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RESUMO 

Atualmente, a indústria da construção é a maior do mundo, sendo responsável por 8% das emissões de 

gases de efeito estufa, principalmente devido ao betão, que é o material mais comum usado na construção. 

O betão armado recorre a armaduras em aço, que estão particularmente sujeitas à corrosão quando ocorre 

fissuração e decorrente penetração de agentes agressivos do exterior. A corrosão generalizada do aço afeta 

a durabilidade de toda a estrutura, reduz sua vida útil e aumenta a necessidade de reabilitação e manutenção 

durante seu ciclo de vida. Uma alternativa interessante, em prol da otimização, durabilidade e minimização 

do desperdício de material, conceber estruturas de betão unicamente sujeitas a esforços de compressão e, 

evitando portanto a necessidade de utilização de armaduras. Isso pode ser alcançado através da aplicação 

de métodos de otimização da forma da estrutura. É também sabido que os sistemas pré-fabricados 

permitem otimização e aumento de produtividade na indústria da construção, por comparação com os 

métodos tradicionais de construção in-situ. Além disso, a digitalização por meio de BIM e processos de 

projeto computacional podem automatizar e auxiliar na redução de custos e garantia de qualidade. 

Esta dissertação propõe o uso de betão de baixa resistência para criar estruturas pré-fabricadas de betão, 

sujeitas unicamente a esforços de compressão. Cada parte discreta da estrutura (módulos de cerca de um 

metro quadrado de área) é feita por meio de moldes flexíveis que se adaptam a uma ampla gama de 

geometrias. Os componentes estruturais são conectados por cabos de pré-esforço (em material não 

metálico, evitando efeitos de corrosão) que são instalados no local, criando assim um novo sistema de 

construção. Em suma, o sistema visa satisfazer os seguintes requisitos: i) ser autoportante durante a 

construção, ou precisando apenas de escoramento limitado; ii) comportamento estrutural otimizado 

(somente compressão - sem momentos de flexão), iii) alta durabilidade e longa vida útil (sem armaduras 

metálicas). 

No âmbito da dissertação são utilizados algoritmos computacionais para criar uma forma estrutural de 

casca somente de compressão por meio de métodos conhecidos por ‘form finding’ no Rhinoceros / 

Grasshopper 3D. Uma vez obtida a forma estrutural geral, foi-lhe atribuída espessura e compartimentação 

(tecelagem), definindo assim seus elementos discretos. A sequência de construção dos elementos pré-

fabricados foi implementada automaticamente com algoritmos de automação celular. Em seguida, foi 

criada uma ferramenta customizada que permite interoperabilidade automática do modelo criado para o 

software de análise estrutural DIANA e automatizou a análise em fases que incorporou a sequência 

construtiva. Posteriormente, foi usada a análise pelo método dos elementos finitos para avaliar o 

comportamento estrutural. Por fim, é proposto um fluxo de trabalho colaborativo entre engenheiros e 

arquitetos, rumo à definição conjunta de formas otimizadas com o procedimento desenvolvido nesta 

dissertação. 

Por meio de um estudo de caso para testar a estrutura, os resultados mostram que o fluxo de trabalho 

proposto é viável, podendo ser aplicável a outras geometrias mais complexas. Refira-se que embora 

existam algumas tensões de tração presentes durante a construção em fases, elas podem ser quase 

eliminadas com o uso de suportes de construção provisórios (meros escoramentos tipicamente usados na 

construção) com pouco impacto nos custos e tempo de construção. 

Palavras-chave: método do elementos finitos, otimização de forma, interoperabilidade, pré-fabricação, 

modelação paramétrica)  
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ABSTRACT 

Currently, the construction industry is the largest industry in the world and contributes 8% per year to 

greenhouse gas emissions mostly due to concrete which is the most common material used for 

construction. Reinforced concrete needs steel reinforcement which is prone to rust when the concrete 

cracks and deleterious materials reach the steel. Widespread steel corrosion affects the durability of the 

entire structure, reduces its service life, and increases the need for rehabilitation and maintenance during 

its lifecycle. An interesting alternative, for the sake of optimisation, durability, and material waste 

minimisation, would be to make concrete structures solely endure compression forces and hence avoid 

the need to use steel reinforcement. This can be achieved through applying form-finding methods to 

achieve optimised structural shapes. Precast systems can further optimise and increase the industry’s 

productivity more than the traditional on-site construction systems can. Additionally, digitalisation 

through BIM and computational design processes can automate and assist in cost savings and quality 

assurance. 

This dissertation proposes the use of low-strength concrete to create precast compression-only concrete 

structures. Each discrete part of the structure is made through flexible moulds that are adaptable to a 

wide range of geometries. The structural components are connected by prestressing cables (not made of 

steel and not prone to corrosion) which are installed in-situ thereby creating a new construction system. 

In short, the system aims to satisfy the following requirements i) self-supporting during construction, or 

only needing some propping ii) optimised structural behaviour (compression-only – no bending 

moments), iii) high durability and long service life (no reinforcement).  

Computational and parametric design were used to create a compression-only shell structural shape 

through the Particle Spring form-finding method in Rhinoceros/Grasshopper 3D. Once the overall 

structural shape was obtained, it was thickened and tessellated thereby defining its discrete elements. 

The construction sequence of precast elements was implemented automatically with a cellular automata 

algorithm. Then, a custom tool was created that linked the structural shape generated to the structural 

analysis software DIANA and automated the phased analysis which incorporated the construction 

sequencing. Thereafter, finite element analysis (FEA) was used to assess the structural behaviour. 

Finally, a collaborative workflow was set up such that engineers and architects can work together to 

create the most optimal structural shape in a BIM environment.   

Through a case study to evaluate the framework, results show that with the proposed workflow, any 

arbitrary compression-only structural shape can be defined using form-finding principles. FEA can be 

performed for structural analysis and a BIM model produced for construction. Although, there are some 

tensile stresses present during the phased construction they can be almost eliminated with the use of 

minimal construction supports.  

 

Keywords: (FEA, form-finding, interoperability, modular construction, parametric modelling) 
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1. INTRODUCTION 

1.1. Scope and motivation 

Previous research showed that the construction industry is lagging in productivity and growth compared 

to other industries. This can be addressed with digitalisation of processes e.g. through incorporating 

Building Information Modelling (BIM) as well as the use of modular or off-site construction systems. 

Advantages of this include shorter construction and operational costs; reduced construction time; fewer 

unexpected costs for the client due to unforeseen issues on site; reduced energy consumption and better 

structural performance (Long et al., 2014; Bertram et al., 2019). 

It is well documented that the main construction material, concrete, is a major contributor to greenhouse 

gas emissions (Belton, 2021). Additionally, even though no other material has been found to be more 

efficient for use in construction than concrete, steel reinforcement leads to corrosion, expansion, 

cracking and then deterioration of the concrete itself, thereby limiting the durability of reinforced 

concrete structures. However, the use of reinforcement is compounded when concrete structures are 

designed in a way that may be perceived as “unnatural”. With the use of form-finding, a “natural” 

compression-only shape (see Figure 1) can be found that can limit the use of reinforcement. Such shapes 

have been built before but with the aid of expensive formwork during construction (Adriaenssens et al., 

2014). 

 

Figure 1 – Compression-only shell structure - Aichtal Outdoor Theatre in Germany (Adriaenssens 

et al., 2014) 

Various researchers have been looking into ways to optimise the current construction systems using 

precast and/or form-finding (Dallinger and Kollegger, 2008; Pedersen, Larsen and Pigram, 2015; Borg 

Costanzi et al., 2018; Bao and Li, 2020). Realisation of the right construction system will assist in 

achieving the United Nation’s Sustainability Development Goals including “Sustainable Cities and 

Communities” and “Industry, Innovation and Infrastructure” to build sustainable and resilient 

infrastructure (United Nations, 2015).  
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There is work being done into optimising concrete mix and using more sustainable materials. This can 

be achieved for instance by substituting cement (whose production is carbon intensive) with fly ash from 

the coal industry or the slag from blast furnaces for improved strength and durability. Another 

(expensive) way is to physically capture the carbon produced during cement production and store it 

elsewhere (Belton, 2021). Other prefabrication manufacturers use steel reinforcement to connect precast 

elements such as the Lock Block company (Lock Block, 2021) which limits their durability.  

Various limitations of the proposed design and construction systems exist as discussed forthwith. For 

example one author uses a procedure for form-finding with complex textual programming that cannot 

easily be followed other than by the originator (Vizotto, 2010). Some use BIM and an integrated 

approach but this is limited to the conceptual design stage (Gomes et al., 2018).  

Authors such as Kontovourkis et al. (2019) present a BIM-based computational design and optimisation 

framework using topology optimisation and incorporating construction considerations. Although they 

consider concrete modular elements, they do not consider construction supports required for shell 

structures. Additionally, they make use of a non-flexible formwork mechanism that is restricted to a Y-

shaped element only (Kontovourkis, Phocas and Katsambas, 2019) unlike the flexible mould for the 

formwork of shell structures proposed in other literature (Borg Costanzi et al., 2018). 

More recently, the Striatus Bridge in Venice’s uses extremely large concrete modules by 3D printing 

that require heavy lifting devices (Lomholt, 2021). On the other hand, Bao and Li (2020) propose the 

solution for the problem of connection and ease of assembly and disassembly of precast elements using 

much smaller brick-like components joined by pre-stressing cables. However, they neglect the 

optimisation aspect by not considering compression-only and form-finding structures (Bao and Li, 

2020).  

The Perpectum concept (Azenha, 2019) theorized but not implemented in 2019, seeks to address the 

problems identified. A sustainable, low-strength concrete precast compression-only structure that is 

virtually self-supporting during construction, is proposed (refer to Figure 2). This is achieved through a 

construction system whereby non-metallic cables connect the panels sequentially, during construction. 

Moreover, the panels are proposed to be sized at 1m x 1m x 0.3m such that they only require light lifting 

devices. 

 

Figure 2 - Set of assembled panels as proposed by Perpectum (Azenha, 2019) 
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The current work further develops on Perpectum and addresses limitations of current systems as detailed 

in the objectives. 

1.2. Objectives and methodology 

This study proposes a new collaborative BIM-based, sustainable compression-only structural block 

construction system. Each discrete part (block) of the structure is made through flexible moulds that are 

adaptable to a wide range of geometry. The parts are connected by prestressed cables which will be 

installed in-situ thereby creating a new construction system. The system further satisfies the following: 

 i) self-supporting or few supports during construction 

ii) optimised i.e. compression-only system  

iii) durable and long lasting with no steel reinforcement (prestressing cables made of a distinct non-

ferrous material). 

For the purposes of evaluating the proposed construction system, the objectives of the study are as 

follows: 

• perform parametric modelling, computational design, and form-finding to produce a tessellated 

compression-only structural shape 

• define a construction sequence using cellular automata principles 

• define interoperability tools between the computational design program and BIM platform as 

well as between the BIM platform and (Finite Element Analysis) FEA software 

• create a BIM model from the structural shape in the computational design program 

• define the structural model from the BIM model and perform FEA to assess the structural 

behaviour of the construction system  

• define a BIM-based framework for collaborative design between the structural engineer and the 

architect 

Accordingly, the methodology entails the use of computational and parametric design to create a 

compression-only shell structural shape through the particle spring form-finding method. Once the 

overall structural shape is obtained, it is tessellated to define its discrete elements. Thereafter, FEA is 

used to assess the structural behaviour based on the construction sequence. Finally, a collaborative 

framework is presented such that the engineers and architects can work together to define and construct 

the most optimal structural shape in a BIM environment.    

It is finally remarked that this dissertation does not address the technological aspects needed for the 

prefabrication of the modules for the system, neither from the point of view of the flexible moulds, nor 

from the point of view of the adaptable parts needed to materialize the hollow parts for the cables to 

pass. 
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1.3. Structure of dissertation  

The layout of the thesis is as follows. Chapter 2 presents a literature review of sustainability and 

optimisation in the design and construction of shell structures. The principle of Perpectum, which was 

the inspiration for this work, is presented. This is followed by a general discussion on shell structures 

and modular construction systems. Next, these principles are refined and distilled with examples 

incorporating BIM processes and workflows.  

Chapter 3 presents the parametric modelling and computational design methodology in this study using 

a simple example to explain the procedures. Rhinoceros 3D and plug-in Grasshopper 3D are used to 

conduct the form-finding and create the cellular automata algorithm for obtaining the construction 

sequence. A description of the connection tool from the computational design software to BIM platform 

is presented. The last section of this chapter shows photos of the 3D printed version of the example. 

Chapter 4 describes the interoperability tool defined for the BIM platform to structural analysis 

connection. The chapter has a discussion on some of the properties to be used for the structural analysis 

in the software DIANA FEA. Subsequently, the script for automating the material property assignment 

and construction phasing is presented. 

Chapter 5 presents the framework describing the collaborative workflow between the structural engineer 

and the architect to perform the design to produce the compression-only construction system. Thereafter, 

the framework is enacted with a case study including the parametric modelling, BIM, finite element 

analysis and results. Other applications of the framework are also briefly presented. 

Finally, Chapter 6 concludes the work and presents recommendations and future work proposals. 
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2. SUSTAINABLE DESIGN AND CONSTRUCTION OF SHELL 

STRUCTURES USING DIGITAL PROCESSES & 

TECHNOLOGIES 

2.1. Introduction 

In recent decades, the construction industry has been criticized due to its continued use of high energy-

consuming materials such as steel and concrete in a manner that is wasteful and neither optimised nor 

sustainable thereby limiting its productivity (Ribeirinho et al., 2020; Belton, 2021; Webb, 2021). 

Moreover, unlike other manufacturing industries that have embraced digitisation and automation, the 

construction industry lags behind and has made little progress on this front (Barbosa et al., 2017). As a 

result, the construction industry has been limiting itself in terms of productivity and growth thereby 

lagging far behind the manufacturing sector as well as the total economy trend as shown in Figure 3.  

 

Figure 3 – Construction labour-productivity vs. manufacturing and total economy growth trend 

(Barbosa et al., 2017) 

The construction index of real gross value added per hour worked, only improved from 100 in 1995 to 

110 in 2014, while manufacturing improved from 100 to almost 200 in the same time frame. Similarly, 

the compound annual growth rate for manufacturing was 2.6% higher than for construction in the same 

period. In fact, according to a study by the McKinsey Global Institute think tank (Ribeirinho et al., 

2020), the construction industry contributes 8% per year to greenhouse gas emissions compared to the 

aviation industry’s  much lower 2.5% (Ribeirinho et al., 2020; Belton, 2021). 

Other critical aspects of modern construction materials are their durability and life cycle. For instance, 

concrete has been the main material used for construction (Belton, 2021). The reason for this is its 

mechanical properties and ease of production and ability to be moulded to the desired geometry. 

Although some concrete structures such as the Pantheon in Rome, Italy have been standing for more 

than 2000 years, modern concrete structures require the use of steel reinforcement in addition to the 

concrete to resist external loading effects. The problem is that steel reinforcement is prone to rust and 

this can happen when the concrete cracks and there is ingress of deleterious materials that reach the steel 

Manufacturing 

Construction 

Construction 
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(refer to Figure 4). This affects the durability of the entire structure and reduces its service life or 

increases rehabilitation and maintenance costs (Alexander and Nganga, 2014).  

 

Figure 4 – Photo example of corrosion-induced damage on a reinforced concrete marine 

structure (Alexander and Nganga, 2014) 

Despite the challenges identified, it is possible to make construction more productive without 

compromising on sustainability through a few simple principles (World Economic Forum, 2018). The 

first basic principle relies on optimising the construction materials by changing its constituents and 

selecting more durable materials and minimising steel reinforcing, by using better structural shapes such 

as shell structures. The second principle consists of using modular or precast construction systems 

thereby making the construction process faster and more efficient. The third principle relies on shifting 

from on-site construction to off-site prefabrication and controlled sequential construction. Finally, the 

fourth principle is based on incorporating digitalisation, automation and robotics and embracing related 

technologies such as BIM, 3D printing and Digital Twin technologies.  

In this regard, the present thesis has been inspired by, and developed within the framework of the 

ongoing research project called "Perpectum". Perpectum combines the Latin words “Perpectuum” 

meaning everlasting and “tectum” meaning shelter  (Azenha, 2019). The concept of Perpectum aims to 

follow the four principles just mentioned as will be shown in the following chapters. 

This chapter reviews the current state-of-the art of shell structures, their sustainable design and how 

various authors are incorporating BIM digital processes in their design. It is therefore organized as 

follows. Section 2.2 outlines the Perpectum project. Shell structures are the basis of the Perpectum 

project due to their efficiency and the main structural system being researched and so Section 2.3 

presents and discusses the main principles on which shell structures rely on. Section 2.4 focuses on 

modular construction systems for reasons discussed in this introduction. Sections 2.5 and 2.6 combine 

the topics presented and look at ways that they can be further optimised with computational design and 

BIM-based workflows applied to shell structures. 

2.2. The principle of Perpectum  

Perpectum is a research proposal that addresses the various challenges that will be highlighted in the 

literature review including steel leading to reduced durability and the expenses related to use of 
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formwork when constructing shells and free-form structures. Perpectum results in a more efficient and 

cost-effective construction by using i) sustainable concrete with no rebar thereby avoiding corrosion and 

leading to indefinite durability ii) customisable moulds for concrete structural panels iii) permanent pre-

stressing cables, and iv) Integrated Project Delivery (Azenha, 2019). 

Perpectum proposes the use of prefabricated concrete panels without rebar which are produced from 

customisable moulds. The panels can then be constructed sequentially using pre-stressed cables to 

produce compression-only free form shell structures – refer to Figure 5.  

 

Figure 5 – Perpectum panel concept and 3D printed proofs of concept (Azenha, 2019) 

The member connection is partly inspired by Dallinger & Kollegger (2008) who proposed precast textile 

reinforced concrete panels constructed using post-tensioning cables that pass-through ducts in the 

panels. The pre-stressing ensures stability during construction without the need for extensive and 

complex formwork or construction supports. Theoretically, this pre-loading would result in the structure 

being in compression with minimal deformation that acts like a single monolithic structure despite being 

made up of separate panels. Emphasis has also been placed on having enough pre-stress such that there 

is no tension at the interface between the panels which would cause instability of the structure (Dallinger 

and Kollegger, 2008). Additionally, the pre-stressing cables are not steel but rather maritime cables that 

are non-corrodible and will therefore be highly durable (Azenha, 2019). These principles will be 

expanded on further in the chapters that follow. 

2.3. Shell structures 

2.3.1. Definition, advantages and disadvantages 

Shell structures are large with a thickness much smaller than their other dimensions. They transmit 

forces primarily through a membrane action rather than bending moments. The advantages of shell 

structures are that, first, they are aesthetically pleasing, natural looking forms. Secondly, large open 

spaces and areas can be created without the need to use supports in between them. Third, due to their 

thinness, use of the membrane action and the high strength to weight ratio, the design is more efficient, 

and less material can be used, thereby making them more environmentally friendly (Adriaenssens et al., 

2014; Zingoni and Enoma, 2020).  



Collaborative BIM-based workflows for a new sustainable compression-only structural block construction system 

Erasmus Mundus Joint Master Degree Programme – ERASMUS+ 

European Master in Building Information Modelling BIM A+ 22 

However, shell structures, particularly concrete ones, have some disadvantages which have led to their 

decline in use and popularity. The main reason for this is, the cost of the formwork which can be as 

much as a third of the total concrete cost on the project or 15% of the total construction cost. This cost 

is usually due to the difficulty and complexity in setting up and dismantling the intricate formwork and 

scaffolding (Nassar and Aly, 2012; Zingoni and Enoma, 2020) and is therefore significantly increased 

when it comes to shapes from form-finding processes (Tomás and Martí, 2010; Kontovourkis, Phocas 

and Katsambas, 2019) as shown in Figure 6. 

  

Figure 6 – Under construction and completed shell structure at the entrance of the Universal 

Oceanographic Park in Valencia, Spain (Tomás and Martí, 2010) 

Nonetheless, nowadays, innovative options for customisable formwork are being considered with the 

help of technology, computational design and inspired by the textile industry, but these are yet to become 

mainstream (Borg Costanzi et al., 2018; Popescu et al., 2021). Alternatively, there are suggestions to 

have dual purpose shell structures to justify the cost of the formwork (Zingoni and Enoma, 2020).   

Another disadvantage is that if the shell is too thin, buckling problems can arise. Studies suggest that 

this issue can be overcome by increasing the shell thickness, using a material with a higher elastic 

modulus or increasing the geometric curvatures (Tomás and Martí, 2010). The other challenge is how 

to produce the geometry of a shell structure that ensures optimal structural behaviour. This is where 

form-finding comes in. 

2.3.2. Form-finding methods for obtaining shell geometry    

There are two main methods to design a shell structure with a funicular shape. The first concerns the 

use of mathematical formulas that lead to the definition of geometries based on parabolas, spheres etc. 

However, if these “unnatural” shapes are used, extra reinforcement or edge beams are required to 

overcome the hoop stresses experienced in some areas and avoid excessive cracking during the life of 

the structure. The second method uses form-finding processes either from numerical means or by 

physical models as was popularised by Heinz Isler and Antoni Gaudí. The latter method creates tension-

only geometries which can be inverted to create compression-only geometries inspired by Richard 

Waller’s statement “As hangs the flexible line, so but inverted will stand the rigid arch” and Hooke’s 

law of inversion. However, although useful for visualisation and conceptual design purposes, physical 

models have the limitation that the forces on the structure depend on the material and this cannot be 

easily factored into the process and therefore numerical calculations are required for verification. The 

alternative would be to create a scale replica of the structure, but this would be expensive. Advantages 
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of form-finding using numerical means are that it allows the consideration of material properties, 

computational design can be used, and more shapes can be found (Veenendaal and Block, 2012; 

Adriaenssens et al., 2014; Zingoni and Enoma, 2020). 

Form-finding can be described as an iterative process used to find the optimal shape (no bending 

moments, axial forces only) in an initial usually flat system (shell or grid) of particles, connected by 

springs, with certain boundary conditions and characteristics, by applying loads to the particles (refer to 

Figure 7). Essentially, the goal is to use the forces to find the form as opposed to traditional design 

methods that first start with the shape and then find the forces on the shape. Form-finding can be 

achieved traditionally, using methods such as the Particle Spring system, Dynamic Relaxation Method 

and Force Density Method (Adriaenssens et al., 2014; Congiu, Fenu and Briseghella, 2021). 

 

Figure 7 – Top and axonometric views for Form-finding example starting with a flat mesh/grid 

& supports at two opposite corners (Veenendaal and Block, 2012) 

The Particle Spring Method is a dynamic equilibrium problem where the particles are given a mass 

while the springs have a stiffness and length. Thereafter, loads are applied onto the particles which cause 

displacements of the particles and elongation or reduction of the springs. The goal is to iterate until 

equilibrium is achieved i.e. the sum of applied loads equates the sum of internal forces. Despite being a 

dynamic equilibrium method which are the most efficient in terms of CPU usage, the method is seen as 

being overly complex with its use of multiple parameters (Veenendaal and Block, 2012; Adriaenssens 

et al., 2014; Congiu, Fenu and Briseghella, 2021). 

 
 

Particle 

Spring 
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The Force Density Method is a geometric stiffness method whose underlying principle is the force 

density or tension coefficient which equates to force divided by the length of a bar. The method makes 

use of a linear system of equations. It initially involves the definition of the boundary conditions and the 

typology; this is followed by the definition of the force densities and the loads. These inputs are then 

used to calculate the displacements. The process is iterated until equilibrium is found. The method has 

the advantage that the material stiffnesses and properties considered are only considered at the end which 

makes it easier to compute. Nevertheless, the method has been criticised as not being constructable and 

being only suitable for preliminary purposes. Another criticism is that the “force density” coefficient is 

not an intuitive parameter compared to other well-known parameters such as forces (Veenendaal and 

Block, 2012; Adriaenssens et al., 2014).  

The Dynamic Relaxation Method was invented by Alistair Day. It is also a dynamic equilibrium method 

that makes use of nonlinear equations and the principle of Kinetic Energy (KE) with the nodes initially 

at rest (velocity, v = 0) and the KE = 0. Then a load is introduced to the system which leads to residual 

forces which depend on the axial forces and shear forces and leads to a new velocity and kinetic energy 

for each node. This is then used to calculate the new KE in the system and the process is repeated until 

convergence occurs where the new and old KE are the same i.e. equilibrium (Veenendaal and Block, 

2012; Adriaenssens et al., 2014).  

Other form-finding methods exist in the literature such as graphic statics diagram subdivision 

(Akbarzadeh, Van Mele and Block, 2014), the Thrust Network Analysis (Rippmann and Block, 2013) 

which is a type of graphic statics, as well as shell structures topology design all of which focus on 

generating funicular structural shapes by using axial diagrams. Veenendaal & Block (2012) and 

Adriaenssens et al. (2014) provide a comprehensive study on the topic of form-finding. 

2.3.3. Structural analysis 

Once the form (geometry) has been obtained, as explained in Section 2.3.2, the next step is to conduct 

the structural analysis. Structural analysis involves the determination of the internal forces in the 

structure due to the applied loads. The goal is to determine whether the structure has the capacity to 

support the loads based on the structure’s material strength and stiffness, supports and boundary 

conditions. For static structures this is done by satisfying equations of i) equilibrium of applied loads 

and internal forces ii) compatibility of displacements between elements iii)  constitutive relations to 

satisfy the principles of stress and strain of the elements (Adriaenssens et al., 2014). 

The Finite Element Method (FEM) of structural analysis is most used due to its applicability to structures 

of different boundary conditions, shapes and sizes. It simplifies complex problems by focussing on a 

small part of the structure at a time. Basically, once the problem is identified in terms of the knowns and 

unknowns, the FEM procedure (refer to Figure 8) requires the structure under analysis to be idealised 

and split into small (finite) elements. Then the three equations described in the previous paragraph, are 

solved based on the loads on each element and its support and boundary conditions. Thereafter, the 

equations for each element are summed up to find the solution for the whole structure.  
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Figure 8 - FEM Process (Schuster, 2017) 

As can be predicted with FEM, the smaller the elements the closer to the correct solution but with a 

limit. The method remains an approximation of the actual solution and “mesh convergence” is normally 

advised to test out different element sizes to determine if there is a big difference in results. Unless 

extremely small elements are used, inevitably the FEM model geometry and the CAD model differ, 

especially for curved structures. However, if the structure is large, this will take high computing power 

and plenty of time (Bathe, 2010; Schuster, 2017). During the post-processing, the internal forces, or 

results such as bending moments, stresses and displacements can be obtained. As can be seen in Figure 

9 and Figure 10, a slight change in shape from shape optimisation or form-finding processes can lead to 

more favourable FEM results than a shape from other design processes. In the constructed shell, which 

is a segment of a sphere, edge beams and complex connections were required to transfer the excessive 

forces at the corners, but these could have been avoided by using shell optimisation as shown in the 

diagrams on the right of Figure 10.  

  

Figure 9 – The Kresge Auditorium, Cambridge, 1955, by Eero Saarinen, as of 2003, with detail 

of support (Adriaenssens et al., 2014) 
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Figure 10 - Comparison of FEM results of Kresge Auditorium As-built shell and Optimised shell 

using form-finding (Goldbach et al., 2020) 

More recently, the Iso-geometric analysis (IGA) method has been identified as an alternative to the 

FEM. The method borrows heavily from FEM but has the advantage that it uses the same method of 

geometry production as CAD models i.e. Non-Uniform Rational B-Spline (NURBS) curves which are 

based on control points. Mesh refinement is carried out by using more control points which results in 

more accurate results but crucially does not change the shape, unlike the FEM (Hughes, Cottrell and 

Bazilevs, 2005; Goldbach et al., 2020). IGA is something to look out for in the future, but for now FEM 

remains the standard way of carrying out structural analysis for complex structures. 

2.4. Modular construction systems 

The manufacturing industry has embraced the LEAN and SCRUM methodology from the software 

industry. Their main focus is to reduce waste in all forms and focus on essentials by improving 

communication, identifying possible impediments and promoting quick decision-making (Schwaber and 

Sutherland, 2015). Some of these theories and practices are being incorporated into the construction 

industry with the use of technology (BIM) and factories to manufacture the product i.e. prefabrication 

or modular construction. Modular construction refers to (Iacovidou et al., 2021): 

       “off-site manufacture of prefabricated building components and units assembled together on-site” 

Recently, the Striatus Bridge project (2021), developed by the Block Research Group (BRG) at ETH 

Zurich and Zaha Hadid Architects Computation and Design Group (ZHACODE), in collaboration with 

incremental3D (in3D) and Holcim, exemplifies the potential of off-site manufacture of prefabricated 

building components and units assembled together on-site (Lomholt, 2021). The Striatus Bridge is an 

arched, unreinforced masonry footbridge composed of 3D-printed concrete blocks assembled without 

mortar, installed at the Giardini della Marinaressa during the Venice Architecture Biennale, 2021 

(Figure 11). Although it is not a shell structure it is a representation of modular construction systems 

which are of interest. 
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Figure 11 – The Striatus Bridge being built through the assembly of modules (Lomholt, 2021) 

On-site construction has been the modus operandi in the construction industry for centuries. However, 

off-site or prefabrication systems are becoming more prevalent. For example, the permanent 

prefabrication market share in North America increased by 50% in the years between 2015 and 2018 

(Ribeirinho et al., 2020); currently, up to 80% of Scandinavian new houses manufactured off-site; and 

in the UK, 15000 modular houses are constructed each year (Iacovidou et al., 2021). This is due to the 

many advantages of prefabrication including (Bertram et al., 2019): 

a) Acceleration of project timelines by up to 50% 

b) Increased profits of up to 20% 

c) Significant construction cost savings 

d) Less waste and more sustainable designs 

Another advantage is better quality control on the product by shifting the focus to an integrated design 

approach involving multiple stakeholders. This reduces the possibility of making costly mistakes i.e. 

when design decisions are made upfront, they are less costly than if made later on during the project 

such as during construction. There is also increased safety since the product can be manufactured in a 

controlled environment. Additionally, construction is quicker since the products can be delivered to site 

in the order in which they are required and quickly assembled. Furthermore, if it is a dry connection, 

there is no need to wait for the concrete to achieve enough strength before installing the next elements. 

And finally, automation of production can occur using machines in the factory (Lopez and Froese, 2016; 

Bertram et al., 2019). 

Despite this, modular construction has its own problems and challenges especially those related to 

transportation and others such as (Polat, 2008; Iacovidou et al., 2021): 

a) High costs to transport components to site 

b) Local restrictions on truck weights    

c) Restricted vehicular load access on certain roads  

d) Restrictions on the size of the parts that can be carried at any one time  

e) Job loss for on-site trades such as masons, bricklayers, plasterers  

Besides, it has recently been reported that two modular constructed large buildings in the United 

Kingdom (UK) caught fire and were destroyed. It is suspected that this was due to unseen cavities in the 

structure that allowed the fire to spread easily and that were brought about by the modular construction 
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(Stout, 2021). This suggests that connections between the prefabricated components in modular 

construction are of significant importance and will be discussed further in this thesis.  

Still, Iacovidou et al., (2021) argue that making use of digital technologies in modular construction will 

affect sustainability, productivity, and resource efficiency in the whole construction value chain. 

Essentially, digitalisation in that area will have and should have domino effect into other areas of the 

construction industry, encouraging an integrated approach and making disasters like the recent fires in 

the UK, unlikely. It is perhaps for this reason that Modular Integrated Construction (MIC) is “the future 

of buildings” with various construction stakeholders involved from early in the design stage and the use 

of digital technologies (Abdelmageed and Zayed, 2020).   

2.5. Design and construction of shell structures 

2.5.1. Computational design and parametric modelling for shell structures   

Due to the complexities of shell structures, it is time consuming to conduct the structural analysis and 

design calculations by hand. For this reason, computational design and parametric modelling have been 

co-opted into the design process to take advantage of the computer’s abilities and to be able to make 

changes easily. In his doctorate thesis, Davis (2013) discusses how there is contention about what 

parametric modelling is and how various authors have asserted that all design is parametric. But Davis 

(2013) argues against this and insists on the uniqueness and richness of parametric design as opposed to 

just stemming from the mathematical sense of the word “parametric” and being synonymous with 

change.  

Parametric modelling is the use of the relationships between different parts of the model i.e. parameters 

to enable quick changes during the modelling process or (Stasiuk, 2018): 

“a set of equations that express information regarding the deployment of an architectural 

information system, as explicit functions of a number of parameters” 

The beauty of parametric modelling is that it requires the designer to fully understand the design and 

how it works. This will reduce the likelihood or necessity of changes later on during the project when it 

will prove most costly, as mentioned before (Davis, 2013).  

Computational design makes use of parametric models to perform (Stasiuk, 2018): 

“explicit transformative operations on parameters through the use of algorithms in pursuit of a 

design outcome” 

Both parametric modelling and computational design are particularly useful for the design of shell 

structures using the form-finding method. Many parameters can be adjusted, and computational power 

can be used to come up with an infinite number of possible solutions and then further optimisation can 

be carried out to obtain the best solution through what is called generative modelling (Stasiuk, 2018). 

These methods normally require a level of programming knowledge to take full advantage of their 

capabilities and lessen the repetitive tasks involved once parameters are changed. Programming can be 

done either textually using an extensive list of languages (refer to Stasiuk (2018)) such as Python or 
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C++. Alternatively, for non-IT experts in the AEC industry, visual programming for example using 

Autodesk Dynamo or Grasshopper 3D is available but these may be expensive and more limited in 

capacity. 

To overcome these costs, Vizotto (2010), used mathematical programming to come up with his own 

computational model to produce free-form optimised geometries inspired by Heinz Isler and perform 

structural calculations using the membrane theory of shell structures and the finite element method. The 

method starts with a simulated horizontal, plane surface, flexible membrane of any shape. Boundary 

constraints, self-weight and forces are then applied. This leads to iterations to obtain the optimal 

deformed shape of the structure by considering the structural equations and the FEM method in Section 

2.3.3 and strain energy. This method is similar to the Dynamic Relaxation Method mentioned in Section 

2.3.2. Under gravitational loading, the resulting shape is a tension structure which is inverted to produce 

compression-only vaults from defined envelopes as shown in Figure 12.    

 

 

 

 

 

 

 

Figure 12 - Initial plan views and final 3D shape from form-finding computation (Vizotto, 2010) 

As can be seen, depending on the initial shape and the position of the supports, different shapes can be 

generated. Still, despite the savings cost, the proposed method is complex to implement and using 

proprietary software would be easier. The method’s results are comparable with other software results 

and physical methods so, can be used as a check to ensure a model is working as desired (Vizotto, 2010). 

In contrast, around the same time, other authors also came up with their own methods for form-finding 

(Tomás and Martí, 2010). In the study, they set up a system of objective functions and make use of the 

strain energy (SE), weight and tensile stress on the faces of the shell to obtain optimal mechanical 

functioning based on a set of geometric variables for the defined parametric model. This is comparable 

to the Vizotto (2010) model except that the equations are solved in the optimisation module of ANSYS 
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software which is a CAD and engineering simulation software. Some of the results from this method are 

presented in Figure 13 where the given geometry is subjected to a vertical uniform load of 5kN/m2 and 

the concrete shell is 50mm with a Young’s module of 30 GPa and Poisson’s ratio of 0.2. 

 

            
 

Figure 13 – Shell optimisation with different boundary conditions (Tomás and Martí, 2010) 

In their work, the authors present a case study of a free form structure that is symmetric. They circumvent 

the problem of having a large model by using the symmetry to only analyse a part of the structure and 

reduce computational time. As expected, the results from the subsequent FEM reveal that using form-

finding improves the structural performance of shell structures (Tomás and Martí, 2010). 

On the other hand, authors such as Congiu et al. (2021) and Hadilou (2014) make use of proprietary 

software for the form-finding. Congiu et al. (2021) compare the Thrust Network Analysis using a tool 

integrated into Rhinoceros 3D called “RhinoVault”, with the Particle Spring method described in 

Section 2.3.2, using the Rhinoceros 3D plugin Grasshopper 3D’s Kangaroo component. In the latter 

procedure, an initial surface and mesh with defined particles and springs are created. Then the Kangaroo 

component, which is a physics simulator, iterates to find the resulting optimal shape based on the starting 

mesh, applied loads, spring stiffness and boundary conditions.  

The study by Hadilou (2014) also makes use of RhinoVAULT to obtain shell geometry through form-

finding. Once the shape is obtained, it can then be thickened and tessellated through computational 

design to obtain the 3-dimensional shape of the structure (refer to Figure 14). This can then be 

structurally designed and analysed, as discussed previously. Both studies are limited to conceptual 

design stages and make little mention of incorporating the structural analysis aspect in their workflow. 

This will be discussed in the following section. 
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Figure 14 - Result of form-finding using RhinoVAULT & Panelisation of shell (Hadilou, 2014) 

2.5.2. Prefabricated sequential construction   

In recent years, many prefabricated sequential construction methods have been proposed. As an 

example, Bao & Li (2020) propose the use of LEGO-inspired sustainable structures that can be 

assembled or disassembled as per the structural requirements and most importantly, in a sequential way. 

The authors are advocating for precast and using the LEGO method to i) make the connection between 

elements quicker with dry joints, and ii) reuse structures by disassembling the elements and assembling 

them elsewhere (refer to Figure 15). 

 

 

Figure 15 - Illustration of LEGO-inspired blocks and assembled structure (Bao & Li, 2020) 

In contrast to wet joints, the use of dry joints means there is no need to wait for concrete to dry on site. 

What is more, the method makes the blocks re-usable and therefore more sustainable and cost effective. 

In this case they use what they call “bendable concrete” which resists tension rather than rebar for 

improved durability and increased structural efficiency. They also use post tensioned (PT) cables to 

reduce cracking and bolts for the connections (Bao and Li, 2020). 

The system seems to have some restrictions and flaws such as the cost of production of the concrete, 

applicability only to certain structures that have an overall rectilinear shape and the need for complex 
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algorithms to establish the correct assembly and disassembly procedure. The need for having customised 

moulds for each block also significantly increases the time required to produce the blocks. But the 

authors argue that the production time can be reduced in future with the use of 3D printing (Bao and Li, 

2020). 

Companies like Lock Block Ltd and Shay Murtagh Ltd are at the forefront of the precast construction 

industry in Canada and Ireland & UK respectively. Lock Block Ltd is committed to sustainability and 

claim to use “100% recycled aggregates and sand”. They use block units with connection keys at the 

interface to ensure robustness which can be further strengthened by connecting them with rods. The 

panels apply to various structural types, such as retaining walls, tunnels, overpasses etc. They are also 

easily assembled and disassembled; are reusable and have the advantage that no expensive scaffolding 

is required for construction (Lock Block, 2021). Regardless, their panels and construction systems are 

limited to specific structural types and would not be suitable for the free-form structural types being 

discussed in this thesis. 

 

Figure 16 - Lock Block Products (Lock Block, 2021) 

In comparison, Shay Murtagh Ltd has a wider applicability than the Lock Block system. They focus on 

larger elements consisting of precast beams, box culverts, precast tanks, or bespoke precast concrete and 

buildings by defining the individual precast panels that will form the building. Moreover, they consider 

a holistic view and design optimisation, addressing some of the challenges mentioned in Section 2.4 

such as space on site, cost, constructability, sustainability. For instance, they plan and optimise the 

sequence of construction based on panel manufacture time at the factory, transportation to site, space on 

site and installation time (Gomes, 2021; Shay Murtagh, 2021). However, the construction system 

sometimes involves grouting or wet connection and propping of panels that requires waiting for 

hardening before constructing the next levels.  

 

Figure 17 - Large precast concrete panels on a truck (Shay Murtagh, 2021) 
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2.6. Collaborative BIM based workflows  

A collaborative BIM based workflow uses an integrated approach whereby multiple stakeholders in the 

AEC industry collaborate with digital tools and processes to design and construct a structure. This is 

particularly useful for complex shell structures as explained in this literature review. 

2.6.1. Digitalisation  

Digitalisation is the integration of digital technologies in processes that were previously analogue media-

based processes. It is imperative for the AEC industry to embrace digitalisation to be more productive 

and increase innovation. It can be achieved with the use of BIM which will encourage collaboration and 

integration of multidisciplinary teams (World Economic Forum, 2018).  

For example, construction drawings in the past were drawn by hand and physically handed to the 

contractor to conduct the construction. Nowadays, the situation is completely different with the use of 

either Computer-Aided Design (CAD) or Building Information Modelling (BIM) processes to perform 

the same task, thereby optimising and making the process quicker and more efficient and minimising 

mistakes. In the same way, engineers used to design on paper. While this is still the case sometimes, 

often, the design is conducted on a computer using computer programs that automate and quicken the 

design process. Similarly, the prefabrication can be automated, as is done in the automotive industry, 

rather than done manually (Bertram et al., 2019).  

During construction, automation can also be achieved using technologies such as 3D printing. This will 

become important particularly in the construction industry is afflicted by labour shortages (Turner & 

Townsend, 2018) a gap which can be covered by digital manufacturing processes. Digitalisation is 

relevant because it also allows the concept of “building it twice” which reduces the possibility that 

mistakes are made that will affect the construction process. Chuck Eastman in his prescient work 

(Eastman, 1974) describes a Building Description System (BDS) which is a large digital database of 

objects and their properties and their relationships with each other representing objects in a real building. 

The BDS has the following properties (Eastman, 1974): 

• Change of item properties in one part of the drawing leads to automatic updates in all the other 

elevations, plans etc. ensuring efficiency and reducing redundancy found in paper drawings  

• Object-oriented (borrowed from programming with properties such as inheritance and 

abstraction) database rather than line-based with construction item libraries to choose from 

• Embedded metadata about the object provided by the manufactures for design, construction and 

facility management purposes 

• Numerical analysis of the building’s properties  

• No obsolete information, information is always available and current 

• Automation of quantity take-offs, building code checks and clash detection 

This is the basis for what is called BIM today. For instance, 3-dimensional models can be set up with 

object libraries available in proprietary modelling platforms like Autodesk Revit as well as online with 

manufacturers details. It is possible to include geometrical and metadata of objects and functionalities 

that dwarf the capabilities of CAD. The 3D model can have BIM uses such as MEP modelling, Structural 
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modelling, and analysis as well as Energy analysis and Facility Management. The goal of BIM is to 

bridge the islands or silos of automation of AEC disciplines and enable accurate and consistent 

communication and flow of information through all the phases of a project using a digital 3-dimensional 

model (World Economic Forum, 2018).  

2.6.2. Computational Design, Formwork development and physical prototyping  

Kontovourkis et al., (2019) propose a computational design and optimisation framework linked to a 

customisable modular formwork and automated fabrication of shell structures. The goal is to minimise 

material waste, consequently reducing cost and the environmental impact of construction. The 

construction automation also leads to decreased material and energy consumption, as well as increased 

construction quality and accuracy. Their BIM-based workflow involving architects, engineers and 

contractors is presented in the form of the framework shown in Figure 18. 

 

 

Figure 18 – Overall framework and details of computational design optimisation steps 

(Kontovourkis et al., 2019) 

In their framework, the first part is the computational design optimization where the architect performs 

the form-finding of the structure. Secondly, the linear static structural analysis is conducted by the 

structural engineer in tandem with the topology optimisation and the parametric design by the architect. 

Third, once the geometry is finalised, the detailed design is carried out.  

 

Figure 19 - 3D printed shell prototype with hexagonal tessellation (Adriaenssens et al., 2014) 
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This part also includes the tessellation process where the structure is subdivided into segments like the 

partitions of the shell of a tortoise. Though in this case the designer can select the type of shape of the 

units e.g. rectangular, hexagonal, isosceles triangles, etc. as seen in Figure 14 and Figure 19 

(Kontovourkis, Phocas and Katsambas, 2019).  

In the study, the surface obtained from form-finding is tessellated into square cells that are then offset 

to form a 3D structure. Through topological optimisation, the square cell becomes a Y-shaped unit which 

is defined as reinforced concrete for the structural analysis. The next part is the development of the semi-

automatic formwork mechanism that can adjust its shape according to the tessellated unit. Nonetheless, 

the mechanism that was developed for the formwork is limited to the Y-shaped concrete components in 

their study and is not configurable for other tessellated shapes (Kontovourkis, Phocas and Katsambas, 

2019).  

A more sophisticated method presented by Borg Costanzi et al. (2018) uses 3D printing and allows the 

production of structures of any shape by casting its constituent concrete panels onto a flexible and 

adaptable mould rather than a flat plane – refer to Figure 20.   

 

Figure 20 - Schematic of adaptable mould (Borg Costanzi et al., 2018) 

The authors also make use of Grasshopper 3D to create the geometry and a custom workflow from 

design to production and assembly to create the structure. However, in the study the authors neglect to 

address the complexity of the required construction supports for shell or free-form structures. They also 

neither discuss the structural robustness of the solution nor the type of connection between the panels in 

detail (Borg Costanzi et al., 2018). 

The last part of the work by Kontovourkis et al. (2019) is the physical prototyping where each unit of 

the structure is brought to life through adjusting the shape of the formwork, casting the concrete then 

removing the unit from the mould, before assembling the units to form the structure. The authors 

envision that the units will be precast. Once on site,  sequential construction of the units will occur with 

bracing and supports to hold the structure in place until is completed (Kontovourkis, Phocas and 

Katsambas, 2019). 

The main advantage of the proposed workflow is the form-finding and topology optimisation which 

ensures material optimisation. Another advantage is the semi-automated nature of the formwork for the 
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concrete casting and the use of precast panels to save on time and cost. Despite this, the paper contains 

a glaring omission which is that the complexity and expense of construction supports for shell structures 

is not addressed (Kontovourkis, Phocas and Katsambas, 2019). 

2.6.3. An integrated framework for multi-criteria optimization of thin concrete shells 

In their work, Gomes et al. (2018) propose an integrated framework for collaboration of the architect 

and engineer to produce a conceptual design of a shell structure. The framework allows for a quick 

generation and structural assessment of different 3D shell geometries, including cost and safety 

considerations to assist in accelerated decision making – refer to Figure 21.  

 

Figure 21 - Interactive and iterative thin shell pre-design process (Gomes et al., 2018) 

The paper proposes a methodology composed of three interlinked and iterative processes. In the first 

process, the boundary conditions and other requirements are defined, and a form-finding process is 

carried out to obtain the first shell shape. In the second process, a parametric model is created that allows 

the first shape to be changed easily to assess how these changes affect the defined requirements. The 

third and final process is computational design, which allows the computer to come up with unique 

solutions that are structurally optimal (Gomes et al., 2018).  

This last process uses a genetic algorithm that is provided with an initial population of possible solutions 

to iterate through and mutate based on provided goals and constraints to output the most optimal 

solutions. In the study, the goals were optimal structural performance and minimisation of cost. The 
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final part of this process is selection of a final structural shape based on a structural analysis that meets 

all design requirements (Gomes et al., 2018). 

The study shows that custom tools are sometimes necessary to perform certain tasks that go beyond the 

capabilities of proprietary software. This can be achieved by accessing the proprietary software’s API 

and/or using programming languages such as C# and Python. In the study, a component was created in 

C# that can obtain geometry information from the modelling software and transfer it to the structural 

analysis FEM software automatically setting up and running the analysis then reverting the results back 

to the modelling software for optimisation. This interoperability is a key feature in a BIM workflow to 

prevent information loss and latency as well as quicken decision making (Gomes et al., 2018).  

The proposed framework emphasises the importance of communication between the architect and 

engineer throughout the process, to ensure that any potential problems are highlighted and dealt with 

timeously. The automation resolves some of the most tedious and repetitive tasks that are invariably a 

part of the design process so that architects and engineers can focus on conceptual design, engineering 

thinking and analyses of results. Nonetheless, the study is limited to the conceptual design stage only 

and it remains to be seen whether or how it would work in practise with other considerations such as 

formwork for construction of the shell structure (Gomes et al., 2018).  
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3. PARAMETRIC MODELLING AND COMPUTATIONAL 

DESIGN TOWARDS MODEL GENERATION 

3.1. Introduction 

Based on the Perpectum research proposal by Azenha (2019), this work proposes compression-only 

structures tessellated into precast panels cast on a flexible mould, with in-situ self-sensing prestressing 

cables. The panel size can be approximately 1m x 1m with  200mm to enable easy lifting without 

complex machinery required. A thickness of 300mm is selected preliminarily to assess structural 

performance. As seen in the literature review presented in Chapter 2, the technological aspect and 

modular fabrication could be available with the current technology (refer to Figure 20).  

Ideally, the prestressing cables employed in Perpectum, are low stress, non-metallic and cost-effective 

members made up of multiple layered and braided cables similar to those used in the marine industry. 

However, in this thesis, 20mm diameter steel cables are used to evaluate the validity of the proposed 

system. The construction system proposes sequential assembly of the concrete panels to maintain 

robustness during construction, similar to masonry construction (refer to Figure 11). Each concrete panel 

is prestressed in two directions as it is added to the structure to maintain stability. The idea is to have 

technology that allows the concrete panels to have external anchor heads for the post tensioning that are 

decoupled after stressing to allow the next concrete panel to be placed.  

In the age of BIM, the integration of parametric modelling and computational design processes is 

becoming a fundamental part of the design process and so it is with the proposed construction system. 

Thus, the objectives of this section are to explain the use of parametric modelling and computational 

design processes to create the structural shape, thicken and tessellate the structure and add the cable 

geometry; assign an assembly sequence to each panel using cellular automata and generate the BIM 

model. A regular, simple geometry is used for the description of the processes to simplify and focus on 

the explanation of the procedures. However, it is possible to define more complex geometries provided 

they have width of at least 4m, at least four sides and either line or point supports. The structure’s height 

depends on functional and architectural requirements. 

The chapter starts with an explanation of the vault design system (Section 3.2) followed by a general 

overview of the design procedure (Section 3.3). This is followed by Section 3.4 that explicitly describes 

the step by step implementation of the algorithm for the design, including the procedure for obtaining 

the construction sequence using cellular automata principles. The chapter ends with a description of the 

connection from the model generation software to the BIM platform (Section 3.5).  

3.2. Geometrical concept for vault system 

A compression-only structural shape with supports on the ground or on walls can be achieved using 

parametric modelling and computation design from a form-finding process. Starting with an arbitrary 

planar geometry, it is possible to use point or line supports to constrain the shape - refer to Figure 22.  
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Figure 22 - Parameters and constraints for form-finding for a generic rectangular shape - Top 

view  

Then, an upward load can be applied to the points restrained by lines with an assigned stiffness (springs), 

and through iterations to obtain static equilibrium and a compression-only structure.  

Using the generic rectangular shape shown in Figure 22, the main concepts, parameters, and constraints 

essential for the form-finding process are explained as follows: 

1) The length, a and width, b can be increased or decreased. In fact, the curves representing these 

lengths can be linear or curved. 

2) The size of x and y can be changed by changing the number of divisions in any one of the 

directions, as required. 

3) Consequently, this leads to changes in the lengths of the springs and positions of the nodes. 

4) Any of the points can be selected as supports; any of the lines can be selected as support lines. 

The supports do not change position whilst all other points can shift once the load is applied. 

5) The loads are applied on the points. 

6) The lines are assigned a spring stiffness that can be adjusted as required. 

Therefore, depending on the boundary conditions, an infinite number of structural forms is possible. As 

described in Chapter 2, the resulting structure can be divided into panels which can be post tensioned 

during construction to reduce the formwork required. The resulting structure from form-finding is more 

efficient in terms of the force distribution in the system.  

3.3. Overview of parametric modelling and computational design workflow 

This section describes the parametric modelling and computational design workflow. The form-finding 

and construction sequencing procedures of the project were carried out through the Visual Programming 

Language (VPL) Grasshopper 3D that is executed within the Rhinoceros 3D version 7 (Rhino) 

Computer-Aided Design (CAD) software.   
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There were three main reasons for this choice i) it has built-in add-ons to develop the form-finding 

processes such as Kangaroo and because ii) it allows the implementation of interoperability operations 

with a BIM platform (Revit or ArchiCAD). Various other approaches for form-finding can be used 

including DynaShape, an add-on of Dynamo – a VPL of Autodesk Revit or textual programming such 

as Python. However, the former was found to not be as robust as Kangaroo and it would have been more 

time-consuming to troubleshoot as there is currently less literature on it. Then the latter required more 

time for familiarisation but in theory would have interesting possibilities especially with the use of 

pyRevit, a Python based plug-in for Revit. 

After the first stage of design generation in Rhino, a plug-in called “Rhino.Inside.Revit” was used for 

bi-directional interoperability between Rhino 7 and Autodesk Revit 2021, allowing users to model in 

the Rhino environment and have the full geometrical shape immediately available in Autodesk Revit for 

BIM purposes. Any changes in Rhino were instantaneously updated to Autodesk Revit, similar to how 

Dynamo works.   

3.4. Implementation of the computational design model 

This section describes the process by which the computational design model was defined and generated 

and connected to the BIM platform. The description includes the form-finding process using Kangaroo; 

followed by the conversion of the Kangaroo output from planar to solid and its subsequent tessellation 

to represent the panels; thereafter the procedure for cable curves generation is explained and followed 

by the cellular automata algorithm to define the assembly sequence; finally the connection procedure to 

the BIM platform is presented.  

3.4.1. Structural equilibrium by form-finding 

To generate geometries with compression-only structural behaviour, a form-finding algorithm was 

defined in Grasshopper 3D. The initial step in the implementation of the algorithm was using Kangaroo 

and its Dynamic Relaxation form-finding strategy, described in Chapter 2. Although Kangaroo was used 

in the study, it is possible to use other Grasshopper 3D plug-ins such as Karamba 3D or BullAnt created 

by Geometry Gym. However, the two are geared towards conducting the structural analysis in 

Grasshopper 3D which was not the intention in this case. In summary, the procedure is as follows: points 

are defined for a surface, from which a mesh or grid of points connected by lines are defined; then the 

lines are assigned a stiffness and loads are applied to each node on the grid; supports on the grid are 

defined and finally iterations occur to find static equilibrium.  

Since the form-finding is achieved by the application of forces to a network of points connected by 

springs, the first stage consists in the definition of a network. Figure 23 illustrates the generative schema 

of a simple network of 7m by 5m with 1m subdivisions in each direction. The sizes of the divisions of 

the network were chosen to keep the resulting panels the same size as much as possible and in 

consideration of the space for the post tensioned cables. However, the size changes to  200mm more 

than 1m after the form-finding is carried out. The process begins with the definition of the points (Figure 

23a) which are then used to form the lines (Figure 23b) which are in turn used to define the surface 

(Figure 23c). 
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  a) Points b) Lines c) Surface 

   

d) Support points (0, 1, 2, 3) e) Force application positions f) Spring positions 

Figure 23 - Generative Schema of a regular 7x5 network, top view and axonometric view 

Depending on the desired shape, some of the “naked” points (points on the boundary of the mesh) were 

selected to be the support points (Figure 23d). In this case, the four corner points, 0 to 4 are the support 

points. These are the points that will remain in the same position when the form-finding is carried out. 

The “clothed”  points (points inside the boundary of the mesh) connecting the lines of the mesh were 

assigned a vertical upward force (refer to Figure 23e) to move the points, find equilibrium and generate 

a shape. Thereafter, all the vertical and horizontal lines between the points of the mesh were assigned a 

spring stiffness that provides resistance to movement when the vertical force is applied (refer to Figure 

23f).  

 

Figure 24 - Grasshopper definition for the generation of a simple relaxed mesh through 

Kangaroo form-finding solver 

5m 
7

m
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Subsequently, as shown in Figure 24, under the INPUTS, the geometry (mesh), Force Objects (forces 

and springs), AnchorPoints (supports) and number of iterations were used as inputs to the Physics 

SOLVER “ZombieKangaroo” to perform the form-finding. The regular Kangaroo solver was not used 

to avoid having to reset and having the solver always running in the background, thereby using up 

memory, and taking up time. A fixed number of iterations was selected for the solver to come up with 

equilibrium based on the input parameters. When the solver is run, the OUTPUT from the solver (see 

Figure 24) is a 3-dimensional parabolic-shaped, dome-shaped or vault-shaped mesh. Varying the 

starting points, support locations, spring stiffness and vertical force results in different shapes as shown 

in Figure 25. 

 

 

 

 

 

 

a) 4 corner support points  b) Line supports at three edges c) Line supports at long edges 

Figure 25 – Form-finding mesh results with 3 varying inputs, axonometric view  

Initially, the use of genetic algorithms was considered in finding the optimal size of the panels or the U 

and V divisions. However, it was found that this was unnecessary as the solution was just a matter of a 

simple calculation for the simpler geometries in this work. But this would be useful for optimisation of 

the system in future. 

3.4.2. Thickening, tessellating and discretisation of the structure   

The next process was the creation of individual solid panels by thickening and tessellating the mesh 

output (see Figure 19). Grasshopper 3D has panelling tools options that could have been used to 

accomplish this task. Alternatively, Revit Adaptive Components were considered but the resulting 

individual panels were perpendicular to the surface. This resulted in angled separation at the interface 

and the intended smooth geometry is not maintained (see Figure 26). Although methods to overcome 

this are proposed in the literature (Hadilou, 2014) another procedure thought to be simpler was followed. 

 

Figure 26 – 3D view of gaps between panels resulting non-smooth curve from using Panelling tools 

Gap between panels 
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The vault model illustrated in Figure 25c was considered as a case study for this chapter. As the first 

step, the mesh geometry is converted to a solid object. This was done by choosing a thickness (300mm 

in this case), and the vertices of the mesh were shifted up and down to form the top and bottom surface 

of the structure respectively. The U and V curves are used to split the surface into panels by obtaining 

the middle U/V line of the entire surface and dividing it into the desired number of panels and then using 

these curves to split/fragment the surface as shown in Figure 27.  

 

 

 

a) Bottom surface b) Bottom surface fragmented c) Top surface fragmented 

Figure 27 - Generative schema: Surface fragmentation, axonometric view 

 

  

a) Bottom surface U/V Curves b) Top surface U/V Curves c) Top and bottom U/V Curve surfaces 

Figure 28 - Generative Schema: U/V Curves for Top and Bottom Surface, axonometric view  

                         

Figure 29 – 3D structure segmented into panels and plan view with labelling 
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A final operation was conducted combining Figure 27b and c with Figure 28c to obtain the 3D structure 

segmented into panels as shown in Figure 29. 

3.4.3. Generation of cable curves 

Once the panels had been generated, the next procedure was defining the algorithm for generation of the 

cable curves in Grasshopper 3D. In the algorithm, cable curves representing the centre line of the post 

tensioned cables were defined for the transfer to the structural analysis software which requires curves 

to form the cables. Referring to a single panel as shown in Figure 30, the cable edge distances c and e 

are between a third and a quarter of the panel dimension l or m. As mentioned, the panel dimension l or 

m is at approximately 1m and the panel thickness is fixed at 300mm. The cable centre line is offset down 

from the panel centre by its radius for the cables in one direction and offset up by the same dimension 

in the other direction so that the cables do not clash. 

 

Figure 30 - Panel and cable parameters and constraints 

Using the same example as for the panels, the process for the generation of the cable curves was as 

follows. First, two separate surfaces were offset to the desired positions for the centre line of the cables 

in the U and V direction. Next, the central V line was selected and split into 3 times the number of 

specified V divisions.  

  
 

a) Division of surface at centre b) U curves on edges and in panels  c) Selection of U curves in panels 

Figure 31 - Creation and selection of cable curves in U direction, axonometric view 

Parameters 

l – panel length 

m – panel width 

c, e – edge distance 

d, f – cable distance 

     - cable  

     - anchor head  

 

c c d 
e 

e 

f 

l 

m 

thickness 

Central V curve 
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Thereafter, curves in the U direction were defined from these points to the edge of the surface (see 

Figure 31b). Following which, a pattern was used to separate the U curves on the edges of the panel 

from those which were within the panels as shown resulting in Figure 31c. After this procedure, an 

intersection component was executed using the edges/curves of the panels to obtain the cable curves per 

panel only in the U direction. The same procedure was repeated on the lower surface to get the cable 

curves in the other direction with U and V direction/curves swapped with results shown in Figure 32. 

   

a) Division of surface at centre b) V curves on edges and in panels c) Selection of V curves in panels 

Figure 32 - Creation and selection of cable curves in V direction, axonometric view 

            a)                     b)  

Figure 33 – Top and Bottom cable curves in U direction and labelling for each panel 

         a)                     b)  

Figure 34 – Left and Right cable curves in V direction and labelling for each panel 

Central U curve 
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The cable curves were further divided into four lists to separate the top and bottom (Figure 33) and, left 

and right cable curves (Figure 34) in each panel. The reason for this was to have labelling consistent 

with the labelling of the panels (see Figure 29). Figure 33 and Figure 34 depict the Top view of the 

example for easier visualisation. The panel in the left bottom corner is numbered “0” (see Figure 29) 

while the cables in the “0” panel will also be numbered “0” (refer to Figure 33 and Figure 34). 

3.4.4. Creating the assembly sequence using a cellular automata algorithm 

The panels and cables presented in the previous sections were assigned an assembly sequence. 

Controlling the assembly sequence of the panels means they can be brought onto site in the order in 

which they are needed thereby saving time and money. Additionally, it also allows designers to generate 

multiple solutions and consequently optimize the forces on the structure during construction. The 

assembly sequence algorithm in this study was defined using principles from cellular automata 

algorithms. The method was selected for automating the assembly sequence because it was successfully 

used previously for a similar application on dam construction sequences (Fernandes, 2015) and for its 

use of decision-making based on previous information. Generally, cellular automata algorithms make 

use of a network of cells and their neighbours to change the status of the cell i.e. dead or alive, 

alternatively active or inactive, depending on simple rules based on how many of its neighbours have 

the same status  (Herr and Kvan, 2007). In this case, the cells were related to the panels and the status 

refers to whether the panel has been placed on the structure during construction.  

The cellular automata algorithm was defined in Grasshopper 3D and run using the Anemone Plug-in 

which allows users to run loops. The Loop Start component has some input data which is then connected 

to and updated with data from the Loop End component. The user can specify the number of repetitions 

then use the reset button to run the loops. Once completed, the user can obtain the final data from the 

Loop End component as explained in Table 1 and illustrated in Figure 35. 

Table 1 – Grasshopper Cellular automata algorithm task description 

Task Description 

1. Inputs The initial layout is defined and each cell is entered initially as “dead”. The number 

of iterations is set and the reset button is used to start the loop. 

2. Loop Start Received inputs and exchanges information with the Loop End. 

3. Find Neighbours Proximity component is used to find the number of neighbours based on the initial 

layout. 

4. No. of live neighbours Used to calculate how many neighbours that each cell has. 

5. Separate dead/live cells Sift component is used to separate the dead and live cells in each loop. 

6. Dead cell test Checks whether a particular cell is dead depending on how many live neighbouring 

cells it has. 

7. Live cell test Checks whether a particular cell is alive depending on how many live neighbouring 

cells it has and whether it was alive before. 

8. Combine next gen. dead 

and live cells  

Combines information from Task 6 and 7 and inputs back into the system. 

9. Merge old and new 

information 

Records information during each loop and enters that information back into the new 

loop. 

10. Loop End Data can be obtained after the number of iterations specified have been run 
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The algorithm starts with a block of rectangular cells with the same number as the panels and the same 

sequential order. First, the neighbours of each cell is identified using the Proximity component in 

Grasshopper (Task 3 in Table 1) with example shown in Figure 36. This was setup by establishing the 

number of neighbours required and the radius which should be checked by the Proximity component. 

On the one hand, in the case of a maximum of 8 neighbours chosen within a radius of 1.5 a) Cell 0 has 

corner Cell 6 and adjacent Cells 1 and 5 as neighbours; b) Cell 17 has corner Cells 11, 21, 23, 13 and 

adjacent Cells 12, 16, 18 and 22 as neighbours; c) while Cell 14 has corner Cells 8, 18 and adjacent 

Cells, 9 13 and 19 as neighbours as depicted in Figure 36a, b and c respectively. 

   

a) Neighbours for Cell 0 b) Neighbours for Cell 17 c) Neighbours for Cell 14 

Figure 36 - Neighbours for cells based on maximum 8 neighbours and radius 1.5 

On the other hand, in the case of a setting with a maximum of 4 neighbours instead of 8 and within a 

reduced radius of 1.0, the results are completly different. Cell 0 will now have only adjacent cells 1 and 

5 as neighbours; Cell 17 has adjacent Cells 12, 16, 18 and 22 as neighbours while Cell 14 has adjacent 

Cells 9, 13 and 19 as neighbours as illustrated in Figure 37.  

   

a) Neighbours for cell 0 b) Neighbours for cell 17 c) Neighbours for cell 14 

Figure 37 - Neighbours for cells based on maximum 4 neighbours and radius 1.0 
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A lower number of neighbours was used for the purposes of this study to reduce and control the number 

of cells activated in each loop. The assembly sequence in this case requires connection with adjacent 

panels only and not corner cells for connection with the PT cables see Figure 5. 

The cellular automata algorithm was caried out by first setting all the cells as “dead” by assigning them 

a value of zero. Then for the following generation, selected cells were set as “alive” by assigning them 

a value of one. For subsequent generations, the algorithm checked the current status i.e. dead or alive 

(zero or one), of each cell for that generation and then decided whether to change its status or keep it the 

same. This was done by first establishing a particular cell’s neighbours (see Figure 37) and then checking 

the value of each neighbour (zero or one).  

Then the sum of the values of all neighbouring cells determined whether the cell in question would live 

(be assigned a value of one) or stay dead (value zero) in the subsequent generation. Dead cells only 

became alive once they were in the proximity of between one and three live cells. Once activated, live 

cells stayed alive for all subsequent generations. The activated (live) cells during each loop/run were 

recorded to form the assembly sequence.  

Changing the assembly sequence leads to changes in the forces on the structure during construction. The 

sequence of activation and hence the assembly sequence can be changed by adjusting which cells are 

activated or set alive first. For instance, starting with all dead (green) cells (see Generation 0 in Figure 

38a) then activating (red) the innermost bottom and top cells at either end i.e. Cells 1, 2 and 3; 31, 32 

and 34, results in generation 2, 3 and 4 shown in Figure 38b, c and d, respectively: 

          a)            b)  

          c)             d)  

Figure 38 - Cell automata activation sequence – inner panels activated first 
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This assembly sequence was then applied to the order of the panels and cables as seen in Figure 39. 

a)  b)  

Figure 39 - 3D and Plan View labelled with Assembly Sequence (1) 

Alternatively, starting with all dead cells (Figure 40a) then activating the outermost live cells at the four 

corners i.e. Cells 0, 5, 4 and 9; 30, 25, 29 and 34, results in the sequence shown in Figure 40b), c) and 

d) as follows. 

             a)                b)  

             c)                d)  

Figure 40 - Cell automata activation sequence – outer panels activated first 
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This assembly sequence was then applied to the order of the panels and cables as seen in Figure 41. 

             a)                b)  

Figure 41 – Axonometric and Top View labelled with Assembly Sequence (2) 

3.4.5. Connection and interoperability with BIM platform including level of information need 

An important part of the workflow is the connection of the geometry to BIM platform. While ArchiCAD 

or Tekla are possible candidates, Revit was the BIM platform used in the study partly because the 

“Rhino.Inside.Revit” plug-in provides bi-directional interoperability between Rhino and Autodesk 

Revit. After the modelling stage, the geometry defined in Rhino was “baked” to Autodesk Revit 

geometry using the “Rhino.Inside.Revit” plug-in. The advantage of using it is that any changes that are 

made in Rhino can be immediately updated in Revit without the need to re-do any work. The results 

before and after baking are seen in Figure 42 and Figure 43 respectively. 

 

Figure 42 - Rhino geometry in Revit before baking, axonometric view 
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a) Shaded graphic display with single panel 

displaced and highlighted  

b) Wireframe graphic display to show cables 

Figure 43 - Revit geometry low level of detail, axonometric view  

Depending on the project phase and level of information need required, the geometry can be updated, 

and more information added to the model accordingly for the purposes of BIM. The cable curves would 

be sufficient for a lower level of detail but for a higher one, openings and the thickened cables would 

have to be represented. The operation can be carried out in Grasshopper and transmitted to Revit via the 

same procedure described earlier in this section. For the example presented in this section, the results 

are depicted in Figure 44.    

  

a) Consistent Colors Visual Style with single panel 

displaced 

b) Wireframe Visual Style showing cable thickness 

Figure 44 - Revit geometry with higher level of detail, axonometric view 
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Metadata can also be added either using the Grasshopper interface Rhino.Inside.Revit plug-in or using 

the Revit interface to assign native Revit families, set materials etc. 

Other tools such as Geometry Gym’s Rhino-Revit IFC and Hummingbird can be used for converting 

Rhino geometry to Revit geometry. However, Hummingbird is only compatible with specific versions 

of Rhino and Revit and is not currently supported by the latest version of these programs. Similarly, 

Geometry Gym’s IFC conversion procedure from Rhino to Revit requires a license and does not provide 

direct bidirectionality like the Rhino.Inside.Revit plug-in which accesses the Revit API. Nevertheless, 

Grevit, a free Grasshopper 3D Plug-in is just as effective as the Rhino.Inside.Revit plug-in and also 

allows a workflow suitable for BIM but the component exchanges are limited to certain Revit family 

types such as beams, columns and slabs. 

3.5. 3D printing 

The proposed construction system was assessed by 3D printing the blocks from the form-finding process 

described in this chapter (refer to Figure 45). Each block consisted of 4 openings, two in each direction, 

slightly offset from the centre to prevent them from clashing. A keystone was placed on the topmost 

blocks to accommodate the assembly sequence which started from the supports on either side of the 

structure to the keystone. The blocks were connected by elastic wire passing through the openings in 

place of the PT cables. Tensioning the blocks using the wires adjusts the structural shape into position 

as shown in Figure 46 and Figure 47 

 

Figure 45 - 3D printed blocks before assembly  

 

Figure 46 - 3D printed blocks after assembly - Front view 
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Figure 47 - 3D printed blocks after assembly – axonometric view  
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4. STRUCTURAL ANALYSIS PROCEDURES 

4.1. Introduction  

BIM Model Uses such as structural analysis are usually conducted following the model generation 

process as described in Chapter 3. Structural design analysis using FEA is vital to determine the 

construction and performance viability of shell structures. Moreover, decisions on the building blocks 

of the design including the material types, material strengths and connection types are made at this stage. 

This information is then communicated to the relevant parties involved in the construction process.  

The FEA described in Section 2.3.3 was carried out using DIANA FEA version 10.4 (herein after 

referred to as DIANA), a Finite Element Analysis software developed by TNO Building and 

Construction Research Institute in Delft, The Netherlands. Other software such as Autodesk Robot 

Structural Analysis have the advantage of having direct interoperability with Autodesk Revit. Moreover, 

other FEA software such as SAP2000, ABAQUS and ANSYS are often used in structural engineering. 

Nevertheless, DIANA FEA was selected for this study because of its: i) ability to perform phased 

analysis which is essential for the thesis; ii) incorporation of Python scripts allowing automation of what 

would otherwise be tedious and time consuming tasks if done manually; iii) license availability and 

abundance of tutorials for learning.  

As described in Chapter 3, once the geometry is in the BIM platform Autodesk Revit 2021 (herein after 

referred to as Revit), a plug-in developed in C# programming language is used to automatically generate 

a Python script that converts the Revit geometry syntax into DIANA geometry syntax. This Python 

script is then run in DIANA to reproduce the model from Revit. The procedure described was followed 

because there is currently no direct interoperability between DIANA and architectural programs such as 

Revit/Rhino. 

An additional Python script was implemented to automatically assign the material properties, support 

conditions and loading on the structure as well as set-up the phased analysis in DIANA. Finally, the 

structural analysis is carried out in DIANA to ensure the structural soundness of the final solution which 

will be discussed in Chapter 5.   

This Chapter presents the structural analysis methodology. Section 4.2 presents the structural concept 

of the proposed construction system. Section 4.3 describes the interoperability tool defined to connect 

Revit to DIANA. Section 4.4 discusses the DIANA property assignment and phased analysis 

procedures. DIANA examples are presented in Section 4.5 and the interoperability tool employed to 

automate the phased analysis is described in Section 4.6.   

4.2. Structural concept of the construction system 

4.2.1. Panel size and material 

The panel size can be approximately 1m x 1m with  200mm to enable easy lifting without complex 

machinery required and a thickness of 300mm is selected, as mentioned in Chapter 3. The stresses are 

expected to be low and therefore low-strength concrete can be used to reduce the environmental impact 
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of this construction system. This might be achieved by investigating using concrete mixes with recycled 

materials. In this study, the C30/37 concrete grade is used as a first check for tensile strength. However, 

creep, shrinkage and thermal effects will not be considered and are beyond the scope of the thesis. 

4.2.2. Post tensioning load  

To estimate the load requirements at the interface, preliminary hand calculations were performed 

assuming a cantilever system with two tilted panels: one on top of the other with a PT load of 25kN. 

The expected stress at the interface between the panels is estimated with this PT load. In estimating the 

interface stresses between the top and bottom block, the first step consisted of drawing a free body 

diagram where a 3D global coordinate system (X,Y,Z) and a 2D local coordinate system (u,v) are used 

– refer to Figure 48. 

 

 

Figure 48 – PT Block Free body diagram and stress interface calculations 

The free body diagram of the top panel consists of the PT loading and the panel self-weight denoted as 

Pv and Wz respectively. The PT loads act along the v-axis parallel to the block, while the self-weight 

acts parallel to the Z-axis. In theory, the self-weight component along the v-axis (Wv) contributes to the 

perpendicular stress on the interface, while the component on the u-axis (Wu) would generate a bending 

moment at the interface between the two panels (Figure 48).  

By introducing a PT loading of 25kN in each cable, compressive (negative) stress of 0.357 MPa and 

zero (positive) tension stress occur. Values less than 25kN would lead to the occurrence of tensile 

stresses at the interface. This would mean that the two panels are not in complete contact with each 

other. Therefore, a conservative PT Load of 40kN is used. This value is lower than the usual forces for 

commercial PT systems. Cable diameter of 20mm will be used which is close to the standard 18.7mm 

used for PT systems. 
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4.2.3. Temporary supports during construction  

Ideally, the system would have no construction supports. However, preliminary studies suggested that 

tension stresses may arise if no provisional supports are provided. Therefore, a decision was made to 

add provisional supports e.g. made by a prop connected to a standard plate, which can be quickly sized 

and removed as required, with minimal increase, if any, to the construction cost. 

4.3. Interoperability tool for connection between modelling platform and structural analysis 

software 

Currently, few platforms allow direct interoperability between architectural and structural analysis 

software. Hence the most common modus operandi of structural analysis software is accessing the 

geometry using Industry Foundation Class (IFC), an object-oriented data exchange standard. Although, 

DIANA, has the capability of reading IFC syntax, ad-hoc programming was implemented to have more 

flexibility in customising the data exchange.  

Solid geometry in both Revit and DIANA are made up of surfaces (faces) which are defined by a set of 

edges and vertices. Since the geometry from Revit obtained in Chapter 3 is made up of panels (solids), 

it is necessary to translate this information to DIANA geometry. This is done by customising a C# script 

designed by fellow Masters student (Correia, 2021) whose thesis will be submitted in September, 2021. 

The script accesses the Revit Application Programming Interface (API) and converts the Revit 

nomenclature to DIANA nomenclature. Then the script produces a Python script with syntax readable 

in the DIANA environment. The algorithm consists of the following steps i) identifying the panel and 

cable geometry from Revit ii) decomposing the Revit geometry into basic elements iii) composing the 

basic elements into DIANA geometry syntax iv) producing a Python script  

In Revit syntax, the cable geometry is a curve and encompasses non-linear type lines. This is useful for 

this project where free form structures are generated. The Revit curves are tessellated and divided into 

segments. Then, the points forming these segments are combined to form DIANA curves (Correia, 2021) 

as illustrated in Figure 49. 

 

Figure 49 - Summary of conversion process of cable curves from Revit to DIANA geometry 

Similarly, the C# code uses the Revit API to obtain the panel geometry. More specifically, the algorithm 

first decomposes each panel which in Revit semantics are called “solids” into “faces” as illustrated in 

Figure 50. Afterwards, faces are decomposed into edges that are tessellated into points. The points from 

Revit by default are defined using the Imperial System (dimensions in inches) and therefore are 

converted to the Metric System (dimensions in meters) which is the default system in DIANA. 

Thereafter, these points are converted to DIANA curves which in turn are converted to wires. The wires 

Revit Curves Revit Points DIANA Curves/Wires 
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are then sewn together to form sheets. Finally, the sheets are combined to form a DIANA block that 

represents a panel.  

 

Figure 50 - Summary of the conversion process of a single panel from Revit to DIANA geometry 

4.4. DIANA FEA Property assignment and Phased Analysis procedures   

4.4.1. Property assignment procedure 

The first step in creating a new Project in DIANA is to define shapes that can be related to real world 

construction items. The detailed steps for the procedure are presented in Appendix 2. In this case, the 

shapes were created as described in Chapter 3 and read into DIANA using the interoperability tool 

presented in Section 4.3. Thereafter, the following DIANA steps, which will be discussed further, can 

be followed: 

i) Add materials and assign material characteristics  

ii) Assign shapes to geometry. Shapes can be assigned as either geometry or reinforcement 

iii) Assign a material to the shapes   

iv) Add loads to the shapes  

When adding a new material to the project, DIANA allows the user to select whether it will be modelled 

as a Class and based on the Class chosen, the Material model can be chosen which means the results 

will be based on established international codes for instance the fib Model Code for Concrete Structures 

2010 or Eurocode 2 EN 1992-1-2 for reinforcement.  

For Concrete materials, the Class options are the “Concrete design codes” and “Concrete and masonry”. 

The “Concrete and masonry” was selected for this study so that the results are applicable to different 

codes. The material model selected was “Linear elastic isotropic” because the concrete would have the 

Revit Solid/faces Revit Edges Revit Points 

DIANA Block DIANA Sheets DIANA Curves/Wires 
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same properties throughout and have linear elastic behaviour i.e. stress and strain are linear, and Hooke’s 

law applies. Additionally, the materials are expected to recover after the application of loads to the 

structure. 

Conversely, for the post tensioning cable reinforcing, “Reinforcements” or “Steel design codes” can be 

selected. Ideally, the goal would be to have post tensioning cables made from maritime cables but for 

the purposes of checking the viability of the construction system, steel properties were used. Once again, 

no code was selected and the more generic “Linear elasticity” behaviour was selected. However, the 

“Bonding” aspect was included to have the option to specify that the post tensioning cable is not bonded 

to the concrete. This means that the post tensioning cables and concrete can move independently of one 

another. 

After the Material Class and Material model have been selected, the next step is to specify the aspects 

to be included. Aspects such as Creep, Shrinkage, Thermal effects, and Strength reduction can be 

included in the analysis. However, as mentioned before, none of this behaviour was modelled since the 

focus here is the framework, but these can be easily set up in DIANA. Thereafter, the Young’s Modulus, 

Poisson’s ratio and Mass density can be specified. 

Once the materials have been defined, the “Element Class” type is selected to define the shape. 

“Structural solids” were selected as the Element class for the panels in the study. Structural solids are 

general purpose, allowing arbitrary loading and three-dimensional stress. The alternative would be 

“Rubber solids” used for rubber-like structures with hyper elasticity which is not applicable here. 

DIANA’s default elements from structural solids are of type HX24L with 8 nodes and a 2x2x2 

integration scheme. Further research would be required to investigate how a different element would 

affect the results.  

The post tensioning cables in the DIANA model can be represented by assigning a load to the curves. 

The process requires firstly adding a new load case and then adding loads to the load case. Then, the 

“Load type” is selected as a “Post tensioning load”. This load type can only be assigned to reinforcement 

therefore the curves representing the cables are set as “Reinforcement shapes” before being loaded with 

the Post tensioning load. Either end of the curve or both ends can be assigned as the “Anchor point” 

where the force is applied. In this case only one of the ends was selected as the anchor point to make it 

easier to automate the process. Finally, the “Nodal anchor force” in kN, “Coulomb friction coefficient” 

and “Wobble factor” values need to be specified in case of prestress losses. 

4.4.2. DIANA Phased Analysis 

The DIANA FEA program offers various analysis types, from Structural Linear Static to Structural 

Nonlinear and Structural Response Spectrum. The “Staged construction” analysis was selected for the 

purposes of this study to investigate how the structure responds to the gradual addition of precast 

structural panels and their post tensioning cables during construction. Each construction stage is added 

manually to the analysis as shown in Appendix 2. The number of stages equates to the number of blocks 

in the structure. Each stage is accumulative and equates to the previous block plus activation of a new 

block and its post tensioning cables. It is also worth noting that the post tensioning stress from the 

previous blocks are not destressed and then stressed again with a longer cable joining the old and new 
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cables. This was considered early on in the study but found to be overly complicated to enact in the 

model and in a real construction. However, it is worth looking into in the future should the technology 

be available. 

4.5. DIANA Examples 

4.5.1. Four-block model phased analysis   

There are several steps that have to be repeated for each analysis stage. For example, DIANA staged 

analysis is usually used for geo-mechanical structures. Therefore, it is necessary to specify that there is 

no water present and de-select both the “Clear displacements at beginning of stage” and “Initialize 

stresses in new elements” options for each stage of the analysis (refer to Figure 52b). Additionally, for 

the loads, the self-weight is automatically included in each analysis stage. However, the post tensioning 

load must be added to each analysis stage. 

To get familiar with the phased analysis in DIANA an example consisting of four panels with size 1m 

x 1m x 0.3m, angled at 60 degrees from the horizontal plane is hereafter presented. The step by step 

procedure for creating the geometry and setting up the analysis stages is presented in Appendix 2. The 

model is composed of four concrete panels each with four PT cables as shown in Figure 51.  

  

Figure 51 – DIANA example with four panels - Isometric and right view  

The PT cables ensure the connection and stability of the panels during construction. Each PT cable is 

related to the block it is in. For instance, all the cables in Block 4 are in a group called Cables 4 (Cable 

4A, 4B, 4C and 4D as denoted in Figure 51). The construction consists of four stages, each one a single 

analysis stage in DIANA. The active parts for each of the four stages are shown as axonometric views 

and inputs in Figure 52 and Figure 53. 
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a) Stage 1 axonometric view b) Stage 1 Active parts information  

  

c) Stage 2 axonometric view d) Stage 2 Active parts information  

Figure 52 - DIANA Stages of construction 1 to 2 for four-panel example 

In Construction Stage 1 (Figure 52a and b), Block 1 and all its corresponding cables (Cables 1) are added 

to start the assembly sequence. Then in Construction Stage 2 (Figure 52c and d), Block 2 and its 

corresponding cables (Cables 2) are also added to the system.  

Afterwards, in Construction Stage 3 (Figure 53a and b), Block 3 and all its corresponding cables (Cables 

3) are added to continue the assembly sequence. Finally in Construction Stage 4 (Figure 53and d), Block 

4 and its corresponding cables (Cables 4) are also added to complete the construction of the four blocks. 

The PT cables ensures the connection and stability of the panels during construction. 
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a) Stage 3 axonometric view b) Stage 3 Active parts information  

  

c) Stage 4 axonometric view d) Stage 4 Active parts information  

Figure 53 - DIANA Stages of construction 3 to 4 for four-block example 

As illustrated the process of manually adding a construction stage and activating each the blocks and 

cables is a laborious process. For this reason, an interoperability tool was designed to automatically 

perform the phased analysis with the assembly sequence related to the cellular automata algorithm. 

4.5.2. Python scripting for DIANA 

The DIANA FEA User’s manual provides specific Python commands that are readable and executable 

by the DIANA API and can be used to automate certain tasks. Alternatively, the command console 

inside DIANA displays the Python commands for each action carried out in DIANA. For example, a 
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1m length, 1m height and 0.3m breadth block was defined and assigned the material concrete with 

Young’s modulus 30 MPa and mass density of 2500kg/m3 as per Figure 54.  

  

Figure 54 - DIANA single panel size 1m x 1m x 0.3m, axonometric view and properties 

The resulting Python commands are shown in Figure 55. 

 
Figure 55 - DIANA Example block properties and Python commands 

Moreover, for any model that is created, DIANA automatically creates a Python script showing the 

commands that can be used to create/alter a model. From these options, Python’s built-in capability to 

iterate and automate processes can be exploited through creating custom scripts to be run in DIANA. 

4.6. Script for property assignment and construction phasing   

A Python script was created that automatically assigns properties to the geometry as well as specifies 

the sequence for the proposed construction system. The Python script created from the C# program 

described in Section 4.3, is run in DIANA and the geometry from Revit is reproduced. For simpler 

geometry, it would be relatively quick to manually define and assign materials, loads, and supports and 

then set up an analysis. However, as illustrated in Section 4.4 and Appendix 2, the process is tedious 

and time-consuming for increased number of blocks with multiple construction phases. In order to speed 

up the structural analysis process and simplify making changes, further textual programming to 
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automate some of the pre-processing including defining the material, supports and loading properties 

and assigning them to the curves and blocks is carried out as part of this work (refer to Figure 56).  

For instance, a script was created where the material “Concrete” is defined and assigned properties such 

as the compressive strength and then assigned to each block. Similarly, the material “Steel” is defined 

and assigned properties such as the Young’s Modulus of Elasticity and then assigned to each cable. The 

post tensioning load and the anchor positions is also assigned for each cable. By using textual 

programming, these values can easily be adjusted if required without too much difficulty. This is 

particularly useful in an AEC design environment where changes are bound to occur. 

 
Figure 56 – Part of Python script setting up properties 

The last part of the Python script involves relating the cables to the blocks such that the cables would be 

activated when the corresponding block is activated in the assembly sequence. Because of the way the 

assembly sequence was set up in the Chapter 3, the numbering is in the order required and the desired 

cable can easily be recalled as needed. This is done using iterations and the “for” loop. A single analysis 

is defined consisting only of the first block in the assembly sequence and its cables. The following 

analysis duplicates the previous analysis with the difference that the next block in the specified sequence 

(see Section 3.4.4) is activated and so on until the last block and its cables have been added. The full 

Python script is available in Appendix 1. 

#Set units 
setUnit( "LENGTH", "MM" ) 
setUnit( "FORCE", "N" ) 
 
#Create materials 
addMaterial( "Concrete", "CONCR", "LEI", [] ) 
setParameter( "MATERIAL", "Concrete", "LINEAR/ELASTI/YOUNG", 30000 ) 
setParameter( "MATERIAL", "Concrete", "LINEAR/MASS/DENSIT", 2.5e-09 ) 
setParameter( "MATERIAL", "Concrete", "LINEAR/ELASTI/POISON", 0.2 ) 
addMaterial( "Steel", "REINFO", "LINEAR", [ "FRLGTH", "NOBOND" ] ) 
setParameter( "MATERIAL", "Steel", "LINEAR/ELASTI/YOUNG", 200000 )  
setParameter( "MATERIAL", "Steel", "FREELE/FRLGTH", 1 ) 
 
#add Selfweight 
addSet( "GEOMETRYLOADSET", "Dead load" ) 
createModelLoad( "Global Load 1", "Dead load" ) 
 
#add PT loads 
addSet( "GEOMETRYLOADSET", "PT load" ) 
createBodyLoad( "PT load", "PT load" ) 
setParameter( "GEOMETRYLOAD", "PT load", "LODTYP", "POSTEN" ) 
setParameter( "GEOMETRYLOAD", "PT load", "POSTEN/TENTYP", "ONEEND" ) 
setParameter( "GEOMETRYLOAD", "PT load", "POSTEN/ONEEND/FORCE1", 40000 ) 
setParameter( "GEOMETRYLOAD", "PT load", "POSTEN/SHEAR", 0 ) 
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5. FRAMEWORK DEFINITION AND CASE STUDY 

5.1. Introduction 

As part of a typical BIM process and generally required in a BIM Execution Plan (BEP), it is important 

to know who does what, when and how i.e. roles, timelines and responsibilities for each team member 

involved in the project. This ensures that before the project starts, each project stakeholder is informed 

of the scope of work, standards, modelling requirements, what is expected of them and the timeline for 

the deliverables. Another important aspect is the Data Exchange process between disciplines 

encompassing the software being used, how the information is transferred between them and the 

useability of the information (interoperability). It is important to be aware of all this information before 

the beginning of the project. This is where a process map or workflow comes in. In this chapter, a 

workflow with a case study is presented with the aim of representing how the compression-only shell 

design and structural analysis of the proposed construction system would occur in an actual project.  

For the sake of simplification, the workflow is limited to a simple project where the client, an architect 

and a structural engineer are the only role players. It is assumed that there are no Mechanical, Electrical 

and Plumbing (MEP) requirements in the project and responsibilities such as detailing are performed by 

the architect rather than a draughtsperson. The starting point is a client brief describing the project 

requirements, which results in a completed BIM model with enough details to be handed over to the 

contractor for construction. Throughout the workflow, it is important that the structural engineering and 

architectural disciplines collaborate and provide continuous feedback to each other to prevent 

information latency. Similarly, the interoperability tools presented will prevent errors and information 

loss during the data exchanges. 

Consequently, this chapter firstly presents a collaborative framework definition whereby the processes 

described in Chapters 3 and 4 are incorporated into a design workflow in Section 5.2. Section 5.3 

presents the realisation of the parametric design and structural analysis of a free-form compression-only 

shell structure based on the framework. Finally, further applications of the framework are presented in 

Section 5.4. 

5.2. Framework for workflow with architect and structural engineer   

Preliminary concept sketches of the shell structure by the architect can be turned into a viable 

constructable structural shape through analysis and design performed by the structural engineer. The 

following is a presentation of a practical methodology or framework encompassing the work as 

described in Chapters 3 and 4 for how the actual processes and workflow can be achieved.  

The framework used for the case study in this chapter is shown in Figure 57. The figure makes use of 

Business Process Model and Notation (BPMN) and is inspired by the work of Gomes (2018) to describe 

the workflow for a compression-only form-finding design and structural analysis of the construction 

system. The main themes of Processes 1, 2 and 3 are the Geometry Definition, BIM modelling and 

Structural Analysis respectively. Each of the processes are presented in greater detail forthwith.  
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A zoom in of the first process i.e. Geometry Definition is shown in Figure 58. This is the most important 

process as its implementation affects the downstream processes.  

 

 

Figure 58 - Process 1: Geometry definition 

Initially, it requires the architect to obtain a brief from the client and produce the project scope (Process 

1a) and preliminary concept sketch (Process 1b). Process 1b specifies Revit as the software of choice 

but since the sketch is only for discussion purposes, any suitable software can be used. This information 

is shared with the engineer (Process 1c) who then defines the preliminary parametric model by using 

Grasshopper 3D and performs form-finding in Kangaroo (Process 1d). Process 1 concludes with an 

agreed upon structural shape in Rhino and Revit (Process 1h) which relies on the collaborative effort 

from both the structural engineer and the architect (Process 1e-g). Due to the Rhino.Inside.Revit plug 

in, the Rhino geometric shape is then immediately available in Revit (Process 1h). 
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A zoomed in version of the BIM process is depicted in Figure 59. This process serves as the starting 

point for the construction model which is finalised in the third process. 

 

 

Figure 59 - Process 2: BIM 

The process involves the development of the Revit model by the architect (Process 2a) including 

defining the non-geometrical information and increasing the level of detail where required. This is based 

on information provided by the structural engineer and the project requirements (Process 2b). The result 

of Process 2 is a preliminary 3D BIM model in Revit (Process 2c). 

Finally, a zoomed in version of the third process namely Structural Analysis is shown in Figure 60. The 

function of this process is to evaluate the construction viability of the geometry defined in Process 2 

with the proposed construction system.  
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Figure 60 - Process 3: Structural Analysis 

The process makes use of the Revit model from Process 2c and the custom interoperable tools described 

in Chapter 4 (Process 3a) to recreate the geometry for the structural analysis (Process 3b). If only minor 

changes are required to the model, they are communicated to the architect (Process 3d) who produces 

the final BIM model to be used for construction (Process 3e). Otherwise, there would be a need to return 

to Process 1. The framework is flexible and adaptable hence the engineer is also free to amend the model 

if required such as changing support conditions including adding temporary supports or other loads 

during Process 3b. 
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5.3. Case study of a new sustainable compression-only structural block construction system 

A case study is carried out to assess the theory and the proposed framework. The idea is to use the 

framework to create a compression-only structural shape from form-finding and asses the structural 

viability of the proposed construction system as mentioned before. An outdoor shading space at Parque 

da Cidade, in Guimarães, Portugal is proposed, similar to the one in Venice (Figure 11). The shell is 

expected to experience wind and snow loading. Preliminary sketches from the architect produce the 

Revit rendering in Figure 61 as a result of the client brief (Process 1c in Figure 58). 

 

Figure 61 – Preliminary sketch of Case Study from Process 1c 

5.3.1. Parametric modelling 

Parametric modelling and computational design as described in Chapter 3, are conducted as part of 

Process 1. The starting surface is made up of two parallel long curves joined to two parallel short curves 

as shown in Figure 62. As explained in Section 3.4.1, support positions are chosen to be along the two 

short curves, then the surface is divided into springs and nodes where the force is applied – refer to 

Figure 63a and Figure 63b respectively.  

a)  b)  

Figure 62 – Case study starting curves and resulting surface – Top view 

14m 

10m 
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a)  b)   

Figure 63 – Case study support locations, springs, and force application positions – Top view  

For the case study, a network of 14x10 cells is chosen so that the resulting panels are approximately of 

size1m by 1m. The form-finding and tessellation process results in the mesh (Figure 64a) and solid 

panels with a thickening of 300mm (Figure 64b). 

a)  b)  

Figure 64 – Case study mesh and tessellated 300mm thick 3D shape – axonometric view 

The cellular automata algorithm selected starts with the bottom middle cells at either end of the geometry 

and then moves progressively outward and upward similar to what is presented in Figure 38. On the one 

hand, in the initial order in Figure 65, the first block is in the bottom left corner and the assembly 

sequence goes from left to right (Arrow X) then up each row (Arrow Y) and left to right again until the 

final block.  

On the other hand, in the final order in Figure 66, Cell 0 is at the bottom middle of the plan view while 

Cell 1 is at the other end. The neighbouring cells are activated sequentially from the direction of Arrows 

A and B to Arrows C and D and then to Arrows E and F until the top of the structure. This shows the 

power of the cellular automata algorithm as there is better control of the system and multiple directions 

can be activated, thereby speeding up the construction process.  

 

Springs 

Force 

positions * 
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Figure 65 - Case study initial order BEFORE cellular automata algorithm – Top view 

Y 

X 
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Figure 66 - Case study final order AFTER cellular automata algorithm – Top view 

Following the completion of Process 1, the result in Revit is shown in Figure 67. This occurs after the 

activities described in Process 2 of the framework. 
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Figure 67 - Case study – Revit model and cuttout showing PT cables, axonometric view 

5.3.2. Structural description: supports, material properties and loading 

After the connection to Revit, the interoperability tool discussed in Chapter 4 is used to link the geometry 

and set up the analysis in DIANA and begin Process 3. As explained in Chapter 4, the geometry is 

automatically transferred from Revit to DIANA using a Python script, negating the need to re-define it. 

Some screenshots of the script running in DIANA are shown in Figure 68. Note that this sequence is the 

same as the one from Process 1 referred to in Figure 66. 

   

   

Figure 68 - Case study - Screenshots of 6 assembly stages while Python script is running in 

DIANA 

Once the geometry is added to the DIANA program, the next step is to assign the Boundary conditions, 

material properties loading and analysis for the FEA.  
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5.3.2.1. Boundary conditions 

With the selected assembly sequence, the permanent supports (Figure 69) and the construction 

(temporary) supports are placed on the inner boundary of the structure as shown in Figure 70.  

 

 

 

Figure 69 – Bottom view and axonometric view of structure with permanent supports 

 

Figure 70 - Bottom view showing permanent and temporary construction supports 

Each support point as shown in Figure 70 can correspond to a support plate and each corner of the panel 

can then be supported on the support plate. This was the direction taken in the study for ease of modelling 

but perhaps having support plates at the centre of the corresponding panels would be easier to set up on 

site. Although, adding supports can also be automated, in this case it was thought to be easier to add the 

supports manually since automation involved creating the algorithm for the supports based on the 

coordinates of one of the blocks.   

5.3.2.2. Material properties  

The material properties are automatically added to the DIANA geometry using the tool described in 

Chapter 4, as follows. 
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Table 2 - Case study - Material properties of concrete and steel 

 Material 
Young's 

Modulus (GPa) 

Poisson's 

ratio 

Mass density 

(kg/m3) 

fyk 

(MPa) 

fck 

(MPa) 

Partial safety 

factor (γ) 

Concrete 30 0.2 2500  30 1.5 

Steel 200 0.3 7700 450  1.15 

 

The blocks are assigned the concrete material properties while the post tensioning (PT) cables are 

assigned the steel material properties. The PT cables have an anchor force of 40kN applied, as discussed 

in Chapter 4, with zero wobble factor and zero Coulomb friction coefficient with the assumption that 

prestress losses are low and have been taken into account in the 40kN. 

5.3.2.3. Loads  

The only load during construction is the self-weight. The wind and snow loads are checked after 

construction once the temporary supports have been removed. The wind load coefficient for this type of 

curved structure is calculated to the Eurocode code EN 1991-1-4:2005 Clause 7.2.8. For curved roof 

structures, the wind load coefficient is divided into three regions as shown in Figure 71 with A, B and 

C referring to Upwind slop, Flat top and Downwind slope respectively.  

 

Figure 71 - Wind Load regions for curved roofs according to EN 1991-1-4:2005 

 

Figure 72 - Wind values and direction as applied in DIANA 

For a peak pressure of 1.56kPa and considering the wind loading coefficients results (A = 0.7, B = -1.1, 

C = -0.4) in the values shown in Figure 72. Applying the wind load assists in assessing how the structure 

would respond to a non-uniform load.  

1.1kPa 

1.7kPa 

0.6kPa 
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A uniform snow load is also applied based on an estimated snow load of 2kPa as presented in Figure 

73, assuming a persistent situation and non-drifted snow. The point of this is to assess how the structure 

responds to an increase in a uniform gravity load. 

 

Figure 73 – Uniform Snow load added to structure in DIANA 

5.3.2.4. Load combinations 

The structure was checked for the load combinations shown in Table 3 based on the Eurocode with a 

load combination factor of 1 being used for the self-weight as the focus is on the variable loads wind 

and snow (load combination 1.5). All losses are assumed to already be accounted for and so the load 

combination for the PT load is also 1. Additional load combinations can be considered in future. 

Table 3 - Load combinations 

Combination Description Type 

C1 1.0*Self-weight + 1.0*PT Load Serviceability limit state 

C2 1.0*Self-weight + 1.0*PT Load + 1.5*Wind load  Ultimate limit state 

C3 1.0*Self-weight + 1.0*PT Load + 1.5*Snow load  Ultimate limit state 

 

5.3.2.5. Construction scenarios considered   

Once the geometry, boundary conditions, loads and material properties and have been defined, the next 

step is to set up the analysis. Since there are 140 blocks, 140 stages are added for the staged construction 

analysis in DIANA with the first stage being the addition of the first block and Stage 140 representing 

the addition of the final block. Thereafter, the structural analysis is carried out as follows.  

The five checks performed to investigate the structure response to the construction sequence and loading 

with the self-weight included in all cases are presented in Table 4. The purpose of the first check is a 

general stability and baseline check of the structure. Neither construction phasing, temporary 

construction supports nor loads other than the self-weight of the structure are considered. The rest of the 

checks all take into consideration the construction phasing. Check 2 considers construction phasing but 

not construction supports. Checks 3, 4 and 5 consider the use of temporary supports during construction. 

2kPa 
2kPa 

2kPa 2kPa 
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Table 4 – Construction scenarios 

No. Description 
Self-

weight 

Wind 

Load 

Snow 

Load 

Construction 

Phasing 

Construction 

supports 

1 Self-weight (SW) only Yes No No No No 

2 SW + Construction Phasing (CP) Yes No No Yes No 

3 SW + CP + Temp. Supports (TS) Yes No No Yes Yes 

4 SW + CP + TS + Wind Yes Yes No Yes Yes 

5 SW + CP + TS + Snow Yes No Yes Yes Yes 

The construction supports are removed after the final block has been added (Stage 141). Thereafter, two 

stages are added for the wind (Stage 142) and snow load (Stage 143). The first three checks are during 

construction and therefore are restricted to load combination C1 with only the self-weight and the PT 

load applied. The last two checks are preliminary Ultimate Limit State checks for load combinations C2 

and C3 with wind and snow respectively. 

5.3.3. FEA modelling and analysis 

In the FEA conducted (see Section 4.4), the structural materials are assumed to be linearly elastic and a 

staged construction analysis is performed. Equilibrium should be maintained, throughout the 

construction stages. A simplified model is being used rather than having anchor plates for the 

prestressing cables or interface elements to observe the stresses between the panels. However, there 

should be no tensile stresses at the interfaces to guarantee construction stability. With more sophisticated 

models (e.g. with interface elements added), tension could be acceptable if it is small and the equilibrium 

is maintained. Consequently, the results will focus on the tensile stresses and two checks will be 

performed. Firstly, whether the stresses will lead to concrete cracking and secondly whether the interface 

stresses will cause instability and loss of equilibrium during construction.  

According to the Eurocode 2 (EN 1992-1-1:2004, Design of concrete structures - Part 1-1: General rules 

and rules for buildings), given a concrete grade C30/37 the characteristic cylinder compressive strength 

is 30 MPa. For a fractile of 5%, the design tensile strength can be estimated as in Equation 1. 

    fctd, 0.05 = 0.7 x 0.30 x 
 𝑓ck

2/3

𝛾
 = 1.35 MPa    Equation 1 

A quadrilateral mesh of size 75 mm was selected to reduce computational time. Although a smaller 

mesh size can be used, the results were judged to be sufficiently close to those of the smaller 50mm 

mesh using a small model. The mesh can be further refined in future to investigate these preliminary 

results. 

5.3.4. Results for Check 1: Self-weight only, no construction support and no phasing  

The principal stresses S1 for self-weight of the structure only and no construction supports or phasing 

are displayed in Figure 74. The maximum tensile stress is 0.004 MPa and the maximum compressive 

stress is 0.046 MPa. Although not plotted here for the sake of brevity, Principal Stresses S2 and S3 are 

in the range -0.447 MPa to 0 MPa and the deflections are less than 0.05mm in all directions. 

The results are to be expected based on the optimised nature of the structure. However, this system 

would require extensive construction supports that would significantly increase the project cost as 



Collaborative BIM-based workflows for a new sustainable compression-only structural block construction system 

Erasmus Mundus Joint Master Degree Programme – ERASMUS+ 

European Master in Building Information Modelling BIM A+ 81 

discussed in Chapter 2. Therefore, the proposed construction system is investigated including 

construction phasing, supports and loading in the following Sections with Checks 2 to 5 (see Table 4).  

 
Figure 74 - Principal Stresses S1 - Self-weight only, no construction supports or phasing 

5.3.5. Results for Check 2: Construction phasing but no construction supports   

The next check is with the self-weight and construction phasing but with no construction supports. The 

assembly sequence from the cellular automata is used to consider the effect of adding one panel at a 

time. The tension stresses on the structure increase as the number of blocks in the system increase. It is 

highest at the top surface, gradually decreasing with depth to the bottom surface. The maximum tensile 

stress is 2.04 MPa at construction Stage 140, in the region where assembly commences (Figure 75). 

 

Figure 75 - Principal Stresses S1 for Construction Stage 140 with no provisional supports 

Top surface 

Bottom surface 

> 1.35 MPa 
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The stresses on the structure appear as soon as a block is added and are therefore caused by both the 

construction sequence as well as the post tensioning in the added block. Although, there is tension on 

both the bottom and top surfaces of the blocks, the tension is higher on the top surface as would be 

expected for this type of structure. The highest tension is for principal stresses S1. Although, the stresses 

are still generally less than 0.1 MPa, there is more tension in the structure with the introduction of 

construction phasing than before (Figure 74) and some areas of tension are greater than 1.35 MPa and 

will likely cause cracking. Therefore, it is necessary to add provisional construction supports to the 

system. 

5.3.6. Results for Check 3: Construction phasing and construction supports   

The third check is for load combination C1, with construction supports, and construction phasing added. 

This is the most important check as it evaluates how the structure behaves during construction of the 

proposed system. The construction supports are added along the middle centre of the structure as shown 

in Figure 70 and the structure is checked for possibility of cracking, interface stresses, deflections and 

bending moments. 

5.3.6.1. Possibility of cracks during construction  

This check is to determine if the tension on the structure is enough to cause cracks i.e. are the tensions 

greater than the design tensile strength of 1.35 MPa? With the use of construction supports, there is a 

reduction in tension throughout the construction phases as seen in Figure 76 compared to Figure 75. 

Parts of the system are in compression, but most parts are in tension. From the early stages of the 

construction (Figure 76), the tension in the system is at a maximum of 0.41 MPa. The tension increases 

steadily with the addition of each block until the tension is at a maximum of 0.78 MPa in Stage 140 

(Figure 77) as opposed to the Check 2 where it was more than twice as high at 2 MPa.  

 

Figure 76 – Principal Stresses S1 for Check 3 during early construction (1) 
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Figure 77 – Principal Stresses S1 for Check 3 during construction (2) 

The maximum tension is generally less than 0.34 MPa in most areas from Construction Stage 1 to Stage 

140 when the last panel is placed. However, there are points in the centre of the system at the corners of 

the panels that have higher tension (> 0.68 MPa) that are due to the provisional supports and in the 

regions where the cable anchors would be - anchor plates were not added to make the model lighter 

(Figure 77). These tensions will not be transmitted to the structure and will be taken up by the provisional 

support system and anchor plates. Nonetheless, it is evident that the tensions on the structure will not 

cause cracking as they are less than 1.35 MPa. 

5.3.6.2. Possibility of instability due to interface tensions during construction  

The interface refers to the surface-to-surface connection between panels (refer to Section 4.2.2). This to 

evaluate the stability in the structure during construction and check the validity of the model. Since the 

structure is symmetric in two directions, the stresses will be similar for each half of the structure. The 

interface principal stresses S1 during Construction Stage 140 are shown in Figure 79 and Figure 80 with 

the former showing the long side and the latter showing the short side of the centre of the structure. In 

both cases, the level of tension increases steadily from outward to inward blocks of the slice. (In the 

construction sequence, the inner blocks were added first and therefore have higher tensile stresses).  

In reference to Figure 79 and Figure 80, generally, the outer block stresses are more than 90 percent less 

than 0.15 MPa. In the middle blocks, although they are less than ten percent of the cross-sectional area, 

the regions of tension with higher stresses increase to between 0.15 MPa and 0.29 MPa. Similarly, on 

the top blocks, less than ten percent of the area have tensions greater than 0.29 MPa. 

≥ 0.68 MPa 
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Figure 78 – Central Interface stresses during Construction Stage 140 (1) 

 
Figure 79 – Central Interface stresses during Construction Stage 140 (2) 

 
Figure 80 – Block A Interface stresses at Construction Stage 140  

Block A 

≤ 0 MPa 

≤ 0.15 MPa 

≤ 0.44MPa 

300mm 

≤ 0.29 MPa 
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Overall, the interfaces have parts in compression and parts in tension during Construction Stage 140 as 

shown in Figure 78 and Figure 79. The tensile stresses along the vertical Block A (refer to Figure 78), 

are further illustrated in Figure 80 to demonstrate the tension force calculation procedure. Eighty percent 

of the interface area has tension of 0.15 MPa or less, while 5% has tension of 0.29 MPa or less and 

another 5% of the area has 0.44 MPa of tension. 

The most critical interface areas for other construction stages were selected by inspection. The interface 

surface area is approximately A = 1.1 m * 0.3 m = 0.33 m2. The tensile forces at the interfaces for the 

construction Stages 97, 106, 132, 135 and 140 are as shown in Table 5. 

Table 5 - Interface tensile stresses and forces at 5 Construction Stages 

Stage 
Tensile stress 

(MPa) 

Area 

Percentage (%) 

Fi = σ * A * % 

(kN) 

Total Tensile 

Force F (kN) 

97 0.12 90 35.64  

 0.25 10 8.25 43.89 

106 0.12 50 19.8 19.8 

132 0.16 50 26.4  

 0.3 10 9.9  
 0.6 5 10 46.4 

135 0.16 90 47.52  

 0.3 10 9.9 57.42 

140 0.44 5 7.3  

 0.29 5 4.8  

 0.15 80 39.6 51.7 

 

For Construction Stage 97 which occurs after the two parts of the structure have been connected, more 

than 90% of the interface area are in tension with tensile stresses of 0.12 MPa or less and 10% of the 

interface area having regions of tension greater than 0.25 MPa. As more panels are added in Construction 

stage 106, the area of tension is 50% with tensile stresses of 0.12 MPa or less while the rest of the 

interface is in compression. For the later construction stages 132 and 135, about 50 to 90 % of the 

interface areas are in tension of 0.16 MPa or less. Less than 10% of the interface area have tensions 

exceeding 0.3 MPa. The rest of the regions (about 40%) are in compression. 

To summarise this section, multiplying the tension stresses and their percentage of area on the interface 

gives the tensile force at the given interface for that construction stage. Generally, the tensile forces at 

the interface increase with increase in construction stage. The highest tensile force occurs at construction 

stage 135 with an approximate value of 58 kN. This is less than the force provided by the PT cables 

(2*40 kN = 80kN) at each interface. Therefore, the PT cables provide a counter force that is more than 

the tension at the interface and so no loss of equilibrium would be expected during construction. 

5.3.6.3. Deflections and Bending moments 

The deflections were checked and found to be steadily increasing during construction but remained less 

than 0.5mm in all directions and all construction stages. A quick calculation based on the stresses and 

moment of inertia of the cross section (M= σ x I /y) suggest that the bending moment is less than 5 kNm. 

This is well below the moment capacity (Mun) of a 300mm thick unreinforced C30/37 slab as per the 

calculation results of Equations 2 and 3. 
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   fctd, fl = fctm x (1.6 - 
ℎ

1000
 ) / γ    Equation 2 

   Mun = fctd,fl x  ( 
ℎ2

6
 )       Equation 3 

Mean axial tensile strength;       fctm = 2.9 MPa 

Design flexural tensile strength of concrete; f'ctd,fl  = 2.51 MPa 

Moment capacity per m of unreinforced slab; Mun = 38 kNm 

 

5.3.7. Results for Check 4: Wind Load 

The fourth check is for load combination C2, which considers wind loading after construction. The 

principal stresses for S1 and S2 of the overall structure for this check are displayed in Figure 81 and 

Figure 82 respectively. Note that this is after the removal of the temporary construction supports. 

 

Figure 81 – Principal stresses S1 for Wind Load after construction 

 

Figure 82 - Principal stresses S2 for Wind Load after construction 
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The tensile stresses S1 (Figure 81) and S2 (Figure 82) are less than 0.34 MPa except in regions of the 

temporary supports where they are higher (0.67 MPa). This is much less than the design tensile stress 

of 1.35 MPa showing the unlikelihood of the structure cracking due to the loading. Principal stresses S3 

for Check 4 are all in compression and between -2.14 MPa and -0.0 MPa. 

5.3.8. Results for Check 5: Snow load 

The fifth check is for load combination C3, which considers snow loading after construction. The 

principal stresses of the overall structure for this check are displayed for S1 and S2 in Figure 83 and 

Figure 84 respectively. Note that this is after the removal of the temporary construction supports as well. 

 

Figure 83 – Principal stresses S1 for Snow Load after construction 

 

Figure 84 - Principal stresses S2 for Snow Load after construction 
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Similar to the wind load results, the tensile stresses S1 (Figure 83) and S2 (Figure 84) are less than 0.34 

MPa except in regions of the temporary supports where they are higher (0.67 MPa). This is much less 

than the design tensile stress of 1.35 MPa so it is unlikely that the structure will crack due to the loading. 

Principal stresses S3 for Check 5 are all in compression and between -2.15 MPa and -0.05 MPa. 

5.3.9. Photo montage of case study 

The photo montage shown in Figure 85 can be a real-life application of the case study presented in this 

chapter. The construction system is visible with the approximately 1 m x 1 m x 0.3 m concrete panels 

joined by PT cables in each direction. This illustrates the aesthetically pleasing aspect of the construction 

system. 

 

Figure 85 - Photo montage of case study, Parque da Cidade, Guimarães 

5.4. Other applications of framework   

Three further structural shapes are presented to illustrate the versatility and variety of structural shapes 

that can be produced using the framework described in this chapter.  

5.4.1. Exhibit A 

The first application (Exhibit A), results in an igloo-like structure (refer to Figure 86). Referring to 

Process 1, starting with an arbitrary planar surface and selecting some supports, the form-finding method 

can be carried out. The cables can then be added to the structure corresponding to the appropriate panel 

using the cellular automata algorithm and then the structure can be tessellated and thickened as desired 

(refer to Figure 86c and d). 
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a) Starting surface - Top view b) Support positions – Top view 

  

c) Cable lines – axonometric view d) 3D tessellated structure  

Figure 86 – Exhibit A: Rhino 3D results 

Additionally, Process 2 of the framework i.e. the BIM modelling, and Process 3, i.e. the structural 

analysis processes can also be carried out. The models in their respective software programs are shown 

in Figure 87 and Figure 88 respectively. 

 

Figure 87 - Exhibit A: Autodesk Revit result – 3D model 

5 m 

7 m 
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Figure 88 - Exhibit A: DIANA result – 3D model 

5.4.2. Exhibit B 

In the same way, Exhibit B can also be produced. With an initially four-sided surface and selecting the 

four corners as supports, the framework results from the parametric modelling and computational design 

(Figure 89), BIM (Figure 90) and structural analysis (Figure 91) procedures are shown. 

 

Figure 89 - Exhibit B: Rhino 3D result 

 

Figure 90 - Exhibit B: Autodesk Revit Result 

10m 

10m 
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Figure 91 - Exhibit B: DIANA model 

5.4.3. Exhibit C and Photo Montage 

Another application would be a shading structure also at Parque da Cidade, in Guimarães, Portugal (refer 

to Figure 92 to Figure 96). The structure would provide all the features proposed in the thesis. For 

instance, an integrated approach through the collaborative BIM-based workflow proposed herein would 

be used to design it saving time and cost. During construction, it would be largely self-supporting, and 

the cellular automata algorithm could be used to automate and optimise the construction assembly 

procedure. And finally, it would be durable and long lasting due to the use of maritime cables as opposed 

to steel reinforcement.  

 

Figure 92 - Exhibit C: Panels in Rhino 
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Figure 93 - Exhibit C: Cables in Rhino 

 

Figure 94 - Exhibit C: Revit model with two panels removed to show cables 
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Figure 95 - Exhibit C: DIANA model   

 

 

Figure 96 - Photo montage of Exhibit C - application of the framework 
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6. CONCLUSION 

This work presented a collaborative BIM-based framework for a new sustainable compression-only 

structural block construction system. The introduction also included a description of the Perpectum 

concept (Azenha, 2019) which had been theorized in 2019, but never really implemented. It was 

followed by a literature review of sustainability and optimisation in construction and how this relates to 

shell structures and their sustainable design, including their incorporation into BIM processes.  

Subsequently, there was a description of the parametric modelling and computational design processes 

that were carried out. A simple geometry was used to explain the procedures, including the one for 

obtaining the construction sequence using customised cellular automata principles and a description of 

the connection tool from the CAD to BIM platform. Next, the interoperability tools defined for structural 

analysis connection with the BIM platform and the one for automating the construction phasing were 

described. Finally, there was a description of the proposed framework for collaborative BIM-based 

workflows for the compression-only structural block construction system. 

A case study was used to perform the procedures proposed in the framework including carrying out the 

computational design and form-finding (Process 1), producing the BIM model (Process 2) and carrying 

out FEA (Process 3). With the 3D printing of the case study, Technology Readiness Level (TRL) 2 and 

3 could be said to have been achieved, with the technological concept ormulated, and an experimental 

proof of concept provided.  

The results based on the objectives in the introduction are as follows:  

• Using the visual programming software Grasshopper 3D in Rhino 3D, simplified Process 1. An 

understanding of the list system and nomenclature of the Rhino 3D platform is necessary to 

optimise the process. The “Food for Rhino” plug-ins can be used to further assist in carrying 

out the tasks required such as the form-finding (Kangaroo) and cellular automata algorithm 

(Anemone). Once the program has been set up, only minor adjustments are required to quickly 

make changes due to the parametric nature of the model. 

• In Process 2, Rhino.Inside.Revit provided direct interoperability from Rhino 3D to Autodesk 

Revit. Due to the requirements of the structural analysis software, it was necessary to first have 

the cables as lines. Thereafter, further computational modelling could be carried out to add 

openings and have the cable lines thickened for BIM modelling purposes. After that, metadata 

can be added to the model as required. 

• An interoperability tool was used which accessed the Autodesk Revit API via C# for Process 3. 

It automated the creation of a Python script that transformed the geometry from Revit 

nomenclature to structural analysis software DIANA nomenclature. Then, another Python script 

was created which automated the materials property assignment and construction phasing 

analysis in DIANA.  
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• The structural analysis was performed for models with no construction supports, with 

construction supports, once the construction supports are removed and with wind, then with 

snow loading. The results show that: 

i) It is challenging to erect a precast structure without it having excessive tensile stresses likely 

to cause cracking, unless there are some provisional construction supports. But with the 

proposed construction system, very few supports are required when compared to the normal 

construction of a shell structure and more importantly, no in-situ complex formwork is 

necessary. 

ii) The construction sequence influences the tensile stresses that develop on the structure; 

hence the careful analysis of different scenarios is important.  

iii) The construction system results in tensile and compressive stresses generally less than 0.5 

MPa meaning material mechanical property requirements are minimal, raising the 

possibility of using recycled material for concrete. 

iv) Tensile stress regions at the interface resulted in tensile force of up to 58 kN which is less 

than 75% of the applied PT load (combined 80 kN). Therefore, the structure is stable during 

construction. 

v) Adding non-symmetric loads onto the structure did not result in adverse effects and only 

slightly increase (<0.01 MPa) the total stresses on the structure. It is a structure with much 

higher tolerance to unpredicted loads that standard thin shells. 

It was also shown that the framework works for varying shapes and sizes and therefore can be used for 

a variety of structures and applications. For further work, more disciplines could be included in the 

framework such as the mechanical engineer and contractor. In addition, a more in depth look at the BIM 

modelling in Process 2 can be investigated including preparation of the documents for construction and 

how these would be linked to a factory for modular construction. 

Additionally, it would be prudent to include earthquake loading as well as more load combinations to 

test robustness of the structural shapes produced. Although the resulting stresses at the interfaces were 

relatively low, there were not expected at all due to the addition of the prestress. For this reason, further 

investigation into the connection or interface between panels would be required to ensure stability.  

Moreover, it would also be worth investigating if increasing the number of cables in each direction may 

reduce the tension at the interface. Furthermore, there is the need for technological developments to 

make the proposed system really viable especially related to the challenges in terms of the moulds and 

cable positioning in the prefabrication plant. 
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LIST OF ACRONYMS AND ABBREVIATIONS 

AEC Architecture Engineering, and Construction 

API Application Programming Interface 

BEP BIM Execution Plan 

BIM Building Information Modelling 

CAD Computer-Aided Design 

DIANA FEA Displacement Analyzer Finite Element Analysis 

FEA Finite Element Analysis 

FEM Finite Element Method 

Grasshopper Grasshopper® 3D 

IFC Industry Foundation Class 

IGA Iso-Geometric Analysis 

KE Kinetic Energy 

MEP Mechanical, Electrical, Plumbing 

NURBS Non-Uniform Rational B-Spline 

PT Post-Tensioning 

Revit Autodesk Revit® 

Rhino Rhinoceros® 3D 

  

  

  

  

 

  



Collaborative BIM-based workflows for a new sustainable compression-only structural block construction system 

Erasmus Mundus Joint Master Degree Programme – ERASMUS+ 

European Master in Building Information Modelling BIM A+ 102 

 

  

This page is intentionally left blank 

 

 



Collaborative BIM-based workflows for a new sustainable compression-only structural block construction system 

Erasmus Mundus Joint Master Degree Programme – ERASMUS+ 

European Master in Building Information Modelling BIM A+ 103 

APPENDICES 

APPENDIX 1: PYTHON SCRIPT FOR DIANA AUTOMATIC 

PROPERTY ASSIGNMENT AND CONSTRUCTION PHASING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

############################################################################## 
# Program to automate assignment of properties in DIANA 
# Python  3.7.3 
# By Lombe Mutale with input from Prof. MA, Prof. BF & CG 
############################################################################## 
setUnit( "LENGTH", "MM" ) 
setUnit( "FORCE", "N" ) 
 
#Create materials 
addMaterial( "Concrete", "CONCR", "LEI", [] ) 
setParameter( "MATERIAL", "Concrete", "LINEAR/ELASTI/YOUNG", 30000 ) 
setParameter( "MATERIAL", "Concrete", "LINEAR/MASS/DENSIT", 2.5e-09 ) 
setParameter( "MATERIAL", "Concrete", "LINEAR/ELASTI/POISON", 0.2 ) 
 
addMaterial( "Steel", "REINFO", "LINEAR", [ "FRLGTH", "NOBOND" ] ) 
setParameter( "MATERIAL", "Steel", "LINEAR/ELASTI/YOUNG", 200000 ) 
setParameter( "MATERIAL", "Steel", "FREELE/FRLGTH", 1 ) 
 
#add Selfweight 
addSet( "GEOMETRYLOADSET", "Dead load" ) 
createModelLoad( "Global Load 1", "Dead load" ) 
 
#add PT loads 
  
addSet( "GEOMETRYLOADSET", "PT load" ) 
createBodyLoad( "PT load", "PT load" ) 
setParameter( "GEOMETRYLOAD", "PT load", "LODTYP", "POSTEN" ) 
setParameter( "GEOMETRYLOAD", "PT load", "POSTEN/TENTYP", "ONEEND" ) 
setParameter( "GEOMETRYLOAD", "PT load", "POSTEN/ONEEND/FORCE1", 40000 ) 
setParameter( "GEOMETRYLOAD", "PT load", "POSTEN/SHEAR", 0 ) 
 
nB = 140     #ENTER NUMBER OF BLOCKS  
nC = nB*4       
noOfBlocks = range(1,nB+1)  
noOfCables = range(1,nC+1)  
#noOfSupports = [1, 2, 3, 5, 9, 10, 19, 20, 21, 22, 35, 36, 37, 38, 55, 56, 57, 
58, 79, 80] #ENTER BLOCKS WITH SUPPORTS or add manually in DIANA 
listSizeCables = len(noOfCables) 
noOfCablesInBlocks = range(1, nC, 4) 
  
 
rename( "SHAPESET", "Shapes", "Blocks" ) 
 
#ASSIGN CABLE PROPERTIES 
for Cn in noOfCables: 
 setShapeType( "REINFORCEMENTSHAPE", [ "Cable"+str(Cn)] ) 
 addGeometry( "Cable"+str(Cn), "RELINE", "REBAR", [] ) 
 setParameter( "GEOMET", "Cable"+str(Cn), "REIEMB/CROSSE", 140 ) 
 setReinforcementType( "REINFORCEMENTSHAPE", ["Cable"+str(Cn) ], "BAR" ) 
 assignMaterial( "Steel", "REINFORCEMENTSHAPE", [ "Cable"+str(Cn) ] ) 
 assignGeometry( "Cable"+str(Cn), "REINFORCEMENTSHAPE", [ "Cable"+str(Cn)] ) 
 
#ASSIGN BLOCK PROPERTIES 
for Bn in noOfBlocks: 
 setElementClassType( "SHAPE", [ "Block"+str(Bn)], "STRSOL" ) 
 assignMaterial( "Concrete", "SHAPE", [ "Block"+str(Bn) ] ) 
 
 #add Blocks to set 
 moveToShapeSet( [ "Block"+str(Bn)], "Blocks" ) 
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#ASSIGN BLOCK PROPERTIES 
for Bn in noOfBlocks: 
 setElementClassType( "SHAPE", [ "Block"+str(Bn)], "STRSOL" ) 
 assignMaterial( "Concrete", "SHAPE", [ "Block"+str(Bn) ] ) 
 
 #add Blocks to set 
 moveToShapeSet( [ "Block"+str(Bn)], "Blocks" ) 
 
 #Relate cables to Blocks   
 addSet( "GEOMETRYREINFOSET", "Reinforcements"+str(Bn) ) 
 rename( "SHAPESET", "Reinforcements"+str(Bn), "Cables Block"+str(Bn) ) 
ASSIGN REBAR PROPERTIES   
for CBn in noOfCablesInBlocks: 
 moveToShapeSet( [ "Cable"+str(CBn), "Cable"+str(CBn+1), "Cable"+str(CBn+2), 
"Cable"+str(CBn+3)], "Cables Block"+str(int(CBn/4+1)) )  
  
 #add loads - VERTICAL CABLES 
 attachTo( "GEOMETRYLOAD", "PT load", "POSTEN/ONEEND/PNTS1", "Cable"+str(CBn), 
[[  4367.39, -1948.74, 11.7079 ]] )  #ADD COODINATES OF FIRST END   
 attach( "GEOMETRYLOAD", "PT load", [ "Cable"+str(CBn) ] ) 
 
 attachTo( "GEOMETRYLOAD", "PT load", "POSTEN/ONEEND/PNTS1", 
"Cable"+str(CBn+1), [[  4683.85, -1974.12, 11.7364 ]] ) #ADD COODINATES OF FIRST 
END  
 attach( "GEOMETRYLOAD", "PT load", [ "Cable"+str(CBn+1) ] ) 
  
 #add loads - HORIZONTAL CABLES 
 attachTo( "GEOMETRYLOAD", "PT load", "POSTEN/ONEEND/PNTS1", 
"Cable"+str(CBn+2), [[  4074.08, -1703.99, 322.817 ]] ) #ADD COODINATES OF FIRST 
END  
 attach( "GEOMETRYLOAD", "PT load", [ "Cable"+str(CBn+2) ] ) 
 
 attachTo( "GEOMETRYLOAD", "PT load", "POSTEN/ONEEND/PNTS1", 
"Cable"+str(CBn+3), [[ 4093.40, -1453.85, 654.538 ]] ) #ADD COODINATES OF FIRST END  
 attach( "GEOMETRYLOAD", "PT load", [ "Cable"+str(CBn+3) ] ) 
 
 
 
#Add supports 
addSet( "GEOMETRYSUPPORTSET", "Geometry support set 1")  
createSurfaceSupport( "Support 1", "Geometry support set 1") 
setParameter( "GEOMETRYSUPPORT", "Support 1", "AXES", [ 1, 2 ] ) 
setParameter( "GEOMETRYSUPPORT", "Support 1", "TRANSL", [ 1, 1, 1 ] ) 
setParameter( "GEOMETRYSUPPORT", "Support 1", "ROTATI", [ 0, 0, 0 ] ) 
 
#for nS in noOfSupports:#ADD MANUALLY IF NOT WORKING 
  #attach( "GEOMETRYSUPPORT", "Support 1", "Block"+str(nS), [[1000, -
1000, -12.941931]] )   
  #setViewPoint( "ISO1" ) 
 
for Bn in noOfBlocks: 
#Generate MESH 
 setElementSize( [ "Block"+str(Bn)], 100, -1, True ) 
 setMesherType( [ "Block"+str(Bn)], "HEXQUAD" ) 
 clearMidSideNodeLocation( [ "Block"+str(Bn)] ) 
 
#RUN ANALYSIS 
generateMesh( [] ) 
#runSolver( [] ) 
#showView( "RESULT" ) 
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#set up non-staged analysis (full structure) 
addAnalysis( "Analysis1" ) 
addAnalysisCommand( "Analysis1", "LINSTA", "Structural linear static" ) 
setAnalysisCommandDetail( "Analysis1", "Structural linear static", 
"OUTPUT(1)/SELTYP", "USER" ) 
addAnalysisCommandDetail( "Analysis1", "Structural linear static", "OUTPUT(1)/USER" 
) 
addAnalysisCommandDetail( "Analysis1", "Structural linear static", 
"OUTPUT(1)/USER/STRESS(1)/TOTAL/CAUCHY/PRINCI" ) 
addAnalysisCommandDetail( "Analysis1", "Structural linear static", 
"OUTPUT(1)/USER/DISPLA(1)/TOTAL/TRANSL/GLOBAL" ) 
addAnalysisCommandDetail( "Analysis1", "Structural linear static", 
"OUTPUT(1)/USER/STRESS(2)/TOTAL/CAUCHY/GLOBAL" ) 
addAnalysisCommandDetail( "Analysis1", "Structural linear static", 
"OUTPUT(1)/USER/STRAIN(1)/TOTAL/GREEN/GLOBAL" ) 
 
#set up staged analysis  
addAnalysis( "Analysis2" ) 
renameAnalysis( "Analysis2", "Analysis2" ) 
renameAnalysis( "Analysis2", "Simulation Analysis" ) 
addAnalysisCommand( "Simulation Analysis", "STAGCO", "Geomechanical staged 
construction" ) 
renameAnalysisCommand( "Simulation Analysis", "Geomechanical staged construction", 
"Staged construction" ) 
 
#ADD A STAGE - FIRST STAGE 
addAnalysisCommandDetail( "Simulation Analysis", "Staged construction", "STAGE" ) 
renameAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"STAGE(1)", "Stage1" ) 
  
setAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"STAGE(1)/PHREAT/LVLTYP", "NONE" ) 
setAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"STAGE(1)/INISTR", False ) 
 
#Add loads to stage 
setActivePhase( "Simulation Analysis", "Stage1" ) 
addAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"STAGE(1)/LODLEV/LOAD" ) 
addAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"STAGE(1)/LODLEV/LOAD(1)/LOADNR" ) 
setAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"STAGE(1)/LODLEV/LOAD(1)/LOADNR", 2 ) 
 
#Disable all 
setActiveInPhase( "Simulation Analysis", "SHAPESET", [ "Blocks" ], [ "Stage1" ], 
False ) 
 
for Bn in noOfBlocks: 
 setActiveInPhase( "Simulation Analysis", "GEOMETRYREINFOSET", [ "Cables 
Block"+str(Bn) ], [ "Stage1" ], False ) 
 
 
 
#Enable some 
 
setActiveInPhase( "Simulation Analysis", "SHAPE", [ "Block1" ], [ "Stage1" ], True 
) 
setActiveInPhase( "Simulation Analysis", "GEOMETRYREINFOSET", [ "Cables Block1"], [ 
"Stage1" ], True ) 
 
###################################################################################
###################################################### 
###################################################################################
###################################################### 
###################################################################################
###################################################### 
 
noOfStages = range(2, len(noOfBlocks)+1) 
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#Enable some 
 
setActiveInPhase( "Simulation Analysis", "SHAPE", [ "Block1" ], [ "Stage1" ], True 
) 
setActiveInPhase( "Simulation Analysis", "GEOMETRYREINFOSET", [ "Cables Block1"], [ 
"Stage1" ], True ) 
 
noOfStages = range(2, len(noOfBlocks)+1) 
 
for Stn in noOfStages: 
 copyAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"STAGE("+str(Stn-1)+")", "" ) 
 renameAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"STAGE("+str(Stn)+")", "Stage"+str(Stn) ) 
 setActiveInPhase( "Simulation Analysis", "GEOMETRYREINFOSET", [ "Cables 
Block"+str(Stn) ], [ "Stage"+str(Stn) ], True ) 
 setActiveInPhase( "Simulation Analysis", "SHAPE", [ "Block"+str(Stn) ], [ 
"Stage"+str(Stn) ], True ) 
 
setAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"OUTPUT(1)/SELTYP", "USER" ) 
addAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"OUTPUT(1)/USER" ) 
addAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"OUTPUT(1)/USER/STRESS(1)/TOTAL/CAUCHY/PRINCI" ) 
addAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"OUTPUT(1)/USER/DISPLA(1)/TOTAL/TRANSL/GLOBAL" ) 
addAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 
"OUTPUT(1)/USER/STRESS(2)/TOTAL/CAUCHY/GLOBAL" ) 
addAnalysisCommandDetail( "Simulation Analysis", "Staged construction", 

"OUTPUT(1)/USER/STRAIN(1)/TOTAL/GREEN/GLOBAL" ) 
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APPENDIX 2: DIANA MODELLING AND ANALYSIS 

PROCEDURE 

1. Setting up the project 

 

2. Creating the geometry 
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3. Adding a material and assigning material characteristics  
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4. Assigning shapes to geometry. Shapes can be either geometry or reinforcement 

 

5. Assigning material to the shapes and Element class to the geometry 
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6. Adding loads to the shapes  
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7. Adding supports 
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8. Adding analysis 
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9. Assigning mesh properties 
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The PT load, assigned to the post tensioning cables, is to be added to each analysis stage after generating 

the mesh. 
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APPENDIX 3: PART GRASSHOPPER CODE FOR FORM-

FINDING AND SHAPE GENERATION 

Cable lines generation procedure 
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