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Resumo

Modelação e simulação multiescalar de sistemas de matéria mole Veniero Lenzi

Esta tese é dedicada à simulação e modelação de poliisocianatos alifáticos, uma família de moléculas

de reticulação usada na produção de poliuretanos. O seu uso é limitado pela sua elevada viscosidade, e

entender a origem deste facto é essencial para sintetizar poliisocianatos de baixa viscosidade, permitindo

processos mais sustentáveis com um uso reduzido de compostos químicos e solventes. O conhecimento

fundamental sobre a viscosidade desta família molecular é escasso, e uma ampla gama de técnicas de

simulação, abrangendo diferentes escalas, é utilizada para preencher essa lacuna.

Um campo de força clássico para isocianatos foi desenvolvido e testado para permitir simulações de

dinâmica molecular fiáveis da fase líquida. Os resultados da simulação reproduzem de forma excelente as

viscosidades experimentais de poliisocianatos e sugerem a presença de interações peculiares entre anéis

de isocianurato e os grupos isocianato, sendo possivelmente responsáveis pela origem da viscosidade

dos poliisocianatos.

A presença e o papel dessas interações são investigados usando uma ampla gama de métodos ab

initio e de dinâmica molecular, revelando que os anéis de isocianurato são realmente capazes de fortes

ligações não covalentes e que a interação isocianato-isocianurato é responsável pelo aumento viscosidade

dos poliisocianatos. Este resultado encorajou a exploração da possibilidade de usar isocianuratos para a

funcionalização não covalente de materiais 2D, e resultados promissores foram obtidos.

Foi feita a simulação da formação de redes poliméricas reticuladas usando cadeias funcionalizadas

nos extremos com isocianatos, usando o método da dinâmica de partículas com dissipação, conjugado

com a modelação da reação de reticulação. Estudou-se as propriedades topológicas e capacidade de

dilatação destas redes, demonstrando-se que esta nova abordagem permite obter redes poliméricas reti-

culadas cujas propriedades são muito próximas às obtidas com métodos tradicionais de processamento.

Esta tese clarifica a ligação existente entre interações moleculares e as propriedades macroscópicas

dos poliisocianatos, revelando o mecanismo responsável pelo comportamento da viscosidade dos polii-

socianatos e fornecendo, ao mesmo tempo, ferramentas de simulação eficazes para o estudo futuro de

materiais baseados nesta família de moléculas.

Palavras-chave:dinâmica molecular, métodos ab initio, poliisocianatos, viscosidade.
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Abstract

Multiscale modelling and simulation of soft matter systems Veniero Lenzi

This thesis is devoted to the simulation and modelling of aliphatic polyisocyanates, a family of crosslinking

molecules which is the basic building block of polyurethane materials. Their use is limited by their high

viscosity, and understanding its origin is fundamental to devise low-viscosity polyisocyanates, allowing

for more sustainable processes with a reduced use of chemical compounds and solvents. Up to now,

this knowledge was missing, and a wide range of simulation techniques, embracing different scales, is

employed here to fill this gap.

A classical force field for isocyanates is developed and tested to enable reliable liquid phase simulations

using all-atom molecular dynamics. Simulation results reproduce very well the experimental viscosities

of polyisocyanates and suggest the presence of peculiar interactions between isocyanurate rings and

isocyanate groups, possibly involved in determining the isocyanates’ viscosity.

The presence and role of these interactions is investigated using a wide range of ab initio methods and

molecular dynamics free energy estimations, revealing that isocyanurate rings are indeed capable of strong

non-covalent bindings, and that the isocyanate-isocyanurate interaction is responsible for the increased

viscosity of polyisocyanates. Encouraged by this, we explore the possibility of using isocyanurates for

non-covalent functionalization of 2D materials, and promising results are shown.

Dissipative particle dynamics simulations, conjugated with a crosslinking reaction modelling, are em-

ployed to simulate the formation of polymer networks using isocyanate end-functionalized chains and

study their swelling and topological properties. It is demonstrated that using the end-functionalized chains

approach provides networks with properties very close to those obtained with traditional processing routes.

This thesis clarifies the connection between molecular interactions and macroscopic properties of

polyisocyanate systems, revealing the mechanism responsible of viscosity behaviour of polyisocyanates

and providing, at the same time, effective simulation tools for further research.

Keywords: ab initio methods, molecular dynamics, polyisocyanates, viscosity.
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Chapter 1

Introduction

This chapter is devoted to the review of present experimental and theoretical research on isocyanates and

polyisocyanates, with a focus on aliphatic ones. The first section introduces the isocyanates and derived

molecules, as well as their reactivity. The following one illustrates their role in current research, spanning

several disciplines of chemistry and physics. Next, an overview of computational studies is presented,

highlighting those areas in which the literature is scarce and further work is welcome. Finally, the aim and

scopes of the present thesis are introduced, along with a description of the main case study considered.

1.1 Isocyanates and polyisocyanates

Isocyanates are a well known family of molecules, firstly synthesized in the middle of ninetieth century

by C. A Wurtz [1]. Many years later, in 1932, Otto Bayer discovered a method to produce polyurethanes

(PU) [2], which uses isocyanates as a basic building block. Since then, their use exploded due to the unique

versatility of PU materials and nowadays they are employed in a very diverse range of applications, from

construction blocks to coatings for cars, planes and satellites, from flame retardants to biomaterials [3,

4, 5], to thermal shielding for heavy-lift launch vehicles [6], and their global production is nevertheless

expected to steadily rise in the next years [7].

All isocyanates possess the very active isocyanate group, capable to react with several chemical

groups [8, 4]. In general, they react quickly at mild conditions with all types of nucleophiles. The most

renown reaction is certainly the urethane formation, occurring when an isocyanate reacts with an alcohol

group, forming an urethane linkage. Similarly, an NCO group can strongly react with amine groups, in

which case an urea linkage is formed instead. Moreover, they strongly react with water, which decompose

the NCO group into an amine, with the release of gaseous carbon dioxide. Isocyanates are usually classi-
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fied depending on the nature of the molecule that carries them: aromatic isocyanates contains aromatic

groups, such as toluene or diphenyl diisocyanates, while aliphatic isocyanates contains only alkyl chains,

such as the hexamethylene diisocyanate.

The functionality ν is defined as the number of NCO groups in an isocyanate. ν > 2 isocyanates,

namely ν = 3, are used as crosslinkers and are obtained through the cyclotrimerization of di-isocyanates.

As suggested by the name, this process results in the formation of a ring structure, termed isocyanu-

rate. Aliphatic isocyanurates are particularly appealing, since they show excellent thermal and chemical

stability [9], and their presence in PUs confers them flame-retardant properties, as well as improved me-

chanical properties. In addition, they have a high resistance to degradation by environmental factors.

Clearly, mono-functional isocyanates could also undergo cyclotrimerization, but the final molecule would

have no functionality, bearing little interest for further applications.

The ring formation is known to occur spontaneously, although slowly. Beside this, isocyanates could

also dimerize, resulting in the formation of a difunctional uretdione. These reactions are responsible

for the relatively low shelf lifetimes of isocyanates [8]. In the production of isocyanurate crosslinkers,

uretdiones generally constitute unwanted byproducts. Moreover, the cyclotrimerization will produce higher

functionality isocyanurates, in a measure proportional to the reaction time [10]. A wide range of catalysts

might be employed to accelerate the cyclotrimerization, such as Lewis bases, rare earth and main group

complexes [4].

1.2 Applications and current research trends

Despite the long-time knowledge and application of isocyanate, the research on them still is a vibrant field

across several areas, ranging from advanced materials development to astrophysics and astrochemistry.

When aliphatic isocyanates and isocyanurates are employed, materials with better properties are

generally obtained, when compared with other families. They are at the basis of high-performance coa-

tings [11, 12, 13] and porous materials [14] with excellent mechanical properties. Moreover, it has been

demonstrated that trimer-based materials could display a room-temperature activated shape-memory ef-

fect [15]. Further, it was shown that isocyanate trimers could be used to form a stable matrix for non

liner optically (NLO) active devices [16]. Due to the superior performance they are able to confer to the

final material, aliphatic isocyanurates are also at the basis of bio-based polyurethane coatings made using

starch as a polyol [17].

Environmental and sustainability concerns are finally coming into a more general attention, therefore
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research efforts are directed towards the development and definition of processes that consume less water

and potentially polluting chemical compounds, and on the search of renewable, petrol-free, sources for the

reactants. Regarding this, it was recently shown that aliphatic isocyanates could be obtained through green

chemistry routes [18] and in 2015 [19] the first commercial bio-based aliphatic polyisocyanate product was

introduced in the market. In the same line, the search of more efficient and better isocyanurate production

routes represents a very active field. Ideal catalysts should have a high efficiency and good activity at mild

conditions, conjugated with low formation rates of uretdiones. Very promising catalysts have been recently

found, including complexes containing transition metals [20, 21] and first group elements [22, 23], and

olefins [24].

From amore general point of view, the unique chemistry and reactivity of isocyanates makes them very

appealing for advanced applications, such as the functionalization of surfaces and nanocarriers [25, 26,

27], immobilization of proteins [28]. In these applications, the strong reactivity of isocyanates is exploited

to covalently attach isocyanate-functionalized molecules to a substrate, resulting e.g. in the grafting of

fluorinated polymers to a silica surface, providing anti-fogging and anti-moisture protection. In the same

way, isocyanates can be used to modify the surface of cellulose and nano-cellulose [29]. Hexamethylene

diisocyanate has been used to create cathode protective layers in lithium ion batteries, improving their

performance stability [30, 31, 32]. Although not really capable of click chemistry reactions [33] because

of the isocyanate group poor selectivity, they are effectively applied in a similar, click-like, fashion for the

design of complex surfaces through post-polymerization [34], synthesis of artificial proteins [35].

Remarkably, isocyanates have also an important role in the processing of graphene-based materials.

They are used to functionalize graphene oxide [36] in order to exfoliate it and make it more soluble.

Moreover, isocyanate-functionalized graphene oxide was used to craft flexible energy storage devices [37]

and nanocatalysts [38]. An aliphatic isocyanate trimer reinforced graphene aerogel has been synthesized,

showing good adsorption properties towards crude oil [39], with potential application for storage and

clean-up of organic pollutants.

A very interesting class of materials is constituted by PU-based hydrogels, which possess attractive

properties as biomaterials, due to their intrinsic versatility [40] and biocompatibility [5]. In this regard, it

has been shown that they can be obtained by employing a cyclotrimerization as crosslinking reaction of

aliphatic isocyanate-functionalized polyethylene glycol and polycaprolactone chains [41], yielding a cros-

slinked material with a very well-defined network structure, as well as improved mechanical properties,

especially in the swollen state. PU-based microgels, that is polymer networks of micrometer scale dimen-

sions [42], have been synthesized and used for several biomedical applications, such as targeted drug
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delivery [43, 44, 45], vascular embolization [46], improving lifespan of shape memory biomaterials [47].

Isocyanate microcapsules [48] constitute another interesting example of isocyanate-based microstruc-

tures, and are used to produce smart coatings with self-healing and self-lubricating capabilities. These

microcapsules contain unreacted isocyanates in their core that are released upon breaking and allowed to

react with the surrounding material. Their use is particularly fit for coatings exposed to wet environments,

due to the water-isocyanate reaction. Aliphatic [49] and non aliphatic isocyanates [50, 51, 52] have been

used for this purpose, showing excellent performance. Other uses of isocyanate microcapsules comprise

functional crosslinking agents in wood adhesives [53], due to their improved stability and controlled release

of isocyanate content.

The use of isocyanates for advanced materials is expected to grow as new synthesis routes [54,

55, 41] and novel processing and handling techniques, such as molecular layer deposition [56], are

continuously developed. The possibility of employing isocyanates in reactive inkjet 3D printing processes

has also been investigated [57].

Finally, it is worth mentioning how the research on aliphatic isocyanates is recently blooming in the

astrophysical community, following the discovery of methyl isocyanate on the comet 67P/Churyumov–Ge-

rasimenko by the Philae lander of the Rosetta spacecraft [58]. It was further identified through spectrosco-

pic observation in interstellar medium and protostar gas clouds [59], and there is evidence regarding the

presence of ethyl isocyanate as well. Isocyanates play a very important role in prebiotic chemical reactions

as building blocks of more complex peptides [60], several recent studies are aimed at understanding their

formation and stability under astrophysical conditions [61, 62]. It was shown that methyl isocyanate/water

mixtures could form stable ices at temperatures up to 20 K.

1.3 Theoretical and modelling studies

Literature regarding theoretical, modelling and simulation studies of aliphatic isocyanates from the atomis-

tic point of view is not as vast as expected from their importance. Isocyanate ion (NCO−
)and isocyanic

acid (HNCO) have been thoroughly studied using quantum mechanical calculations, but the same does

not hold for more complex isocyanates and polyisocyanates, especially aliphatic ones. Additionally, most

of the computational works on complex isocyanates are targeted towards understanding the chemical re-

actions of isocyanates, rather than their interactions in gas and condensed phase. Therefore, while there

is a good understanding on the chemistry of isocyanates and on their reaction mechanisms, little is known

about their liquid-phase properties.
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A number of theoretical studies employing density functional theory can be found, revolving around

the interactions between the isocyanate ion and metallic systems. This is due to the presence of iso-

cyanate as an intermediate compound during catalytic processes [63] involving carbon monoxide and

nitrogen oxide. In this sense, studies comprise copper, both as small clusters [64, 65] and as periodic

surface [66], palladium [67], silver [68], aluminium oxide [69], gold [70]. All these studies demonstrate

strong chemisorption between the ion and the metallic substrate, which always occurs by a bond involving

the nitrogen atom. In the case of gold, the formation of cyanuric acid, that is the cyclic trimer of isocyanic

acid, occurring at the interface was also reported [71]. In a similar fashion, the adsorption of isocyanic

acid has been studied in titanium dioxide and aluminium oxide [72, 73], due to its role in the selective

catalytic reduction (SCR) process employed to treat diesel engines exhausts. Computational studies on

isocyanic acid crystal structure were performed only recently [74], showing strong similarities with that of

carbon dioxide.

Due to its presence in the interstellar medium and its alleged role in the chemistry of interstellar

ices and comets [75], several works used ab-initio methods to study isocyanic acid properties in this

context. The stable geometries of isocyanic acid-water clusters was explored by means of quantum cal-

culations [76, 77]. Coupled-cluster calculations were employed to calculate the potential energy surface

of the non-covalent interaction between isocyanic acid and molecular hydrogen, with the aim to calculate

the inelastic scattering cross section and scattering rates between the two species [78]. Following to their

recent discovery in interstellar medium, the crystal structure of methyl isocyanate was calculated using

density functional theory to calculate its vibrational spectrum [61] in order to relate it with astrophysical

observations. It is worth noting that in their work, Maté and collaborators guessed the methyl isocyanate

crystal structure starting from the isocyanic acid one.

Most of the literature concerning aliphatic isocyanates and isocyanurates focuses on the study of

cyclotrimerization reaction. Its mechanism has been firstly elucidated using Density Functional Theory

methods by Okumoto and Yambe [9], which studied the ring formation with and without catalyst. They

showed how the presence of a catalyst is fundamental in promoting the cyclotrimerization, while the dimer

formation is unlikely to happen at any condition. A later study [79] pointed out that, without a catalyst,

the ring formation could still occur, employing uretdione as an intermediate. Both works agree into sug-

gesting that, when a catalyst is present, cyclotrimerization occurs through an activated catalyst-isocyanate

complex, with uretdione still being reversibly formed. Similar conclusions were reached by further com-

putational studies which investigated cyclotrimerization reaction kinetics with different catalysts [80, 81].

All of these studies are based on the determination of the geometry of the intermediate states and the
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calculation of their energy. Energy differences between reactants, intermediates and products are then

evaluated to assess the reaction probability.

Other reactions were investigated as well. The reaction between isocyanates and alcohols, at the

basis of polyurethane synthesis, has been only recently studied using both experimental and theoretical

calculations [82]. The adhesion properties of phenyl isocyanates species and the obtained urethanes on

metal surfaces were studied for aluminium [83] and steel [84], but these studies did not consider aliphatic

species. To our knowledge, non-covalent interactions of isocyanurates on any surface were never addres-

sed. Likewise, a study on the possible interactions between aliphatic isocyanates and polyisocyanates is

mostly missing. Concerning aromatic ones, a recent study [85] investigated the relative stability of diphe-

nyl diisocyanate uretdiones, showing how the presence of noncovalent interactions, such as aromatic π

stacking and van der Waals forces, helps in stabilizing the dimer. However, their conclusions are based

solely upon energy calculations and do not investigate the nature of these bindings. Isocyanurate ring

interactions have been recently investigated for the case of isocyanuric acid and it was shown that, due

to hydrogen bonds, complex supramolecular structures could be formed, such as rosetta motifs [86] or

molecular cages [87]. In both cases, the structures are held together by hydrogen bonds, and it is pointed

out that the ring-based π interactions are responsible for holding small moieties within the cage.

Themost surprising absence in aliphatic isocyanates literature is the one regarding atomistic molecular

dynamics studies. This is probably the only computational tool capable to accurately predict macroscopic

liquid properties and, most importantly, connect them with an understanding of the microscopic interacti-

ons. Still, as testified by the absence of dedicated force-fields parametrizations, there are no molecular

dynamics studies addressing the isocyanates and polyisocyanates liquid properties, either aliphatic or

aromatic. The reason of this lacking of information may be traced back to two factors: on one hand,

isocyanate compounds are not involved in biological processes, making them to fall aside from the ma-

jor classical force field parametrizations, historically developed for studying small organic molecules of

biological interest [88, 89, 90, 91]. On the other hand, theoretical and computational research mainly

addressed the final state of isocyanate-based products, obtained once that the isocyanate content has

been already spent and is available as crosslinking points and/or urethane bonds.

In fact, systems such as polyurethanes have been the subject of many simulation works and generated

a very large literature, the review of which falls out the scope of this thesis. Notwithstanding, it is important

to draw the attention on these works that, apart from final material properties, also address the formation

process itself, hence providing a modelling for the reactivity as well. Restricting the field to isocyanate-

crosslinked systems, mesoscale coarse-grained simulations employing dissipative particle dynamics were
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used to study the formation and morphology of isocyanate-crosslinked networks at their free surface [92,

93, 94], polycarbonate-polyurethane crosslinked materials [95], polyethylene glycol hydrogels [96, 97].

In all these works, the starting point is a mixture of some linear polymer and aliphatic isocyanate trimers.

The reaction between isocyanates and the alcohols is simplified as a bond formation between the involved

chemical species, triggered by their proximity. It has been shown that within this simple scheme, the

reaction parameters do not influence the final structure and properties [98]. None of the above-mentioned

works contemplates the cyclotrimerization as possible crosslinking mechanism.

Apart from dissipative dynamics studies, a MARTINI [99] coarse-grained parametrization was recently

developed and used to investigate the polyurethane crosslinking process [100]. In their work, Ghermez-

cheshme and collaborators derived MARTINI force field parameters starting from fully atomistic simulations

performed using the OPLS-AA [101] force field, and noted that it performs poorly in predicting the isocy-

anate properties. In their case, however, isocyanates constitute only a small fraction of the systems, and

the parametrization error can be ignored. This last example best underlines how theoretical and modelling

studies on isocyanates at the atomistic scale are utmost necessary, both to understand the isocyanate

properties and to serve as solid foundations of larger scale approaches.

1.4 Objectives and thesis outline

In previous sections the exciting and multidisciplinary research on isocyanate has been explored. Whereas

there is an abundance of experimental works highlighting the importance of isocyanate and their promising

applications, it is clear that more work from the modelling and simulation side is required. The liquid

state properties and interactions of aliphatic isocyanates and polyisocyanates liquids are poorly known.

Adhesion properties were studied for few and very specific species, that is isocyanate ions and isocyanic

acids. Effective all-atom forcefields for isocyanate-based molecules are lacking. The complex chemistry

of isocyanates is far to be fully characterized.

The development of reliable models and effective simulation tools represent an unavoidable step to

provide an answer to most of these questions. Firstly, they might be used as a predictive tool to guide and

assist the design of novel compounds. Most importantly, simulations are often the only way to investigate

the underlying physics influencing, driving and ruling the macroscopic behaviour of isocyanate systems,

at time and length scales unattainable otherwise.

Therefore, the main objective of this thesis is to show how a wide range of electronic structure, atomis-

tic and coarse-grained methods can be used to investigate the liquid state properties of isocyanate-based
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materials, understand their interactions and characterize the network formation process. Generally spea-

king, isocyanate-based liquids are complex molecular fluids, making their computational investigation a

daunting task. Throughout the thesis it will be made clear how, to gain a deep understanding of the sy-

stem, several time and space scales must be addressed using different methods in a multi-scale fashion,

and how experimental data must be used as the cornerstone to assess the predictive power and validity

to the proposed simulation models.

In chapter 2, an overview of the simulation techniques employed throughout this thesis is given, along

with the theoretical concepts on which they are based upon. Ab initio calculations, molecular dynamics

and dissipative particle dynamics simulations are explained, discussing the application field and limitations

of each method.

The development of an optimized molecular dynamics force field for isocyanate-based molecules is

presented in chapter 3. The new forcefield is tested and validated by comparing its predictions with

experimental results, and used to investigate the liquid state of isocyanates and the relationship between

their viscosity and molecular-scale features.

In chapter 4, isocyanates are investigated in detail with a range of ab initio methods, including density

functional theory and symmetry-adapted perturbation theory, with the objective to clearly establish the

nature of their intermolecular interactions and their influence over viscosity. Furthermore, the non-covalent

functionalization capabilities of isocyanurate rings are evaluated by studying their adsorption on various

2D materials.

Networks and nanogels obtained from isocyanate end-functionalized polymers are studied in chapter

5. A dissipative particle dynamics simulation framework is employed, in conjunction with a modelling for

the crosslinking reaction, to simulate the network formation process, to characterize their swelling and

topological properties and to assess how those are affected by variations of processing conditions.
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Chapter 2

Theoretical background and methods

This chapter provides an overview of the computational methods employed throughout this thesis. The

focus is directed on describing the foundation of these methods and the justification for their choice, rather

than implementation details, with references provided for the interested reader wishing to find complete

and in-depth discussions of the touched topics. The chapter is divided in sections that follow a bottom-

up approach starting with quantum mechanical calculation methods, followed by molecular dynamics

simulations and ended by dissipative particle dynamics method.

2.1 Ab initio methods

2.1.1 The Schroedinger equation

Ab initio, meaning ’from the beginning’, are all those methods that obtain the wavefunction of a many-

electron system starting solely from the laws of quantummechanics. Any polyatomic system is a collection

of atoms held together by the interactions between their nuclei and electrons. It can be either a periodic

arrangement of atoms or an isolated molecule. In the framework of quantum mechanics1 , the physical

state of the system is completely described by a wavefunction |Ψ〉. Wavefunctions are normalized in such
a way that, in the position representation,

〈Ψ|Ψ〉 ≡
∫

d3rΨ∗(~r)Ψ(~r) = 1, (2.1)

where the asterisk denotes the complex conjugation sign and the integral is extended over all volume.

Any observable O can be associated with an operator, whose expectation value on |Ψ〉 corresponds
1For a clear exposition of the foundations of quantum mechanics, we suggest the book of Sakurai [102].
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to its measure:

〈O〉 = 〈Ψ|O|Ψ〉 =
∫

d3r d3r′Ψ∗(~r)O(~r, ~r′)Ψ(~r ′). (2.2)

Obtaining the exact wavefunction means to have the complete physical knowledge of the polyatomic sy-

stem, as it allows to calculate the expectation values of all observables. In stationary systems, whose

status does not change over time, |Ψ〉 is the solution of the time independent Schroedinger equation

H |Ψ〉 = E |Ψ〉 , (2.3)

in whichH is the Hamiltonian operator of the system, which is unitary (H†H = 1), |Ψ〉 is an eigenstate

ofH , the eigenvalue being the total energy of the system. Of particular interest is the lowest-energy state,

called ground-state. It can be shown that the Schroedinger equation obeys a variational principle, in the

sense that the ground-state solution is the one that minimizes the total electronic energy, which is the

expectation value ofH over |Ψ〉. Any other possible solution of the Schroedinger equation represents an

excited state, possessing a higher energy.

Let us consider n electrons and K atoms with massesMI and atomic numbers ZI . The Hamilto-

nian2, neglecting any relativistic effect, is:

=
K∑
I=1

P 2
I

2MI
+

n∑
i=1

p2i
2

+
n∑

i=1

VN (ri) + VNN + Vee (2.4)

VNN =
1

2

K∑
I=1

K∑
J 6=I

ZIZJe
2

|~RI − ~RJ |
(2.5)

VN (r) =

K∑
I=1

−ZIe
2

|~RI − ~r|
(2.6)

Vee =
1

2

n∑
i=1

n∑
j 6=i

e2

|~ri − ~rj |
, (2.7)

where VNN , VN(r) and Vee are the operators describing nucleus-nucleus, nucleus-electron and electron-

electron interactions, respectively.

Analytic solutions of the Schroedinger equation with the Hamiltonian 2.4 are available only in the

simplest situations (Hydrogen atom) meaning that, to solve more complex systems, approximations are

required. Starting from almost one century ago, a series of methods have been developed with increasing

accuracy, leading to the advanced techniques used nowadays.

2Throughout this chapter, atomic units are employed, so thatme = 1, e = 1 and 1
4πε0

= 1. However, the symbol e is

retained for clarity.
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2.1.2 The Hartree-Fock approximation

The method of Hartree-Fock [103] (HF) is one of the earliest attempts to solve 2.4. Although it is nowa-

days almost never used by itself, it constitutes the starting point of more accurate methods, sometimes

referred to as ’post-HF’. First of all, it is assumed that the electronic degrees of freedom are decoupled

from those of ions (Born-Oppenheimer approximation [104]), so that the electronic part can be solved

separately from the nuclear one, resulting in a factorized wavefunction: |Ψ〉 = |ΨN〉 |Ψe〉. Ions could
be considered constrained to their equilibrium position with zero velocity, so that their kinetic energy term

can be neglected and VNN treated as a constant and added a posteriori. The electronic Hamiltonian then

becomes:

H =

n∑
i=1

h(ri) +

n∑
i=1

n∑
j=i+1

e2

rij
(2.8)

h(r) =
p2

2
+ VN (r). (2.9)

In 2.8, the 1-body part h(r) has been separated from the 2-body electrostatic potential. Any eigenstate

|Ψ〉 of 2.8 is a complex function of the positions and spins σi of all n electrons.

|Ψ〉 = |Ψ(~r1σ1, · · · , ~rnσn)〉GS (2.10)

A direct calculation of |Ψ〉 in this form is not feasible, as it depends in some complicated way on all the

coordinates of all electrons. The main idea of HF theory is to approximate the many-electron wavefunction

|Ψ〉 as a Slater [105] determinant of one-electron wavefunctions, called spin-orbitals, that is a product of
a spatial |φi(~ri)〉 and a spin |χi〉 part, |ψi(~x)〉 ≡ |φi(~ri)〉 |χi〉:

|Ψ〉 ≈ Det


ψ1(~x1) · · · ψ1(~xn)

...
. . .

...

ψn(~x1) · · · ψn(~xn)

 (2.11)

The |φi(~ri)〉 are usually chosen to be orthonormal:

〈φi(~ri)|φj(~rj)〉 = δσiσjδij . (2.12)

The use of a Slater determinant takes into account the fact that electrons are fermions, because it is

antisymmetric upon the coordinate exchange of two electrons. This means that the exchange correlation

is correctly reproduced. However, any other correlation is completely ignored.
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2.1.2.1 The Fock equations

Let us consider an eigenstate |Ψ〉0 of 2.8 with energy E0. Given a fixed spin configuration, we want to

obtain the spin-orbitals that minimize E0:

E0 =
∑
i

〈ψi|h|ψi〉+
1

2

∑
i,j

[
< ψi(i)ψj(j)|

e2

rij
|ψi(i)ψj(j) > − < ψi(i)ψj(j)|

e2

rij
|ψj(i)ψi(j) >

]
,

(2.13)

where it is understood that ψ(i) ≡ ψ(~xi). It can be shown that E0 is minimal when, for each of the

spin-orbitals |ψi〉, the Fock equations are satisfied:[
p2

2
+ VN (r) + vCoul(r) + vexch(r)

]
|ψi〉 = εi |ψi〉 , (2.14)

where

vCoul =

(occ.)∑
j

〈ψi(~rσ)|
∫

d(~r′σ′)ψj(~r′σ
′)

e2

|~r − ~r′|
ψj(~r′σ

′) (2.15)

vExch =

(occ.)∑
j

〈ψj(~rσ)|
∫

d(~r′σ′)ψj(~r′σ
′)

e2

|~r − ~r′|
ψi(~r′σ

′) (2.16)

are the Coulomb and exchange potential, respectively, and the sums run over all the occupied spin-orbitals.

Equations 2.15 and 2.16 represent the ’classical’ Coulomb interaction and an exchange operator. Equati-

ons 2.14 can be solved for each |ψi〉, and the full system’s wavefunction |Ψ〉 can thus be reconstructed.

Since the |ψi〉 appear in the definition of vCoul and vExch, the solution has to be found in a self-consistent

way. The commonly implemented technique in computational codes consists in an iterative procedure,

where a first guess for the |ψi〉 is used to calculate the potentials to be employed for getting new |ψi〉

with which restart the iteration, until the total energy does not change anymore, up to some convergence

threshold.

The HF method allows to change a many-body problem into a set of n intertwined 1-body equations,

much simpler to treat. The Coulomb and exchange operators are mean-field terms: instead of the exact

interaction Vee ( eqn. 2.7), the electron i interacts with the others through their spatially averaged charge

density. The fermionic correlation, that is the repulsion between parallel spin electrons, is fully taken into

account by the exchange term, which is often referred to as exact exchange. However, the HF method

completely lacks all the dynamic correlation effects due to the electrons trying to minimize their Coulomb

repulsion energy. Since correlations are at the basis of Van der Waals forces, those are absent in HF

theory, thus representing an important limitation of this method. It is customary to define the correlation

energy Ec as the difference between the solution from the non-relativistic Schroedinger equation and the

Hartree-Fock energy:

Ec = EHF − Eexact. (2.17)
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As the original Hamiltonian 2.8 is left unchanged, the variational principle still holds, meaning that the

EHF is always greater than Eexact and that Ec is always negative.

2.1.2.2 The Hartree-Fock-Roothan method and basis sets

The Fock equations are rather complex integro-differential equations, and even with the approximations

made, a direct solution for them is difficult without any guess over the form of the |ψi〉. To circumvent this

problem, the Hartree-Fock-Roothan [106] approach is used, in which every spin-orbital is expanded in a

finite set of localized functions, referred to as a basis set. In doing so, HF equations could be solved with

numerical methods. However, the solution accuracy will now depend on the finite basis set size. Series

of basis sets with increasing number of functions may still be used to extrapolate to the complete basis

set limit.

A wide variety of basis set exists. A natural choice is represented by Slater-type orbitals (STO), that is

hydrogen atom like solutions. The notation STO-xG indicates that STO basis functions are used, each one

further approximated by x gaussian functions, which allow for an efficient implementation in computational

codes because they have analytical derivatives. A very popular basis set is the one by Pople [107],

which employs gaussian type orbitals (GTO) to expand spin-orbitals. In the commonly used split-valence

approach, core atomic orbitals are approximated with only one basis function. The notation 6-311G

means that there is one basis function for core orbitals, composed by 6 gaussian functions, and 3 basis

functions for valence orbitals, composed by 3, 1 and 1 Gaussian functions respectively. In many cases

polarizable [108] and/or diffuse [109] functions may be added to the basis set, in order to correctly treat

the polarization of orbital and regions with low electron density. The notation 6-311++G(d,p) indicates that

polarization functions (d-type orbitals for p and p-type orbitals for s) and doubly diffuse functions (++) were

added to the original basis set.

Other basis sets of interest are the correlation consistent ones, by Dunning and collaborators [110].

Those sets are indicated by the notation cc-PVxZ, which means correlation consistent basis set with po-

larizable functions, with valence-only orbitals represented by x basis functions. The augmented version

with diffuse functions is commonly used: aug-cc-pVxZ. The peculiarity of Dunning’s basis sets is that they

are designed to converge smoothly to the complete basis set (CBS) limit as x is increasing, hence are

very useful for CBS extrapolation techniques, which represent the ’gold standard’ in QM calculations. The

’calendar’ jun- and jul- cc basis sets are simplified versions of the aug-cc-pVxZ, with a smaller number of

augmented functions.

The Hartree-Fock-Roothan method is used by all orbital-based QM codes. Within this work, all non
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periodic density funcional theory calculations were performed with Pople’s basis sets, while Dunning’s ones

were used for Moller-Plesset, coupled cluster and symmetry-adapted perturbation theory calculations.

2.1.3 Perturbative approaches

2.1.3.1 Moller-Plesset perturbation theory

The HF method lacks a treatment of electron correlations. A way to include them is by using Rayleigh’s

perturbation theory as firstly stated by Moller and Plesset [111] in 1934. The main idea of the MP approach

is to consider the Fock Hamiltonian as that of the unperturbed system, and the difference between the

HF electrostatic potential and the exact one as a perturbative term:

H = H0 +H ′ (2.18)

H0 = HFock (2.19)

H ′ =
∑
i

[
Vee −

occ∑
i=1

(Ji −Ki)

]
, (2.20)

where, in the last row, Ji and Ki are the direct and exchange Coulomb operators, already defined by

equations 2.15 and 2.16. The zero order energy E0 is equal to the sum of all spin-orbital eigenvalues by

construction. The first order energy E1 correction is:

E1 =
〈
ψ|H ′|ψ

〉
=

1

2

∑
i,j

[
< ψi(i)ψj(j)|

e2

rij
|ψi(i)ψj(j) > − < ψi(i)ψj(j)|

e2

rij
|ψj(i)ψi(j) >

]
,

(2.21)

therefore EMP1 = E0 + E1 = EHF is equal to the Hartree-Fock energy. This means that the Hartree-

Fock theory is correct up to the first order of MP perturbation theory(MPPT), a result also known as the

Moller-Plesset theorem. The next term is the second-order energy term:

E2 =
1

4

occ.∑
i,j

virt.∑
a,b

< ψiψj |H ′|ψaψb > [< ψaψb|H ′|ψiψj > − < ψaψb|H ′|ψjψi >]

εi + εj − εa − εb
, (2.22)

where the εi are the eigenstates of the relative spin-orbitals, and the indexes a, b runs over unoccupied,

also termed virtual, spin-orbitals. Due to the Brillouin theorem, singly excited states have null matrix

elements, hence the only contributing matrix elements are the doubly excited ones. The MPPT truncated

at the second order is called MP2. Further terms of the perturbative series could be included, however

the MPPT series is not guaranteed to converge. Moreover, as the original Hamiltonian is changed, the

variational principle is not valid anymore, meaning that the MP2 energy can be lower than Eexact.

Overall, the MP2 method is capable to capture most of the electron correlation effects, and may be

seen as a reasonable choice for quantum mechanical calculations. In fact, truncating the perturbative se-

ries at 2-order is actually overestimating the correlation effects. In practice ,the calculation of E2 involves
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the explicit computation of 2-electron overlap functions, which makes this technique computationally ex-

pensive as the number of integral to be calculated scales asN4,N being the number of electrons [112].

Within this work, molecules with 66 electrons represented the largest problem treatable with MP2, using

a medium-sized basis set.

2.1.3.2 Symmetry-adapted perturbation theory

The system under investigation may be constituted by a complex of two non-covalently bound molecules

A and B. To assess whether the bound state is energetically favoured, its interaction energy Eint is of

interest:

Eint = EAB − EA − EB, (2.23)

where EAB is the electronic energy of the complex, while EA and EB are the energies of the isolated

molecules. LetHAB be the Hamiltonian of the full system andHA,HB the Hamiltonians of the separated

molecules. The unperturbed Hamiltonian and the perturbation H ′ are then defined as:

H0 = HA +HB (2.24)

H ′ = HAB −H0. (2.25)

H ′ contains all the intermolecular interaction terms. Concerning the wavefunction, the Slater determinant

ΨAB obtained from the HF HamiltonianHHF
AB is not an eigenstate forH0. If the unperturbedH0 is to be

kept, Ψ needs to be symmetry adapted, and the perturbative expansion modified accordingly. Symmetry-

adapted perturbation theory (SAPT) [113] does exactly this, and may be seen as a double perturbation

theory: the intermolecular interaction is expanded according to the London multipole expansion, while the

intramolecular terms expanded as shown in MPPT. The higher order energies are:

ESAPT =

ijk∑
Eijk

pol + Eijk
exch, (2.26)

where the index i denotes the intermolecular perturbation order and indexes j, k the intramolecular one.

It can be shown that the 0th order SAPT energy is equal to the electrostatic interaction between the

charge distributions of the two molecules. The first order energy, which unlike MPPT is nonzero, entails

the effect of the variation of charge density of molecule A due to the charge distribution of charge B,

that is induction charges. The second order energy represent the dispersion energy term, as it couples

the density fluctuations of both molecules. Considering also the exchange terms, SAPT naturally provides

an energy decomposition in which each term has a clear physical interpretation, making it a very useful

method in providing quantitative information on the intermolecular interaction types.
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According to the perturbative terms considered, different levels of SAPT are available. SAPT0 considers

the polarization expansion up to the second order but does not consider intramolecular correlation effects.

SAPT2 and SAPT2+ take into account those as well. It was shown [114] that, due to error cancellations, the

relatively inexpensive SAPT0 used with the jun-cc-PVDZ basis set could provide qualitative results for large

systems. For smaller systems, SAPT2+/aug-cc-PVDZ provides more accurate results, and was chosen as

the standard SAPT method within this work, when possible.

2.1.4 Coupled cluster method

A wavefunction |Ψ〉, solution of a N-electron problem is approximated by a single Slater determinant

(see equation 2.11) |Φ〉, but can be expressed exactly as a linear combination of an infinite series of

Slater determinants, including every possible excited state. In the coupled cluster (CC) method [115], this

combination is expressed by means of an exponential formula:

|Ψ〉 = eT |Φ〉 , (2.27)

where T, the cluster operator, is defined as

T =
∑
i

Ti (2.28)

and generates i-particle excitations from the ground state Slater determinant. In second quantization

formalism, the Ti are characterized by coefficients ti, which, if obtained, permit to calculate |Ψ〉. In

coupled cluster singlet-doublet-perturbative triplet ( CCSD(T) ) method, only T1 (singlet excitations) and

T2 (doublet excitations) are explicitly treated, while T3 (triplet excitations) are included perturbatively. The

CC methods are particularly expensive and can be applied only to small molecular systems.

The CCSD(T) method can be used in conjunction with MP2 and Dunning’s basis sets, in a way that a

complete basis set (CBS) extrapolation scheme can be defined, providing the CCSD(T)-CBS method [116].

This represents one of the highest accuracy methods available, representing one of the ’gold standards’

in quantum chemistry computations. Due to its huge computational cost, it was here used to generate

interaction energies of small molecular isocyanate dimers, up to 14 heavy atoms in total, to serve as a

reference in testing the performances of lower accuracy methods.

2.1.5 Density functional theory

One of the greatest advances, if not a revolution, in the field quantum mechanical calculations is represen-

ted by density functional theory (DFT), originally devised by Hohenberg, Kohn and Sham. Not only DFT
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provides a computational convenient and accurate way to solve electronic structure problems, but also

indicates how it can be improved. The cornerstone of DFT was the demonstration that any observable,

in particular the total energy, can be expressed as a functional of the density, which is the content of the

Hohenberg-Kohn theorem.

2.1.5.1 The Hohenberg-Kohn theorem

Let us consider the N-electron Hamiltonian 2.8, whose non-degenerate ground state wavefunction is

|ΨGS〉 and rewrite it separating the electron interaction and the nuclear external potential term:

H = Hint + Vext (2.29)

Hint =
∑
i

p2i
2

+
1

2

∑
i 6=j

e2

rij
(2.30)

Vext = Vext(r) = −
∑
I

ZIe
2

|~RI − ~r|
. (2.31)

It is also useful to recall the definition of the ground-state density:

n(~r) =< ΨGS(~r1, · · · , ~rN )|
∑
i

δ3(~r − ~ri)|ΨGS(~r1, · · · , ~rN ) > (2.32)

It can be noted that, for any fixed number N of electrons, all N-electron Hamiltonians are equivalent up

an to the external potential Vext(r), which is the only variable of the system. The Hohenberg-Kohn [117]

theorem states that there is an one-to-one correspondence between the ground state density of an N-

electron Hamiltonian and the external potential acting on it.

Let’s first prove that given any Vext(r) the corresponding density is unique. This is trivial, because

|ΨGS〉 can be obtained by solving the Schroedinger equation, and it is non-degenerate by assumption.

Therefore n(~r) can be obtained from 2.32.

To prove the other sense of the correspondence, let us suppose per absurd that there are two external

potentials, Vext(r) and Ṽext(r) that correspond to the same density n(~r). Let H, |ΨGS〉 , EGS and

H̃,
∣∣∣Ψ̃GS

〉
, ˜EGS be the Hamiltonians, ground state wavefunctions and energies associated with the

different potentials. Because |Ψ̃ > is not an eigenstate for H , then

EGS ≤< Ψ̃GS |H|Ψ̃GS >= (2.33)

< Ψ̃GS |Hint + Ṽext + Vext − Ṽext|Ψ̃GS >= (2.34)

ẼGS +

∫
d3rn(~r)

(
Vext(r)− Ṽext(r)

)
. (2.35)

The same reasoning can be applied for ẼGS , and eventually two inequalities are obtained:

EGS − ẼGS <

∫
d3rn(~r)

(
Vext(r)− Ṽext(r)

)
(2.36)

EGS − ẼGS >

∫
d3rn(~r)

(
Vext(r)− Ṽext(r)

)
(2.37)
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For those to be simultaneously true, the right term must be zero, which is absurd because Vext(r) 6=

Ṽext(r) by hypothesis. So it must be Vext(r) = Ṽext(r), proving the theorem.

To understand this result, it should be noted that the GS wavefunction is a functional of the external

potential, |ΨGS〉 = |ΨGS〉 [Vext] and so are the GS expectation values of the kinetic energy T = T [Vext],

the electron-electron interaction Vee = Vee[Vext] and the GS energy E[Vext]. All these quantities, due to

the HK theorem, may be recast unambiguously as functional of the GS density, and used to construct the

Hohemberg-Kohn energy functional:

E(HK)[n;Vext] =< ΨGS [n]|T + Vee + Vext|ΨGS [n] >, (2.38)

or, equivalently,

E(HK)[n;Vext] = T [n] + Vee[n] +

∫
d3rVext(r)n(~r), (2.39)

where Vext is fixed and |ΨGS〉 [n] is the GS wavefunction with density n. It is evident that the HK energy

functional will be minimal and equal to the exact energy of the N-electron system when n is equal to the

exact ground state electron density. Most interestingly, the functional

F [n] = T [n] + Vee[n] (2.40)

does not contain any dependence upon Vext, hence it is universal, meaning that, if F [n] is known, it

would be possible to solve every electronic problem. Of course, F [n] is not known, and most of the DFT

research is devoted in finding the best approximations for it.

2.1.5.2 Kohn-Sham equations

The Kohn-Sham [118] assumption states that given a system of n-interacting electrons, it is always possible

to find a system of n non-interacting electrons with the same ground state density. The assumption is

correct for standard problems, thereby the GS wavefunction can be expressed, neglecting the spin degrees

of freedom, as a linear combination of atomic orbitals (LCAO):

|Ψ〉GS = A{φ1(~r1) · · · φn(~rn)}, (2.41)

and the density becomes

n(r) =

(occ.)∑
i

φ∗i (~r)φi(~r), (2.42)

where the orthogonality of atomic orbitals is assumed.

Although we do not know the exact functional form of F [n], still we can elaborate the HK energy

functional, taking advantage of the Kohn-Sham assumption. The non-interacting kinetic energy term and
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Hartree potential may be defined as

T0[n] =
∑
i

< φi(~ri)|
p2

2
|φi(~ri) > . (2.43)

VH [n] =
1

2

∑
i 6=j

< φi(~ri)φj(~rj)|
e2

rij
|φi(~ri)φj(~rj) >=

1

2

∫
d3r d3r′n(~r)n(~r ′)

e2

|~r − ~r ′|
. (2.44)

Using these definitions in the HK functional we obtain

E(HK) = T0[n] + VH [n] +

∫
d3rVext(r)n(~r) + Exc[n] (2.45)

where the exchange-correlation functional Exc[n], defined as

Exc[n] = T [n] + Vee[n]− T0[n]− VH [n] (2.46)

contains now all the unknown quantities of our systems, expressed as the difference between the exact

and non-interacting kinetic and potential energy terms. By carrying out a variational calculation, we obtain

the final form of the KS equations:[
p2

2
+ Vext(r) + VH(r) + Vxc(r)

]
|φi〉 = εi |φi〉 . (2.47)

In principle, once that one has the exact form of Vxc at hand, these could be solved self-consistently and

the GS wavefunction thus be obtained, just like as for the HF equations. However, while the HF equations

are approximate, and so is the HF GS wavefunction, KS equations are exact, and so is their solution.

Actually, the knowledge of Vxc would let to solve exactly all N-electron problems, due to the universality of

the HK functional.

2.1.5.3 Local density and generalized gradient approximations, hybrid functionals

The ignorance of F [n] directly translates into the impossibility to find an exact form of the exchange-

correlation potential Vxc appearing in KS equations. However, several approximation can be made in

order to provide a Vxc and obtain a solution of the KS equations. One of the first and successful attempts

in this regard is represented by the local density approximation (LDA), in which the kinetic and exchange-

correlation energy are assumed to match those for an homogeneous electron gas (HEG), a system of free

electrons subject to an uniform positive potential to ensure neutrality. In LDA, the kinetic energy functional

is expressed as:

TLDA[n] =
3

10
(3π2)2/3

∫
d3rn5/3(~r), (2.48)

while the exchange energy functional is provided by:

ELDA
X [n] = −

(
3

4

)(
3

π

)1/3 ∫
d3rn4/3(~r). (2.49)
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The correlation part can’t be obtained analytically, but can be calculated with high accuracy, by using

quantum Montecarlo methods, as done for instance by Ceperley and Alder [119]. All quantities appearing

in LDA are local functions of the electron density and such assumption generally holds for system in which

the electron density has a weak spatial dependency, such as in metals.

The model can be further improved by means of the generalized gradient approximation(GGA). In

GGA,EXC is a function of the density alone and of the density gradient∇n, making the GGA a semi-local

theory. In detail,

EGGA
XC [n] =

∫
d3rεHEG

X (~r)FXC(rs, ζ, s), (2.50)

where the uniform exchange energy density εHEG from LDA is multiplied by an enhancement factor FXC

that depends on the atom size expressed by the Wigner-Seitz radius rs), on the spin polarization ζ and on

the reduced density gradient s,

s =
∇n(~r)
2kfn(~r)

, (2.51)

where kf is the Fermi momentum. The form of FXC pertains to specific GGA formulations, such as those

by Perdew and Wang [120], or the widely used by Perdew, Burke and Ernzerhof [121].

2.1.5.4 Hybrid functionals

Finally, DFT has found to be particularly effective when used in conjunction with hybrid functionals, in

which the XC part is obtained by blending LDA, GGA and exact HF exchange functionals. Mixing these

contributions helps to reciprocally compensate the error sources, hence providing better accuracy. Amidst

the most used ones, there is B3LYP, obtained by using the B88 [122] exchange and the LYP [123]

correlation functionals for the GGA part, and employing three parameters to mix them with exact and the

VWN [124] formulation of LDA XC functionals:

EB3LY P
XC = ELDA

x +a0(E
HF
X −ELDA

X )+aX(EGGA
X −ELDA

X )+ELDA
C −aC(EGGA

C −ELDA
C ), (2.52)

with a0 = 0.20, aX = 0.72 and aC = 0.81. The mixing strategy allows for a compensation of error

sources intrinsic to each method, hence providing a higher accuracy. While fast implementation exists in

orbital-based codes, hybrid calculation are extremely expensive in plane-wave based codes, as explained

in later sections.

2.1.5.5 Dispersion corrections

In DFT 2-electron correlations are not properly taken into account, such as in Moller-Plesset perturbation

theory. This results in a significant underestimation of total energies for non-covalently bound dimers,
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and in general for all those systems in which dispersion forces are expected to play a significant role.

To correct this, it is possible to add to the Hamiltonian a set of interatomic potentials, in the form of

Lennard-Jones parameters, that provide the missing dispersion empirically. This is the approach followed

by the group of S. Grimme [125], that developed empirical dispersion terms for a wide set of functionals,

including PBE and B3LYP. The inclusion of dispersion corrections provides a great increase of the accuracy

of DFT calculations, and represents a fundamental ingredient that cannot be neglected. In this work, all

DFT calculations were performed adopting the Grimme’s D3 dispersion scheme, with Becke-Johnson

damping [126]. In particular, for a system of N atoms, it is assumed that the DFT-D3 energy is the sum

of a DFT electronic energy and a dispersion energy EDisp made of 2-body and 3-body terms:

EDFT−D3 = EDFT + Edisp (2.53)

Edisp = E(2−body) + E(3−body) (2.54)

E(2−body) =
∑
AB

∑
n=6,8,10...

sn
CAB

n

rnAB

fd,n(rAB) (2.55)

E(3−body) =
∑
ABC

CABC
9 (3 cos θa cos θb cos θc + 1)

(rABrBCrCA)3
, (2.56)

where in the many-body terms the sums run over all possible pairs AB and all possible triplets ABC. In

E(2−body), the sn are scaling factors which values are defined in the [0, 1] interval, and the fd,n are

additional damping functions. The Cn are the actual dispersion parameters, which are obtained from ab

initio calculations. In the 3-body term, the CABC
9 are approximated by a geometric mean:

CABC
9 ≈ −

√
CAB
6 CBC

6 CCA
6 . (2.57)

2.1.5.6 Basis set superposition error

When calculating the interaction energy of a dimer using non-orthogonal localized basis sets, there is a

computational artefact called basis set superposition error (BSSE), which is caused by the fact that, when

the two molecules are close, the electron of molecule A can ’see’ the basis set functions of molecule B, and

may spread into some of those in the energy minimization process. This will cause interaction energies

to be slightly overestimated. To correct this, a counterpoise (Cp) calculation needs to be performed, in

which each of the monomer energy calculation is performed in the so-called extended basis set, that

contains also all the orbitals from the other monomer’s atoms (called in this case ghost atoms), but with

no electrons. Comparing with the monomer-only basis set energy, the correction is obtained. All dimer

calculations presented in this work made use of the BSSE correction, which needs to be taken into account

also for MPPT and CCSD.
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2.1.5.7 Non Covalent Interaction analysis

Non covalent interaction index (NCI) [127, 128] analysis is a technique which allows to identify the regions

of a molecule subject to weak noncovalent interactions from the electron density, and to classify them.

In particular, it relies on the reduced density gradient s, defined in equation 2.51, and identifies the

non-covalent interaction by the presence in s(n) of regions in which both the density n and its second

eigenvalue λ2 are small. s(n) isosurfaces can be plotted and coloured according to sgn(λ2)ρ, allowing

the visualization of non-covalent interaction sites. Although NCI is a less quantitative method compared to

an SAPT analysis, it provides valuable insight on the contact regions between molecules. The NCI analyses

were performed using the multiWFN package [129].

2.2 Periodic systems

A crystal is a collection of atoms arranged in a regular structure, called a lattice. The presence of transla-

tional invariance in crystals has very important consequences in terms of their electronic structure, with

the appearance of delocalized electrons, which cannot be assigned to any particular nucleus. Because

of this, periodic systems are in general difficult to treat with an orbital-based approach, and a plane wave

decomposition represents a more natural choice, as it entails naturally the concept of periodicity.

2.2.1 Periodic systems and primitive cell

Let us consider distribution of points in space. If there exists a set of them from which all the others can be

obtained by means of translations, those have spatial periodicity and form a Bravais lattice. If the points

represent atoms, the Bravais lattice describes a crystal. Any translation vector ~t is defined as

~t = n1
~t1 + n2

~t2 + n3
~t3; n1, n2, n3 ∈ Z, (2.58)

where the linearly independent ~ti are termed basis vectors, and identify the primitive cell, whose volume

is

Ω = ~t1 ·
(
~t2 ∧ ~t3

)
(2.59)

The equilibrium position of the atoms within the primitive cell are defined by the vectors ~di, expressed in

the basis of the {~ti}. In the most basic structure, a monoatomic simple cubic lattice, there is only one

atom at the origin of the primitive cell, whose basis vectors are orthogonal and have the same length a.

The reciprocal space is the space spanned by the reciprocal vectors ~gi, defined such that

~gi · ~tj = 2πδij (2.60)

22



Chapter 2 Section 2.2

An useful construct is the Wigner-Seitz cell (see figure 1), defined as the set of points that are closer

to a lattice point than all the others. The equivalent construct in the reciprocal space is called Brillouin

zone (BZ). Within the BZ there are some important high-symmetry points, in which interesting phenomena

occur. The origin of reciprocal space is the Γ-point, which corresponds to constant terms in the Fourier

plane wave expansion of fields (like the potential or wave functions), i.e. non-periodic contributions. Other

high-symmetry points may be found at the vertexes and mid-points of the BZ edges; their number and

position depend on the shape of the BZ and, more in general, on the crystal symmetry group.

Figure 1: On the left, representation of a bidimensional crystal with an hexagonal unit cell (in black). On the right,

the corresponding Wigner-Seitz cell (in red).

2.2.2 Wavefunction in crystals and the Bloch theorem

Consider an electron within a crystal with lattice constants ~a. It is described by the Hamiltonian

H =
p2

2
+ V (r), (2.61)

where V (r) is the electrostatic potential generated by the nuclei and clearly has the same periodicity of

the crystal: V (r + tn) = V (r), where tn = ~n · ~a, ~n being a vector of integers. Because of this, V (r)

accepts a Fourier plane wave expansion:

V (r) =
+∞∑

m=−∞

Vme
i 2π~m

a
~r. (2.62)

The Bloch [130] theorem states that the wavefunction of an electron |ψ〉 subject to a periodic potential

may be written as the product of a plane wave and a delocalized function with the same periodicity of the

crystal:

|ψ〉~k (~r) = ei
~k~ru(~k, ~r) (2.63)

u(~k, ~r) =
+∞∑

n=−∞

an(~k)e
i 2π~m

a
~r (2.64)
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In view of an non-interacting approximation, the Bloch theorem suggests that a plane wave decomposition,

rather than one based upon localized spin-orbitals, is a much more natural choice for periodic systems.

It is easily proved that V (r) only mixes plane waves which wavevectors ~k differ by any reciprocal

vector:

ei
~k ′~rV (r)ei

~k~r = Vmδ
3

(
~k ′ − ~k − 2π~m

a

)
. (2.65)

Hence, all independent values of k lie in the first BZ. Fixing a value for k and solving the Schroedinger

equation will provide an infinite set of solutions {φn}, in the form of 2.64, with energies E(k)n sorted

according to some quantum number n. Repeating this procedure for all the possible values of k in the

first BZ would result in the emergence of allowed and prohibited regions of energy, called bands, which

may be seen as a generalization of the isolated systems energy levels. Finally, in the limit of an infinite

system, the minimum spacing in the reciprocal space tends to 0, k becomes a continuous variable, and

E → E(k). When calculations are performed on periodic systems, observables are expected to be

functions of k. Since the number of allowed wavevectors in the BZ is large (and asymptotically infinite), a

restricted set of k-points is chosen and the Schroedinger equation (independently) solved for each one of

them. Observables are then calculated as averages over the selected Nk k-points:

〈O〉 = 1

Nk

Nk∑
i=1

O(ki) (2.66)

Any periodic DFT calculation needs to be checked for convergence with respect to the number of

k-points. In this thesis, a total energy convergence threshold of 1 meV was considered as the acceptance

criterion for a k-point grid. When dealing with a supercell, that is a system that is the product of primitive

cells, the Brillouin zone is greatly reduced and a smaller number of k-points might be used, because the

accuracy actually depends on the k-point density.

2.2.3 DFT methods for periodic systems

In a crystal, as done for isolated systems, an independent-electron approximation may be introduced and

a set of Kohn-Sham equations derived and solved to obtain the ground-state density. In general, the

electronic orbitals may be separated into strongly bound and well-localized ones, representing the core

electrons and a weakly bound and diffuse ones, corresponding to valence electrons. In view of this, the

space can be separated into core regions, modelled as spheres or Wigner-Seitz cells around the atoms,

and a valence region that encompasses the remainder.

The Bloch theorem ensures that all wavefunctions have the same periodicity of the lattice, hence a

plane wave expansion is a very natural choice, and indeed very appealing, because plane waves are simple
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to treat from a computational point of view. However, as shown by Herring [131], the strong localization of

core orbitals would require a very large number of plane waves for an accurate representation, hindering

any expansion in this sense.

To solve this issue, a range of methods has been developed to take advantage of the core-valence

separation, replacing the core region strong potentials with effective pseudopotentials, in which the strong

and localized contributions are smoothed.

2.2.3.1 Orthogonalized plane wave method

Although it is not a commonly used method in modern DFT codes, the orthogonalized plane wave method

represents a simple way to understand the origin of pseudopotentials. Consider an HamiltonianH of the

form

H =
p2

2
+ V (r), (2.67)

with a set of orthonormal solutions {φi} , the first q of which are known. It is generally possible to separate

the loosely bound and extended valence eigenstate |φv > from the tightly bound and well-localized core

eigenstates |φc
i〉. Suppose then that the first q known eigenstates correspond to the core states, and

solutions for the valence eigenstates are to be determined.

At the basis of the OPW method [131] there is the possibility to restate the valence eigenfunctions as

a sum of a smooth wavefunction and a strongly localized part, orthogonal to the former by construction:

|φv >= |φ̃v > −
∑
i

< φ̃v|φc
i > |φc

i >, (2.68)

where the part under the sum sign is a projection over the core eigenstates. By replacing 2.68 into the

Schroedinger equation for a valence eigenstate with the Hamiltonian given in 2.67, it is possible to obtain

an eigenvalue equation for the smooth wavefunctions [132, 133]:

H̃
∣∣∣φ̃v

i

〉
=

(
p2

2
+ V PKA(r)

) ∣∣∣φ̃v
i

〉
= εvi

∣∣∣φ̃v
i

〉
(2.69)

where

V PKA = V + V Rep (2.70)

V Rep
∣∣∣φ̃v

i

〉
=
∑
j

(
εvi − εcj

) 〈
φc
j|φ̃v

i

〉 ∣∣φc
j

〉
. (2.71)

V Rep is a repulsive potential, as
(
εvi − εcj

)
is always positive and it is non-local. It may be regarded as

effect of the core electrons, effectively screening the nuclear charge. By consequence, the total potential

V (r) + V Rep(r) felt by a valence electron is weaker than V (r) alone.
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2.2.3.2 Pseudopotentials

The whole potential 2.70 may be replaced by a smooth function that reproduces its same scattering

properties with respect to the valence states. The space can be separated into a ’core’ region, within

some radius rC and an ’outer’ region. Within rC , the pseudopotential may be assumed to be spherically

symmetric and diagonal with respect to the angular momentum. In this case, partial waves provide an

orthonormal set, and different l contributions are treated independently. In the outer region, the potential

is simply Qion/r, Qion being the ion charge. Being this contribution weak, the wavefunction of valence

states is naturally smooth here, and can be easily expanded in plane waves.

Figure 2: Schematic representation of pseudopotentials and pseudowavefunctions(in red), compared with the

normal ones (in blue). Image from [134].

To be well-behaved, some conditions are requested to the pseudofunctions. Outside rc, the normal

and pseudowavefunctions must match. At rc, continuity and first derivate continuity of pseudowavefuncti-

ons must hold, as well as for their first energy derivatives. Finally, the charge enclosed within the cut-off

radius of standard and pseudowavefunctions should be the same. Imposition of the last condition provi-

des the so-called norm conserving pseudopotentials [135, 136]. Alternatively, it can be relaxed in order

to obtain PPs as smooth as possible, that is ultrasoft pseudopotentials [137] . The starting point of these

methods is a solution of the KS equations for an isolated atom, under the frozen core approximation, which

states that the core states are not affected by the presence of other surrounding atoms (as in a crystal).
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2.2.3.3 Projector augmented wave method

The projector augmented wave (PAW) method, developed by Blochl in 1994 [138], may be regarded as

a generalization of the previous methods, with the great advantage to provide a clear connection between

the expectation values calculated on the original and pseudo wavefunctions. The real space is separa-

ted between non-overlapping spherical regions ΩR around atoms, called augmentation spheres, and the

remainder. outside ΩR, the real and pseudo wavefunctions are coincident. Within the ΩR, the real wa-

vefunctions are solutions of the Schroedinger equations for the all-electron (AE) isolated atom, while the

PS are a smooth continuation of the outer ones. Both sets form a complete set for the valence states

within ΩR. This implies that a linear transformation exists, defined as

φi = T φ̃i (2.72)

where the {φi}, {φ̃i} are a basis of the real and PS valence functions respectively, e.g. a set of partial

waves:

Ψ̃ =
∑
i

ciφ̃i. (2.73)

Applying the linear transformation on 2.73 it is possible to show that the same coefficient ci are present

in the expansion for Ψ:

Ψ = T Ψ̃ = T
∑
i

ciφ̃i =
∑
i

ciφi (2.74)

The AE wavefunction can be then expressed as:

Ψ = Ψ̃ +
∑
i

ci

(
φ̃i − φi

)
, (2.75)

which has the form T = 1 + TR, where TR is nonzero only within ΩR. The coefficients ci are still

unknown, but can be expressed as the result of a projection of Ψ̃ over a set of projector functions p̃i,

ci =< p̃i|Ψ̃ >, (2.76)

which must obey the following completeness and orthogonality rules:∑
i

|p̃i >< φ̃i| = 1, (2.77)

< p̃i|φ̃j >= δij. (2.78)

With the use of projector function, the transformation operator may be expressed as:

T = 1 +
∑
i

(
φ̃i − φi

)
< p̃i|. (2.79)
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The transformation T connects the AE wavefunction to the PS ones, and it is defined in the whole space. As

a consequence, any operatorA defined on the space of the AE wavefunctions can be linearly transformed

into one that operates into the PS space, and its expectation value calculated using the PS wavefunctions:

Ã = T †AT (2.80)

= A+
∑
i,j

|p̃i >
(
< φi|A|φj > − < φ̃i|A|φ̃j >

)
. (2.81)

Expressions for the total energy and other quantities, as well as details on the protocol and implementation

of the PAW method can be found in [138]. In this theory, pseudopotentials still play a prominent role, as

they are required to build the PS wavefunctions in the augmentation sphere.

The PAW method was employed for all periodic calculations performed in this thesis. Like any other

plane-wave expansion based method, there is an intrinsic error due to the finiteness of the plane waves,

truncated to an energy cutoff of several hundreds of eV. This means the calculation results must be

checked for convergence with respect to the plane-wave cutoff. The same 1 meV tolerance for the total

energy as for the k-point sampling convergence was used. While values around 600 eV are adequate for

bulk systems, when vacuum is present as in calculations regarding two-dimensional materials the cutoff

needs to be increased, and a value of 1000 eV is required to achieve good convergence.

2.3 Ab initio calculations in practice

Here we illustrate the typical steps involved in ab initio calculations. For non periodic systems, the package

Gaussian 09 [139] was used to perform all calculations, except for SAPT ones, in which case the Psi4

code [140] was employed. For periodic systems calculations, the VASP code [141, 142], which imple-

ments the PAW method, was used.

2.3.1 Geometrical optimizations

A polyatomic system is provided as a list of atoms and positions, either built from scratch or downloaded

from some reference database, such as COD [143]. The initial step consists into the choice of the method

and its testing. In the case of orbital-based code, the basis set is expanded as much as possible, provided

the most complex molecule/dimer to describe can be treated within the chosen method. Likewise, for

plane-wave codes, convergence of the total energy over the number of k-points and plane wave energy

cutoff are conducted.
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The starting structure is generally unrelaxed, therefore the atoms’ positions need to be adjusted to

minimize internal forces. Different methods and/or basis sets (or energy cutoffs) will change interatomic

forces, resulting in different relaxed structures. Each ionic step requires a full electronic calculation, cau-

sing the relaxation to be the most demanding part of a quantum mechanical calculation. When advanced

methods are desired, this step may be omitted and the electronic calculation carried on with a structure

relaxed with a lower accuracy method. The relaxation is generally stopped when all atomic forces fall

below a certain threshold, typically 1 − 2 × 10−2 eV/Ang. After this , the relaxed structure is available

for further calculations, and important quantities such as the charge density are always obtained from

minimized structures.

From a general point of view, the optimization moves the system through its potential energy (hyper)

surface, until a stationary point is found. It should be noted that, without further analysis, there is no

guarantee that the final conformation is truly an energy minimum, and a normal mode analysis should be

performed to clarify this, as discussed in next section.

In view of classical force field parametrization, potential energy scans of selected degrees of freedom,

such as dihedral angles, are of particular interest. The coordinate of interest is varied by small steps and

frozen, while the rest of the molecule is allowed to relax, and a geometrical optimization for every variable

value is performed. As a result, an energy profile is obtained that can be fitted with the desired functions,

as will be discussed in section 2.4.2.

2.3.2 Normal modes and vibrational frequencies

In any molecular system, the knowledge of the Hessian matrix, defined as

Hij =
∂U

∂xi∂xj
, (2.82)

U being the total potential energy of the system, allows to classify the minimum energy points obtained

through a geometrical optimization and to calculate its normal modes and vibrational frequencies, which

are of interest because can be directly measured by several techniques.

To obtainHij , the most robust approach is to numerically calculate it by a central difference method,

where each atom of the system is displaced in all possible directions, with positive and negative displa-

cements, and the resulting forces are used to build the Hessian. When diagonalized, the eigenvectors

represents the normal modes of the systems, and eigenvalues their frequencies. In correspondence of

every stationary point all forces are null, and the nature of the critical point is established by the normal

mode frequencies. If it is a true minimum, any atom displacement produces a recalling forces, and all
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frequencies are real. Conversely, if the critical point is a saddle point, there will be modes with imaginary

frequencies, corresponding to relaxation modes.

2.3.3 Density of states and band structure calculations

In periodic systems, a very important quantity is the total density of states (DOS), defined as the number

of electronic states that can be found in a certain interval of electronic energy:

DOS ≡ dn(E)

dE
(2.83)

the DOS is calculated on relaxed structures by using the highest possible numbers of k-points, in order to

have the best accuracy.

To calculate energy bands, closed paths joining the high-symmetry points in the k-space are generally

employed. However, this k-point selection is not a good choice to represent of the whole k-space. For this

reason, the charge density from a previous calculation with a good k-space sampling scheme, e.g. the

one resulting from a DOS calculation, is used instead.

2.4 Molecular Dynamics simulations

Ab-initio quantum methods certainly are an extremely powerful tool to study the fundamental properties

of condensed matter systems. However, there are some intrinsic limitations restricting their application

fields, mostly due to their computational demands. With the resources typically available to the author,

systems with no more than 100 heavy atoms could be treated using DFT or perturbative approaches.

To treat larger systems, one can turn to Molecular Dynamics (MD), which is a model where the

constituents and their interactions are entirely described by classical physics. Despite the approximation

made within MD could look raw, nevertheless MD allows for simulations of millions of atoms, leading to the

prediction of thermodynamic quantities. One of the advantages of MD simulations is that the interaction

potentials and parameters can be chosen in a way to closely reproduce the quantum-mechanical forces

of the system under interest allowing, with the appropriate parametrization, to simulate a very large class

of systems, from molten metals to proteins. In the following, the basic ideas behind MD methods will be

presented, followed by the introduction of force fields for molecular modelling.
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2.4.1 Basic ideas of Molecular Dynamics

2.4.1.1 MD equations of motion and LJ potential

Let us consider a system of N point-like massive and neutral particles, called atoms or -more generally-

beads, interacting through a certain conservative pair potentialU , which depends solely on the interatomic

distance. The total Hamiltonian of the system is

H =
∑
i

p2i
2mi

+
1

2

∑
i 6=j

U(rij), (2.84)

Each bead i is subject to the interaction with all the others, resulting in the total potential

Vi =
∑
j 6=i

U(rj − ri) (2.85)

and the force ~fi = −∇Vi. The equation of motion for bead i is simply

mi~̈ri = ~fi. (2.86)

MD consists in solving the Newton’s equations of motion 2.86 for all beads, in order to provide the dynamic

evolution of the system.

The interaction potential U(rij) is a crucial element of the model. A common choice for interatomic

interactions is the Lennard-Jones (LJ) potential(see figure 3):

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (2.87)

The LJ potential has a long-range attractive tail and a short-range repulsion. The attractive part has

the r−6 power law, typical of London dispersion forces, while the repulsive core prevents the atoms to

overlap. In 2.87, σ is the zero-crossing point of the LJ potential and ε, which is located at r0 = 21/6σ.

For r → ∞, ULJ(r) → 0.

Depending on the system of interest, other suitable choices for U(r) can be made. However the LJ

potential, due to its relative simplicity and its physical connection with dispersion forces, represent the

standard choice for all-atom simulations of molecular liquids.

In many cases, such as in all-atom simulations, a certain electrostatic charge qi is assigned to each

atom. In this case, an electrostatic interaction term is added to the Hamiltonian 2.84:

VCoul =
1

2

∑
i 6=j

qiqj
rij

, (2.88)

Since in MD periodic boundary conditions are used to mimic the behaviour of infinite systems, charge

neutrality must always be checked to avoid unwanted effects.
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Figure 3: Lennard-Jones potential with ε = 1 and σ = 1. The vertical dashed line denotes the position of the

minimum.

In a system of N beads, the number of pairs scales as N2. However, the long-range behaviour of

the LJ potential makes it possible to consider a cut-off distance for pair inclusion which greatly reduces

the number of pairs. This is justified by the fact that, at the typical cut-off distance of 3σ, we have

Ulj(3σ) ≈ 5.2e−3ε, and also that, at least for disordered dense systems, the resultant of all beads

outside the cut-off radius will provide a null contribution due to long-range isotropy. As a matter of fact,

the truncation does introduce some errors that require either small corrections or a long-range treatment.

To avoid this, it is possible to multiply the LJ potential with a smoothing function that makes it null at the

cutoff distance, as done e.g. in the CHARMM force field [91]. However, when electrostatic interactions are

also accounted for, this scheme is not sufficient, because of their slower r−1 dependence. In the Particle

Mesh Ewald (PME) method [144], a cutoff range is defined and interactions within are calculated directly,

while those outside are calculated in the reciprocal space, through a Fourier Transform. In molecular

simulation codes, it is often used a slight variant called PPPM [145], which may be applied as well to the

long-range part of LJ potential [146].

If the simulated system represent a molecule, then atoms are linked together by bonds, which are

represented by extra potential terms acting only on bonded atom pairs. 3-body angle and 4-body dihedral

and improper potential terms can be present as well, to better describe the intramolecular forces and
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obtain good molecular geometries, when compared to quantum mechanical calculations. More details

are discussed further in text, in section 2.4.2.

2.4.1.2 Integration of the equations of motion

To obtain the dynamic evolution of the simulated systems one needs to integrate numerically the equations

of motion. As the consequence of the finite precision of any computing machine, what is actually computed

is a discretized approximation of the continuous trajectories, with a finite integration step ∆t. Consider a

point-like body of massm, subject to the force f(t), of which we know the position r(t) at time t. Being

∆t the timestep A second-order Taylor expansion can always be written for r(t+∆t):

r(t+∆t) = r(t) + v(t)∆t+
f

2m
(∆t)2 + o(∆t3). (2.89)

Analogously,

r(t−∆t) = r(t)− v(t)∆t+
f

2m
(∆t)2 + o(∆t3). (2.90)

By summing up these equation, an estimate for r(t+∆t) is obtained:

r(t+∆t) = 2r(t)− r(t−∆t) +
f

m
∆t2 + o(∆t4) (2.91)

and the velocities can be recalculated by

v(t) ≈ r(t+∆t)− r(t−∆t)

2∆t
. (2.92)

This is the standard Verlet algorithm, that requires the knowledge of position both at time t and t−∆t.

The velocity Verlet algorithm is slightly more efficient, as it predicts r(t +∆t) knowing the position and

velocity at time t. To show this, consider the Taylor expansion of the velocity:

v(t+
∆t

2
) = v(t) +

f(t)

2m
∆t+ o(∆t2). (2.93)

Substituting in 2.89 gives

r(t+∆t) = r(t) + v(t+
∆t

2
)∆t+ o(∆t2). (2.94)

Once the new position is known, the new velocities can be calculated with

v(t+∆t) = v(t+
∆t

2
) +

f(t+∆t)

2m
∆t+ o(∆t2). (2.95)

From the above formulae, it emerges that each step will inevitably produce small errors proportional

to ∆t that will accumulate as the simulation runs, eventually invalidating it. Moreover, this will cause

two trajectories starting from the same initial conditions not to match exactly, because the errors act as a
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random source of noise. Whereas smaller∆t reduces the integration error, very small values would result

in impractically long simulations. As a rule of thumb, ∆t needs to be chosen in a way that the fastest

degrees of freedom of the system are sufficiently sampled and the overall accuracy is reasonable.

A way to quantify this, is to run a constant-energy simulation and monitor the energy drift, which

should not change in ideal conditions. If the drift is larger than a certain threshold, then the timestep must

be reduced. In MD simulations contained in this thesis, the value ∆Ethreshold/E(t = 0) = 1e−4 per

million steps was used.

2.4.1.3 The rRESPA algorithm

In many cases, the interaction potentials in MD can be range-separated into a short-range and a long-range

term. When this occurs, short-range terms have steeper gradients generating a fast dynamics, while

long-range terms have small gradients and slow dynamics. This means that the appropriate timestep

for the short-range part of the potential may be unnecessarily fine for the long-range part. The idea of

the rRESPA [147] algorithm is to use a timestep ∆t for the long-range part, while considering an inner

timestep ∆t/nr, with nr being a positive integer, for the short-range part. This provides a significant

speed-up when compared to the same simulation with an unique timestep ∆t = ∆t/nr. rRESPA levels

may be nested and 3-4 levels can be used for complex molecule simulations.

2.4.1.4 Ensemble averages in MD

Consider, in three dimensions, a system of N particles, described by a classical Hamiltonian of the type

2.84, which is a function of the 3N coordinates and 3N conjugated momenta. Each state of the system can

be described by a point in the 6N-dimensional phase space. During its dynamical evolution, the system

particles will change their coordinates and momenta, moving along a trajectory in the accessible area of

the phase space. Indeed, the ergodic theorem states that, in the infinite time limit, the system will explore

all of its accessible phase space. It is then natural to introduce a phase space probability distribution

function f({p}, {q}; t), so that the integral∫
∆q

∫
∆p

d3Nq d3Nf({~p}, {~q}; t) (2.96)

is the probability of finding the system in the ∆p∆q hypervolume. The time evolution of the probability

distribution function is described by the Liouville equation [148]. In statistical mechanics, once the equili-

brium phase space distribution function f({~p}, {~q}; t) of a system is known, the value of any observable

a(x), with x indicating some combination of coordinates and momenta, can be obtained as an ensemble
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average 〈a〉, defined by

〈a〉 =
∫

d3Np d3Nqa(x)f({~p}, {~q}; t), (2.97)

or, equivalently,

〈a〉 = lim
T→∞

1

T

∫ T

0

dta(t) ≈ 1

N

N∑
i=1

a(i). (2.98)

In MD simulations the simulation time is finite and discretized by the timestep: T = N ∗∆t. Thus

MD ensemble averages are always calculated according to the right hand side of 2.98.

An important quantity related to 〈a〉 is its fluctuation, defined as

〈∆a〉 = 〈a− 〈a〉〉 , (2.99)

and depends upon the number of atoms in the system N according to 〈∆a〉 / 〈a〉 ≈ 1/
√

(N) [148].

In the so-called thermodynamic limit, N becomes infinite and all fluctuations reduce to zero, with all

quantities having averages equal to their equilibrium values.

When a time-dependent external perturbation Fe(t) acts upon the system, it will affect the equation

of motion:

q̇i =
∂H

∂pi
+ Ci(x)Fe(t); ṗi = −∂H

∂qi
+Di(x)Fe(t), (2.100)

where Ci(x) and Di(x) characterize the response of coordinates and momenta to the external force. If

we wish to calculate how a is changed by the onset of Fe(t), we should calculate first the variation of

the equilibrium phase space distribution function f({~p}, {~q}, t), and then the ensemble average on the

new distribution. To get it, we should solve the Liouville equation, which determines the time evolution

of the probability distribution function. However, a direct calculation of the change of f({~p}, {~q}, t) is

generally unfeasible.

Luckily, it can be demonstrated that, by solving the Liouville equation in the approximation of small

external perturbations and performing some algebra, that

〈a〉neq = 〈a〉 |eq −
1

kbT

∫ t

0

dsFe(s) 〈a(t− s)j(0)〉 , (2.101)

where the equilibrium time correlation function 〈a(t− s)j(0)〉 appears and j, the dissipative flux, is

defined as:

j(x) = −
3N∑
i=1

[
Di(x)

∂H

∂pi
+ Ci(x)

∂H

∂qi

]
, (2.102)

Equation 2.101 is a very important result of linear response theory, because it connects non-equilibrium

ensemble averages (left hand side) to average of correlation functions performed using the equilibrium

ensemble.
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2.4.1.5 Periodic boundary conditions

Even a tiny droplet of liquid still contains an enormous amount of molecules: one nanoliter of water con-

tains roughly 1017 atoms. Simulating this sheer amount of atoms is out of reach of any existent computer

at the moment. However, the use of Periodic Boundary Conditions (PBC) allows to correctly represent

thermodynamic ensembles, from which calculate the macroscopic quantities as ensemble averages.

In practice, the simulation box is replicated across all dimensions in space. Each atom in the primitive

box will have its own image in every replicated box, in a way that whenever a bead exits from one side

of the box, its image enters from the opposite wall (see figure 4). This ensures the conservation of the

number of atoms. To calculate interactions, the minimum image convention is adopted, in which the

distance rij between two atoms is always chosen as the smallest one between atom i and all images of

atom j.

Figure 4: Illustration of periodic boundary conditions. The original simulation box is highlighted in yellow. The grey

bead will leave the simulation box from the right wall, but will be replaced by its image coming from the right side.

It is clear that enforcing PBC constrains the minimum size of the simulation box, in the sense that

no atom could directly interact with its own periodic image, and the same holds for entire molecules or

polymers. Moreover, introducing a periodicity can influence all those phenomena characterized by length

scales equal or larger than the simulation box. A size effects study is required for these cases, in which

the same quantity is calculated for different sizes of the simulation box.

36



Chapter 2 Section 2.4

2.4.1.6 Thermodynamic ensembles

In MD, it is important to establish a connection between the simulated systems and the thermodynamic

properties. The aim is to get the properties of a system at equilibrium conditions. A measurable O will

always be expressed by its ensemble average value 〈O〉, in which the average may be performed over

time and/or independent runs, and will be further characterized by its fluctuation 〈δO〉.

The most simple situation corresponds to a system described by the MD Hamiltonian 2.84 within a

periodic box with dimensions and number N of particle fixed. This corresponds to the microcanonical or

NVE ensemble, in which the number of beads, volume and energy are conserved. This ensemble is the

preferred choice for data production, as it provides the bare dynamics of the system, without any external

perturbation. Clearly, in equilibrium MD, NVE simulations make sense when the energy E corresponds

to the equilibrium energy.

To reach equilibrium, however, the energy must be allowed to change. A canonical ensemble is

obtained when a microcanonical ensemble is brought in contact with a thermal bath, allowing energy flow

to and from the simulation box. In MD, this is done by coupling the system with a thermostat. In this

context, temperature is a measure of the average kinetic energy of the atoms. Nosé and Hoover [149]

showed that an additional degree of freedom could be added to the MD Hamiltonian,

H = U({qi}) +
∑
i

p2i
2mi

+ 3NkbT ln s+ p2s/2Q (2.103)

in which the coordinate s and its momentum ps were introduced. The Hamilton equations are:

q̇i =
pi
mi

(2.104)

ṗi = −∇qiU({qi})− ζpi (2.105)

ζ̇ =
1

Q

(∑
i

p2i
mi

− 3NkbT

)
, (2.106)

in which ζ = ps/Q.

As it is clear from equation 2.106, when the system’s temperature is larger(smaller) than the target

value T, the bead momenta are decrease(increased), thanks to the damping factor appearing in the equa-

tions for ṗi. The parameterQ is the inertial mass of the thermostat, and needs to be chosen carefully, as

a light mass would not be effective, while a heavy one would be too slow in dampening the fluctuations.

In MD, the canonical ensemble obtained in this way is called NVT, as it conserves temperature instead of

energy.

In a similar fashion, an additional degree of freedom, that is a barostat, may be added in such a way

that it couples a target pressure Pe with the system’s one, defined as the trace of the atomistic pressure
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tensor Pαβ :

Pαβ =
1

V

(
N∑
i

mivi,αvi,β +
N∑
i

ri,αfi,β

)
. (2.107)

In this case, we have a isothermal-isobaric ensemble where pressure and temperature are conserved,

thus it is called NPT.

The Nosé-Hoover thermostat and barostat has been proven to be non-ergodic. In simulation codes

the chain variant of the Nosé-Hoover thermostat is actually used, in which additional thermostats are

concatenated with the main one. This way, ergodicity can be restored and the reproduced ensemble truly

identified with the canonical one.

In a different approach, the thermostatting can be achieved by the use of a Langevin thermostat. In

this case, the total force on a bead i is the sum of the conservative force, a friction term and a random

force term, Fi,tot = Fc + Fd + Fr, where

Fc = −∇iU(q) (2.108)

Fd = −γvi (2.109)

Fr ∝

√
kBTmi

γ∆t
(2.110)

In this model, there is a dynamic friction term, with coefficient γ, and a random force. Both terms describe

the interaction between the particle with a solvent at temperature T . This thermostat is particularly useful

to simulate molecules in gas-phase, as the contribution from the random force allows for a broader and

faster exploration of the possible configurations.

2.4.2 Modelling of molecules and forcefields

To treat accurately molecule in MD, the quantum mechanical interactions must be mapped into a set of

empirical classical potentials. The set of potential function chosen for this scope and associated parame-

ters is called a forcefield.

The main features that are expected from a forcefield are prediction accuracy and transferability, that

is the possibility to use it to simulate molecules not originally included in the parametrization set, but still

obtaining reliable results. One always desires the highest possible accuracy, but it must be traded off to

ensure some degree transferability, otherwise a new parametrization, a lengthy procedure involving ab

initio calculations and/or experimental measurements, should be carried on for every new molecule to

investigate.

Up to date, a very large choice of different force fields exists, spanning application field and level of

complexity. In this work, we will restrict ourselves to unpolarizable force fields, in which partial atomic
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charged are fixed parameters.

In the following, the General Amber Force Field (GAFF) [89] is presented. It has been chosen as

default MD force field in this work because a basic parametrization for isocyanates was already available,

it is simple to modify and it is open-source.

2.4.2.1 GAFF bonded potential terms

GAFF is a non-polarizable, all-atom force field, initially designed starting form the AMBER force field to

allow for simulation of small organic molecules in watery environment. Along the years, its application

expanded over the initial intended use, including lipids, organic liquids, liquid crystals, and more [150,

151, 152, 153, 154].

A molecule is treated as a connected set of point-like massive and charged atoms. Bonded potential

terms describe interactions between atoms which are in the same bond, angle or dihedral. The list of all

those terms defines the molecule topology, and it is invariant during the simulation.

Chemical bonds are described by harmonic terms:

Vb(rij) =
1

2
Kb(rij − l0)

2, (2.111)

where Kb and l0 are the bond force constant and the equilibrium bond lengths. Three bonded atoms in

a row form an angle, which is described by:

Va(θijk) =
1

2
Kθ(θijk − θ0)

2, (2.112)

θijk being the angle between atoms i,j and k, and θ0 the equilibrium value.

Dihedral energy terms describe the interaction between two terminal atoms of a dihedral. In GAFF, it

is described by a set of cosine potentials:

Vd(φijkl) =

4∑
p=1

[
Vp
n

(1 + σk cos(p · φijkl))
]
, (2.113)

in which periodicities p are summed, up to p = 4. φijkl is the dihedral angle, Vp the force constant and

n the dihedral multiplicity (i.e. how many times it appears for the same 4-tet of atoms). σ is either +1 or

-1, denoting the phase offset.

In some situations, 4 atoms could be bonded in such a way that a central atoms connects with all the

others. This type of bonding often occurs in flat arrangements, and flatness should be enforced by means

of an improper potential energy term:

Vi(φijkl) =
Ki

2
(φijkl)

2 (2.114)

where the improper dihedral φijkl actually measures the out-of-plane deviation of the central atom.
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2.4.2.2 GAFF atom specifications and non-bonded potential terms

Atoms in GAFF are defined not only by their atomic number, but also on their environment. For instance,

type CT denotes a carbon atom in an alkyl chain, while C represent an sp2 hybridized carbon atom, such

as in benzene. Their masses correspond to those of the most abundant nuclear isotopes.

Partial atomic charges are assigned starting from a HF calculation, performed using the 6-31G(d)3

basis set, from which the electrostatic potential (ESP) is extracted. Next, point charges are located at the

centre on each atom and kept fixed, and the values that best fit the ESP are taken. This method, known as

restrained ESP (RESP) fit if a constraint on the magnitude of charges is used during the fit [155], results

in slightly exaggerated charges, which are however retained as they model the polarization effect caused

by water, a highly polar molecule.

Gaff forcefield includes non-bonded interaction by standard LJ (eq. 2.87) and electrostatic (eq. 2.88)

terms. For each atom type, the pair of ε and σ is provided. When different atom types interact, the

following sum rules apply:

εab =
√
εaεb (2.115)

σab =
σa + σb

2
(2.116)

A set of scaling rules on how to apply non-bonded interactions to bonded atoms pairs completes the

definition of GAFF. LJ and Coulomb interactions are neglected for atoms within the same bond and same

angle. For 1-4 atomic pairs in the same dihedral, that is atoms separated by 3 bonds, they are scaled by

a factor 0.5 and 10/12, respectively.

2.4.2.3 Fitting of dihedrals against DFT data

To obtain the dihedral parameters from ab-initio calculations, two different scans have to be performed

for every dihedral: one using the quantum mechanical method of choice and the other using the force

field energy function, excluding any dihedral contribution. This is necessary because, unlike in the case of

bond and angle energy terms, non-bonded interactions between the 1-4 atomic pairs in the same dihedral

are not excluded, thus contributing non trivially to the dihedral energy profile.

The difference between quantum and classical scans is finally fitted with the GAFF dihedral potential

expression, equation 2.113, using Vi and δi as fitting parameters.

3The equivalent notation 6-31G∗ is often used in literature.
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2.4.2.4 Final remarks

To use GAFF, a complete set of parameters must always be provided for the target molecule and, if

absent, needs to be introduced and tested. This is due to the important issue of transferability retaining

a reasonable accuracy. In general, any result coming from the use of a force field should be tested

against experimental reference values of the highest possible quality, in order to assess the capabilities

and limitations of the employed force field.

Due to the molecular fixed topology, simulation of chemical reactions are not allowed using GAFF and

similar force fields. Likewise, since charges are predetermined and invariable, charge-transfer processes

cannot be simulated. Both limitations might be surpassed by the aid of more complex methods, such as

reactive and/or polarizable force fields, but at the cost of a significant reduction of treatable temporal and

spatial scales because those methods require the dynamic calculation of partial charges, a very lengthy

step. Therefore, if reactivity is not under interest, classical all-atom MD still represent one of the best ways

to investigate the liquid state and its properties.

2.4.3 MD simulations in practice

2.4.3.1 Time and space scales of MD

Due to its nature, MD is intrinsically heavily parallelizable and scales very well with the number of CPUs.

However, to obtain good energy conservation under NVE conditions, the timestep in for all-atom simulation

should be lower than 1 fs for temperatures not greater than 400 K. In MD simulations presented here, 1

fs timestep was used with a 3-level RESPA algorithm, corresponding to an innermost timestep of 0.125

fs. With the resources typically available to our group, simulation speeds of 0.5-1 nanoseconds/day were

obtainable for systems containing ca 20000 atoms. All MD simulations in this work were performed using

LAMMPS [156].

2.4.3.2 From system creation to data production

To perform a simulation of N molecules in a disordered liquid phase, we need to ensure that the initial

system is randomized both in molecular orientation and in their conformation. To achieve this, the initial

box is created at very low densities (below 0.1 g/cm3). Subsequently, all dimensions and coordinates

are scaled by a factor of 0.9, thus reducing the simulation box volume , and a small 10 ps step run is

run under NVE conditions imposing an upper bound on the atomic displacement per step of 0.1 Å. This

type of run is very efficient in removing accidental overlaps and randomizing initial conformations, and the
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constrain prevents the system to became unstable due to the high forces generated in this phase.

This step is repeated until a density larger than 0.7 g/cm3 is obtained. The final state is then used

as a 500 ps simulation at 500 K and 1 atm, using NPT conditions and Nosé-Hoover thermo- and and

barostatting, with damping constants of 0.1 and 1 ps-1 respectively. The system is then equilibrated at

the target temperature Teq, under NPT conditions until twice the time required for total energy to reach

stationarity. The last 100 ps of equilibration time are used for sampling the system’s equilibrium density

〈ρ〉.

Some care must be taken to pass from NPT to NVE conditions, in order to start the NVE trajectory

from a point as close as possible to its equilibrium values of density and energy. After equilibration, a

small 1500 fs run is performed under NPT condition in order to pick up a system state with ρ as close as

〈ρ〉, which is used for a 100 ps run under NVT conditions. A further 150 fs run under NVT conditions is

performed to pick up a state with the temperature as close as the target temperature.

At this point, the system is ready for data production under NVE conditions, which is carried on for

several nanoseconds. At this stage, systems snapshots, that is files containing all atoms coordinates and

velocities at a given time are saved at regular 20 ps intervals for later analysis, and system thermodynamic

variables are printed out every 3 fs.

When simulating a system in which a 2D material sheet is present, generally in the xy plane, the

periodicity is removed from the z direction, and a large amount of vacuum along z is added. The sheet is

created of the desired size according to their crystal structure, and is centre of mass is kept fixed to avoid

any drift motion. Once the sheet is equilibrated, other molecules can be added in the desired quantity to

wet the surface. To avoid them to escape from the upper side of the box, a reflective wall is enforced, which

change the verse of the normal component of momentum of each incoming atom. A layer of vacuum is

always kept between the liquid and the upper side of the box, in order to let the liquid to create a liquid-air

interface. While thermostatting is implemented in the same way as for fully periodic systems, the barostat

is coupled only to the x and y directions.

For gas phase simulations, a cubic simulation box of 200 Å length, containing a single molecule, is

used without periodic boundary conditions. A very large cutoff for non-bonded interactions should set to

avoid any approximation in potential energy calculation and random initial velocities with zero total angular

and linear momentum were assigned to all atoms. To calculate the total potential energy 〈Ugas〉 , a 25 ns

long simulation with a time step of 0.25 fs applying a Langevin thermostat with a damping constant of 10

ps−1 was performed. Simulation data was sampled every 1.25 ps, with the first 300 ps of the simulation

regarded as equilibration and discarded.
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2.4.3.3 Radial pair distribution function

The radial pair distribution function [157] g(r) is the probability that, given a bead i at ~ri, another bead

j can be found at a distance r = |~ri − ~rj|, and it is very useful in describing the local structure of any
dense system. For a system of N beads, it is defined as:

g(r) =
V

4πr2N(N − 1)

〈
N∑
i=1

N∑
j 6=i

δ3(r − rij)

〉
, (2.117)

where the brackets denotes an ensemble average. It is normalized in such a way that∫ R

0
4πr2ρg(r) dr = NR, (2.118)

where ρ is the system’s density and NR is the number of beads within a sphere of radius R.

2.4.3.4 Enthalpy of vaporization

The enthalphy of vaporization ∆Hvap is the enthalpy necessary to remove a molecule from a liquid and bring it in

a gas phase. Therefore, it is a good descriptor of the liquid’s cohesive forces. It is calculated using the following

equation [158]:

∆Hvap = Ugas − Uliq +RT +
1

2
R (< Tliq > − < Tgas >) (3Natoms − 6) (2.119)

where T is the system target temperature, Ugas and Uliq the potential energy per molecule for the gas

and the liquid phase, respectively. The last term appearing in (2.119) is a correction term that takes

into account the difference between the gas phase temperature 〈Tgas〉 and the liquid phase temperature

〈Tliq〉 extracted from the simulation.

2.4.3.5 On the calculation of viscosity

The shear viscosity is a key macroscopic property of a liquid, as it describes its resistance to undergo

a shear flow. Liquids show a very large variation of viscosity values, ranging from 1 mPa·s of water to

several Pa·s of honey. Viscosity is strongly dependent upon temperature, and for glass-forming systems

it may change by 10 or more orders of magnitude within a narrow temperature window, undergoing into

what is called a glass transition [159].

Let us consider a system consisting in a liquid trapped into two parallel walls located at−y0 and+y0
and oriented normally with respect to the y axis, moving in opposite directions along the x axis. As result

of friction forces, the walls’ motion will induce a velocity field ~u in the fluid. If the system is infinite in the

x and z directions, the velocity profile can only depend on y, i.e. ~u ≡ ux(y)x̂. The viscosity η is thus
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defined as the proportionality constant between the shear stress of two adjacent layers of fluid and the

transverse velocity gradient:

σxy = γη, (2.120)

where γ is the shear rate (as the velocity profile is linear, its gradient is a constant) and σxy is the xy

component of the stress tensor, that is the flow of momentum oriented along direction x across a surface

with normal versor parallel to y.

There is a family of relationships, known as Green-Kubo (GK) formulae [160], that allows to calculate

the transport coefficients from the equilibrium time autocorrelation functions of the system. An in-depth

derivation of GK formulae and linear response theory upon which they are based can be found in [161],

while here we will follow the exposition of Tuckerman [162].

In the presence of a velocity gradient as described in 2.120, the equation of motion of the system are:

q̇i =
pi
mi

+ γyix̂; (2.121)

ṗi = Fi − γpyix̂. (2.122)

To apply 2.101 to viscosity, a microscopic definition of the stress tensor should be given:

σαβ = − 1

V

(
N∑
i

mivi,αvi,β +
N∑
i

ri,αfi,β

)
. (2.123)

Using 2.123, the viscosity definition can be recast as:

η = lim
t→∞

〈σxy〉neq
γ

, (2.124)

where now the stress tensor refers to the perturbed system, and the time limit is taken to remove any

transient effect, and < σxy >neq can be obtained using 2.101. To do so, it is easy to show that for a

liquid between two moving walls, we have, by comparing with equations 2.100, Ci(r, p) = γyix̂ and

Di(r, p) = −γpyx̂. The dissipative flux is then:

j(r, p) = −γV σxy. (2.125)

Considering Fe(t) ≡ 1, equation 2.101 may be written for 〈σxy〉neq:

〈σxy〉neq = 〈σxy〉eq +
γV

kBT

∫ t

0
dτ 〈σxy(τ)σxy(0)〉 (2.126)

and, substituting with 2.124 and taking the time limit, we finally obtain:

η =
V

kBT

∫ ∞

0
dt 〈σxy(t)σxy(0)〉 , (2.127)
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The GK formula 2.127 presents several advantages: it can be obtained from equilibrium simulations

(possibly in NVE ensemble) and it directly gives the zero-shear viscosity, whereas nonequilibrium methods

generally require an extrapolation. On the other hand, there are some caveats to be addressed. First of all,

stress tensor components need to be sampled finely in time to ensure a good description of the fast stress

oscillations, resulting in large amount of generated data. Most importantly, the stress autocorrelation

function may take a very long time to converge because, as the viscosity increases, so do relaxation times,

and convergence would require impractically long simulation times. However, the simulation cannot be

too long, because the accumulation of numerical integration errors will start to be important.

The computational implementation of GK viscosity formula is slighty different from 2.127, which allows

to divide the simulation in many short time windows tW to improve statistics [163]:

η =
V

10kbT

〈∫ t′+tW

t′
σij
(
t+ t′

)
σij
(
t′
)
dt

〉
(2.128)

where a sum over all components of the traceless stress tensor σij is understood and angular brackets

indicate average over different possible time origins t′, separated by ts =15 fs. The time window span

tW should be picked as the minimum time that guarantees include stress autocorrelation integral con-

vergence, and clearly is specific to every system (and temperature). The uncertainty on viscosity was

estimated calculating, for each run, the standard deviation of the converged values of the stress autocor-

relation integral of each of the traceless pressure tensor components.

2.4.3.6 Free energy estimates with adaptive biasing force method

In many cases, the bare interaction energy between two subsets of a system, such as two molecules or a

molecule and a surface, is not sufficient to describe the stability of these assembles, because the effects

of temperature and size of conformational space, that is entropy contributions, are not taken into account.

A better descriptor in this sense is the free energy G, defined asG = U − TS, and in particular the

free energy difference ∆G between two reference states, generally a bound state and one in which the

constituents are taken apart and do not interact any more. It is thus clear that to calculate∆G we need a

very long trajectory to have a good sampling of the accessible conformation space at some temperature T .

However, in a plain calculation, the interacting moieties could be trapped into an energy minimum and/or

locked in some stable conformation, with the effect of greatly reducing the conformational sampling. To

overcome this problem, several methods have been developed to speed up the sampling and obtain reliable

free energy estimates. In this thesis, the adaptive biasing force (ABF) [164, 165] has been adopted. It

applies when the phenomenon under interest is described by one collective variable (CV) ξ. The free
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energy, as a function of ξ, with a probability distribution P (ξ) is:

G(ξ) = −lnP (ξ) +G0, (2.129)

and its gradient can be estimated by the average of the forces, at fixed ξ [166]:

∇ξG(ξ) = 〈−F (ξ)〉 |ξ. (2.130)

Once ξ and its boundaries are defined, a simulation at the desired temperature and pressure conditions

is run, and CV values are sampled in order to accumulate F (ξ). After a certain number of samples the

ABF algorithm adds a fictitious force FABF , the biasing force, proportional to the sampling, in order to

overcome eventual energy barriers, according to

FABF = α(Nξ)∇Ã(ξ), (2.131)

where α(Nξ) is a scaling factor growing for 0 to 1 as the number of samples increases, and Ã(ξ) is the

current estimate of the free energy gradient. The algorithm continues additively and is converged when

ξ has an uniform probability to have any value comprised in its boundaries: the biasing force has ’filled’

completely the free energy surface (at least its projection on ξ). The final result is the integrated free

energy gradient, or potential of mean force (PMF), from which ∆G can be extracted.

2.5 Polymers and Dissipative Particle Dynamics

This section contain some elementary notions of polymer physics, necessary to understand the dissi-

pative particle dynamics simulation method. The exposition is based upon the book of Pierre-giles De

Gennes [167].

2.5.1 Polymers

A polymer is a large molecule constituted by repeating units linked between them, called monomers.

Depending upon their connectivity, they could be linear, when the monomers are organized in a chain-like

structure, or branched, when there are junctions connecting more chains within the same polymer. In

this case, the junction points are termed crosslinking (CL) points.

A polymer made of N monomers can be described by a random walk in 3 dimension of N steps of

equal size α , having one polymer end as origin of the walk. Each step connects two adjacent monomers

and α represents their bond length. The end-end vector ~Ree, the vector joining the polymer ends, is

defined as:

~Ree =
N∑
i=1

~ai, (2.132)
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If the steps are completely uncorrelated, that is an · ~am = α2δnm, then

R2
ee =

N∑
a,b=1

~aa · ~ab =
N∑
a=1

|~aa|2 = Nα2, (2.133)

which implies that Ree ∝ N1/2. A chain that obeys this relationship is termed ideal.

The probability for a chain of N beads of having an end-end radius of r is given by:

p(r) ≈ 1

N3/2
e

−3r2

2Nα2 . (2.134)

with an associated entropy of

S = ln(p(r)) ≈ − 3r2

2Nα2
(2.135)

up to an additive constant. If the free energy U − TS is written, we obtain:

F = F (0) +
3Tr2

2R2
ee

, (2.136)

which shows how, by pushing or pulling both ends of the polymer, an elastic, spring-like, force of entropic

origin is generated.

The contour length L is defined as

L2 =
N∑
i=1

|~ai|2. (2.137)

L is a fixed quantity and it is clear that Ree ≤ L.

The ideal picture does not always hold, but it is correct in dense polymer melts [167]. In other

situations, as for a free chain in solvent, excluded volume effects must be taken into account, and the

radius of a polymer does not obey anymore a Gaussian distribution, as in equation 2.134, but it can

be shown that Ree ∝ N ν , with ν very close to 0.6. Apart from excluded volume effects, the polymer

flexibility is also a factor to consider. Polymer chains are not fully flexible, but would display a force against

bending. Since monomers cannot overlap, a certain degree of stiffness is always present in every chain.

However, it is possible to define a length ak in a way that

R2
ee = NKa

2
k. (2.138)

The Kuhn length of a polymer is that quantity that, for any given chain, allows to describe it as an ideal

random walk of Nk < N steps ak wide. The stiffer the polymer, the larger ak.

One of the main issues in simulating polymers is that it might be very difficult to obtain an equilibrated

system because the relaxation processes might have very long time scales, especially for longer chains. It

might be useful to calculate the mean squared internal distance (MSID) R2(|i− j|), which simply is the
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square distance between monomers i and j of the same chain. When stiff chains are under investigation,

then it is expected that the MSID follows [168]:

R2
ee(n) = nα2

(
1 + cos θ

1− cos θ
− 1

n

2 cos θ(1− cosn θ)

(1− cos θ)2

)
, (2.139)

where cos θ is the angle between adjacent bonds. By explicitly calculating the MSID from a simulation

and comparing it with the prediction of 2.139, it is possible to check whether the simulated polymer melt

is in equilibrium or not, because non equilibrated systems would show significant deviations from 2.139.

It is known that polymer melts display many entanglements between chains. Their presence strongly

influence the mechanical and dynamic properties of the system, and it is very important to well-represent

it in the simulated melt. To gain information upon the entanglement state of the system, a primitive path

analysis (PPA) [169] should be performed. Given a chain in a melt, a primitive path (PP) is the shortest

path between its ends that preserves the entanglements of the chains. If the chain is unentangled, the

primitive path will be reduced to a straight segment, and its contour length will be equal to Ree. The

presence of entanglements will result as the appearance of ’kinks’ (that can be counted) and cause the

PP contour length to increase. The PPA provides a way to characterize the entanglement state of any

polymer, an can be applied to polymer networks as well. In this work (chapter 5) chains up to N=40 have

been simulated, and the PPA analysis has been done using the Z1 code [170, 171, 172, 173], kindly

provided by prof. Martin Kröger.

2.5.2 Flory-Huggins theory

Flory and Huggins developed a mean field theory to investigate the phase behaviour of polymer-solvent

mixtures. The mean field refers to the polymer concentration φ, assumed to be uniform in space, hence

disregarding any local density fluctuation. To make the derivation clearer, a lattice model is assumed for

a system containing a solvent and polymers made of N beads. Each of the solvent or polymer monomers

can occupy one lattice site at the time, and overlap is forbidden. In this section, the convention kBT = 1

is adopted, and all thermodynamic quantities are expressed per site. Under these conditions, the entropy

S per site is:

S(φ) =
φ

N
ln(

φ

N
) + (1− φ) ln(1− φ), (2.140)

where the first term on the right side is the entropy associated to the polymer and the second one of the

solvent. The entropy of mixing Smix is given by:

Smix = S(φ)− φS(1)− (1− φ)S(0) =
φ

N
lnφ+ (1− φ) ln(1− φ), (2.141)

that is the mixing entropy is the difference between the system’s entropy and that of the (weighted by

concentration ) pure phases.
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The internal energy per site can be assumed to be made of three pair contributions describing

monomer-monomer, monomer-solvent and solvent-solvent interactions:

U =
1

2
χmmφ

2 + χmsφ(1− φ) +
1

2
χss(1− φ)2 (2.142)

where the χij contain information upon the strength of the pair interaction between different species. The

energy of mixing is obtained as Smix and can be written as:

Umix = χφ(1− φ) + costant and linear terms (2.143)

where χ = χms− 1
2
(χmm+χss) is the Flory-Huggins parameter. To understand its role, the free energy

of mixing can be written:

Fmix = Umix − TSmix = χφ(1− φ) +
φ

N
lnφ+ (1− φ) ln(1− φ). (2.144)

Equation 2.144 allows to determine the expected concentration of the polymer as a function of the Flory-

Huggins parameter. For good solvents, χ is small and low polymer concentrations are found, meaning

that it is effectively solvated. For a bad solvent, χ is large and very high polymer concentrations are

predicted, hence a net separation between solvent-rich and polymer-rich phases is expected.

2.5.3 Polymer networks

A gel, or polymer network, is obtained when the polymer chains are merged together in one single macro-

molecule. The points which join different chains are called crosslinking (CL) points, and the chain between

them is an elastic strand. The functionality ν represents in this context the number of bonds hosted by

the CL bead, and it must be ν ≥ 2 to have a network. In this thesis, crosslinking is always understood as

an irreversible process which creates new chemical bonds between CL points and attached chains. Other

forms of crosslinking were not considered.

When immersed in a solvent, some of the solvent molecules will migrate into the polymer-rich phase,

causing the gel to swell. The process will stop when the chemical potential of solvent molecules within the

gel and outside is equal, and this is obtained when the solvent pressure outside it matches the one inside,

in which region the excess pressure is provided by the network stress. The swelling capability will thus

depend both on the network elastic properties and on the solvent strength, and its knowledge is helpful to

characterize the elastic response of it.

In an ideal network, every chain has the same length, i.e. are monodisperse, and connects two

different CL points. Under a deformation, these will move and the strand will give rise to an elastic force,

as a consequence of 2.136. Based upon this, several model exists, such as the affine and phantom
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network [174] that, starting on the concentration of CL beads and elastic strands, can predict the elastic

moduli, however they apply only for ideal networks and neglect the entanglements. Unfortunately, real

networks are by no means ideal. The network structure will contain many defects, mostly dandling ends

and loops which bring no contribution to the network elasticity and a certain degree of dispersity, affecting

the behaviour of single chains.

2.5.4 Dissipative Particle Dynamics

Dissipative Particle Dynamics (DPD) [175, 176, 177] is a theory that has been developed to reproduce

the phase separation and solvation of polymers. DPD beads are coarse-grained representations of one

-or more- monomer. Any DPD particle i is subject to the DPD force fi, similar to the Langevin dynamics

force term, composed by a pair term FC , a dissipative term FD and a random force term FR:

~fi =
∑
j

(
~FC,ij + ~FD,ij + ~FR,ij

)
(2.145)

~FC,ij = aijw(r)r̂ij (2.146)

~FD,ij = −γw2(r) (r̂ij · ~vij) r̂ij (2.147)

~FR,ij = σw(r)θij(t)r̂ij (2.148)

w(r) = 1− r

rc
, (2.149)

where the sum runs over all different particles j at distance rij and rc is the cut-off radius of DPD inte-

ractions, set to rc = 1. The function θij(t) is a randomly fluctuating variable [176, 177], the damping

factor γ is set equal to 4.5 and σ2 = 2kTγ. The pair repulsion parameters aij describe the interaction

between beads, and provide a purely repulsive term. With a density fixed at ρ = 3 DPD units, the value

of aii is set to aii = 25. This choice correctly reproduces the liquid water compressibility [177].

The major difference with MD methods is that the interaction potential is soft, in the sense that the

DPD pair potential, unlike the Lennard-Jones one, is finite and well defined at the origin, meaning that

beads can largely overlap. This allows for intrinsically larger time-steps during the simulation, as it does

not provoke the appearance of steep gradients and, by consequence, large forces.

When DPD is applied to simulate polymers, special care must be taken in order to avoid the unphysical

chain crossings made possible by the soft-core potential. These topology violations artificially enhance the

polymer diffusion in melts and disrupt permanent entanglements in networks. The segmental repulsive

potential [178] (SRP) prevents this by adding repulsive potentials between middle points of bonded atoms.

Remarkably, the aij are connected to the Flory-Huggins parameters χij [177], which in turn may be
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related to Hildebrand solubility parameters [179]:

aij = aii + 3.27χij (2.150)

χij =
vij
RT

(δi − δj)
2

(2.151)

δi =

(
∆Hvap −RT

vi

)0.5

, (2.152)

where ∆Hvap is the enthalpy of vaporization, and vi, vij are the molar and partial molar volume,

respectively. These equations thus indicate a bottom-up approach to obtain the aij from atomistic simu-

lations [180]. The top relationships also shows that large aij values describes species with poor mixing

behaviour.

The definition of the pair repulsion parameters on the basis of the Flory-Huggins theory makes DPD

particularly suited for simulations of polymers in solution and mixtures of species with different hydrophi-

licities, as well as for investigating the swelling properties of polymer networks, in which the swelling

transition is easily induced by tuning the solvent-gel interaction strength.

Before going further, it should be noted that the DPD pair potential is purely repulsive, hence it cannot

reproduce polymer surfaces or interfaces without introducing impenetrable walls in the system, or fictitious

’air’ beads with a very large aliq−air. For these situations, not encountered in this thesis, there exists

generalizations, which are well discussed in [181]. Apart from that, equilibration and data production

stages are analogous to those of all-atom MD simulations.

2.5.5 Modelling of chemical reactivity

In experimental situations, the preparation time of crosslinked polymer networks can take from minutes

to days to be fully reacted, depending upon the reactants employed and the temperature/pressure con-

ditions. The chemical reaction itself, in general, is a rather complex process that can be fully understood

only from a quantum mechanical perspective. Although these considerations seems discouraging at first

glance, it is possible to provide a simple model in many cases.

A crosslinking reaction falls in this category because it mainly involves bond formations between

monomers, it is the dominant -and faster- process in the system and its final state is not reversible. Under

these conditions, the chemical process can be seen as a series of bond creations between beads, allowed

to react whenever they are closer than some threshold value and with a pre-determined probability, lower

than unity, to occur. Bond breaking, if present, can be treated exactly in the same way, allowing to take into

account reversible crosslinking or other polymer degradation mechanisms. This method has been widely

used [182, 98, 183] whenever the network formation process from a disordered melt is required, and
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has the advantage of providing realistic structures, obtained from equilibrated melts and letting naturally

appear all those features, such as network defects, present in real systems.

During the simulation, reaction steps are repeated as many times as required and alternated with

diffusive phases, where no reaction occurs. This is necessary because, any bond creation/deletion change

the status of two neighbouring beads, causing the instantaneous appearance (or disappearance) of pair

and bond forces. To avoid simulation instabilities, the system must be given the proper time to relax these

stresses, and also to allow all the species to diffuse. The number of reaction steps required to obtain a fully

reacted network depends upon the reactant concentration and reaction speed, codified by its threshold

and probability. Actually, fully reacted final states are unlikely to be obtained in simulations, as with time

the concentration of reactants decreases until reaction become very rare, unless some attractive potential

between reactants is introduced to speed up the process [184].

Alternatively, the system can be prepared already in a crosslinked structure, in which CL points are

joined with chains of desired length and up to the desired functionality. The CL points might be randomly

or evenly distributed in space, depending on whether a random or regular network is desired. This method

is almost instantaneous when compared with the reaction-driven and avoids many network defects, at the

cost of neglecting entirely diffusion and relaxation of chains during the formation process. How this affects

the elastic and swelling properties of networks, will be discussed in chapter V.

2.5.6 Characterization of nanogels

In chapter V, nanogels are employed rather than periodic network to characterize their swelling properties,

because their non-periodicity allows the nanogel to reach the equilibrium in the swollen state by adjusting

the quantity of solvent within them. To achieve this, nanogels are put in a simulation box containing

solvent beads in excess, and with a box size large enough to exclude self-interactions of the nanogel in

swollen state. In a bad solvent they are collapsed and assume a spherical shape. The gyration radius Rg

is defined as

R2
g =

1

N

N∑
i=1

(~ri − ~rCM )2, (2.153)

where N denotes the number of beads in the nanogel and ~rCM its centre of mass position. R2
g can

be regarded as an estimator of the nanogel size, especially useful in the swollen state, in which nanogels

assume a less spherical shape and have less defined boundaries. Clearly, when the solvent-gel interaction

parameter changes, Rg ≡ Rg(asg). In terms of Rg, The swelling ratio might be defined as the ratio

between Rg(asg) and the radius of gyration of the collapsed nanogel Rg,c,

Further insight on the nanogel structure can be obtained considering the radial density profile ρ(r),
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defined in such a way that: ∫ ∞

0
4πr2 drρ(r) = N, (2.154)

N being the number of beads of the nanogel. Another useful quantity is the form factor P (q), defined as

P (q) =
1

N

n∑
i,j=1

e−i〈~q(~ri−~rj)〉, (2.155)

where the sum runs over all the nanogel beads and angle brackets indicate an average over time and over

the possible directions of ~q.
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Development of a molecular dynamics

force field for isocyanate liquids

This chapter illustrates the development, testing and application of a classical molecular dynamics force

field for aliphatic isocyanates and polyisocyanate liquids. After briefly discussing the motivation, the force

field reparametrization technique is presented, and used to calculate the viscosity of several isocyanurate

systems. Finally, the possibility to estimate low-temperature viscosities from higher-temperature calcula-

tions is discussed Sections 3.1 and 3.2 are based on the publications ”GAFF-IC: Realistic Viscosities for

Isocyanate Molecules with a GAFF-based Force Field” [185] and ”Aliphatic isocyanaturate and polyisocy-

anate networks” [10].

3.1 Motivation

Aliphatic isocyanurates are mainly used for the production of polyurethane coatings and adhesives. Alt-

hough providing superior resistance properties, their use is hindered by their high viscosity, which limits

their possible processing routes and renders their mixing with other components a difficult task. For

commercial-grade isocyanurate trimer products based upon hexamethylene diisocyanate, viscosities of

1000-3000 mPa·s are reported at room temperature, to be compared to the low viscosity of their pre-

cursor, 2.3 mPa·s [186]. Whereas the addition of solvents could improve their processability, current

research efforts are aimed at avoiding this, both to develop a more sustainable process and to limit the

emission of volatile organic compounds (VOCs), a matter of rising concern especially for coatings and

adhesives.

Experimental measurements of viscosity at room temperature on high-purity samples of functional
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and non functional isocyanate trimers [10] liquids are reported in figure 5. To change their size, aliphatic

mono- and diisocyanates with different number ofCH2 groups in the alkyl chain were used as precursors,

and very high purity samples (above 99 %) were obtained by distillation techniques.

Figure 5: Experimental viscosity measurements on a series of isocyanate trimers, which structure is reported in

inset. Red squares indicate functional molecules, while black dots represent non-functional ones.

It was found that the viscosity of aliphatic isocyanurates follows complex structure-property relati-

onships, with higher viscosities observed for lighter molecules as well as large differences between non

functional and functional trimers. However, it is not clear which mechanism governs the viscosity of po-

lyisocyanates. From an experimental point of view, there is no trace of any typical binding mechanism

distinctive of isocyanurates with respect to isocyanates. The search for low viscosity formulations is indeed

of high industrial interest [187, 188], and it will be certainly accelerated if rheological properties of these

liquids could be understood.

To achieve this, molecular dynamics simulations, in conjunction with a force field capable of accurate,

quantitative, predictions, seem to represent an ideal choice, due their ability to connect molecular-scale

features to macroscopic observables. Among the possible choices, the GAFF [89] force field already

contained non-bonded parameters for the NCO group atoms, and reproduced reasonably well the density

at 298 K and 1 atm of many isocyanate liquids. However, when the viscosity of an HDI liquid was

calculated, an overestimation of at least one order of magnitude was found, providing, at 293 K and 1

atm, a value of 22.3 mPas against the reference value of 2.3 mPas [186].
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Therefore, a reparametrization of the original force-field for the isocyanate molecule family was neces-

sary. This approach has been successfully applied using GAFF as the starting point to investigate a wide

class of different systems, such as hydrocarbons, lipids, liquid crystals, and ionic liquids [153, 189, 151,

190, 152, 154]. In the following sections, we will illustrate the steps undertaken to optimize the GAFF

force field, and how this dramatically improved the simulation predictions.

3.2 Optimization of force field parameters

3.2.1 Definition of the molecular test set

To carry out the optimization of the force field parameters, a test set of isocyanate based molecules (figure

6), namely, methyl isocyanate (MIC), Ethyl isocyanate (EIC), Butyl isocyanate (BIC), hexamethylene diiso-

cyanate (HDI), octadecyl isocyanate (ODIC) was defined. All these species contain at least one isocyanate

group and span a wide range of molecular weights and the choice was restricted to those molecules for

which quality reference data is available.

3.2.2 Optimization of bonded and non-bonded parameters

The starting point of the reparametrization is to verify if the force field’s equilibrium values for bond and

angles are correct. Isocyanate and isocyanurate group optimized geometries were obtained at the B3LYP-

D3/6-311++G(d,p) level of theory, and the bonded potential lengths adjusted to the DFT-derived data.

This step ensures a better match of the molecular conformations obtained from classical and quantum

calculations, but will not improve significantly those observables that depend on the intermolecular forces,

described by Lennard-Jones and Coulomb potentials. In fact, while the ring structure was already well-

described by the default GAFF parameters, some adjustments were required for the NCO groups bond

and angle values. A full list of the optimized parameters is presented in Appendix A.

It was decided to take the system’s equilibrium density ρ and its enthalpy of vaporization ∆Hvap as

target functions for the optimization of non-bonded energy parameters, because they are closely related

with the liquid’s cohesive forces. For the purpose of this study, the MIC molecule was considered, which is

the simplest one in the test set, consisting of an isocyanate group attached to a methyl group. Its geometry

is such that no dihedral terms are needed to properly parametrize it, making it an ideal candidate to study

the non-bonded interactions of the NCO group.

MIC ρ and∆Hvap were calculated using liquid phase simulation under NPT conditions and gas phase
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Figure 6: Overview of aliphatic isocyanates considered in this work. In all formulas, R represents an alkylene

group: R = −(CH2)n−, where n is the number of carbons. Monoisocyanates (MIC, BIC, EIC and ODIC) (a),

diisocyanates (HDI) (b), isocyanate dimers (UDI) (c), the asymmetrical (A3HDI) (d) and symmetrical (3HDI) (e)

isocyanate trimers.

simulations under NVE conditions, both at temperature and pressure of 293.15 K and 1 atm. When

compared against the reference values listed in table 1, the unoptimized GAFF overestimates density and

vaporization enthalpy by 8% and 42% respectively, in line with what was reported elsewhere [151, 150,

152], indicating that liquid cohesive forces are exaggerated by GAFF.

One way to correct this overestimation, is by scaling the atomic charges as done in the case of

simulations of ionic liquids in the MDEC model [195, 189] where a scaling factor of 1√
2
was adopted. To

understand this step, it should be taken into account that the original GAFF force-field was developed to

describe small drugs in a water-solvated environment. The strong dipole moment of water will produce

a polarization effect on the charge distribution of the solute molecules. The RESP method is based upon

Hartree-Fock calculations and tends to overestimate the atomic partial charges, when compared with more

accurate DFT methods. However, within the original GAFF formulation this effect is not corrected in order

to reproduce the water overpolarization effect. When considering other molecular liquids or other solvents,
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the HF-RESP charges might be inadequate.

The charge-scaling improves the agreement between calculations and experiments, however still ove-

restimating the reference values, with simulations giving ρ = 1.001 ± 0.005 g/cm3 and ∆Hvap =

37.6 ± 6.5 kJ/mol. To test whether a stronger scaling could cure this behaviour, a factor of 1√
10

was also considered, but very little improvement was observed with respect to the former scaling, with

ρ = 0.989 ± 0.005 g/cm3 and a ∆Hvap of 39.9 ± 6.8 kJ/mol being obtained. This indicates that

the charge scaling alone is not sufficient to achieve better accuracy, indicating that NCO-NCO interacti-

ons, apart from a significant electrostatic term, also include a relevant dispersion contribution, hence the

isocyanate group LJ parameters should be optimized as well.

Hence, new Lennard-Jones parameters for N, C and O atoms of the isocyanate group were obtained

using the following procedure. The ε value for the three atoms was initially reduced by 0.055 kcal/mol

and new parameter sets were defined incrementally considering steps of 0.005 kcal/mol. Regarding the

LJ radii σij , the default values were downsized by subtracting 0.0287 Å.

Each parameter set was used to run a calculation of ρ and∆Hvap and the best results were obtained

with the GAFF-IC set (see Appendix I), which provided an excellent agreement with both density and

vaporization enthalpy with deviations better than 1% and 10 %, respectively. Concerning the non-bonded

parameters for the alkyl group atoms, the parametrization of Dickson et al. was adopted [150].

Standard GAFF is known for poorly reproducing the dihedral energies of alkanes, which affects its pre-

dictions of liquid phase properties. Therefore, a refitting of the relevant isocyanate dihedral energy terms

is required. In any case, having changed the non-bonded parameters and the partial charge derivation

scheme rendered the GAFF default dihedral parameters inconsistent.

Figure 7 shows the dihedral energy curves obtained from the optimized parameters. DFT relaxed scans

were performed at the B3LYP-D3/6-311+g(d,p) level of theory. The overall accuracy increased significantly

with respect to the standard GAFF, with an almost perfect match obtained for C-C-C-C dihedrals, while the

C-C-C-N was greatly improved, especially the minima at ±60 degrees.

3.2.3 Transferability and performance of GAFF-IC

The newly developed force field was further tested by calculating ρ and∆Hvap of the isocyanate test set

(see figure 6), as well as their viscosity at different temperatures.

Viscosity was calculated from NVE simulations through the Green-Kubo formula, as explained in

section 2.4.3.5. Simulations times up to 5 ns were employed, and thermodynamic data was saved

every 3 fs, for further processing. To avoid error accumulation, an integration time window tW of 50
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Figure 7: Comparison of dihedral energies between DFT at the B3LYP/6-311++G(d,p) level of theory (circles) and

fitted molecular mechanics parameters dihedral energies (lines) for a central C-C-C-C dihedral (a) and a terminal

C-C-C-N dihedral (b), as shown in insets. Mean absolute deviation is 0.2 kcal/mol.

ps was sufficient to ensure the convergence of the autocorrelation integral for the low-viscosity systems,

namely all monoisocyanates and HDI. Larger tW were considered for isocyanate dimers and trimers, up

to tW = 600 ps. All results were averaged considering different time origins, spaced by 15 fs. Other

values were considered as well: while larger ones degrade the integral quality, smaller ones provide no im-

provement. For small species, up to HDI, boxes with 1000 molecules were simulated; for the larger ones

and all trimers, the number was reduced to 343, in order to keep the computational cost to reasonable

levels.

Table 1 lists the molecule set considered for GAFF-IC parametrization and testing, along with the

experimental and calculated values for density, enthalpy of vaporization and viscosity. The calculated and

experimental values of ρ and∆Hvap for the molecules in table 1 are plotted in figure 8, panel (a) and (b),

respectively. The densities calculated with standard GAFF are slightly overestimated, with a relative mean

absolute deviation (MAD) of 2.79% while GAFF-IC predicts densities very close to the reference ones, with

a relative MAD of 0.748%. Concerning vaporization enthalpies, the use of GAFF resulted in a marked

overestimation of∆Hvap for all the molecules considered, producing a MAD of 55.92 %. Conversely, the

GAFF-IC predicted ∆Hvap values are much closer to the experimental ones, with a MAD of 12.01 %. An

exception seems to be represented by the HDI and ODIC, for which the GAFF-IC force field overestimates

∆Hvap by 17.5 % and 17.7 %, respectively. However, the reference values lie within the uncertainty of the
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GAFF-IC prediction, and it clearly represents an improvement with respect to the unoptimized parameters,

that overestimated the experimental ∆Hvap by a factor 2.
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Figure 8: Deviation against experimental values of the calculated ρ (a) and∆Hvap (b) for all the molecules of table

1. The plots are restricted to those molecules for which measurements were available. Dashed line is y = x.

Experimental and calculated viscosity values are reported in figure 9. Due to the high viscosity at room

temperature of isocyanate trimers, Green-Kubo calculations can be difficult, requiring very long simulation

times. Therefore, viscosity measurements for 3HDI were performed at higher temperatures, allowing for

a direct comparison between experiments and simulations.

The standard GAFF force field overestimates experimental viscosities by about one order of magnitude

for HDI and gives larger values for the smaller isocyanates (MIC, EIC, BIC), when compared with GAFF-IC

results. In turn, GAFF-IC viscosity predictions almost match experimental values. Concerning polyisocya-

nates, our results show once again a large difference between the GAFF and GAFF-IC, with the unoptimized

force field providing a 6-fold overestimation of the 3HDI viscosity. On the other hand, GAFF-IC provides

very accurate estimates of viscosities for 3HDI and UDI, in excellent agreement with experimental values,

reproducing very well the expected A3HDI/3HDI viscosity ratio. In figure 9 (b) is reported a comparison

between experimental and calculated viscosities for 3HDI at three different temperatures. Again, an ex-

cellent agreement with experimental data was found, with predicted viscosities matching the experimental

values.
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Figure 9: (a): Deviation against experimental values of the calculated η of all the molecules of table 1, and calculated

at the temperatures reported therein. The plot is restricted to those molecules for which measurements were

available. Dashed line is y = x. For 3HDI, only the first entry of table 1 is shown.

(b): Comparison between experimental and calculated viscosities for 3HDI, at different temperatures.

3.3 Viscosity calculations of selected aliphatic polyisocyanate

systems

In the previous section, the validity of the GAFF-IC force field in predicting liquid properties of isocyanate and

polyisocyanate liquids has been established. In the following, further results on several polyisocyanates

are reported. Not only they serve as a further validation of GAFF-IC transferability and performance, but

are also useful to provide insights into the physical mechanisms underneath the liquid behaviour. While

the first two sections show calculations on systems for which experimental data was available, the last

one shows results on not yet synthesized molecules.

3.3.1 Functional and non-functional trimers

To compare our calculations with the experimental results reported in figure 5, the series of functional and

non-functional pure trimers has been reproduced. For each system, boxes containing 343 molecules were

simulated. It was already pointed out that room-temperature viscosities are too high to be calculated from

MD simulations. To overcome this limitation, the measurements were repeated at a higher temperature

of 358.15 K, thereby allowing for a direct comparison of measured and predicted values. Unfortunately,
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n=4 trimers were not available any more at the time of these measurements.

3 4 5 6 7
n (number of CH

2
 groups)

0

20

40

60

80

100

120

V
is

co
si

ty
 (

m
P

a·
s)

R = NCO
R = H
R = NCO
R = H

Figure 10: Comparison of simulation (open symbols) and measurements (full symbols) for a series of functional

(red) and non-functional (black) aliphatic isocyanurates. All data refer to a temperature of 358.15 K and a pressure

of 1 atm.

Simulation results are reported in figure 10, where compared with experimental data and an excellent

agreement is found. More specifically, our model is able to capture the viscosity difference between functi-

onal and non-functional trimers. The peculiar trend of increasing viscosity for smaller molecular weights

is also reproduced for functional trimers, and expanded up to the experimentally unavailable until now

n=3 molecules. These results are particularly important because not only they prove that GAFF-IC can be

easily and effectively transferred to isocyanate trimers, but also indicate that the current model reproduces

correctly all the viscosity differences and features. meaning that it represents well the underlying physical

processes.

3.3.2 Isocyanate-isocyanurate mixtures

To explain the viscosity difference between functional and non functional isocyanurates, it is possible to

hypothesize the existence of some type of interaction between isocyanate groups and isocyanurate rings.
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If this is true, it is expected that the mixing of HDI, bearing only NCO groups, and non-functional HDI

trimers, containing only isocyanurates, would produce some observable effect in the mixture’s viscosity.

The viscosity of an ideal binary mixture, that is one in which the mixing process does not produce any

change in volume, is described by the Arrhenius law:

ln η12 = x1 ln η1 + x2 ln η2, (3.1)

where the mixture viscosity η12 is expressed in terms of that of pure liquids ηi and the mole fractions xi.

The ideality holds when the interaction between similar or different molecules is the same, which is almost

never the case [196]. To take into account non-ideality, Grunberg and Nissan [197] proposed to extend

equation 3.1 by adding an empirical interaction parameter G12:

ln(η12) = x1 ln η1 + x2 ln η2 + x1x2G12. (3.2)

A positiveG12 is related with the onset of attractive intermolecular interactions, and would cause a positive

deviation in viscosity from the Arrhenius law.

To check what happens in isocyanurate mixtures, the viscosity of 3HDIν = 0/HDI mixtures was me-

asured at 298 K for different mixing ratios and compared with simulations at the same conditions, as

shown in figure 11.
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Figure 11: On the left, experimental and simulated viscosity for a HDI/3HDIν = 0 mixtures, measured at 298 K,

reported as a function of the molar fraction of 3HDIν = 0. The red dashed line indicates ideal behaviour, as predicted

by equation 3.1.

On the right, the deviation of experimental viscosity from the Arrhenius law is reported, along with the experimental

data fit using equation 3.2.
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The mixture viscosity exhibits a slight positive deviation from the ideal behaviour, and can be repre-

sented well by a Grunberg-Nissan curve with G12 = 0.864. This indicates the presence of attractive

intermolecular interactions between isocyanurates and isocyanates. When compared with other systems

with positive deviations from ideality [198], G12 is rather small, suggesting that the interaction is not

strong. Beside this, the simulation results follow almost exactly the experimental measurements, at least

for the molar ratios simulated, proving once again the robustness of the proposed parametrization, even

when applied to mixtures.

3.3.3 Effect of arm modification

Finally, we simulated a series of HDI trimer liquid with decreasing functionality, obtained by subsequently

removing one of the NCO ends of the trimers. These molecules with lower functionality could be synthesi-

zed starting from mixtures of aliphatic mono- and diisocyanates, but are very difficult to isolate, therefore

no experimental data is currently available. However, it is instructive to observe the change in viscosity in

terms of functionality.

The temperature was set to 398.15 K to have a faster convergence of the GK calculation. Results are

reported in figure 12, along with the calculated densities. While the liquid density appears to be a linear

function of the functionality, η(ν) behaves non-linearly. It is interesting to observe that an appreciable

rising in viscosity is found only from ν ≥ 2.

In conclusion, the last two subsections demonstrated that the viscosity of aliphatic isocyanurates does

not depend in a simple way upon the presence of isocyanurate rings and isocyanate groups, but appears

to be influenced by cooperative effects, as suggested by the fact that high viscosities are found only for

functional trimers, where both groups are present within the same molecule, and only for ν ≥ 2. Mixture

of diisocyanates and ν = 0 isocyanurates show small positive deviations of their viscosity with respect to

the ideal behaviour, indicating the presence of some kind of interaction between these molecules, expected

to be weakly attractive.

To further investigate and validate these hypotheses, a deeper insight on polyisocyanates’ intermo-

lecular interactions is certainly required. How this can be obtained, by means of quantum mechanical

calculations, is the subject of next chapter.
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Figure 12: Calculated densities (left) and viscosities(right), at 398.15 K and 1 atm, for a series of trimers obtained

from hexamethylene mono- and diisocyanates. The functionality ν represents the number of NCO terminations per

molecule.

3.4 Low-temperature estimations of viscosity

One of the main limitations of the Green-Kubo method is that the liquid’s typical relaxation times are getting

longer as the temperature decreases, following - at first approximation- an Arrhenius-like exponential law:

τ(T ) ≈ τ0 exp
− α

kBT ,

α being an activation energy for the process under consideration. Since shear stress makes no exception,

lower temperatures imply longer simulation times for the GK integral, equation 2.128, to converge. Unfor-

tunately, requested times could exceed the limits imposed by the availability of computational resources.

Moreover, even if a large number of nodes could be available, the integrals would still be prone to the

inescapable accumulation of errors, undermining the reliability of results.

While higher-temperature simulations can easily overcome this limitation, corresponding experimental

measurements are not always available because, in real systems, other phenomena could appear at these

regimes, such as isocyanate reactions. Thus, it may be necessary to provide alternative ways to extract

from simulations quantities that can be related to room temperature viscosity. In this section, we will

consider the possibility to employ Stokes-Einstein and Debye-Stokes-Einstein relationships for viscosity
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estimation.

3.4.1 The Stokes-Einstein and Debye-Stokes-Einstein relationships

The Stokes-Einstein (SE) relationship, derived for the motion of Brownian particles, allows to calculate the

diffusivity D of a spherical particle of radius r0 immersed in a viscous fluid with viscosity η:

D =
kBT

6πηr0
. (3.3)

If r0 is independent from temperature, this can be recast as:

ηD

T
≈ const. =⇒ η2 ≈

D2T1
D1T2

. (3.4)

Thus, if 3.3 is valid, then the viscosity at lower temperature T1 can be calculated by knowing the viscosity

at some higher temperature T2 and the diffusivity coefficients at both temperatures. By stating this, it

is implicitly assumed that 3.3 applies to molecular liquids. Indeed, the assumption has been found to

be valid in a wide range of systems [199], although it is violated when the system approaches the glass

transition temperature [200]. In atomistic simulations, it is possible to calculate the molecular mean

square displacement (MSD) 〈∆R2(t)〉, defined as:

〈
∆R2(t)

〉
=

1

N

N∑
i=1

∣∣∣~Ri(t)− ~Ri(0)
∣∣∣2 , (3.5)

where the sum runs over all theN molecules,Ri being the position of their centre of mass. In a molecular

liquid, the position of a molecule will follow a diffusive behaviour in the long time limit, r2 ∝ Dt. Therefore,

it is possible to estimate D from 3.5, using:

D = lim
t→∞

〈
∆R2(t)

〉
6t

(3.6)

Figure13 reports the self-diffusion constants calculated for pure functional and non functional trimer li-

quids, at different temperatures. It is interesting to observe how, for functional trimers, the diffusivity

increases with the molecular weight, while the converse seems to hold for non functional ones.

The Debye-Stokes-Einstein(DSE) relationship is the rotational analogous of 3.3:

η1
T1τ1

≈ const., (3.7)

where, in lieu of the rotational diffusion constant Dr, the orientational relaxation time is used instead, by

virtue of the equalityDr =
1
2τr

. The τr might be extracted from the orientational autocorrelation function

Crot(t):

Crot(t) =
1

N

N∑
i=1

n̂i(t) · n̂i(0), (3.8)
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Figure 13: Self-diffusion constants for functional (left) and non functional (right) isocyanurates, for different alkyl arm

lengths, at the temperature of 298, 358 and 398 K.

where N denotes the total number of molecules and the n̂i are unit vectors related to the molecular

orientation. For isocyanurates, a natural choice is to identify n̂i with the unit vectors normal to the ring

plane. The rotational relaxation could be a very slow process, exceeding by several order of magnitude

the time accessible by simulations. Yet, Crot(t) can be fitted with a two-process stretched exponential,

that is a modified Kolrausch-Watts-Williams law [201]:

Crot.(t) = a0e
−
(

t
τβ

)
+ (1− a0)e

−
(

t
τα

)γ

, (3.9)

and the relaxation time τKWW obtained by integrating the fitted function, where it is understood that

τr = τKWW . Figure 14 reports the calculated τKWW for the same series of molecules as in figure 13.

Rotational relaxation times grow as the temperature decreases, following an inverse trend with respect to

the diffusion constants.
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Figure 14: Rotational relaxation times for functional (left) and non functional (right) isocyanurates, for different alkyl

arm lengths, at the temperature of 298, 358 and 398 K.

3.4.2 Effectiveness of diffusion-viscosity relationships

The room temperature viscosity of functional and non functional isocyanurate families estimated using 3.4

and 3.7, together with high temperature calculations reported in figure 10. The error on these estimates

may be assumed to be very large, because it is composed by that coming from the high-temperature

viscosity measurement and that from the D or τKWW . For these reasons, error bars are not reported,

and the obtained estimates should be considered only as indicative.

DSE-based estimation exaggerates the experimental values for both families of molecules. The error

is much more pronounced for non functional isocyanurates while, in the other case, the overestimation

seem to improve as the alkyl arms are shorter, and their flexibility decreases. In fact, the orientational

correlation function has been defined in a way that is unable to capture the effects of arm flexibility, which

becomes more important as the alkyl arm length increases.The observed match with the n=4 trimer is

not very relevant, because it is the only occurrence found.
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Figure 15: Estimated viscosities at 298 K for functional (left) and non functional ν = 0 (right) isocyanurates,

for different alkyl arm lengths, as obtained from 3.7 using either rotational or the α relaxation times. Results are

compared with the experimental data at the same temperature, taken from 5.

SE-based estimates, on the other hand, appear to provide RT viscosities lower than the measured

ones for functional trimers, with an error that increases the chain length decreases. Nevertheless, they

provide much better values for the ν = 0 trimers, with a very close agreement with experimental data. The

underestimation observed in functional trimers could depend upon two factors. Firstly, it is not guaranteed

that the simulation time considered is enough for those liquids to attain the diffusive regime, thus the

diffusivities at 298 K might be overestimated. Since in 3.4 they appear in the denominator, larger Ds

would result in lower RT viscosities. This effect is not present in non-functional isocyanurate because, due

to their faster dynamics, which attain a purely diffusive regime in relatively short times.

Secondly, and this argument applies to the rotational estimates as well, there is no evidence to claim

the validity of SE and DSE relationships for isocyanate liquids, and what is observed might be the result

of their violation. To verify that, further experiments are required, aimed at measuring the rotational and

translational diffusion of both functional and non functional isocyanurates, as well as determining their

structural relaxation times.

Overall, the presented calculations seem to indicate that for aliphatic isocyanurate there is not a clear

relationship between viscosity and diffusion times. Whereas some of the estimations might be certainly

improved by employing more computational power, information on the validity -or violation- of SE and

DSE relationships would be extremely welcome, not only to improve the understanding of the dynamics

of complex molecular fluids, but also to serve as a benchmark to assess the reliability of the atomistic
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models employed in simulations.

3.5 Conclusions

The GAFF-IC forcefield was developed starting from standard GAFF, and correctly predicted the densities

and vaporization enthalpies of isocyanate-based molecular liquids, providing a 5-fold increase in accuracy

for both quantities, when compared with GAFF. The use of GAFF-IC for viscosity calculations resulted in a

striking improvement of viscosity predictions. Excellent agreement was found for HDI molecule, curing the

observed order-of-magnitude overestimations of GAFF calculations. Although it was parametrized starting

from monoisocyanates, GAFF-IC also proved to be transferable to polyisocyanate molecules, as testified

by the broad range of molecular liquids simulated, always providing viscosities in excellent agreement with

experiments as well. Our study demonstrates that GAFF-IC is a powerful tool to reliably predict densities,

vaporization enthalpies and viscosities of isocyanurate materials and hence help in the design of new

processing routes and materials based on isocyanates.

Different methods to estimate viscosities at ambient conditions from higher temperature calculations

were also illustrated and discussed, in order to verify the possibility to expand the application field of

MD simulations to common laboratory conditions. In spite of not being conclusive, some promising, yet

qualitative, results were obtained, underlining the need of further investigations, not only with simulations

but also from the experimental side, to clarify the validity -or violation- of Stokes-Einstein and Debye-Stokes-

Einstein relationships in isocyanurate liquids, and to characterize their structural relaxation times.

We would like to stress that this parametrization, which filled an important gap, is only a first step, and

could certainly be refined with future work. Directions of improvement of GAFF-IC include its extension

to other family of isocyanates, such as aromatic ones, as well as a generalization to urethanes and urea,

all very likely to coexist with isocyanates and isocyanurates in final materials. The compatibility with

already existing parametrizations needs to be addressed, in order to pave the way for isocyanate-substrate

interaction studies, interesting in their applications as coatings or adhesives, and simulation in biological

environment, due to their extensive presence in biomaterials. The possibility to fully evaluate GAFF-IC

performance was limited by the scarceness of quality experimental data on them. We strongly believe

that further work should be performed in this sense, non only to provide a larger basis of comparison

for improving the accuracy of simulations, but also to gain further insight into the microscopic dynamic

properties of isocyanates and isocyanurates.

71



Chapter 4

Intermolecular interactions of isocyanates

and isocyanurates

This chapter contains a study on intermolecular interactions of isocyanates and isocyanurates, performed

through ab-initio methods and MD simulations, and is organized in two parts. The first part is an adap-

tation of the publication ”Investigation on the intermolecular interactions in aliphatic isocyanurate liquids:

revealing the importance of dispersion” [202]. The second part, containing original unpublished work, stu-

dies the noncovalent adhesion properties of isocyanurates with selected bi-dimensional materials, such

as graphene, boron nitride and heptazine-based carbon nitride.

4.1 Motivation

In chapter III, a classical molecular dynamics force field has been developed, tested and applied in ato-

mistic simulations to study the liquid state properties of aliphatic polyisocyanate liquids. The predictions

followed closely experimental results for a wide range of isocyanate liquids, confirming that such appro-

ach is capable of taking into account with good accuracy their molecular-scale properties. In particular,

the evidence of a weak isocyanate group/isocyanurate ring interaction has been shown, and proposed to

be the basis of the high viscosities observed for functional isocyanurates. As no experimental evidence

confirming or denying this is currently available, the only way to investigate this hypothesis is through ab

initio methods.

In the following sections, the presence of such interaction is revealed with density functional the-

ory and characterized with symmetry-adapted perturbation theory and non-covalent interaction analysis.

Furthermore, gas and liquid phase binding free energies, as well as local structure properties, were obtai-
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ned from classical MD simulations employing the GAFF-IC force field, demonstrating how the isocyanate-

isocyanurate interaction could be connected to the higher viscosities observed in functional trimer liquids.

One interesting result is that the isocyanurate ring is capable to establish strong dispersion-dominated

interactions. Considering its relatively flat structure, we investigated the adhesion properties of the ring

with 2D materials, to explore the possibility of isocyanurate based non-covalent functionalization. This

would have advantages over covalent approaches, because no chemical bonds are formed between the

material and the isocyanurate. This results in a better preservation of the unique properties of 2Dmaterials,

and opens the possibility to embed them in an isocyanate-based networks. To explore this possibility, the

adhesion energies of methyl isocyanurates were calculated for a series of 2Dmaterials using DFTmethods,

and promising results are found.

4.2 Study of isocyanate and isocyanurate intermolecular inte-

ractions

4.2.1 Assessment of the accuracy of ab-initio methods for isocyanates and

isocyanurates

DFT and SAPT methods were used to calculate the interaction energies (Eint) of isocyanate and isocya-

nurate dimers, as defined in section 2.1.3.2. The performance of these methods for such molecules was

evaluated using high accuracy calculations as a basis of comparison. For this purpose, a test set of 16

small molecule dimers was built starting from methane, isocyanic acid (IC), methyl isocyanate (MIC) and

formaldehyde molecules. An isocyanuric acid-methane dimer was also included to consider ring-based

interactions. Optimized structures at the mp2/aug-cc-pVTZ level of theory were used to calculate the refe-

rence interaction energies, obtained with the CCSD(T)-complete basis set extrapolation scheme as descri-

bed in [116]. An exception was the isocyanuric acid-methane dimer, for which the CCSD(T)-cbs(aDZ) [116]

method was preferred due to limits in available computational power. The results obtained are shown in

figure 16 and reported in table 2.

Concerning DFT methods, two hybrid DFT functional were considered, which already included a

scheme for empirical dispersion correction. The B3LYP-D3BJ and the APFD hybrid functionals were com-

pared using the 6-311++G(d,p) basis set, and showed similar performance. APFD, with a mean abso-

lute error (MAE) of 0.16 kcal/mol, behaved slightly better than B3LYP-D3BJ, that scored a MAE of 0.20

kcal/mol. However, it showed a slight tendency to overestimate the reference Eint throughout the set,
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Table 2: Comparison between CCSD(T)-CBS and DFT/SAPT single point energies for the small isocyanate reference

set, along with the resulting mean absolute deviations (MAD). Energies are reported in kcal/mol. DFT calculations

were conducted using the 6-311++G(d,p) basis set, while SAPT calculations employed augmented (and truncated

for SAPT0) correlation consistent basis sets. Last row reports the MAE of the S22 test of DFT and SAPT methods.

The corresponding geometry can be found in supplementary material of [202].

Dimer ID Interaction energy (kcal/mol)

CBS B3LYP-D3BJ APFD SAPT0 SAPT2 -dz SAPT2+ -dz

IC dimer (linear) B1 -3.64 -3.74 -3.54 -4.03 -3.31 -3.26

IC dimer (L-shape) B2 -4.06 -4.42 -4.32 -4.42 -4.08 -3.84

IC dimer (symmetric) B3 -3.83 -3.88 -4.14 -4.60 -3.69 -3.52

IC and CH2O B4 -4.86 -5.02 -5.33 -5.77 -4.71 -4.60

ICU and CH4 (top) B5 -2.351 -2.26 -2.53 -1.41 n/a -2.28

MIC dimer (cc) B6 -6.17 -5.81 -6.23 -6.37 -5.99 -5.89

MIC dimer (ct) B7 -5.94 -5.50 -5.97 -6.09 -5.85 -5.73

MIC dimer (tt) B8 -5.70 -5.17 -5.69 -5.79 -5.69 -5.55

MIC and CH4 (linear) B9 -0.64 -0.44 -0.49 -0.43 -0.58 -0.61

MIC and CH4 (bridge) B10 -1.52 -1.37 -1.47 -0.63 -1.51 -1.34

MIC and CH4 (tail) B11 -0.85 -0.73 -0.81 -0.43 -0.77 -0.74

MIC and CH4 (nitrogen) B12 -1.12 -1.02 -1.11 -0.59 -1.14 -1.02

MIC and CH2O (c) B13 -5.32 -5.22 -5.58 -5.91 -5.13 -5.03

MIC and CH2O (t) B14 -5.08 -4.89 -5.31 -5.73 -4.96 -4.85

IC and MIC B15 -5.09 -5.00 -5.29 -5.04 -5.00 -4.87

MIC dimer (NH:NH) B16 -2.79 -2.98 -3.03 -2.61 -2.95 -2.80
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Figure 16: Difference between the reference CCSD(T)/CBS energy and the results of the various methods tested,

for the isocyanate test set. Solid lines denote 10 % accuracy w.r.t. the reference energies.

particularly evident for the ICU-CH4 dimer. To further compare these methods, the S22 [116, 203] ben-

chmark was used, revealing that B3LYP-D3BJ/6-311++G(d,p), with a MAE of 0.25 kcal/mol, represents

an overall better choice, while APFD/6-311++G(d,p), with a MAE of 0.86 kcal/mol, greatly overestimated

the interaction energy of both dispersion-dominated and strong H-bound complexes.

For perturbative methods, a comparison on the isocyanate test set has been performed between

the SAPT0/jun-cc-pvdz, SAPT2/aug-cc-pVDZ and SAPT2+/aug-cc-pVDZ, the last of which was suggested

as a possible reference method for medium-size problems [114]. Higher order SAPT methods were

precluded due to the size of the studied systems. It was found that SAPT0/jun-cc-pVDZ and SAPT2/aug-

cc-pVDZ provide a similar, poor, accuracy. In particular, SAPT2 method systematically underestimates the

interaction energies. In turn, SAPT2+ method provided much better results, with a MAE of 0.20 kcal/mol

on the isocyanate set and of 0.34 kcal/mol for the S22 benchmark [114], making it the best available

choice for SAPT calculations in this context.

4.2.2 Interaction energies of model bimolecular complexes

Isocyanurates interactions could be decomposed as the sum of independent contributions, that is NCO-

NCO (NN), NCO-isocyanurate ring (NR) and ring-ring (RR) contacts. Considering dimers of simple mole-

cules, these interactions can be isolated, getting rid of the conformational complexity of larger systems,
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and their Eint readily calculated. The molecules considered were methyl isocyanate (MIC), ethyl isocy-

anate (EIC) and ethylene diisocyanate (EDI), propyl isocyanate (PIC) and propylene diisocyanate (GDI),

hexyl isocyanate (HIC) and hexamethylene diisocyanate (HDI), trimethyl symmetric (3MIC) and asymme-

tric (A3MIC) trimer, triethyl isocyanurate (3EIC) and propylene diisocyanate trimer (3GDI). A graphical

representation of all dimers considered is drawn in figure 17, while theirEint calculated by DFT and SAPT

methods are reported in table 3 and figure 18.

Table 3: Interaction energies (in kcal/mol) of model dimers, calculated at the B3LYP-D3BJ level of theory and using

SAPT2/SAPT2+ methods.

Dimer ID Contact type EDFT (kcal/mol) ESAPT2(kcal/mol) ESAPT2+(kcal/mol)

MIC-MIC 1 NCO-NCO −5.81 −5.36 −5.89

EIC-EIC 2 −6.06 −5.97 −6.47

EDI-EDI 3 −6.68 −6.60 −7.17

PIC-PIC 4 −6.26 −6.27 −6.78

PIC-GDI 5 −7.18 −7.08 −7.61

GDI-GDI 6 −7.85 −7.66 −8.21

HIC-HIC 7 −6.37 −6.44 −6.98

HIC-HDI 8 −6.68 −5.41 −5.84

HDI-HDI 9 −6.92 −6.86 −7.45

3MIC-MIC 10 NCO-Ring −7.08 −7.07 −7.55

3MIC-EIC 11 −7.38 −7.62 −8.11

3MIC-PIC 12 −7.71 −7.96 −8.46

3EIC-EIC 13 −7.02 −7.33 −7.91

3GDI-3GDI 14 −13.49 n/a n/a

3GDI-3GDI 15 −17.58 n/a n/a

3MIC-3MIC 16 Ring-Ring −13.75 −13.28 −14.18

A3MIC-A3MIC (a) 17 −11.64 −12.54 −13.13

A3MIC-A3MIC (b) 18 −12.36 −13.06 −13.60

A3MIC-3MIC 19 −13.16 −13.65 −14.40

3EIC-3EIC (a) 20 −12.13 −12.74 −13.72

3EIC-3EIC (b) 21 −13.08 −14.51 −15.31

3EIC-3EIC (c) 22 −10.02 −10.06 −10.84
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Figure 17: Representation of the isocyanate dimer geometries used to calculate the interaction energies reported

in table 3. For NCO-Ring and Ring-Ring dimers, hydrogen are not shown.
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Figure 18: Interaction energy for the dimers of table 3. The plot is subdivided by interaction type in NCO-NCO (NN)

dimers, NCO-ring (NR) dimers and ring-ring(RR) dimers. Dimer IDs are the same as in table 3.

The first group, which contains dimers involved in NN contacts, has the weakestEint. The interaction

energy seems to be weakly dependent on the alkyl chain length, while being influenced by the presence

of NCO groups not directly involved in the contact, undergoing long-range electrostatic interactions. These

effects are stronger for shorter molecules, in which the peripheral NCO groups are generally closer.

NR interactions, in the second group of table 3, are a specific feature of systems containing both

isocyanurate rings and isocyanate groups. For all the systems investigated, the geometrical optimization

always led to a structure similar to that reported in figure 22: the NCO carbon adopts a bridge position

with respect to the underlying ring N-C bond, whereas the NCO oxygen places itself approximately along

the ring axis. Their interaction energy is of the same order of magnitude as NN contacts.

The strongest binding can be achieved with RR-type interactions, with Eint always lower than -10

kcal/mol. The lowest interaction energies were obtained with a perfectly parallel stacking of the two

molecules along the axis that passes through their ring centres, with a relative rotation of π/6. This

conformation is invariant under π/3 rotations of one of the molecules around its axis. Longer alkyl chains

extent always normally to the ring plane(i.e. either up or down), leading to several possible stable minima,

all of which showed comparable energies.

A3MIC dimers provided slightly weaker Eint than 3MIC dimers. The presence of two minima in table

3 is due to the fact that the asymmetric ring dimer breaks the rotational symmetry and allows for two

78



Chapter 4 Section 4.2

parallel stacked stable conformations, with different rotation angles.

Comparing DFT and SAPT results, it is evident that SAPT2/SAPT2+ energies are always lower than

B3LYP ones, especially for RR-type interactions. Yet trends are in excellent agreement everywhere, except

for the RR-type interaction branch, in which DFT indicates the 3MIC/3MIC dimer as the lowest energy

one, in contrast with SAPT calculations. This discrepancy could be related to the difference in treatment

of dispersion between these methods and higher level of theory calculations would be required to establish

which predictions are more accurate.

Finally, to get an insight into the expected order of magnitude of the Eint of larger molecules, the

interaction energy of two stable conformations exhibiting NCO-ring interactions (see figure 19) of 3GDI

isocyanurates was calculated. This revealed a relatively strongEint, probably arising from the cooperation

effect of different contributions, in which NR type interactions could play a crucial role. To verify this

assumption, the most energetic 3GDI dimer was modified by sequentially replacing the NCO groups by a

hydrogen atom, whose position was relaxed while keeping all other atoms fixed. In figure 19, along with

the starting dimer representation, the resulting Eint are reported.

Figure 19: Interaction energy of a stable 3GDI dimer as a function of replacement of NCO groups involved in the

bimolecular contact. In the left, a representation of the 3GDI dimer is shown, along with the substituted NCO groups

(red circles). Related numbers indicate the replacement order. The 3∗ point represents the 3GDI dimer with all the

peripheral NCO groups (blue circles) substituted.

The substitution of NCO groups labelled 1 and 3 increases the initialEint by 6.86 and 5.72 kcal/mol,

respectively. In contrast, the removal of the NCO group labelled 2 accounts for an increase inEint of 1.52

kcal/mol only. NCO groups 1 and 3 could then be identified as involved in NR contacts, accounting for

71.5 % of Eint. This also proves the consistency of the interaction decomposition scheme proposed, as

the residual contribution of the aliphatic chains and methane groups is small. Interestingly, if the distant

79



Chapter 4 Section 4.2

NCO groups are substituted, only a small increase of Eint of 1 kcal/mol can be observed, indicating that

these groups bring a marginal contribution, likely only due to long-range electrostatic forces.

The data presented so far reveals that the isocyanurate ring, in both of its symmetric and asymmetric

variants, is a strong noncovalent interaction site. In particular, it has been shown how it is capable of

forming a perfectly stacked structure with a strong interaction energy, and to bind in a peculiar way with

NCO groups. In fact, the NR contact seems to be the key mechanism to cooperatively build strong inte-

raction energies between functional isocyanurate molecules. This assumption agrees with the simulations

reported in section 3.3.3, in which, by simulating pure n=6 3HDI liquid with different functionalities, a

sensible viscosity change was observed only for ν ≥ 2.

4.2.2.1 SAPT energy decomposition and NCI analysis

The use of SAPT methods naturally provided a decomposition of the dimers interaction energy in terms

of a clear physical meaning, allowing for a precise analysis of the nature of the different contacts. The

decomposition of the attractive part of ESAPT
int for the studied dimers is reported in figure 20.
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Figure 20: bottom: Total ESAPT
int (black bar) and its attractive contributions, for the dimers of table 3, calculated

using the SAPT2+/aug-cc-pVDZ method. 3GDI trimers, too large for SAPT2+ calculations, are not reported. The plot

follows the same subdivision in NCO-NCO (NN), NCO-ring (NR) and ring-ring dimers (RR) as figure 18.

Top: ratio between the dispersion contribution and the attractive part of ESAPT
int for each dimer.

The SAPT energy decomposition revealed a net differentiation between NN contacts and the other
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types, with dispersion and electrostatic energies contributing almost equally to ESAPT
int . Conversely, the

dispersion energy accounts for 60-70 % of the attractive part of ESAPT
int in NR contacts and, by a greater

extent, in RR contacts. These calculations indicate that the interactions involving an isocyanurate ring are

essentially similar, with the same prevalence of dispersion forces. The induction term provides a small

contribution, being more relevant for NN and NR dimers, for which it accounts for 10-12 % of the total

attractive contribution.

Furthermore, an NCI analysis was performed on three model dimers, each representative of a contact

type, to investigate the extension of the contact area and to gain further information on the nature of their

interactions.
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Figure 21: Reduced density gradient s isosurfaces (s=0.4) of methyl isocyanate dimer (top left), trimethyl isocyanu-

rate stacked dimer (top right) and ethyl isocyanate-triethyl isocyanate dimer (bottom). The isosurfaces are coloured

according to sgn(λ2)ρ [128]. Intramolecular isosurfaces were omitted for clarity.

As it can be seen in figure 21, delocalized interactions are present, as expected for weak noncovalent

interactions [128]. This is true in particular for NR and RR contacts, in which the interaction region is

widespread and covers almost the entire isocyanurate ring. This indicates that the interactions involve

a large area of the electron density above it, due to the π orbitals normal to the ring plane from sp2

hybridized atoms. The NCI analysis suggests that ring-based dispersion forces are mostly caused by

π · · · π interactions involving the π orbitals of an isocyanurate ring interacting with, for example, those of

a neighbouring isocyanate group or a second isocyanurate ring. The strong dispersion forces observed

for the isocyanurate rings also suggest a possible use as an alternative for non-covalent functionalization
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of two-dimensional materials.

There results are fully compatible with those presented in Chapter III, where the existence of weak

NR contacts was introduced and justified by the positive deviation from ideal behaviour in the viscosity

of isocyanates and non functional isocyanurates. Their dispersion-dominated nature also relates the with

lack of experimental data.

4.2.3 Local structure properties of isocyanate/isocyanurate liquids

4.2.3.1 Free energy calculations in gas and liquid phase

In previous sections, it was demonstrated that the different contact types between isocyanurates possess

distinctive aspects. In particular, NR contacts showed very interesting features, such as a collaborative

character. The objective of the next section is to investigate the liquid state of isocyanate/isocyanurate

systems to understand not only the way these molecules locally organize, but also the presence and

stability of the discussed interactions and how they influence the local structure.

The free energy of binding ∆Gb provides information on the stability of a given dimer at non zero

temperature, and it was thus calculated, in gas and liquid phase, for the different contacts. The adaptive

biasing force (ABF) method was used to obtain the potential of mean force (PMF) as a function of a

properly defined collective variable. Specifically, the distance between ring and NCO group geometric

centres was employed. The gas and liquid phase simulations were performed under NVE conditions.

The liquid phase was simulated using a pure MIC as a solvent. This simplification, both in solution

and in the dimers involved, is necessary in order to obtain converged curves in reasonable times, since

more complex molecules would have required much longer simulations, because of their conformational

complexity. Table 4 reports the∆Ggas,liq
b for 3MIC/MIC possible dimers, along with the shortest distance

of approach, corresponding to the global PMF minimum.

In the gas phase there is only one free energy minimum that corresponds to the most stable structure.

Interestingly, the MIC-3MIC dimer has a ∆Ggas
b that is twice than that of the MIC-MIC dimer, while the

DFT-calculated interaction energies were equal. The strength of ring-ring interactions is confirmed here

by the strong ∆Ggas
b of 3MIC-3MIC dimer. Thus, the different interactions can be clearly ordered by

∆Ggas
b . Concerning liquid phase calculations, the obtained PMF curves are reported in figure 22, showing

a slightly different behaviour. The 3MIC-3MIC PMF curve exhibits several stable minima, with the closest

(CM) being also the strongest, with a∆Gliq
b of -0.81 kcal/mol, and corresponding to the parallel stacking

conformation. In addition, there are two solvent separated minima at 5.4 and 8.2 Å, with a ∆Gliq
b of
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Figure 22: PMF curves obtained at 298.15 K and 1 atm, in a pure MIC liquid solution, for different possible contact

types, exemplified by MIC-MIC (black), MIC-3MIC (red), 3MIC-3MIC (blue) and 3GDI-3GDI (green) dimers. On the

right side of each plot, a representation of the molecules and respective collective variable is shown.
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Table 4: Free energies of binding of 3MIC and MIC dimers in the gas and liquid phase. Minimum distances refer

to the gas phase. The zero value was set as the value of Gb at 14 Å. The depth of the liquid MIC-3MIC minimum

was measured on the metastable minimum at 3.9 Å.

Molecules rmin (Å) ∆Ggas
b (kcal/mol) ∆Gliq

b (kcal/mol)

MIC-MIC 3.9 −0.94 −0.18

MIC-3MIC 3.9 −2.22 −0.10∗

3MIC-3MIC 3.5 −6.02 −0.81

-0.22 and -0.18 kcal/mol, respectively. In the case of the MIC-MIC dimer, a relatively shallow PMF curve

was found, with one weak minimum at 3.8 Å. The MIC-3MIC PMF curve, conversely, is more structured,

showing one metastable minimum at 3.9 Å and another around 6 Å. It is interesting to observe how the

more complex 3GDI-3GDI dimer produces a richer PMF, with a large and shallow minimum located at

large ring-ring distances, centred around 9 Å, and probably caused by NR and NN contacts, although in

this case a simple interpretation of the PMF curve in terms of elementary interactions is not obvious.

RR contacts are dominant in liquid systems, due to their stronger ∆Gliq
b , and the longer range,

producing appreciable effects up to 12 Å. Concerning the other contacts types, the NN PMF has a clear

minimum, however the NR curve is not trivial, confirming that both could play a significant role in the liquid

phase, as also suggested by the 3GDI-3GDI PMF.

4.2.3.2 Local structure characterization

MD simulations of isocyanurate liquids were performed under NVE conditions, using the GAFF-IC force

field, considering different alkyl chain lengths containing n = 3−6 CH2 groups. Non functional aliphatic

isocyanurates were also included to study systems capable of RR contacts only. For each molecule, the

ring geometric centre is the most convenient choice as reference point, and it was used to calculate the

intermolecular ring-ring pair correlation function g(r) on systems equilibrated at 298 K and 1 atm (figure

23). Furthermore, the g(r) was decomposed by calculating, for each molecular pair, their relative tilt

angle, that is the scalar product of their ring normal unit vectors, n̂, according to

θij = cos−1 (n̂i · n̂j)

in order to get the relative tilt angle distribution g(r, θ) (figure 24).

The ring-ring g(r) shows several important features. Closest neighbours are located approximately

at 3.5 Å, followed by a major peak around 6 Å, more pronounced for non functional molecules. A third,
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Figure 23: Intermolecular ring-ring g(r) for functional and non functional isocyanate trimers, as a function of the

ring-ring distance r. N denotes the number of −(CH2)− in the alkyl chains.

smaller, peak can be identified at 8 Å, the height of which strongly depends on the alkyl chain length for

functional trimers, while it is almost unchanged for non functional ones. In the region above 10 Å, a weak

modulation of the g(r) around unity can be observed for both families. Regarding the g(r, θ), closest

neighbours appear to stack, with a net majority of small angles. For the second peak, relative tilt angles

are higher, indicating an abundance of tilted rings, that is in a ”T” conformation. At larger distances, it is

impossible to extract useful information, as angular isotropy is recovered.

The analysis of g(r) and g(r, θ) showed that RR interactions define the liquid microscopic structure,

as already indicated by PMF calculations. Indeed, the g(r) peaks and the PMF minima for the RR con-

tacts correspond and their position is independent of either alkyl chain length or presence of NCO groups.

Additionally, g(r, θ) showed that close rings prefers a parallel arrangement. Thus it is expected that, in

this region, RR contacts constitute the main intermolecular contact type. It is important to note that non

functional molecules display larger g(r) at short distances, when compared to their functional counter-

parts. This indicates that, for the latter, RR-type interactions are partly screened. Based on the results

presented in previous sections, this can be explained by the presence of NR contacts.

4.2.4 Characterization of NR contacts

As already mentioned, non functional isocyanurates, at parity of conditions (alkyl chain length, tempera-

ture, pressure), typically exhibit viscosities that are 3-5 times lower compared to functional ones. This

difference was already attributed in chapter III to the NR-type interactions, which were deeply investigated
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Figure 24: g(r, θ) as a function of the ring-ring pair distance for functional (left) and non functional (right) isocya-

nurates, calculated for trimers with N=3 (top) and N=6 (bottom) carbons in the alkyl chains.

in the preceding sections. Based on the low viscosity of linear diisocyanates, NN contacts are not expected

to play a significant role. Therefore, the characterization of NR-type interactions in the liquid isocyanurates

will help to verify the consistency of this hypothesis. In this regard, the distance rc between rings and

-NCO group centres, belonging to different molecules, was measured for each possible pair and an NR

contact was acknowledged if rc < 4.0 Å. In figure 25 the radial NR contact density nc(r) is reported as

a function of the intermolecular ring distance, normalized in such a way that

NNR =

∫ ∞

0
4πr2drnc(r)

is the number of contact points per molecule.

It can be observed that the NR contact density is greatly influenced by the alkyl chain length, in such

a way that the maximum of the distribution decreases and the width increases, for increasing alkyl chain

length. The only constant feature is the small peak at 6 Å, corresponding to the first g(r) peak. The other

peak at 8.2 Å, corresponding to the second g(r) peak, is clearly visible for the lighter molecules, up to

N=5, but then disappears for N=6, which displays a different contact distribution, more skewed towards

larger distances. The difference could be due to the fact that, for short alkyl chains, terminal isocyanates

are constrained in their movements while, in the opposite case, the space they can explore is much larger,
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Figure 25: Distribution nc(r) of NR contacts per molecule and per unit volume of functional isocyanurates as a

function of the intermolecular ring-ring distance r, at 298.15 K and 1 atm. N denotes the number of −(CH2)−

in the alkyl chains.

Inset: integral of nc(r), yielding the number NNR of NR contacts per molecule.

hence a broader distribution of chain lengths is expected. At the same time, the probability of NR contacts

at shorter distances is reduced, due to excluded volume effects.

The smallest system has NNR = 0.9 NR contacts per molecule, meaning that ca 90 % of the

molecules are bound in this way. NNR seems to be proportional to the alkyl chain length, although there

is a net change from N=5 to N=6, caused by the different character of their nc(r). It can be observed that

NNR correlates with the experimental viscosity trends of functional isocyanurates reported in chapter III,

with higher values corresponding to higher viscosities.

In the range of short ring-ring distances, the NR contacts are absent and the interactions are domi-

nated by the RR contacts, as already indicated by g(r) and g(r, θ). However, at longer ranges, the RR

contribution drops significantly, as dispersion forces decay more rapidly than dipole-dipole or any electro-

static interaction, and NR contacts provide the strongest intermolecular interaction energies. To prove this,

a liquid phase simulation snapshot from the 3GDI liquid was analysed and, by using the ring-ring distance

as radial variable, the DFT interaction energy of all pairs at a fixed distance, within a bin 0.1 Å wide, was

calculated. Because of the large number of calculations on large systems (90 atoms), the basis set was

reduced to 6-31+G(d,p). The results, divided according to the presence or absence of NR contacts, are
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Table 5: Averaged DFT interaction energies of all intermolecular pairs at the indicated ring-ring distance, for a 3GDI

liquid at 298.15 K and 1 atm. In each bin, the pairs were divided in two complementary sets, according to the

presence or absence of NR contacts.

Distance (Å) NR pairs 〈Eint〉 (kcal/mol) no NR pairs 〈Eint〉 (kcal/mol)

6.65± 0.05 5 −10.7± 4.0 10 −6.0± 1.6

7.65± 0.05 13 −11.0± 2.5 34 −5.9± 2.2

8.65± 0.05 14 −8.8± 2.6 49 −4.7± 1.8

collected in table 5. Although they occur less frequently, in each bin, NR-bound pairs on average have

a stronger Eint than non-NR bound pairs, roughly by a factor 2. This proves that the presence of NR

contacts helps to strengthen the cohesive forces in the liquid, because they add a significant contribution

to the intermolecular interaction energies.

4.3 Non-covalent interactions of isocyanurate rings with 2D

materials

In previous sections it was highlighted the strong dispersion character of the interactions with isocyanurate

rings. This makes them attractive candidates for non-covalent functionalization agents of 2D materials,

since their interaction does not involve the formation of new bonds, and thus preserves the functionalized

surface and, by consequence, its properties. This possibility would make 2D materials easily embeddable

into a crosslinked PU matrix, enabling the crafting of functional and smart polyurethanes.

Graphene [204], certainly the most important 2D material due to its very peculiar properties and

its great range of applications, was chosen as model system to test the non-covalent functionalization

capabilities of isocyanurates. Other 2D materials, namely fluorinated graphene(FC), boron nitride (BN)

and heptazine-based carbon nitride(CN) were also tested, due to their interesting properties. FC is a

transparent insulator [205] that could be processed to provide magnetic properties [206]. Boron nitride

is an insulator with excellent mechanical and thermal conduction properties [207] and heptazine-based

CN2 is renown for its strong piezoelectric behaviour [208] and for its role as a photocatalyst for water

dissociation [209, 210].

2In the following, heptazine-based is the only type of CN considered, thus we will refer to it simply as CN.
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4.3.1 Isocyanurate-graphene adhesion properties

To obtain the adsorption energy between graphene and another molecule, a non-periodic approach is

possible, in which the substrate is substituted by polycyclic aromatic hydrocarbons(PAH), which size is

progressively increased. In figure 26 is reported the so-calculated Ead of a triethyl isocyanurate on grap-

hene, at the B3LYP-D3BJ/6311++g(d,p) level of theory. It is evident that this non-periodic approach is

prone to large size effects. The asymptotic value represents the interaction between the adsorbate and

an infinite graphene sheet, which can be extracted by fitting with an exponential function of the type

E(x) = E∞ − g0e
−x/g1 , where E∞, g0 and g1 are fitting parameters, and resulted to be E∞ =-24.56

kcal/mol. However, since calculations of larger substrates are impractical, it is not guaranteed that it is

actually converged.
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Figure 26: Adsorption energy of a triethyl isocyanurate molecule on polycyclic aromatic hydrocarbons. The black

dashed line represents the asymptotic value obtained through fitting of an exponential law.

To avoid this issue, and also obtain a better description of the electronic structure of the substrate,

periodic DFT calculations were employed, using the PAW approach as built in VASP with the GGA ap-

proximation and the PBE functional. Due to the mainly non-covalent nature of the phenomena studied,
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Grimme’s empirical dispersion correction terms were also included at the D3BJ level.

A pristine graphene monolayer supercell, comprising 6x6 unit cells was used, with a lattice parameter

in the z direction of 20 Å, to minimize spurious interactions between sheets. Under these conditions, a

plane wave energy cut-off of 1000 eV was found to be sufficient to achieve a total energy convergence

below 1 meV . Concerning the k-point grid used, it was found that 6x6 K-point grid was sufficient to

ensure an energy convergence of 10 meV. Geometrical optimizations were performed using the smaller

3x3 K-point grid, and the finer one was used to get single point energies. Unless otherwise specified, the

stopping criterion adopted for relaxations is when all forces are smaller than 20 meV/Å. To calculate the

interaction energies, the isolated molecule and bare graphene sheet total energies were calculated using

the same periodic cell and same conditions (k-points, cutoff).

Methyl isocyanurate (3MIC) ring was placed initially parallel with respect to the graphene plane, at a

distance of 3.5 Å, and several adsorption sites were considered, as shown in figure 27. The calculated

Figure 27: Representation of the stable geometries employed to calculate the adsorption energies of trimethyl

isocyanurate on graphene, reported in table 6. Regarding the nomenclature, x-top indicates that the isocyanurate

ring center is on top of atom x, while x-bridge indicates that the x-atom of the ring is in a bridge position with respect

to the substrate atoms. For other 2D systems, the same convention is followed.

adsorption energies are reported in table 6.

All the tested adsorption sites provided Ead between -16.36 and -17.54 kcal/mol, with the strongest
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Table 6: Adsorption energies, calculated at the PBE-D3BJ level of theory, using a 6x6 Γ-centered K-point grid. A

graphical representation of the 3MIC and MIC adsorbed geometries is drawn in figure 27.

Adsorbate Configuration Supercell size Ead (kcal/mol)

3MIC C Top 4x4 -17.61

3MIC C Top 6x6 -17.50

3MIC N Top ” -16.82

3MIC Ring-Top -16.36

3MIC C-Bridge -16.73

3MIC N-Bridge -16.67

3MIC Ring-Bridge -16.75

3MIC Vacancy Top 6x6 -24.78

MIC 6x6 -6.62

PYR Top 6x6 -21.97

PYR Hollow 6x6 -23.94

adsorption occurring in a carbon-top configuration, in which the when ring centre and all ring carbons lie

on top of graphene atoms (see figure 28). For this configuration, the effects of the periodic box size were

checked by calculating Ead for a 4x4 graphene sheet, and a difference below 1% was found, indicating

that the 6x6 graphene size is a good choice for 3MIC adsorption studies.

The adsorption energy of methyl isocyanate on graphene was calculated as well, for a conformation

where the isocyanate group is parallel to the substrate plane, and found to be only 6.62 kcal/mol, a much

smaller value compared to 3MIC. This was expected due to the lower capability of NCO groups to undergo

dispersion-dominated interactions.

To have a more general term of comparison,the adsorption energy of pyrene on graphene was calcula-

ted, as it is a four-ringed PAH widely used for noncovalent functionalization [211, 212]. The two conforma-

tion tested showed larger energies, with the hollow position being more tightly bound withEad = −23.94

kcal/mol. When compared to this value, the 3MIC Ead is only 75 %, however, if Ead is distributed by the

number of heavy atoms, 3MIC has the largest value, around -1.98 kcal/mol per atom, compared to the

value -1.48 kcal/mol found on pyrene.

The effect of a graphene single vacancy on the adhesion strength has been evaluated by removing,

in the C-top configuration, the carbon atom lying exactly under of the ring centre. On the defect, Ead is
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Figure 28: Representation of the c-top adsorption site of 3MIC on graphene, as seen from the c and the a axis.

sensibly improved, with a value of -24.78 kcal/mol found.

To check whether the substrate properties of graphene might be altered by the presence of 3MIC, the

band structures of the graphene sheet with and without the adsorbate were calculated along the ΓKMΓ

path and are reported in figure 29. The Fermi energy of the substrate-adsorbate system (-1.86 eV) is

slightly higher when compared to that of the pristine system (-2.21 eV), however,when the bands are

compared in terms of E − Ef an almost exact match is found, confirming that the electronic structure

of graphene is barely affected by the presence of 3MIC. In fact, a very small band-gap opening of 0.005

eV is found when 3MIC is adsorbed, but this value is too small to be significant and further higher-level

calculations are required to confirm the presence of this effect.

4.3.2 Other 2D materials: fluorographene, boron and carbon nitrides

The calculated adsorption energies, obtained considering the same cutoff, k-point grid, vacuum spacing

and supercell size as for graphene and considering several conformations for each material, are reported
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Figure 29: Band structure of pristine graphene (black) and graphene + adsorbate system (red) in the C-Top confor-

mation(see figure 28), calculated along the ΓKMΓ path. Fermi energies were matched to that of pristine graphene

to allow a direct comparison. The straight red lines are the energy levels of 3MIC. Due to band folding, the Dirac

point is located at Γ.
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in table 7.

Fluorinated graphene presents a sparse fence of fluorine atoms on its surface, which clearly reduce

the π-π interaction ability of the material. It is therefore not surprising that the lowest adsorption energies

are found for 3MIC with this material, with values ranging between −10 and −11 kcal/mol. On the

other hand, BN and CN have a much more graphene-like structure, and larger energies are expected.

It was found that the 3MIC-BN Ead is slightly lower when compared to graphene (see table 6). Howe-

ver, the differences are small, therefore it can be concluded that, in terms of non-covalent isocyanurate

functionalization, both BN and graphene are alike.

Concerning CN, its structure is very peculiar, with heptazine triangles alternated by triangular holes,

being responsible for its strong piezoelectric behaviour. It is natural to expect that adsorption energies will

strongly depend upon the position of the adsorbate molecule on the sheet. In fact, the highest Ead were

found for 3MIC when it is positioned at the centre of the heptazine triangle, while the lowest when it is

located on top of a hole.

Table 7: Adsorption energies, calculated at the PBE-D3BJ level of theory, of 3MIC on FG, BN and CN sheets.

Substrate Adsorbate position Supercell size Ead (kcal/mol)

FC Ring top 6x6 -10.68

FC H top ” -11.02

FC C top -10.79

BN Top -15.21

BN Bridge -16.73

BN N top -15.97

BN C top -16.44

CN Heptazine centre top 2x2 -17.32

CN Heptazine side top ” -13.27

CN Hole top -6.87

Resuming, it was found that 3MIC-substrate adsorption energies of the same order of magnitude for

graphene, BN and CN, while for FC significantly lower energies were found. Therefore, BN and CN might

be non-covalently functionalized by isocyanurate moieties as well as graphene.
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4.3.3 On the distortion of heptazine-based carbon nitride

An important factor distinguish CN from the other materials, is the fact that in its lowest-energy state it

shows large out of plane distortions, or buckling [213]. This introduces an ambiguity in the determination

of Ead, because, if it is known that the surface distortion affects adsorption processes [214], it is not

clear whether distorted geometry is unique. In addition, although the cause of distortion can intuitively be

explained by the repulsion of nitrogen lone pairs that surround triangular holes [213, 214], this statement is

not corroborated by theoretical calculations and its origin is not well-established. Driven by these findings,

it was decided to investigate more in detail the properties of heptazine-based carbon nitride.

4.3.3.1 Origin of buckling: possibility of a pseudo Jahn-Teller effect

In this section, we wish to establish whether pseudo Jahn-Teller effect can explain the buckling of heptazine-

based CN, and various arguments will be presented to sustain this hypothesis. As a first step, the lowest-

energy states for an unit cell of g-C3N4 single sheet, containing 14 atoms, were determined. Calculations

were performed using a 1000 eV cut-off, a vacuum of 15 Åand a 7x7 k-point grid. As expected, both flat

and buckled structures (see figure 31 further in text) could be obtained with the geometrical optimization.

The lattice constants are a = b = 7.124 Å in the first case, and a = 6.952 Å, b = 6.927 Å in the

second. The buckled geometry has a total energy of -119.84 eV, lower than the flat one by 0.57 eV. This

value matches well the difference of 0.59 eV found by Wu and collaborators [215].

The flat geometry has been further refined using a tight convergence criterion for total forces of 10−6

eV/Å. Internal symmetry routines of the code, reducing the number of calculations by using the system’s

symmetries, were switched off to rule out the possibility that they could artificially stabilize the flat geometry.

In fact, it was reported that it could not be obtained if not by using constraints [213], but in our case well-

converged flat CN sheets were obtained. The Hessian matrix was calculated on the final structures, using

a central differences method with displacements of 0.001 Å. All forces resulted to be vanishing, indicating

that the flat geometry is located at a minimum of the potential energy landscape (PES), hence it can be

regarded as a high-symmetry reference state [216]. This rules out the possibility of a Jahn-Teller effect,

which would give rise to destabilizing non zero forces. The same argument excludes the presence of steric

repulsions cause by nitrogen lone pairs. Once that the JTE possibility is ruled out, the presence of a PJTE

is the only possible source of instability for the CN high-symmetry reference state, as predicted by the

instability theorem [216]. The normal modes analysis revealed the presence three imaginary frequencies,

all describing different out-of-plane buckling distortions modes that are probably related to active PJTE

coordinates.
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To check for the presence of vibronic couplings between occupied and unoccupied bands, 9 interme-

diate structures were obtained by interpolating the flat and buckled carbon nitride single sheets structures,

and the band structure calculated for each one of them, along the closed ΓKMΓ path in the first Brillouin

zone.
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Figure 30: Band structure of a CN sheet, calculated for an unit cell, in its flat (left) and buckled (right) geometry.

The total density of states (DOS) is reported aside each plot. The red horizontal lines denotes the Fermi energy as

obtained from the flat geometry.

Figure 30 shows the band structures of the initial and final conformations. Firstly, a clear effect of the

buckling is a sensible widening of the band-gap, from 1.25 eV to 1.86 eV, mainly due to the lowering of

valence bands energies, particularly evident for the highest energy occupied band. Due to the use of PBE,

these values underestimate the reference value of 2.71 eV and 3.02 eV for the flat and buckled structure,

respectively [215], although the reported band gap type change, from indirect Γ −K to direct K −K

is correctly reproduced.

By following the evolution of band energies at the Γ point as the structure is progressively distorted,

it is possible to identify pairs of valence and conduction bands with an anti-crossing behaviour, a potential

signature of a PJTE interacton between them [216, 217]. Therefore, possible PJTE active band pairs

could be identified, although a more detailed analysis is required to assess which ones are effectively

96



Chapter 4 Section 4.3

Figure 31: Representation of flat (A) and buckled (B) minimized structure of a CN sheet. For the buckled structure,

a side view along the b axis is also provided. The plot on the right reports the change of band energies as the

structure is progressively distorted. The valence band maximum (VBM) and conduction band minimum (CBM) are

highlighted. The bands coloured in green represent those which could potentially contribute to the PJTE. Distortion

path was obtained by interpolating the initial and final conformation geometries.

contributing to the distortion. As part of further research, the states effectively coupled will be identified

by studying their simmetry, and their vibronic coupling strength evaluated by a characterization of the

electron-phonon interactions. While established methods exists to estimate the PJTE coupling strength for

non-periodic systems, their extension to infinite systems is still an open field of research. Nevertheless, the

result obtained here strongly points out the PJTE as the main mechanism of instability of the flat structure.

4.3.3.2 Size effects

It is well established that the lowest-energy conformation of heptazine-based carbon nitride sheets is

buckled, and in previous section results supporting the PJTE origin of distortion have been presented.

At this point, it is important to assess the role of periodic boundary conditions on the distortion modes. To

our knowledge, this point has not been addressed in literature.

For this purpose, CN monolayers of different sizes (1×1, 2×2 ad 3×3 unit cells were created, and
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optimized to their high symmetry reference state, using 7×7, 5×5 and 3×3 K-point grids, respectively.

In all cases, the optimization successfully converged and the electronic energy per unit cell resulted to be

-119.27 eV, with differences below 1 meV. The results obtained are reported in table 8.

Table 8: Electronic energies for different-size CN sheets, considering flat and buckled structures. For 2x2 and 3x3

sheets, SP stands for smaller periodicity, i.e. the same as in the 1x1 sheet, and LP stands for long periodicity.

Cell size Conformation E (kcal/mol) E (kcal/mol per unit cell)

1x1 Flat -119.27 -119.27

1x1 Buckled -119.84 -119.84

2x2 Flat -477.08 -119.27

2x2 Buckled SP -479.36 -119.84

2x2 Buckled LP -479.94 -119.99

3x3 Flat -1073.44 -119.27

3x3 Buckled LP -1083.33 -120.37

When a small distortion is induced by means of a displacement of the atomic positions, the optimiza-

tion leads to buckled structures. In the smallest system, the energy of the distorted systems is -119.84

eV, and clearly has a unit-cell periodicity. A 2x2 buckled supercell can be obtained simply by replication

of the unit cell. In this case, the distortion obviously has a periodicity of one unit cell, and the total energy

is practically identical with respect to the buckled unit cell.

If, alternatively, the distortion is obtained by a perturbation of the 2x2 flat sheet, another buckling

conformation is obtained, and is found to have a lower total energy, of -119.99 eV. Considering a larger

3x3 sheet, yet another motif is found, with an even lower energy of -120.37 kcal/mol. By looking at figure

32, it is evident that the distortion pattern is heavily dependent upon the periodic cell size: each one of

them would only allow those patterns with a spacial periodicity equal or smaller than the cell dimension

itself, artificially filtering out the larger wavelength modes. Therefore, an ambiguity is found about the

determination of the lowest-energy geometries of distorted heptazine carbon nitrides: the periodic box

size allows -or prevents- some distortion modes. In principle, it is not excluded that, by considering larger

or non-squared cells, other distortion modes might be found.

An important consequence of this is that adsorption energies calculated on them should be carefully

verified, because each possible conformation of the CN sheet is slightly different from the others in terms

of the relative orientation of heptazine triangles. Whereas this effect could be neglected for chemisorption,
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Figure 32: Distortion modes of CN single sheet for different supercell sizes. The sheets are seen along the b axis

and the size of periodic box is highlighted.

where most of the interaction energy can be localized in the correspondence of the created chemical

bond(s) with the substrate, in the case of physisorption this could have a significant impact, due to the

long-range nature of non-covalent interactions. For instance, the 3MIC-CN energies presented in the

previous section were obtained considering a 2x2 CN sheet in the same large-periodicity conformation as

in figure 32. Yet, it is not guaranteed that the same energy can be found considering larger sheets.

More generally, it should be critically assessed to which extent the periodic cell size might select the

permitted deformation modes of CN and, by consequence, how all the properties that directly or indirectly

depend upon them are affected.

4.3.4 Formation and stability of isocyanurate monolayers on graphene

The strong non-covalent binding of isocyanurates on various substrates naturally leads to the question

whether a stable isocyanurate monolayer could be self-assembled on them. To answer this, it is necessary

to evaluate the cohesive energies of such arrangement and its stability against the dissolution in a solvent.

As a first step, the cohesion energy of a free-standing 3MIC monolayer has been determined by DFT

calculations. A periodic structure was found, characterized by an hexagonal cell with a = b = 8.41 Å

and γ = 60 degrees, as it can be seen in figure 33. Each ring is rotated by π/6 degrees with respect

to its neighbours, in such a way that each oxygen establish CH · · ·O bonds with one of neighbouring
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molecules’ methyl group hydrogens. The cohesive energy of the crystalline monolayer was found to be

-7.00 kcal/mol. Since CH · · ·O bonds are among the weakest non-covalent bonds [218], this relatively

low value is not surprising.

Figure 33: Predicted crystal structure for a trimethyl isocyanurate monolayer, as seen from the c axis. The lattice

parameters are a=b=8.41 Å.

Considering a stacking type as the one discussed earlier for 3MIC dimers, a 3D graphitic-like structure

can be devised, in which rings are stacked along the z axis, each one rotated by π/6 with respect to the

lower one. This arrangement was found to have a larger cohesive energy of -17.99 kcal/mol and an

interlayer spacing of 3.391 Å.

For comparison, the crystal structure of 3MIC, measured by Thalladi and collaborators [219] and

reported into the Crystallographic Open Database(COD) [143], was optimized at the PBE-D3 level of theory,

with a plane-wave cutoff of 1000 eV and a 2×2×3 k-point grid, and shown in figure 34. No flat planes are

present in the 3MIC crystal, rather it is formed by layers of rings, forming dyads, with different reciprocal

orientation. Its cohesive energy was found to be -22.27 kcal/mol, representing the most stable structure.

The relatively low cohesive energy of 3MIC monolayers makes them very unlikely to be found as

free-standing sheets, as it is expected that the weak CH · · ·O bonds will be easily disrupted at higher

temperatures. However, the presence of a flat substrate such as graphene could trigger its formation

and help to stabilize it due to non-covalent interactions. To prove this, MD simulations were performed of

3MIC on a graphene monolayer substrate of ca 50× 50 Å made by 1008 atoms, for which the standard

GAFF parameters were used, while retaining GAFF-IC for the isocyanurate. Simulations employed a box

periodic in the x and y directions and non-periodic along the z direction, and were conducted under NPT

conditions at 298 K and a barostat coupled to the x and y directions and a target pressure of 0 atm.

Non-bonded interactions were cut at 13 Å, and no long-range scheme was employed. A reflective wall,
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Figure 34: Crystal structure of trimethyl isocyanurate, obtained from [219], observed along the a (left), b(center)

and c(right) axis.

which inverts the z component of momentum of all incoming atoms, was set at the upper bound of the

box, in order to prevent atoms to escape the box.

By adding 64 3MIC molecules to the substrate in vacuum conditions, a crystalline 3MIC monolayer

is quickly formed, with 42 molecules entirely covering the graphene sheet. The excess isocyanurate was

removed and the system’s temperature lowered to 0.15 K. As can be observed in figure 35, the monolayer

reproduces almost exactly the hexagonal packing predicted by DFT methods, with the MD lattice constants,

estimated from the square root of the area per molecule, found to be approximately 7.81 Å, smaller

by 7.1 %. At 0.15 K, the graphene-3MIC layer interaction energy is -22.20 kcal/mol/molecule, slightly

overestimating PBE results (see table 6), but underestimating the non-periodic B3LYP-D3 Eint. In view of

a force field reparametrization to improve the description of ring-based interactions, this means that the

reference DFT method should be chosen with care.

To obtain information upon the stability of the 3MIC monolayer, the desorption∆Gd free-energy was

estimated by calculating the potential of mean force with respect ot the collective variable ξ defined as the

distance between the centre of mass of 3MIC and that of the graphene sheet. PMF curves are reported in

figure 35, right top panel, for a single adsorbed molecule and a fully formed monolayer. In the first case,

the PMF unsurprisingly shows one minimum, corresponding to the 3MIC adsorbed on the substrate, with

∆Gd = −16.22 kcal/mol. On the other hand, the desorption process of a single molecule from the

substrate is very different. In particular, the global PMF minimum correspond to the desorbed molecule

stacked on the 3MIC monolayer, and not to the fully adsorbed state. Removing a molecule from the

monolayer appear to be a two-step process in which firstly the molecule abandons the layer and reabsorbs

on the 3MIC substrate, with a barrier of 5.1 kcal/mol in this case, and then it completely abandons the
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Figure 35: On the left, the self-assembled monolayer os 3MIC at 0.15 K of 3MIC on graphene, seen from the top.

The hexagonal packing, driven by weak hydrogen bonds and stabilized by the substrate is clearly visible. On the

right, PMF desorption curves calculated in vacuum (top) and solvated(bottom) conditions.

surface, with a ∆Gd in this case is -12.3 kcal/mol, and a (global) minimum a 6.8 Å as reference point.

The stability of monolayers was further tested by calculating the PMF of desorption process in presence

of a solvent. For this purpose, dimethyl formammide (DMF) and benzene were used as a polar and an

apolar solvent, respectively, and parametrized using GAFF. A thousand molecules were added to the

graphene-3MIC substrate and the system equilibrated until the solvent formed a thin film and a liquid-gas

interface. During this step, no desorption from the monolayer was observed. Once the systems were

equilibrated, the PMF was calculated at 298 K, initially for the desorption process of a single attached

molecule. As can be appreciated in figure 35, bottom right panel, the solvent presence significantly

lowers the desorption free energy, with DMF and benzene greatly reducing ∆Gd to -5.00 kcal/mol.

Due to the two-step nature of the monolayer dissolution, PMF calculations for monolayers are very

difficult to obtain. Despite this, the initial∆Gd required to remove one molecule from the monolayers can

still be estimated by a PMF calculation in which an upper bound of 5 Å is set for ξ. In this way, barriers of

4.80 kcal/mol and 5.58 kcal/mol are found for benzene and DMF respectively. These are very close to

the barrier obtained in vacuum, suggesting that once the 3MIC layer is formed, its stability is marginally

influenced by the environment. In fact, the monolayer entirely prevents the solvent molecules to attach

onto the substrate, rendering the dissolution process very difficult. Concerning their formation, while in
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vacuum the process is very fast and directly observable by means of simulations, the same does not

hold in solvent, because its presence considerably slows down the assembly dynamics, making a direct

simulation not practical due to the long times required.

4.4 Conclusions

In this chapter, intermolecular interactions between isocyanurates and isocyanates have been studied

in detail, both using ab-initio methods and liquid-phase MD simulations. The nature of intermolecular

interactions of aliphatic isocyanurate has been clarified, as well as their effect in the microscopic structure

of isocyanurate liquids.

It was shown by SAPT calculations that isocyanate groups only weakly interact with one another

through a combination of dispersion and electrostatic forces due to their dipole moments. Isocyanurate

rings on the other hand were proven to be strong non-covalent interaction sites, with stacked dimers exhi-

biting a large intermolecular interaction energy. This interaction is dominated by dispersion contributions,

arising from the many π orbitals perpendicular to the ring plane. Such strong dispersion character sug-

gests a possible application of isocyanurates as non-covalent functionalization agents of two-dimensional

materials. Moreover, ring-ring interactions modulate the microscopic structure of isocyanurate liquids,

either functional or not.

The third interaction type that was investigated, namely between isocyanates and isocyanurates, lies in

between the other two, and turned out to be the key to understanding the viscosity of functional isocyanu-

rate liquids. This interaction is of the same order of magnitude as the isocyanate-isocyanate interactions,

but, unlike them, is dispersion-dominated because of the π · · · π interactions with the isocyanurate ring.

In functional systems, containing both isocyanates and isocyanurates, this leads to two effects. At short

distances, the presence of isocyanate-isocyanurate contacts reduces the occurrences of ring-ring stacked

assemblies. At longer distances, the presence of isocyanate-isocyanurate contacts increases the intermole-

cular interaction energies by means of cooperative effects, in conjunction with the isocyanate dipole-dipole

interactions. This second effect causes a significant increase in the cohesive forces in the liquid state,

leading to increased viscosity. Thereby, it was possible to relate the viscosity of isocyanate-isocyanurate

liquids to the density of isocyanate-isocyanurate (NR) contacts.

Further, it was shown that the isocyanurate ring is capable to bind strongly and non-covalently to a

graphene substrate, with calculated adsorption energies only 25 % smaller with respect to pyrene. The

electronic properties of graphene, in terms of its band structure, are not affected by the presence of the
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3MIC, confirming its capability to keep intact the substrate properties. On the other materials tested, good

adsorption energies were found for boron and carbon nitride, while lower values were encountered in the

case of fluorinated graphene, because of the lack of the former to host strong non-covalent interactions.

The structure of heptazine-based carbon nitride sheets was investigated more in depth, revealing that,

on one hand, the distorted minimum energy structure is probably consequence of a pseudo Jahn-Teller

effect and, on the other hand, distorted geometries are dramatically affected by the periodic size effects.

MD simulations performed in vacuum conditions demonstrated that 3MIC molecules self-assemble

into an hexagonally packed monolayers, which stability at ambient temperature has been confirmed by

desorption free energy calculations. It also appeared to be stable under the presence of a polar and

an apolar solvent. These results indicate that not only isocyanurates could functionalize non-covalently

various 2D materials, but also that the so-obtained functionalization is stable at room temperature, hence

can undergo mild processing routes without being disrupted.
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Formation and study of

isocyanate-crosslinked networks

The simulation of the formation of crosslinked networks and nanogels from isocyanate end-functionalized

chains is presented. After defining the dissipative particle dynamics scheme and the implementation of

chemical reaction in the model, networks and nanogels are investigated by characterizing their swelling

and topological properties. Different processing conditions and simulation strategies are compared, in

order to assess their impact on the network properties.

5.1 Motivation

In previous chapters, isocyanates and isocyanurates were studied from an atomistic point of view, to

understand their liquid state dynamic properties. However, in the majority of applications, they are always

reacted to generate larger structures, such as linear or crosslinked polyurethanes, which typical length

and time scales usually exceed those accessible by atomistic methods. Here, the formation of crosslinked

networks will be addressed, and methods to investigate their features introduced and applied. A coarse-

grained approach, namely dissipative particle dynamics (DPD), has been used to effectively simulate

these structures, conjugated with a relatively simple scheme for the crosslinking chemical reactions. In

particular, nanogels were adopted as a case study, not only because they allow a simpler study of their

swelling properties, but also for their interesting biomedical applications, as reviewed in the first chapter.
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5.2 Definition of the simulation model

5.2.1 Assignment of DPD parameters

The simulated system consists of a melt of polyethylene glycol (PEG) chains end-functionalized by iso-

cyanates. To define the DPD (see section 2.5.4) interaction parameters, all-atomistic MD simulations

were performed to obtain the ∆Hvap and δi, for each constituent of the precursor system. In particu-

lar, simulations of 100 PEG-28 chains, 1000 ethyl isocyanate molecules and 343 propyl isocyanurate

molecules were performed under NPT conditions at 298 K and 1 atm, using GAFF-IC for isocyanate-

containing molecule and standard GAFF for PEG. To calculate the Flory-Huggins χij an unique average

bead volume of v ≡ 110 Å3 was used. Incidentally, this also defines the length scale of the simulation:

rDPD = (ρv)
1
3 = 6.91Å. The repulsion parameters aij are equal to 25 when i = j, and the DPD

density was kept fixed to 3.0 DPD units in all simulations. The interaction parameters are reported in table

9 for the different types of beads.

Table 9: DPD interaction parameters for all species appearing in the simulations. Concerning the not fully crosslin-

ked beads, their DPD parameters are assumed to be equal to those of isocyanate beads.

Bead type PEG Urethane Isocyanate Ring Alkyl

PEG 25 25.69 25.03 26.32 36.02

Urethane 25 25.42 25.10 31.9

Isocyanate 25 25.93 34.85

Ring 25 29.70

Alkyl 25

Polymers were modeled as a bead-spring chains , with harmonic bond and bending potentials. Re-

gardless their type, all DPD beads are assumed to have the same mass and volume. The equilibrium

length of all bonds was set to 0.434 rDPD and a stiff spring constant Kbond = 500 was used. Such

choice reflects the MD monomer-monomer distance, calculated to be 3.03 Å, while the large bond force

constant helps to prevent unphysical chain crossings. To further enforce this condition, a segmental repul-

sive pair (SRP) potential [178] was used with a range of 0.4 rDPD and a force constant of 100 DPD units.

Equilibrium angles of π/2 radians and a spring constant Kbend = 0.5 were adopted as well, to better

match the PEG bending angle distribution observed in MD. When crosslinking (CL) beads are present, they
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represent symmetric isocyanurate trimers. In view of this, a bending potential with an equilibrium angle

θeq = 3π/2 radians and Kbend = 1 was employed for all those angles having a CL bead as vertex.

Concerning solvent-gel interactions, the solvent has been made insensitive of polymer bead type and

only one repulsion parameter asg was used to describe all the interactions between nanogel and solvent.

To replicate the swelling transition, asg was varied from 15 (very good solvent) to 50 (very poor). When

mentioned, good solvent conditions are equivalent to asg = 25.

Initial polymer and polymer-solvent configurations were randomly generated in a cubic periodic box at

the target density, and equilibrated for 50000 τDPD. Three independent runs were considered for every

system. All simulations were performed using LAMMPS [156] and the DPD implementation therein.

To verify whether the final melts are equilibrated, the mean squared internal distances (see section

2.5.1) can be calculated and compared to the expected behaviour for the mean square end-to-end exten-

sion [168].
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Figure 36: On the left, a scheme of the chain model adopted for isocyanate-end functionalized PEG chains.

On the right, mean square internal distance for melts of chains of n=10, 20 and 40 beads. The x axis is the chemical

distance between beads of the same chain. The orange dotted line is a fit to equation (3) of reference [168].

As reported in figure 36, where the MSIDs of equilibrated melts of 4000 n=10 and n=20 beads and

2000 chains of n=40 beads are compared, all curves show the expected behaviour for equilibrated melts,

thus representing reasonable initial states for the network formation process. Concerning the presence

of entanglements, calcualted using the Z1 code, the averaged number of kinks per chain < Z > was
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0.009, 0.135 and 0.554 for n=10, 20 and 40, respectively. Since the simulated chains are relatively

small, all melts are weakly entangled. The obtained values are in line with those calculated for equilibrated

melts of Kremer-Grest polymer chains [173], confirming that the DPD model represents well the chain

entanglement.

5.2.2 Crosslinking reaction modelling

To simulate the crosslinking reaction, a distance-based routine, written in C and interfaced to LAMMPS

output files, has been written. The reaction scheme is shown in figure 37. When invoked, the code

searches for all the reactive beads closer than d = 0.8 distance units. Each reaction has a predetermined

probability to happen, under the constraint that any bead cannot react more than once per iteration.

To take into account reversibility, bond-breaking reactions were also included into this scheme. Equal

probabilities p = 0.4 were set for dimerization and trimerization, while a p = 0.04 was chosen for

dimer dissociation. After every reaction step, the system connectivity and topology is updated. Reactive

Figure 37: Scheme of the reaction model adopted. The dimerization reaction is reversible, while the trimerization is

not.

iterations are performed every 2.5 τDPD, to guarantee proper relaxation and diffusion between reaction

steps. Abrupt changes in potential energy or temperature were never observed. The formation process

was carried on until at least 90 % of the initial reactive bead content is fully reacted. To achieve this,

5000 to 40000 iterations were required, depending upon the reactive ends density of the system under

consideration.

To test the end-crosslinking reaction, periodic networks were assembled according to the scheme re-

ported in figure 38, starting from unsolvated melts of 4000 (n=10 and n=20) and 2000 (n=40) chains. As

expected, the reaction speed is proportional to the concentration of reactants, which for end-terminated

chains depends upon their length. The fraction of linear linkages drops asymptotically to negligible values

after reaching an initial maximum, as they are consumed to form CL beads. An asymptotic behaviour is cle-

arly observed for the CL bead formation, indicating that a fully reacted network in which all end-crosslinking
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Figure 38: Time change of the reactants and products content, expressed as percentage with respect to the

initial reactant content, for different precursor lengths. For longer chains the reaction is slower, due to the lower

concentration of reacting beads.

109



Chapter 5 Section 5.2

beads trimerized into CL beads is reachable in the long time limit. This agrees with experimental findings,

which show full conversion of isocyanate groups [41].

It is interesting to test the hypothesis of reversible linear linkages, by comparing the results obtained

for the case of irreversible dimerization (by zeroing the dissociation probability). As reported in figure 39,

the ratio of crosslinkers quickly saturates as the reaction continues and cannot proceed further because

the reactive ends are ’blocked’ within the linear linkages, leading to a final network with a significantly

lower amount of crosslinkers. Thus, the dimerization step reversibility is fundamental to obtain highly

crosslinked networks.
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Figure 39: Comparison of the reactants (chain ends) and products (crosslinking beads) for the cases of a reversible

(full lines) and irreversible (dashed lines) dimerization reaction scheme. Colour legend is the same as in figure 38.

The network topology has been inspected by counting CL and linear linkage (LL) beads, as well as CL

beads concentration and CL functionality, that is the average number of bonds involving both CL and LL

beads. Since crosslinked structures are obtained in a realistic way, it is natural to encounter defects in the

network structure, which affect its elastic behaviour. In an ideal network, CL points are evenly distributed in

space and fully reacted, and connected to its nearest neighbours through unentangled and monodisperse

chains. On the other hand, a real network will certainly contain a series of defects, depicted in figure 40,

which change their mechanical properties. Dandling ends are polymer chains that are attached to the

network by one end but not by the other while ’tadpoles’ are chains whose both ends are attached to the
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same CL point. These defects are elastically inactive because when the network is stretched, they do not

connect two distinct points of it. A n-loop consists in n crosslinking points connected simultaneously by n

chains. 2-loops might contribute in first approximation to the network elasticity as elastic strands, while 3-

and 4-loops are not defects in a strict sense and can be regarded as network features. For each crosslinked

system, all defects were counted up to 4-loops, by using a specific code that explore the network by means

of walkers that, starting from each CL point, travel along its connected chains. Furthermore, the average

strand length has been calculated, a strand being defined as a chain connecting two CL beads. A primitive

path analysis has been performed to quantify the entanglement of melts and networks.

Figure 40: Schematic 2D representation of a crosslinked network, where each segment correspond to a chain and

each junction to a CL point. Examples of dandling ends (D), tadpole (T) 2-loops (2), 3-loops (3) and 4-loops (4) are

drawn. 3- and 4-loops are not real network defects, thus have been coloured differently. An example of an elastic

strand (S) is also provided, in green.

5.2.3 Nanogel synthesis and swelling

Once that the networks are fully formed, the simplest way to take a nanogel is by carving out a sphere

from them, in such a way that all chains severed in correspondence of intra-chain bonds are entirely

stripped off, and all the resulting small disconnected parts removed. To avoid bonds crossing the periodic

boundaries, the maximum allowed cut-off radius is rmax = L/2− 0.5, L being the periodic box length.

The nanogels obtained in this way have an inner structure corresponding to that of the bulk network and

an outer layer with a looser structure, because of the inevitable creation of dandling chains.

Alternatively, the reaction can be performed in spherical confinement region, so that the final reaction

product is already a nanogel and no further handling of the system is needed [183]. This method is closer

to the synthesis of nanogels in a nano-emulsion, in which the reacting polymer is confined into immiscible

droplets of liquid in solution.
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A third approach [220] consists in joining a set of randomly distributed CL beads with straight chains

of the desired length, under periodic boundary conditions. In this case, the nanogel still needs to be

carved out, but the reaction phase is completely skipped. This method is certainly more convenient in

terms of computational time and also has the advantage of naturally avoiding many network defects, such

as tadpole loops. However, it is expected that such networks would have strong internal forces, as the

randomly created chains are generally out of equilibrium.

Independently of the method used to obtain them, nanogels were put into a larger periodic box, with

at least L = 50 rDPD and solvent particles were added in the required amount to have a global total

density of ρ = 3. The nanogel centre of mass was kept fixed to the simulation box origin. Subsequently.

the solvated systems were equilibrated under good solvent conditions for at least 10000 τDPD or until

stationarity of the radius of gyration Rg was reached.

5.3 Properties of isocyanate-based nanogels

To investigate the properties of isocyanate-based nanogels, swelling transition curves were obtained by

tuning the solvent-gel interaction parameter asg. For every value, simulations of 6000 τDPD were run,

the last 2000 τDPD of which being used for data production. Following this, nanogels’ gyration radii,

swelling ratios, radial densities and form factors were measured. In the following section, different chain

lengths, nanogel creation methods, synthesis routes and solvent presence are considered to understand

their effect on nanogel final properties.

5.3.1 Chain length dependence

Nanogels were obtained from reacted networks made from n=10, 20 and 40 chains by carving them out

from the melt. When applying this method, the cut-off radius should be chosen in such a way that the final

nanogel is large enough to have a well defined internal structure, but not too large in order to ease the

computation, especially when solvent is added. In figure 41 it is shown that, in order to have representative

nanogels, the resulting collapsed radius of gyration should be of at least 7 DPD units for n=10 and n=20,

corresponding to a cutting radius of at least 11.5 DPD units. Whereas enlarging this value slightly affects

the swelling ratio, shorter values are insufficient to retain a good internal network structure, and the larger

swelling observed are due to the fact that these ’nanogels’ open up completely and lose any shape when

swollen.

As shown in figure 42, all nanogels undergo the expected swelling transition when put in solvent. In
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Figure 41: Swelling ratios for n=10 and n=20 nanogels with different collapsed radius of gyration, which is propor-

tional to the cutting radius and the nanogel number of beads.

the collapsed state (asg = 50), they assume a spherical shape with well-defined borders and a central

density of 3.5 N/r3DPD, regardless of the internal structure. This high density value is caused by the

short equilibrium bond lengths adopted in this model. By using the typical value of 0.6 rDPD, a density

of 3 N/r3DPD is recovered. In terms of swelling ratios, the results are unaffected by this change, as

setting larger bonds is equivalent to a rescaling of the bead internal distances. It was decided to present

here the results with the shorter bond lengths, as they were obtained through a mapping of an all-atom

representation to DPD.

On the other hand, nanogels can be clearly differentiated when swollen. As the precursor chain length

is increased, lower CL beads densities are found, resulting into an increase of the average elastic strand

length, as can be seen in table 10. Consequently, longer chain-made nanogels present larger radii and

lower densities in the swollen state. The calculated structure factors confirm these observations, showing

the hard-sphere scattering pattern for a collapsed nanogel and fuzzy sphere curves in the swollen state.

Regarding the latter, is possible to see that the first P (q) peak, corresponding to length scales typical

of the nanogel sizes, are sharper for shorter precursor length nanogels. Finally, it is worth noting that a

sharper swelling transition is found for longer chain networks, as predicted by theory [221].

Concerning their topological features, the lower CL functionality encountered in longer chain networks

is reflected by the increased percentage of elastically inactive defects, which includes both dandling ends

and tadpoles. Interestingly, the increased number of defects for n=40 is mainly due to a larger number

of dandling chains, while the number of tadpoles is significantly lower. This is a consequence of the fact
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vent(bottom) of n=10,20 and 40 end-crosslinked nanogel beads. The form factor and radial density of the n=20

nanogel in the collapsed state are also shown as a dashed line.
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Table 10: Topological characterization polymer networks obtained for different initial chain lengths. The elastically

inactive defects (1-defects) and loops are expressed as a percent ratio with respect to the initial chains. 〈N〉is the

number of beads per strand and 〈Z〉 is the number of kinks per chain.

System CL density CL functionality 1-defects 2-loops 3-loops 4-loops 〈N〉 〈Z〉

10 5.3 % 2.775 9.25 % 2.75 % 2.77 % 2.90% 11.32 0.034

20 3.02% 2.71 12.92 % 2.80 % 2.02 % 2.60% 21.35 0.152

40 1.14 % 2.63 18.10 % 1.50% 1.65 % 1.40% 41.35 0.464

that the probability for two ends of the same chain to find themselves in the same point is reduced as

the chain length increases. As for the entanglements, the network formation freezes the pre-existent state

and changes the melt entanglement state only slightly, even if a significant increase has been observed

for the very short n=10 chains.

5.3.2 Comparison of in silico nanogel synthesis techniques

Since there are several ways to perform the in silico synthesis of the nanogel, it is important to consider

how such a choice could alter the calculated quantities of the simulated system. In figure 43 the swelling

curves, structure factors and radial density profiles are reported for three possible ways to obtain nanogel

beads from a n=20 precursor melt:

• (random-made) Cl points are randomly joined with linear chains,

• (confinement-made) or by letting the melt self-assemble in a confined region,

• (cut) letting the melt self-assemble under periodic conditions, and cut the nanogel afterwards.

The random-made nanogels show the lowest swelling ratio and the highest density in the swollen

state. By contrast, both of the reaction based nanogels allow for larger swollen sizes, the cut one being

the largest, and practically equal densities for r/Rg,c < 1.5. The main difference between the two is

actually the skin layer, which is wider and less defined in the cut nanogel. The form factor reflects these

differences, with a more compact structure found for the random-made nanogel, with the first peak more

visible and shifted at larger q, while the other beads show qualitatively the same P (q).

By looking at table 11, it can be observed that the nanogel made under confinement has a higher CL

density and functionality. It is then natural to expect, as observed, a lower swelling ratio. In what concerns
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Figure 43: Radial density profiles (top left), form factors (top right) and swelling transition curves (bottom) of n=20

nanogel beads obtained with three different in silico methods.
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Table 11: Topological characterization of networks made from a n=20 chain melt, using different in silico methods.

The elastically inactive defects (1-defects) and n-loops are expressed as a percent ratio with respect to the initial

chains. 〈N〉 is the number of beads per strand and 〈Z〉 is the number of kinks per chain. The first row, already

appeared in table 10, is reported here for comparison.

System CL density CL functionality 1-Defects 2-loops 3-loops 4-loops 〈N〉 〈Z〉

20 cut 3.02% 2.71 12.92 % 2.80 % 2.02 % 2.60% 21.35 0.152

20 confined 3.08 % 3.0 17.32% 2.24 % 0.342% 5.43% 21.34 0.094

20 random 1.73% 2.12 4.86% 0.02 % 0 0 21.08 0.568

topology, the confinement-made network has a lower value of 〈Z〉 when compared to periodic networks,

this a being a surface effect. At the same time, the number of elastically inactive defects is slightly larger.

When checking the random-made network, a much lower CL density and functionality is found, alt-

hough the number of elastically inactive defects is sensibly lower and the higher order loops are virtually

inexistent. On the other hand, a much larger 〈Z〉 is found for them, indicating that random-made networks

are much more entangled than the others. This seem contradictory, since a poor CL density suggests

larger swelling ratios, while greater 〈Z〉 suggests the opposite. However, there is also another aspect

that should be considered. Due to the formation process, the random-made network is mainly constituted

by stretched chains subject to an entropic elastic force which acts to contract them, thereby opposing

and hindering any solvent-induced swelling. This can be easily revealed by calculating the MSID for the

unreacted N=20 melt and the different networks, reported in figure 44. While the reaction-based network

formation results in final structure with chains still having a internal distance distribution very close to that

of the precursor melt, the random-made network MSID present a significant deviation, meaning that the

chains are overstretched.

5.3.3 Comparison of reaction routes

End-crosslinked nanogels have been compared with those obtained through a more traditional crosslinking

technique, in which the end-reactive chains covalently bonds to poly-functional CL small molecules, as

sketched in the top left panel of figure 45. Stoichiometric mixtures of trifunctional cross-linkers were

mixed to n=16 precursor chains, the ends of which could react with a probability coefficient of 0.4 with the

functional CL beads. In this way, network strands would have the same length as for the end-crosslinking

case. Two different cross-linker formulations were used: one fully made of trifunctional crosslinker and a
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Figure 44: Mean squared internal distance for unreacted n=20 melt, and corresponding networks obtained with

different methods and conditions.

more realistic one, containing a 30 % weight ratio of 4-functional impurities. This reflects the fact that a

certain degrees of higher functionality impurities is always present in commercial isocyanurate products.

Since only a one-step process is considered this time, the reaction speed is significantly faster, and fully

formed network can be reached in only 5000 iterations.

All nanogel beads were cut from a periodic network of n=20 chains and contained roughly 10000

beads. During equilibration and network formation, the mixtures always appeared well mixed and no

phase separation was observed.

Figure 45 reports the form factors, swelling ratios and radial density profiles at asg = 25, for polymer

networks obtained in three different ways, the properties of which are summarized in table 12. For the

impure mixture, the stoichiometric ratio between chain and crosslinker ends is not exactly matched, hence

lower products are expected.

The structure factor is not revealing significant differences between the differently processed nanogels.

However, the end-functionalized ones exhibit slightly larger swelling ratios and lower radial densities, whe-

reas pure and impure chain-crosslinker made nanogels exhibit very similar swelling ratios. Therefore, the

two synthesis methods provide negligible differences in terms of swelling properties and also in averaged

strand and loop lengths. The enhanced swelling of the end-crosslinked nanogels is related to the lower
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Figure 45: The structure of the crosslinking molecules and schematics of the alternative reaction scheme are in

the top left panel. The colour legend is the same as in figure 38. Swelling curves (top right), form factors (bottom

left) and radial density profiles (bottom right) in good solvent conditions are also reported for the nanogels obtained

considering different chemical routes and crosslinker purity level.
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overall content of crosslinking beads.

Interestingly, the presence of impurities in the crosslinker composition seem not to impact significantly

the swelling ratios. This is expected as the lower number of bonds due to the stoichiometric impairment

is compensated by the presence of effective 4-functional CL beads, tightening the structure, as reflected

by the smaller average chain length 〈N〉. In terms of defects, it is interesting to observe that the mixing

approach significantly reduced their occurrence. The number of kinks per chain is also larger for the

system containing impurities.

Table 12: Comparison of topological properties of n=20 networks obtained with different chemical routes. The

elastically inactive defects( 1-defects) and 2-loops are expressed as a percent ratio with respect to the initial chains.

〈N〉 is the number of beads per strand and 〈Z〉 is the number of kinks per chain. The first row, already seen in

table 10, is reported here for comparison.

System CL density CL functionality 1-defects 2-loops 3-loops 4-loops 〈N〉 〈Z〉

end-crosslinked 3.02% 2.71 12.92 % 2.80 % 2.02 % 2.60% 21.35 0.152

pure-mix 3.5 % 3.00 12.51 % 2.04% 2.68% 2.18% 21.44 0.174

impure-mix 3.7 % 3.00 12.77% 2.24% 2.70% 2.60% 19.92 0.183

This comparison is useful to assess the effectiveness of an end-crosslinking reaction. Since no phase

separation was observed in the 2-component precursor melts, their final network structures are very close

to an ideal realization, especially when pure trifunctional crosslinkers are employed. Therefore, having

found very similar results with end-crosslinked structures confirms that very well-structured networks can

be easily obtained through this technique. This represents a clear advantage because this process, apart

form catalyst and solvent, involves only one component.

5.3.4 Effect of explicit solvent inclusion

In real systems, crosslinking processes commonly take place in solvated environments, hence it is im-

portant to consider how explicit solvent inclusion during the network formation process can influence the

computational predictions. Different solvation levels, from 0 to 66 %, were considered during the network

assembly of n = 10 chains, from which nanogels containing about 13000 beads were cut. It is expected

that the end-crosslinking reaction would be slower due to reduced reactant concentration. This is indeed

the case, as it can be observed in figure 46, where the CL bead formation speed decreases as the solvent

concentration increases.
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Table 13: Topological characterization of networks made from a n=10 chain melt, under the presence of solvent at

different weight ratios during their formation. The elastically inactive defects (1-loops) and n-loops are expressed as

a percent ratio with respect to the initial chains. 〈N〉 is the number of beads per strand and 〈Z〉 is the number of

kinks per chain.

Solvent % CL density CL functionality 1-defects 2-loops 3-loop 4-loops 〈N〉 〈Z〉

0 5.33 % 2.775 % 9.25 % 2.75 % 2.77 % 2.90% 11.325 0.034

33 5.66 % 2.84 % 16.35% 3.60 % 3.22% 3.10% 11.304 0.010

50 5.60 % 2.86 % 19.50% 4.80 % 3.37 % 3.90 % 11.271 0.004

60 5.64 % 2.86 % 21.35 % 5.80 % 4.05 % 4.60% 11.273 0.002

66 5.77% 2.87 % 29.92% 6.70 % 2.23 % 3.90% 11.281 0.001

In addition, the explicit solvent inclusion produces a sensible increase of the nanogel swelling in good

solvent even though, as shown in table 13, the CL concentrations and functionality are very similar for all

the solvent percentages. This increased swelling ratio is due to two key factors. From one side, as the

solvent percentage increases, so does the incidence of elastically inactive defects and 2-loops. This can

be understood considering that the solvent presence decreases the overall chain density, thereby reducing

the probability of two chain ends from different chains to come in close contact and react.

Moreover, as can be appreciated by the〈Z〉 values, the number of kinks per chain is decreasing as

solvent is added. Clearly, this effect is expected to be more significant for longer chains, as the n=10

presented here are almost unentangled, and the probability of forming tadpoles decreases with the chain

length.

The addition of solvent has thus a strong effect on the simulated networks, dramatically changing their

topology and, by consequence, their macroscopic properties.

5.4 Conclusions

In this chapter, the assembly of isocyanurate-crosslinked networks from end-functionalized chains has

been investigated by using a bead-spring polymer model in conjunction with a scheme for the chemical

crosslinking reaction and dissipative particle dynamics simulation with MD-derived parameters.

Realistic nanogels with the typical core-corona structure and the swelling transition were obtained,

equivalent to those made from ideal prepolymer-crosslinker mixtures. It is worth noting that the techniques
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Figure 46: Reaction rates(top left), swelling curves (top right), form factors (bottom left) and radial density profiles

(bottom right) in good solvent conditions of n=10 nanogels obtained at different solvation ratios during the network

formation phase.
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Chapter 5 Section 5.4

employed in this chapter can be used as well for any isocyanurate-crosslinked material, and the reaction

scheme can be easily modified to take into account more complex chemical networks.

Concerning the nanogel properties, it was shown that their swelling ratios are strongly dependent not

only the precursor features, such as chain length, but also on the processing route -or simulation design-

chosen. Indeed, from the same precursor, it was possible to make nanogels with a dramatically different

swelling behaviour, demonstrating that the in silico techniques tested here are inequivalent, and the choice

upon which one to employ should be made in an informed way. Moreover, apart from the swelling

differences, the networks also look structurally different, with degrees of entanglement and concentration

of defects.

Nanogel swelling ratios and, by extension, network elastic properties are indeed intimately connected

with topological features, in particular with chain entanglement and elastically inactive defects, as shown

through their inspection and primitive path analysis. As it is made clear in the solvation study, these two

factors are both affecting the final network properties, with less-entangled and more defected networks

obtained as the solvent content is increased during the production.

Clearly, the model can be improved in several ways, for instance by introducing extra interaction

terms for specific interactions [96, 97], but it is remarkable that it is already capable to capture most of

the relevant features of network dynamical properties.
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Chapter 6

Conclusions and perspectives

This thesis expanded the level of knowledge on isocyanate and isocyanurates, providing at the same time

effective tools for their simulation in all their manifestations, from precursor molecules to crosslinked

materials. However the topic is far from being complete, and still offers many possibilities for further

research, outlined below.

The optimized MD force field GAFF-IC allows for very accurate predictions of densities, enthalpies of

vaporization and viscosities of many aliphatic isocyanate and isocyanurate systems, with an impressive

improvement with respect to the previously available parametrization. This permitted the comprehensive

simulation study capable of highlighting the complex relationships between, on one side, structure and

composition at the molecular scale and, on the other, macroscopic observables.

GAFF-IC is specifically targeted at aliphatic isocyanates and there are two main areas of extension.

Firstly, It should be integrated into a wider environment where common solvents used for isocyanates are

included, as well as carbamates and ureas, found in isocyanate-derived materials. This way, a classical

and reliable all-atom representation would be available not only for isocyanate precursors, but also for

the final materials. Secondly, the optimized force-field should include as well other families, such as

the aromatic isocyanates, most used in industrial processes. In both cases, it will be very beneficial

considering a larger experimental data set for the force-field optimization, including for instance studies

on their phase transitions and characterization of mixtures.

Ab initio, DFT methods were employed to investigate the nature of isocyanate-isocyanurate interactions

in vacuum conditions, and the role of the isocyanurate ring as a strong dispersion force site has been

demonstrated. In this regard isocyanurate-isocyanate interactions were revealed, and further GAFF-IC

MD simulations provided strong evidence of them being the main responsible for the high viscosities

encountered in polyisocyanate liquids.
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The ab initio calculations on isocyanates and their derivatives should be expanded with different met-

hods and, when available, higher accuracy calculations to provide a reference for further studies and fill

the scarceness of calculations for these molecules. Such knowledge would be beneficial not only for in-

vestigating isocyanates in common processing conditions, but also in more extreme environments, such

as those of astrophysical interest.

The geometry and strong dispersion interaction of isocyanurates makes them appealing for non-

covalent functionalization of 2D materials, and this possibility was investigated through a study on the

adsorption energies of these molecules on graphene and fluorographene, boron and carbon nitride. The

self-assembly of isocyanurate monolayers on graphene under certain conditions has been demonstrated,

as well as their stability upon solvation.

In this aspect, the presented results are promising and further studies, possibly in conjunction with

specifically designed experiments, are required to assess the effectiveness and actual feasibility of non the

proposed non-covalent functionalization, in view of the synthesis of ’smart’ crosslinked materials, such as

networks and coatings.

Isocyanate-crosslinked networks and nanogels were simulated using DPD methods coupled with a

chemical reaction modelling. This simulation scheme reproduced all the expected behaviours in terms

of swelling and allowed to investigate the networks obtained under different conditions. A marked depen-

dence of the network properties upon the processing parameters and simulation scheme adopted was

found and characterized in terms of the networks’ topology.

Although the DPD approach revealed itself very effective in characterizing the swelling properties of

these networks, the proposed model can be certainly improved including specific terms to describe uret-

hane bonds and take into account the isocyanate-isocyanurate interactions. More generally, it will be

useful to compare the DPD results with other coarse-grained approaches, for which specific force-field are

yet to be developed. Such task has to consider reliable all-atom simulations as a starting point, therefore

the GAFF-IC forcefield is the natural choice for this.
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Appendix A

GAFF-IC parameters

Below are listed all the GAFF-IC force-field parameters. Partial charges are not provided, since they should

be obtained from ab-initio calculations by using RESP method. A MOL2 file containing the specifications

for an HDI molecule is provided at the end of this document, where RESP partial charges are reported.

Atom types and non-bonded parameters

LJ parameters for the atom types appearing in isocyanates. The source of the parameters is also reported:

GAFF-IC is this work, GAFFLipid is from Dickson et al.[150], default means the GAFF standard values.

Atom type Mass [amu] σ [Å] ε [kcal/mol] comment (source)

n2 14.010 1.795 0.155 N in isocyanate (GAFF-IC)

c1 12.010 1.874 0.155 C in isocyanate (GAFF-IC)

o 16.000 1.632 0.175 O in isocyanurate/isocyanate (GAFF-IC)

c3 12.010 2.010 0.055 sp3 carbon (GAFFlipid)

hc 1.008 1.340 0.024 hydrogen in -CH3- (GAFFlipid)

h1 1.008 1.340 0.024 hydrogen in -CH2- (GAFFlipid)

c 12.010 1.908 0.086 sp2 C in isocyanurate (default)

n 14.010 1.824 0.175 sp2 N in isocyanurate (default)

Bond parameters

All bond equilibrium lengths were adjusted to match the B3LYP-6311++G(d,p) calculations. The bond

energy term in the force field is:

Ebond =
kb
2
(rij − b0)

2
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Bond kb [kcal/(mol·Å2)] b0 [Å]
c - n 478.20 1.379

c - o 648.00 1.200

n - c3 330.60 1.478

c3 - h1 335.90 1.095

c3 - c3 303.10 1.525

c3 - hc 337.30 1.096

c3 - n2 313.80 1.450

n2 - c1 769.80 1.199

c1 - o 777.00 1.171

Angle parameters

All equilibrium angle values were adjusted to match the B3LYP-6311++G(d,p) calculations. The angle

energy term in the force field is:

Eangle =
ka
2
(θijk − θ0)

2

angle ka [kcal/(mol·rad2)] θ0 [deg]]
c - n - c 65.33 124.13

c - n - c3 63.92 118.02

n - c - o 75.83 122.03

n - c - n 74.80 115.80

n - c3 - h1 49.82 112.32

n - c3 - c3 65.85 112.13

n - cc - n2 74.78 122.59

c3 - c3 - hc 46.37 109.50

c3 - c3 - c3 63.21 112.69

h1 - c3 - h1 39.18 109.55

h1 - c3 - c3 46.36 110.20

hc - c3 - hc 39.43 106.25

c3 - c3 - n2 66.40 113.13

c3 - n2 - c1 58.67 138.85

h1 - c3 - n2 49.26 109.01

n2 - c1 - o 69.15 173.76
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Dihedral parameters

All dihedral values were refitted as described in the main text. The dihedral energy term of the force field

is:

Vdihe(φ) =
4∑

i=1

Vi [1 + cos (iφ+ δi)]

Dihedral i Vi [kcal/mol] δi [degrees]
c -n -c -n 2 25.0000 180

c -n -c -o 2 25.0000 180

c -n -c3-c3 4 -0.1439 0

c -n -c3-c3 2 0.3789 0

n -c -n -c3 2 25.0000 180

n -c3-c3-hc 3 0.1353 0

n -c3-c3-c3 4 0.0106 180

n -c3-c3-c3 3 0.1393 0

n -c3-c3-c3 2 -0.0779 180

n -c3-c3-c3 1 -0.4949 0

o -c -n -c 2 25.0000 180

c3-c3-c3-hc 3 0.1392 0

h1-c3-c3-hc 3 0.1827 0

h1-c3-c3-c3 3 0.1827 0

hc-c3-c3-hc 3 0.1392 0

c3-c3-c3-c3 4 -0.0751 180

c3-c3-c3-c3 3 0.1392 0

c3-c3-c3-c3 2 -0.1686 180

c3-c3-c3-c3 1 0.3456 0

c3-c3-c3-n2 4 -0.0493 0

c3-c3-c3-n2 3 0.1827 0

c3-c3-c3-n2 2 -0.1918 180

c3-c3-c3-n2 1 -0.0956 0

c3-c3-n2-c1 3 0.0000 0

hc-c3-c3-n2 3 0.1827 0

c3-n2-c1-o 2 0.0000 0

h1-c3-n2-c1 3 0.0000 0
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