical evolution: Evolving programs for an
arbitrary language. In Banzhaf, W., Poli, R., Schoenauer, M., and Fogarty, T. C., editors, Genetic
Programming, First European Workshop, EuroGP’98, Paris, France, April 14-15, 1998, Proceedings,
volume 1391 of Lecture Notes in Computer Science, pages 83–96. Springer.

Sammut, C. and Webb, G. I., editors (2017). Encyclopedia of Machine Learning and Data Mining.
Springer.

Santos, L. A. (2016). Neural Networks.

Schrum, J. and Miikkulainen, R. (2014). Evolving multimodal behavior with modular neural networks
in ms. pac-man. In Arnold, D. V., editor, Genetic and Evolutionary Computation Conference, GECCO
’14, Vancouver, BC, Canada, July 12-16, 2014, pages 325–332. ACM.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal,
27(3):379–423.

Sotelo-Figueroa, M. A., Aguirre, A. H., Espinal, A., Soria-Alcaraz, J. A., and Ortíz-López, J. (2018). Sym-
bolic regression by means of grammatical evolution with estimation distribution algorithms as search
engine. In Castillo, O., Melin, P., and Kacprzyk, J., editors, Fuzzy Logic Augmentation of Neural and
Optimization Algorithms: Theoretical Aspects and Real Applications, volume 749 of Studies in Com-
putational Intelligence, pages 169–177. Springer.

Soule, T. and Foster, J. A. (1998). Effects of code growth and parsimony pressure on populations in
genetic programming. Evolutionary Computation, 6(4):293–309.

References 100

Srinivas, N. and Deb, K. (1994). Muiltiobjective optimization using nondominated sorting in genetic
algorithms. Evolutionary computation, 2(3):221–248.

Stanley, K. O. (2017). Neuroevolution: A different kind of deep learning.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A hypercube-based encoding for evolving
large-scale neural networks. Artificial Life, 15(2):185–212.

Stanley, K. O., Karpov, I., Miikkulainen, R., and Gold, A. (2006). Real-time interactive learning in the
NERO video game. In Proceedings, The Twenty-First National Conference on Artificial Intelligence
and the Eighteenth Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006,
Boston, Massachusetts, USA, pages 1953–1954. AAAI Press.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural network through augmenting topologies.
Evolutionary Computation, 10(2):99–127.

Statista (2021). Mobile advertising spending worldwide from 2007 to 2022.

Stepnicka, M., Cortez, P., Donate, J. P., and Stepnicková, L. (2013). Forecasting seasonal time series
with computational intelligence: On recent methods and the potential of their combinations. Expert
Systems with Applications, 40(6):1981–1992.

Sudholt, D. (2015). Parallel evolutionary algorithms. In Springer Handbook of Computational Intelli-
gence, pages 929–959. Springer.

Suganuma, M., Shirakawa, S., and Nagao, T. (2017). A genetic programming approach to designing
convolutional neural network architectures. In Bosman, P. A. N., editor, Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2017, Berlin, Germany, July 15-19, 2017, pages
497–504. ACM.

Sugiyama, M. (2016). Biography. Elsevier Science.

Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: an analysis and review. Interna-
tional Forecasting Journal, 16(4):437–450.

Tirumala, S. S. (2020). Evolving deep neural networks using coevolutionary algorithms with multi-
population strategy. Neural Computing and Applications, 32(16):13051–13064.

Torgo, L. (2010). Data Mining with R: Learning with Case Studies. Chapman and Hall/CRC Press.

Trawinski, B. (2013). Evolutionary fuzzy system ensemble approach to model real estate market based
on data stream exploration. The Journal of Universal Computer Science, 19(4):539–562.

Tsakonas, A., Dounias, G., Doumpos, M., and Zopounidis, C. (2006). Bankruptcy prediction with neural
logic networks by means of grammar-guided genetic programming. Expert Systems with Applications,
30(3):449–461.

Tsoulos, I. G., Gavrilis, D., and Glavas, E. (2008). Neural network construction and training using
grammatical evolution. Neurocomputing, 72(1-3):269–277.

Turban, E., Sharda, R., Delen, D., and King, D. (2010). Business Intelligence: A Managerial Approach.
Prentice Hall.

Tzimourta, K., Tsoulos, I., Bilero, T., Tzallas, A., Tsipouras, M., and Giannakeas, N. (2018). Direct
assessment of alcohol consumption in mental state using brain computer interfaces and grammatical
evolution. Inventions, 3:51.

Vaishnavi, V. and Kuechler, B. (2004). Design Research in Information Systems, volume 22. Springer
US.

References 101

Verbancsics, P. and Harguess, J. (2015). Image classification using generative neuro evolution for deep
learning. In 2015 IEEE Winter Conference on Applications of Computer Vision, WACV 2015, Waikoloa,
HI, USA, January 5-9, 2015, pages 488–493. IEEE Computer Society.

Volna, E. (2010). Introduction To Soft Computing. Bookboon.

Whitley, D., Rana, S., and Heckendorn, R. B. (1998). The island model genetic algorithm: On separabil-
ity, population size and convergence. Journal of Computing and Information Technology, 7:33–47.

Witten, I. H., Frank, E., and Hall, M. A. (2011). Data mining: practical machine learning tools and
techniques, 3rd Edition. Morgan Kaufmann, Elsevier.

Yu, L., Xu, H., and Tang, L. (2017). Lssvr ensemble learning with uncertain parameters for crude oil
price forecasting. Applied Soft Computing, 56:692–701.

Yuan, S., Abidin, A. Z., Sloan, M., and Wang, J. (2012). Internet advertising: An interplay among
advertisers, online publishers, ad exchanges and web users. Computing Research Repository,
abs/1206.1754.

Zameer, A., Arshad, J., Khan, A., and Raja, M. A. Z. (2017). Intelligent and robust prediction of short
term wind power using genetic programming based ensemble of neural networks. Energy Conversion
and Management, 134:361–372.

Zhang, J., Zhang, J., Lok, T., and Lyu, M. R. (2007). A hybrid particle swarm optimization-back-
propagation algorithm for feedforward neural network training. Applied Mathematics and Computa-
tion, 185(2):1026–1037.

Zhang, W., Yuan, S., and Wang, J. (2014). Real-time bidding benchmarking with ipinyou dataset. CoRR,
abs/1407.7073.

Zhao, H. (2007). A multi-objective genetic programming approach to developing pareto optimal decision
trees. Decision Support Systems, 43(3):809–826.

Zhong, J., Feng, L., Cai, W., and Ong, Y. (2020). Multifactorial genetic programming for symbolic
regression problems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(11):4492–
4505.

Part IV

A P P E N D I C E S

A
E V O LT R E E : U S E R M A N U A L

a.1 O v e r v i ew

evoltree is a novelMulti-objective Optimization (MO) approach to evolve Decision Trees (DT) us-

ing Grammatical Evolution (GE), under two main variants: a pure GE method (EDT) and a GE with

Lamarckian Evolution (EDTL). Both variants evolve variable-length DTs and perform a simultaneous op-

timization of the predictive performance (measured in terms of AUC) and model complexity (measured

in terms of GE tree nodes). To handle big data, the GE methods include a training sampling and

parallelism evaluation mechanism. Both variants both use PonyGE2 as GE engine, while EDTL

uses sklearn DT during the Lamarckian Evolution.

Solutions are represented as a numpy.where expression in the format bellow, with x being a pandas

dataframe with data; idx a column from the dataset; comparison a comparison signal (e.g., <, ==);

value being a numerical value; and result can be another numpy.where expression (creating chained

expressions), or a class probability (numeric value from 0 to 1). Due to this representation, current

evoltree implementation only allows numerical attributes. More details about this work can be found

at: https://doi.org/10.1016/j.eswa.2020.114287.

numpy.where(x[<idx>]<comparison><value>,<result>,<result>)

Figure 25: User Manual: GE-based Decision Tree example.

103

https://github.com/PonyGE/PonyGE2
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://doi.org/10.1016/j.eswa.2020.114287

A.2. Installing 104

a.2 I n s t a l l i n g

Using pip:

pip install evoltree

a.3 Qu i c k S t a r t

This short tutorial contains a set of steps that will help you getting started with evoltree.

a.3.1 Load Example Data

evoltree package includes two example datasets for testing purposes only. Data is ordered in time and

the second dataset contains events collected after the first one. To load the datasets, already divided

into train, validation and test sets, two functions were created: - load_offline_data - returns the

training, validation and test sets from first dataset, used for static environments; - load_online_data

- returns the training, validation and test sets from both datasets, used for online learning scenarios.

Next steps present how to load data in the two different modes (online and offline). Due to privacy

issues, all data is anonymized.

Import package

from evoltree import evoltree
Create evoltree object

edt = evoltree()
Loading first example dataset, already divided into train, validation and test sets.

X, y, X_val, y_val, X_ts, y_ts = edt.load_offline_data()
Loading both example datasets, already divided into train, validation and test sets.

X1, y1, X_val1, y_val1, X_ts1, y_ts1, X2, y2, X_val2, y_val2, X_ts2, y_ts2 = edt.
load_online_data()

print(X)
print(y)

Outputs

X (train)

col1 col2 col3 col4 col5 col6 col7 col8
col9 col10

0 0.755951 4.653432 2.767041 0.739897 0.101081 2.401580 2.890712 3.157321
5.554321 0.865465

1 5.624979 4.782823 0.416159 0.823179 0.101081 2.446735 0.739841 2.564807
4.552277 0.991334

A.3. Quick Start 105

2 0.755951 5.365407 3.081596 0.739897 0.101081 3.174113 1.986985 3.193263
3.378832 0.865465

3 4.436114 6.393779 0.416159 0.823179 0.101081 2.238128 2.066007 2.564807
3.436435 0.865465

4 7.071106 6.069200 0.416159 0.739897 0.101081 5.100103 0.739841 3.551982
4.886248 0.991334

...
... ...

708937 0.755951 4.804125 0.416159 0.823179 0.101081 2.807017 2.066007 2.564807
5.802875 0.865465

708938 0.755951 2.558737 0.416159 0.823179 0.101081 2.558737 2.066007 2.564807
5.802875 2.173501

708939 0.755951 2.875355 0.416159 0.823179 0.101081 2.572643 0.739841 2.455024
2.947305 0.991334

708940 0.755951 4.694221 0.416159 0.823179 0.101081 3.568007 0.739841 2.455024
6.279122 0.991334

708941 6.631839 2.553551 0.416159 0.823179 0.101081 2.446735 0.739841 2.564807
5.266229 0.991334

[708942 rows x 10 columns]

[708942 rows x 10 columns]

y (train)

0 NoSale
1 NoSale
2 NoSale
3 NoSale
4 NoSale

...
708937 NoSale
708938 NoSale
708939 NoSale
708940 NoSale
708941 NoSale
Name: target, Length: 708942, dtype: object

A.3. Quick Start 106

a.3.2 Offline Learning: Fit EDT and EDTL models

Next steps present the basic usage of both variants (EDT and EDTL) for modeling the previously loaded

data in an offline environment. Furthermore, since all solutions are stored, it is possible to continue

the learning process if needed, by using the refit function, also presented below.

Imports

from evoltree import evoltree
from sklearn import metrics
import matplotlib.pyplot as plt
Create two evoltree objects, one for each variant

edt = evoltree()
edtl = evoltree()
Load dataset

X, y, X_val, y_val, X_ts, y_ts = edt.load_offline_data()
Fit both versions on train data

Normal variant:

edt.fit(X, y, "Sale", X_val, y_val, pop=100, gen=10, lamarck=False, experiment_name="
test")

Lamarckian variant, doesn't need as much iterations (gen)

edtl.fit(X, y, "Sale", X_val, y_val, pop=100, gen=5, lamarck=True, experiment_name="
testLamarck")

Continue Fitting both versions on the same datasets for extra 2 iterations

Normal variant:

edt.refit(gen=2)
Lamarckian variant, doesn't need as much iterations (gen)

edtl.refit(gen=2)
Predict on test data, using the solution with better predictive performance on

validation data

y_pred1 = edt.predict(X_ts, mode="best")
y_predL1 = edtl.predict(X_ts, mode="best")
Compute AUC on test data

fpr1, tpr1, th1 = metrics.roc_curve(y_ts, y_pred1, pos_label='Sale')
fprL1, tprL1, thL1 = metrics.roc_curve(y_ts, y_predL1, pos_label='Sale')
auc1 = metrics.auc(fpr1, tpr1)
aucL1 = metrics.auc(fprL1, tprL1)
Plot results

fig, ax = plt.subplots(1,1, figsize=(5.5,5))
plt.plot(fprL1, tprL1, color='royalblue', ls="--", lw=2, label="EDTL={}%".format(round

(aucL1, 2)))
plt.plot(fpr1, tpr1, color='darkorange', ls="-", lw=2, label="EDT={}%".format(round(

auc1, 2)))
plt.plot([0,1], [0,1], color="black", ls='--', label="baseline=50%")
plt.legend(loc=4)

A.3. Quick Start 107

plt.xlabel("FPR")
plt.ylabel("TPR")
plt.savefig("results.png")

Figure 26: User Manual: ROC curve for EDTs in offline learning task.

a.3.3 Online Learning: Fit EDT and EDTL models

EDT variants can both be applied to online learning environments, saving previous solutions and using

it as starting point for the learning process, thus, needing a smaller number of iterations to achieve

good results. Next steps show how to implement it.

Imports

from evoltree import evoltree
from sklearn import metrics
import matplotlib.pyplot as plt
Create two evoltree objects, one for each variant

edt = evoltree()
edtl = evoltree()
Load datasets

X1, y1, X_val1, y_val1, X_ts1, y_ts1, X2, y2, X_val2, y_val2, X_ts2, y_ts2 = edt.
load_online_data()

Train models: first dataset

Fit both versions on train data

Normal variant:

A.3. Quick Start 108

edt.fit(X1, y1, "Sale", X_val1, y_val1, pop=100, gen=10, lamarck=False,
experiment_name="test")

Lamarckian variant, doesn't need as much iterations (gen)

edtl.fit(X1, y1, "Sale", X_val1, y_val1, pop=100, gen=5, lamarck=True, experiment_name
="testLamarck")

Predict on test data, using the solution with better predictive performance on

validation data

y_pred1 = edt.predict(X_ts1, mode="best")
y_predL1 = edtl.predict(X_ts1, mode="best")
Compute AUC on test data

fpr1, tpr1, th1 = metrics.roc_curve(y_ts1, y_pred1, pos_label='Sale')
fprL1, tprL1, thL1 = metrics.roc_curve(y_ts1, y_predL1, pos_label='Sale')
auc1 = metrics.auc(fpr1, tpr1)
aucL1 = metrics.auc(fprL1, tprL1)
Re-Train models: second dataset

Fit both versions on train data

Normal variant:

edt.fit_new_data(X2, y2, X_val2, y_val2, pop=100, gen=5, lamarck=False)
Lamarckian variant, doesn't need as much iterations (gen)

edtl.fit_new_data(X2, y2, X_val2, y_val2, pop=100, gen=2, lamarck=True)
Predict on test data, using the solution with better predictive performance on

validation data

y_pred2 = edt.predict(X_ts2, mode="best")
y_predL2 = edtl.predict(X_ts2, mode="best")
Compute AUC on test data

fpr2, tpr2, th2 = metrics.roc_curve(y_ts2, y_pred2, pos_label='Sale')
fprL2, tprL2, thL2 = metrics.roc_curve(y_ts2, y_predL2, pos_label='Sale')
auc2 = metrics.auc(fpr2, tpr2)
aucL2 = metrics.auc(fprL2, tprL2)
Plot results

fig, ax = plt.subplots(1,1, figsize=(5.5,5))
plt.plot(fprL1, tprL1, color='royalblue', ls="--", lw=2, label="EDTL (1)={}%".format(

round(aucL1, 2)))
plt.plot(fpr1, tpr1, color='darkorange', ls="-", lw=2, label="EDT (1)={}%".format(

round(auc1, 2)))
plt.plot(fprL2, tprL2, color='navy', ls="--", lw=2, label="EDTL (2)={}%".format(round(

aucL2, 2)))
plt.plot(fpr2, tpr2, color='tan', ls="-", lw=2, label="EDT (2)={}%".format(round(auc2,

2)))
plt.plot([0,1], [0,1], color="black", ls='--', label="baseline=50%")
plt.legend(loc=4)
plt.xlabel("FPR")
plt.ylabel("TPR")
plt.savefig("results_online.png")

A.4. Citation 109

Figure 27: User Manual: ROC curve for EDTs in online learning task.

a.4 C i t a t i o n

If you use evoltree for your research, please cite the following paper:

• Pedro J. Pereira, Paulo Cortez, Rui Mendes. Multi-objective Grammatical Evolution of

Decision Trees for Mobile Marketing User Conversion Prediction. Expert Systems

with Applications, Elsevier, 168:114287, April, 2021

@article{DBLP:journals/eswa/PereiraCM21,
author = {Pedro Jos{\'{e}} Pereira and Paulo Cortez and Rui Mendes},
title = {Multi-objective Grammatical Evolution of Decision Trees for Mobile

Marketing user conversion prediction},
journal = {Expert Systems with Applications},
volume = {168},
pages = {114287},
month = {April},
year = {2021},
url = {https://doi.org/10.1016/j.eswa.2020.114287}

}

PPROMOS - Previsão e otimização de campanhas publicitárias para dispositivos
móveis em modelos de subscrição, NORTE-01-0247-FEDER-017497 All rights reserved.

	 Introduction and Background
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Research Methodology
	1.4 Contributions
	1.5 Thesis Organization

	2 Background
	2.1 Introduction
	2.2 Big Data
	2.3 Data Mining
	2.3.1 Supervised Learning
	2.3.2 Unsupervised Learning
	2.3.3 Reinforcement Learning
	2.3.4 Offline and Online Learning
	2.3.5 Learning Algorithms

	2.4 Modern Optimization
	2.4.1 Blind Search
	2.4.2 Local Search
	2.4.3 Population-Based Search
	2.4.4 Multi-objective Optimization

	2.5 Optimization of Predictive Models
	2.5.1 Neuroevolution
	2.5.2 Genetic Programming and Grammatical Evolution

	2.6 Mobile Performance Marketing
	2.7 Optimization of Predictive Models in Performance Marketing
	2.8 Summary

	 Main Body
	3 Multi-step time series prediction intervals using neuroevolution
	3.1 Introduction
	3.2 Materials and methods
	3.2.1 Time series datasets
	3.2.2 Forecasting methods
	3.2.3 Evaluation

	3.3 Results
	3.3.1 Experimental setup
	3.3.2 Forecasting methods
	3.3.3 Computational effort and training optimization examples

	3.4 Conclusions

	4 Multi-Objective Grammatical Evolution of Decision Trees for Mobile Marketing User Conversion Prediction
	4.1 Introduction
	4.2 Materials and methods
	4.2.1 Mobile Performance Marketing data
	4.2.2 Multi-objective Grammatical Evolution Decision Trees
	4.2.3 Comparison methods
	4.2.4 Evaluation

	4.3 Results
	4.4 Conclusions

	 Conclusions
	5 Conclusions
	5.1 Overview
	5.2 Discussion and Future Work

	References
	 Appendices
	A evoltree: user manual
	A.1 Overview
	A.2 Installing
	A.3 Quick Start
	A.3.1 Load Example Data
	A.3.2 Offline Learning: Fit EDT and EDTL models
	A.3.3 Online Learning: Fit EDT and EDTL models

	A.4 Citation

