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Abstract: Recently, fall risk assessment has been a main focus in fall-related research. Wearable
sensors have been used to increase the objectivity of this assessment, building on the traditional use
of oversimplified questionnaires. However, it is necessary to define standard procedures that will us
enable to acknowledge the multifactorial causes behind fall events while tackling the heterogeneity
of the currently developed systems. Thus, it is necessary to identify the different specifications and
demands of each fall risk assessment method. Hence, this manuscript provides a narrative review
on the fall risk assessment methods performed in the scientific literature using wearable sensors.
For each identified method, a comprehensive analysis has been carried out in order to find trends
regarding the most used sensors and its characteristics, activities performed in the experimental
protocol, and algorithms used to classify the fall risk. We also verified how studies performed the
validation process of the developed fall risk assessment systems. The identification of trends for each
fall risk assessment method would help researchers in the design of standard innovative solutions
and enhance the reliability of this assessment towards a homogeneous benchmark solution.

Keywords: fall risk assessment; fall prediction; wearable sensors

1. Introduction

Falls consistently rank as the second main cause of unintentional injury deaths world-
wide [1]. About 684,000 fatal falls and an estimated 37.3 million non-fatal falls, which
require medical attention, occur each year. The elderly aged 60 and over have the high-
est fall risk due to their increasingly reduced cognitive, physical, and sensory status [1].
Therefore, there is a major need to develop tools that enable the assessment of the fall risk
of targeted aged populations in order to suggest evidence-based treatment interventions
towards a safer gait and, consequently, lower the fall risk.

In the last years, fall-related research has increased its focus towards fall prediction
relative to fall detection. While fall detection systems aim at alerting the subject and
healthcare professionals whenever a fall takes place, fall prediction systems warn subjects
before the fall event occurs [2]. Therefore, as fall prediction helps preventing the fall
occurrence, it further reduces the harmful consequences of a fall. Furthermore, fall risk
assessment systems, which are built to predict future falls, pave the way for an efficient
fall prediction [3]. In this regard, fall risk assessment methods using different wearable
sensory systems have been developed in order to provide quantitative measures towards
an objective assessment of the risk of fall [4–7]. Fall risk assessment based on wearable
sensors can be performed from a long-term perspective, in which sensor data is used to
predict subject’s long-term fall risk based on clinical scale scores [8,9], or from a short-term
approach, where data collected is used to detect pre-fall/unbalanced situations in real-time
and consequently identify fall risk events [4,5]. Sensor-based fall risk assessment tackles
some issues related to more traditional approaches to assess the fall risk, which mainly

Sensors 2022, 22, 984. https://doi.org/10.3390/s22030984 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6489-4221
https://orcid.org/0000-0003-4177-2587
https://orcid.org/0000-0003-0023-7203
https://doi.org/10.3390/s22030984
https://doi.org/10.3390/s22030984
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s22030984
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22030984?type=check_update&version=1


Sensors 2022, 22, 984 2 of 22

consist of qualitative, subjective, and oversimplified clinical scales or questionnaires [7–10].
Nevertheless, this sensor-based assessment is normally performed in supervised conditions,
in which the behaviour adopted by test subjects may not be representative of the one
adopted in the everyday life, as the subjects might be performing their “best effort” during
the experimental tasks [11]. As fall events occur generally in an unpredictable fashion
during the everyday life context, there is the need to assess the fall risk in uncontrolled
conditions. An unsupervised fall risk assessment using wearable sensors would provide
continuous monitoring during daily functional tasks and thus reflect subject’s real fall risk.
Thus, the interest on wearable sensors has been increasing considering the monitoring of
the fall risk among the elderly community. These wearable devices benefit from their wide
range of products in the market, small size, as well as the meaningful data they provide
while being an alternative low cost solution [6,7].

As mentioned in some previous review articles [2,3], reliable fall prediction and pre-
vention require a multifactorial analysis according to the large amount of different factors
that can cause fall events. Therefore, in order to build a reliable fall risk assessment system,
both intrinsic and extrinsic factors have to be considered in the analysis. As reported by
Rajagopalan et al. [2], intrinsic fall factors include characteristics inherently related to the
subject such as its mobility impairments, neurological disturbances, age, or fall history.
On the other hand, extrinsic factors are generally related to the environment in which
the subject is inserted and account for inappropriate footwear, clutter, slippery surfaces,
or poor lighting. Therefore, the complex interaction between biological, environmental,
demographic, and behavioural fall risk factors require framework solutions that enable the
integration of both contextual data regarding the environment and subject’s behaviours as
well as physiological health information [2]. Indeed, literature studies have been explor-
ing various kinds of statistically different features between fallers and non-fallers, which
may have the potential to be monitored in fall risk assessment systems. Beyond the most
common use of metrics extracted from kinematic and kinetic sensors to assess the risk of
falling [6], other approaches included biosignal analysis by means of cardiovascular [12],
electromyography [5,13] or electroencephalography [13] data. Additionally, sleep quality
metrics can be monitored within the scope of fall risk assessment [14].

Rajagopalan et al. [2] indicated that current fall prediction systems are generally tested
in laboratory conditions, which do not reflect the real relationship between the fall risk
factors. As such, laboratory testing of fall risk assessment systems does not address the real
fall risk and may bias the ability to predict future falls in regard to daily life unsupervised
testing conditions [11,15]. Concerning this validation process, Howcroft et al. [16,17]
pointed out the concern between the use of retrospective (fall history) or prospective (future
falls) fall data as the standard to evaluate the predictive accuracy of fall risk assessment
systems. Shany et al. [18] stated that, although many studies did not consider prospective
falls, there has been an observed effort in recent years to incorporate future fall occurrence
in fall risk assessment. As fall risk assessment models are built to predict future falls, the use
of prospective fall occurrence information during the follow-up period after the baseline
assessment may be more appropriate to validate the performance of the models [17].
Furthermore, retrospective fall occurrence is associated with the imprecise recall of past fall
events by the test subjects, which may hinder the retrospective assessment [19]. Moreover,
in retrospective fall risk assessment, as subjects have experienced previous falls, they
may walk in a cautious way during the assessment due to fear of falling, which would
deviate them from their natural gait [16,17]. Fear of falling produces observable changes in
the gait and muscular activity patterns, such as increased double-support time, reduced
stride length, and increased levels and duration of muscle co-contraction, as subjects seek
to adopt a more stable gait to avoid another fall [20–22]. This fear may also minimise
the execution of daily life activities, which leads to physical inactivity and consequent
social isolation. These factors significantly correlate to the decrease in muscle strength,
physical performance, and ability to control the posture [20]. As such, fear of falling leads
to gait, balance, and cognitive disorders over time, resulting in mobility deterioration and
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consequently increasing fall risk [23]. Therefore, fear of falling emerges as an important
psychological parameter in fall risk assessment, as the detection of the consequent motion
deterioration could allow the identification of high fall risk subjects [20].

Recent reviews targeting fall risk assessment have presented and discussed the dif-
ferent approaches to analyse fall risk. For instance, Rucco et al. [6] reviewed the state of
art of the fall risk assessment using wearable sensors investigating the most used sen-
sor technologies, their number and location, as well as the number and type of tasks
performed in the experimental protocol. Montesinos et al. [24] conducted a systematic
review that studied the most significant and strong associations between combinations of
feature categories, tasks performed and sensor locations to ascertain a subject fall status,
as faller or non-faller. Rajagopalan et al. [2] performed a comprehensive review regarding
the relationship between the different fall risk factors and highlighted current work and
challenges on fall prediction systems. However, the analysis within these manuscripts was
performed without specifying the different fall risk assessment methods, such as long-term
or real-time fall risk assessment. Therefore, the identification of trends is less reliable
than an individual analysis carried out for each fall risk assessment method identified.
The assessment of the fall risk from both long-term and real-time perspectives requires
different specifications and setups and, consequently, different and individual analysis.
For instance, a specific type of sensor placed on a certain position of the body can be widely
used for a specific fall risk assessment method and not for another. Furthermore, none
of the previously mentioned reviews ascertained the validation processes carried out to
validate the fall risk assessment systems found in the literature.

Thus, the aim of this work was to find evidence on the following topics: (i) “Which
are the main types of fall risk assessment methods using wearable sensors in literature
studies?”; (ii) “What types, number, and location of wearable sensors were adopted in the
literature studies?”; (iii) “Which tasks or clinical scales were performed during experimental
protocols for data acquisition?”; (iv) “Which algorithms are used in the scientific literature
for the classification of fall risk?”; and (v) “How was the validation of fall risk assessment
systems performed using wearable sensors?”. The first, fourth, and fifth questions offer
novel analysis regarding the reviews articles [2,6,24]. To the best of the authors knowledge,
no previous study has addressed the first question. The third question offers a technological
description of the sensors used in fall risk assessment systems. This allows the further
comparison with previous review studies to ascertain if trends of sensor specifications are
maintained or updated. The fourth question offers a review of the tasks or clinical scale
protocols performed for data collection.

The remainder of this narrative review is organised as follows: Section 2 describes
the search strategy employed. Section 3 highlights the characterisation of the different
fall risk assessment methods identified in the scientific literature and the methods used to
validate fall risk assessment systems. Section 4 provides a general discussion of the search
outcomes and points towards the future directions on the fall risk assessment field. Lastly,
Section 5 presents the conclusions obtained from this review.

2. Methods

An electronic systematic search was accomplished in IEEE, Scopus, Web of Science,
and PubMed databases on the topic of fall risk assessment of towards the elderly population
using wearable sensors. The search was completed in the aforementioned databases on
3 November 2020. On IEEE the keywords used were: (aged OR elderly OR geriatric OR
old) AND fall risk AND wearable sensor. The terms (aged OR elderly OR geriatric OR
old) AND (wearable sensor OR wearable device) AND fall risk AND (gait OR posture OR
walking) were used in the other 3 databases. In order to provide an overview of the most
recent and emerging trends of fall risk assessment using wearable sensors, the search was
conducted considering all articles that were published after 2015. A total of 332 articles
were found and 223 remained after removing duplicates. Further, a careful reading of
the title and the abstract of those articles enabled the exclusion of articles that clearly
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did not perform fall risk assessment or were a review. Reviews were excluded from the
search results as the purpose of the search strategy was to find studies which developed
a fall risk assessment system. Following this procedure, 48 articles remained for full text
reading. In order to screen the most important ones, eligibility criteria were applied to the
selected papers. Articles were excluded if: (i) the system described in the study presented
any kind of non-wearable device; (ii) a fall risk assessment method was not applied or
described; (iii) there was a lack of information on either the sensor system or its placement
on the body; and (iv) the study was a previous version of a more recent one, being both
in the 48 selected articles group. Regarding the application of these criteria, 16 articles
were selected for further analysis. In Figure 1, it is depicted the Preferred Reporting Items
for Systematic Review and Meta-Analysis (PRISMA) flowchart regarding the previously
described literature search.

Figure 1. PRISMA flow diagram.

3. Fall Risk Assessment Methods

As suggested in Figure 2, the 16 selected manuscripts were divided into groups
according to the method used to assess fall risk.

(a)

Author Fall Risk
Assessment Method

Saadeh (2019) Detection of fall risk events
Leone (2019) Detection of fall risk events
Rivolta (2015) Clinical scales: Tinetti

Tang (2019) Clinical scales:
BBS and MiniBEST

Parvaneh (2016) Other methods
Annese (2015) Other methods
Rivolta (2019) Clinical scales: Tinetti

Shahzad (2017) Clinical scales: BBS
Saporito (2019) Clinical scales: TUG
Rescio (2015) Detection of fall risk events
Leone (2017) Detection of fall risk events

Buisseret (2020) Clinical scales:
TUG and 6MWT

Yang (2019) Clinical scales: TUG
Selvaraj (2018) Other methods
Vieira (2015) Clinical scales: BBS

Dzhagaryan (2015) Clinical scales:
TUG and 30SCS

(b)
Figure 2. (a) Number of studies from each fall risk assessment methods identified. (b) Fall risk
assessment method adopted by each study. Saadeh [4], Leone [5], Rivolta [8], Tang [9], Parvaneh [12],
Annese [13], Rivolta [25], Shahzad [26], Saporito [27], Rescio [28], Leone [29], Buisseret [30], Yang [31],
Selvaraj [32], Vieira [33], and Dzhagaryan [34].
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A group of nine studies [8,9,25–27,30,31,33,34] assessed fall risk from a long-term
perspective based on clinical established scales. This group comprised more than half
of the manuscripts, i.e., 56%. In addition, 25% of the selected manuscripts [4,5,28,29]
considered fall risk assessment from a short-term or real-time approach by developing a
system and an algorithm able to identify pre-fall/unbalanced situations and consequently
detect fall risk events. Lastly, three studies [12,13,32], i.e., 19%, which followed different
approaches to assess fall risk, were identified and included in the “Other Methods” group.

3.1. Fall Risk Assessment Based on Clinical Scales

Vieira et al. [33] developed a gamified application for the elderly to independently
measure the Berg Balance Scale (BBS) score at home by means of a custom-made sensor
containing an accelerometer and a gyroscope. Shahzad et al. [26] estimated the BBS score
from data acquired from a single accelerometer. Tang et al. [9] performed a study to obtain
the BBS and MiniBEST test scores for each subject with a sensor apparatus composed by a
SmartShoe, which comprised a pressure sensitive insole with three pressure sensors and an
accelerometer, as well as an hip accelerometer. Yang et al. [31] conducted four environment-
adapting TUGs in order to assess fall risk in a more comprehensive way than standard
TUG by adapting gait in complex environments. During the trials, subjects wore a Smart
Insole (SITUG) in each foot, with a sensing device composed by 16 pressure sensors array
along with an Inertial Measurement Unit (IMU) including an accelerometer, gyroscope,
and magnetometer. Saporito et al. [27] attempted to predict a remote TUG score based on
data recorded from three days of free-living conditions by means of one accelerometer and
one barometric sensor. Buisseret et al. [30] assessed subjects’ fall risk based on the TUG test
score and data acquired from an accelerometer, a gyroscope and a magnetometer during
the 6-minute walking test (6MWT). Dzhagaryan et al. [34] developed a wearable system,
the Smart Button, capable of providing an automated mobility assessment of TUG and
30-second Chair Stand (30SCS) tests from data collected by an IMU with an accelerometer,
a gyroscope and magnetometer sensors. In both studies conducted by Rivolta et al. [8,25],
the Tinetti test score was predicted for each of the test subjects by means of data collected
from a single accelerometer. Further details about the sensor systems used are provided in
Figure 3.

(a)

Author Sensors Number fs
(Hz)

Sensor
location

Rivolta (2015) Acc 1 50 chest

Tang (2019) Acc
Press

3
6 400 feet; right hip

feet
Rivolta (2019) Acc 1 50 chest

Shahzad (2017) Acc 1 41 waist

Saporito (2019) Acc
Bar

1
1

50
25 chest

Buisseret
(2020)

Acc
Gyro
Mag

1
1
1

100 waist

Yang (2019)

Acc
Gyro
Mag
Press

2
2
2
32

100 feet

Vieira (2015) Acc
Gyro

1
1 N\A chest

Dzhagaryan
(2015)

Acc
Gyro
Mag

1
1
1

100 chest

(b)
Figure 3. Overview of the sensor characteristics from clinical scale-based fall risk assessment studies.
(a) Anterior and posterior views of the human body depicting sensor location, where: (i) [8,25,27,
33,34], (ii) [9], (iii) [9,31], and (iv) [26,30]. (b) Adopted sensor specifications, where: S = sensors, N
= number, fs = sampling frequency, Acc = accelerometer, Gyro = gyroscope, Mag = magnetometer,
Press = pressure sensors, Bar = barometer, Dist = distance sensors, N\A = Not Available. Rivolta
[8], Tang [9], Rivolta [25], Shahzad [26], Saporito [27], Buisseret [30], Yang [31], Vieira [33], and
Dzhagaryan [34].
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3.1.1. Sensor System Characteristics

Figure 3 summarises the sensor characteristics from the studies that performed fall
risk assessment based on clinical scales.

All the studies used at least one accelerometer, which underlines the importance of
the use of acceleration data to characterise the score results from clinical standard scales.
The use of gyroscope sensors was highlighted in four articles [30,31,33,34]. This search
revealed that accelerometers and gyroscopes were the most widely used sensors for this fall
risk assessment method. The magnetometer sensor is also included in the sensing device of
three studies [30,31,34] and is used along with both acceleremeter and gyroscope sensors.
Beyond inertial sensors, pressure sensors were used in two studies [9,31]. Concerning the
sensors’ sampling frequency, all the studies acquired data from sensors at 100 Hz or less
except Tang et al. [9], which used 400 Hz, and Vieira et al. [33] that did not mention the
frequency adopted. However, in the data processing stage, Tang et al. [9] downsampled
data from 400 Hz to 25 Hz.

Most of the studies used a small number of three sensors or less. However, Tang et al. [9]
and Yang et al. [31] used 9 and 38 sensors, respectively. In their setup, Yang et al. [31]
used 32 pressure sensors and 2 IMU’s (with accelerometer, gyroscope, and magnetometer).
Tang et al. [9] sensing apparatus consisted on six pressure sensors and three accelerometers.
Within these manuscripts, almost all sensors were placed in the insole of the test subjects,
thus the high amount of sensors did not compromise the wearability of the system. All the
single sensor solutions that assessed fall risk through clinical-based scales used accelerom-
eters [8,25,26]. The most widely used two-sensor combination for fall risk assessment is
accelerometer and gyroscope, which is line with the search results of Rucco et al. [6]. In ad-
dition, four articles used the accelerometer and gyroscope combination [30,31,33,34], with
Buisseret et al. [30] and Vieira et al. [33] using only data from those two sensing modalities.

Furthermore, five studies described the sensor placement on the chest [8,25,27,33,34],
two on the waist/lower back [26,30], two on the feet [9,31] and one on the right hip [9].
Both studies that considered the feet to place the sensors used pressure sensors [9,31].
Additionally, eight studies [8,9,25–27,30,33,34] considered at least one upper body part
to place the sensors, in which seven of them only considered upper body parts [8,25–
27,30,33,34]. The chest and the lower back were the most used upper body locations.
Therefore, the upper body contains the preferred locations to place the wearable sensors in
fall risk assessment based on clinical scales.

3.1.2. Clinical-Based Scales Adopted

The variety of clinical-based scales adopted in the literature towards fall risk assess-
ment is shown by the 6 different scales included in the group of 9 studies. TUG was the most
selected scale [27,30,31,34] and BBS was the second most adopted [9,26,33]. The Tinetti test
was implemented in both studies conducted by Rivolta et al. [8,25] and MiniBEST, 6MWT,
and 30SCS were included in one study each [9,30,34]. In addition, three studies conducted
two different clinical scales [9,30,34]. While the majority of the studies [8,9,25,30,31,33,34]
collected data from activities performed during the clinical scales experimental protocols
to assess fall risk, some collected data from activities outside the clinical scale protocols.
For instance, Shahzad et al. [26] attempted to predict BBS score of test subjects by means
of data collected during a routine which included a group of simple physical movement
activities, namely the TUG test, five times sit-to-stand test, and alternate step test. Further,
in Saporito et al. [27] data collected from subjects during 3 days of free-living conditions
was used to predicted TUG time score.

3.1.3. Algorithms for the Classification of Fall Risk

In this fall risk assessment method, four studies implemented Machine Learning mod-
els [8,9,26,27], two considered a Deep Learning approach [25,30], two adopted threshold-
based algorithms [30,33], and two studies did not perform this classification [31,34].
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All four studies which applied Machine Learning used linear regression-based models
to predict clinical scale scores. Shahzad et al. [26] used linear regression Machine Learning
models to estimate the scores of the BBS test from the information provided by a single
accelerometer positioned in the lower-back. In the same study, researchers opted to choose
Machine Learning models that could be applied in small datasets and found that linear least
square and LASSO regularised linear regression outperformed decision tree-based models,
especially the LASSO one. Saporito et al. [27] also adopted a regularised linear model
for the estimation of a TUG score, by means of signals collected from an accelerometer
and a barometer in free living conditions for 3 days. Moreover, Rivolta et al. [8] applied
a multiple linear regression model in order to predict the value of the Tinetti test scores
assigned to the subjects by a clinician, using data obtained from a single sternum-mounted
accelerometer. Tang et al. [9] applied a linear kernel support vector regression to predict
clinical scores of BBS and MiniBEST from pressure and acceleration sensors data.

Some authors considered the use of Deep Learning [25,30]. Rivolta et al. [25] attempted
to estimate the Tinetti test scores based on gait and balance features obtained from a single
low cost acceleration sensor, considering a two-fold problem: (i) a binary classification
problem to dichotomize individuals at score 18 as High and Low Fall risk; and (ii) a
regression problem in order to estimate the gold standard Tinetti score assigned to each
subject. Based on the performance results, the Artificial Neural Networks (ANN) provided
better classification outcomes than the linear model.

Buisseret et al. [30] implemented a Deep Learning model, as well as a threshold-based
algorithm in order to predict the risk of falls based on the TUG and 6MWT. Therefore, a 6-
month prediction of subjects’ fall risk based on prospective fall occurrence as the start of the
study was performed in three different classification ways: (i) a threshold-based approach
considering only the time taken to complete standard TUG; (ii) another threshold-based
approach (TUG+) considering the previously described time and kinematic parameters
computed from IMU sensor data; and (iii) a Deep Learning Convolutional Neural Network
(CNN) network that receives the raw IMU data only. The authors verified that both
TUG+ and the Artificial Intelligence (AI) algorithm enhanced the performance in several
classification metrics of the faller status of the subjects regarding the standard TUG alone.
Vieira et al. [33] also implemented a threshold-based approach in order to assess the score of
BBS through accelerometer and gyroscope measures. The researchers established reference
values concerning each of the movements performed during the test in order to assign
their respective classification. The works developed in [31,34] assessed the performance
metrics of the features calculated by their systems against ground truth measures of video
and optical motion capture system, respectively, rather than using algorithms to classify
subject’s fall risk.

3.2. Fall Risk Assessment Based on the Detection of Fall Risk Events

Besides the clinical scale-based approach, four manuscripts [4,5,28,29] addressed
fall risk assessment from a real-time perspective, focusing on the detection of fall risk
events during the performance of activities. The details about the sensor systems used are
presented in Table 1. Saadeh et al. [4] used the data collected from an acceleration sensor to
distinguish between ADLs and pre-fall events. Their system achieved a timely prediction
of fall events, activating a fall risk alarm before the fall occurrence. Rescio et al. [28]
described an EMG-based system composed by four EMG sensors capable of detecting and
recognising fall risk events. Leone et al. [29] also presented a four EMG sensor-based fall
risk assessment system capable of recognising pre-fall events. Later, the authors developed
a smart sock system, each one equipped with two EMG sensors, able to detect unbalance
events associated with a potential fall risk [5]. More details about the performance metrics
obtained by these systems are further provided in Table 2.

One important aspect analysed by each of the four studies was the lead-time. This
time, which was used to study system’s detection performance of fall risk events, was
considered with two different meanings. Saadeh et al.’s investigation [4], as well as both
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studies conducted by Leone et al. [5,29], evaluated detection performance of the system
considering the lead-time as the time between the detection of the unbalance event and
the impact of the fall. Saadeh et al. [4] mentioned that their system could predict a fall
event with a lead-time between 300 ms and 700 ms before the fall impact. Leone et al. [29]
claimed a mean lead-time of 775 ms of their system and, in a later study performed by the
same authors [5], a smart sock EMG system was able to detect unbalance conditions with
750 ms of mean lead-time. However, Rescio et al. [28] interpreted lead-time from a different
perspective, by considering it to be the time delay between the onset of the perturbation
and the instant when the perturbation was detected. The authors claimed that their system
was able to detect a perturbation 200 ms, on average, after its onset.

3.2.1. Sensor System Characteristics

Table 1 depicts the sensor characteristics adopted in the studies that performed fall
risk assessment based on the detection of fall risk events.

Table 1. Sensor characteristics from the fall risk assessment studies based on the detection of fall risk
events, where: fs = sampling frequency, Acc = accelerometer.

Author Sensors Number fs
(Hz)

Sensor
Location

Mean
Lead-Time (ms)

Lead-Time
Meaning

Saadeh [4] Acc 1 256 upper thigh 300–700
time between the detection
of the unbalance event and

the impact of the fall

Leone [5] EMG 4 125
gastrocnemius and

tibialis muscles 750
time between the detection
of the unbalance event and

the impact of the fall

Rescio [28] EMG 4 1000
gastrocnemius and

tibialis muscles 200
time difference between the
perturbation onset and the

detection of the perturbation

Leone [29] EMG 4 1000
gastrocnemius and

tibialis muscles 775
time between the detection
of the unbalance event and

the impact of the fall

EMG-based systems were used in three studies [5,28,29] to detect pre-fall scenarios or
unstable situations associated with fall risk. On the other hand, Saadeh et al. [4] described
the detection of fall risk events based on accelerometer data. All the studies collected data
using sampling frequencies higher than 100 Hz. All sensor systems were composed of
four wearable sensors or less. A single-sensor solution comprised by one accelerometer
was used in [4], two EMG sensors were used for each smart sock in [5], and a system with
four EMG sensors was presented both in [28,29]. Saadeh et al. [4] placed the accelerometer
sensor in the upper thigh. The three other studies placed EMG sensors in the gastronecmius
and tibilias muscle groups. Leone et al. [5,29] specified the use of these sensors in the
gastrocnemius lateralis and tibialis anterior muscles.

3.2.2. Types of Activities Performed

In order to collect data to identify fall risk events, the four studies performed ADL
and fall events in the experimental protocol. Rescio et al. [28] instructed test subjects to
simulate a series of events in a random order: (i) being at idle position or walking, both in
either a normal context or presented with a deviant auditory stimuli; (ii) perform some
common ADLs such as bending, lying down, standing up or sitting down; and (iii) unstable
situations provoked by a tilting platform which simulated loss balance characteristic of fall
events. Saadeh et al. [4] adopted an experimental protocol similar to the one performed
to obtain the MobiFall dataset [35] and used the collected data along with the data from
MobiFall dataset to train and test their system. A total of six different examples of falls
and 11 ADL events were performed. ADLs included events that have a higher chance
of being classified as false positives/falls such as: (i) jumping and jogging, as they are
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abrupt events that are alike to a fall event; (ii) stepping in a car or sitting on a seat; and
(iii) performing standing or walking tasks and ascending or descending stairs. In addition,
forward lying falls, back chair falls, front knees falls, and side falls were considered in the
protocol. In [29], Leone and colleagues also developed a dataset consisting of ADLs and
fall events to train and test their algorithm. Although the types of ADL performed were
not specified in the study, the researchers mentioned that the falls were provoked through
a movable platform to cause unstable events in the test subjects. In a later work performed
by the same authors [5], simulated ADLs and fall events were conducted in order to acquire
data to train and test their algorithm. Simulated ADLs included: (i) walking; (ii) sitting
down on a chair; (iii) bending; and (iv) lying down on a mat. Additionally, forward, lateral,
and backward falls were induced by the same movable platform described in [29].

3.2.3. Algorithms for the Classification of Fall Risk

Within the four studies that assessed fall risk from a real-time perspective based on
the detection of fall risk events, three adopted Machine Learning models [4,5,29], whereas
the remaining study used a threshold-based model [28].

Saadeh et al. [4] implemented a prototype system with two parallel real-time operating
modes: slow mode fall detection (SMFD) and fast mode fall prediction (FMFP). In the
FMFP mode, a nonlinear support vector machine classifier is used in order to predict
fall events. This prediction is Patient Specific (PS) as, in the offline training stage of the
classifier, PS parameters are computed and then uploaded to the system’s repository. Once
those parameters are uploaded, they are used in the classification phase of fall prediction,
adapting this process for each subject. Leone et al. [29] also implemented Machine Learning
in order to distinguish between pre-fall and non pre-fall events. A linear discriminant
analysis classifier was used to achieve a high generalisation capacity in the classification
process while requiring low computational costs. Furthermore, in [5], Leone et al. used
the same classifier to detect fall risk events using data collected from their developed
smart EMG sock system. Rescio et al. [28] assessed the fall risk through a threshold-based
approach as they had chosen the assurance of the system’s real-time operation rather than
its generalisation ability.

3.3. Other Fall Risk Assessment Methods

There were other approaches also identified to assess the risk of fall. Selvaraj et al. [32]
highlighted the importance of analysing the foot clearance during stair negotiation, as re-
duced values of this metric have an explicit mechanism linked to falls by increasing the
chance of tripping. Therefore, the authors developed a wearable system for the subject’s
shoe to determine the foot clearance during stair negotiation. The system was equipped
with two distance sensors and an IMU sensor composed by an accelerometer, a gyro-
scope, and a magnetometer. Annese et al. [13] underlined the complexity of fall risk
assessment and the need to perform it in a multifactorial approach in an everyday life
monitoring scenario in order to accurately predict future falls. Hence, the same authors
developed a cyber-physical system composed by EMG and EEG sensors interfaced to a
Field-Programmable Gate Array (FPGA) responsible to perform an online processing of
a subject’s fall risk coefficient. This fall risk index is based on a multifactorial approach
considering the partial sum of four indexes namely, a subject condition or baseline factor,
an environmental factor, an EMG co-contraction factor, and an EEG signal factor. While the
first two factors, which are PS, are constant, the latter two are re-calculated just after a new
step is detected during gait. Parvaneh et al. [12] explored the relationship between fall risk
and the number of Premature Ventricular Contractions (PVC) episodes per hour, by using
an ECG sensor.

3.4. System’s Validation

From the 16 selected studies, only 11 performed the validation of their fall risk as-
sessment system [4,5,8,9,25–31]. As depicted in Table 2, the validation carried out on the
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fall risk assessment systems varied across these different studies. The fall risk outcome of
the system was compared against reference measures in order to compute the system’s
performance metrics.

Table 2. Validation characteristics adopted by the 11 selected articles, where: ML = machine learning,
Th = threshold-based, Accu = accuracy, Sens = sensitivity, Spec = specificity, CV = cross-validation,
NLSVM = NonLinear Support Vector Machine classifier, LDA = Linear Discriminant Analysis
classifier, SVR = Support Vector Regression, ANN = Artificial Neural Networks, LLS = Linear Least
Square Regression, LASSO = Least Absolute Shrinkage and Selection Operator regression, and
CNN = Convolutional Neural Network.

Author Number of
Subjects

Subject’s
Age

Model
Used

Validation
Method

Reference Measures
for Classification Results

Saadeh [4] 77 20-70 ML (NLSVM) N\A
Type of event

(pre-fall or normal
ADL events).

Sens = 97.8%;
Spec = 99.1%

Leone [5] 5 28.7 ± 7.1 ML (LDA)
Holdout

(70% training;
30% testing)

Type of event
(pre-fall or normal

ADL events).

Accu = 82.3%;
Sens = 86.4 %;
Spec = 83.8%

Rivolta [8] 13 69.7 ± 10.7
ML (multiple

linear regression
model)

Leave-one-out
CV

Clinical score
(Tinetti)

Accu = 84.6%
Sens = 85.7%;
Spec = 83.3%

Tang [9] 30 76.0 ± 10.5 ML (Linear
kernel SVR)

Leave-one-out
CV

Clinical score
(BBS and

MiniBEST)

Mean error:
6.07 ± 3.76 (BBS);

5.45 ± 3.65 (MiniBEST)

Rivolta [25] 90 69.3 ± 16.8

ML (linear
regression model);
DL (single hidden

layer ANN)

Holdout
(60% training;
40% testing)

Clinical score
(Tinetti)

Sens (ML) = 71%
Spec (ML) = 81%
Sens (DL) = 86%;
Spec (DL) = 90%

Shahzad [26] 23 72.87 ± 8
ML (LLS

and LASSO
models)

10-fold CV Clinical score
(BBS)

Mean error:
1.9 ± 2.53 (LLS);

1.44 ± 1.98 (LASSO)

Saporito [27] 239 75.2 ± 6.1 ML (regularised
linear model)

Leave-one-out
CV

Clinical score
(TUG)

Mean error:
2.1 ± 1.7s

Rescio [28] 7 28.8 ± 7.6 Th 10-fold CV
Type of event

(pre-fall or normal
ADL events)

Sens 70%;
Spec 70%

Leone [29] 15 32.6 ± 9.3 ML (LDA) 10-fold CV
Type of event

(pre-fall or normal
ADL events)

Sens = 89.1%;
Spec = 87.1%

Buisseret [30] 73 83.0 ± 8.3 Th; DL (CNN)
Holdout

(78% training;
22% testing)

Faller status based
on prospective
fall occurrence

Accu(Th) = 73.9%;
Sens(Th) = 85.7%;
Spec(Th)= 50%;

Accu(DL) = 75%;
Sens(DL) = 75%;
Spec(DL) = 75%

Yang [31] (*) 10 19-44 N\A N\A Video recordings
from TUG

Accu(gait cycle
count) = 100%

Accu(segment TUG
phases) = 92.23%

Accu(spatial—temporal
features) = 92%

(*) This study validated a system that extracted features from TUG rather than directly validate the system
towards the classification of fall risk.

Seven studies [4,8,9,25–27,30] validated their fall risk assessment systems using data
collected from elderly patients, while the remaining four manuscripts used data from
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young subjects [5,28,29,31]. In addition, the number of subjects enrolled in the experi-
mental protocols was usually equal or below 30 subjects [5,8,9,26,28,29,31]. Only four
studies [4,25,27,30] included data from more than 30 subjects in their validation process.
Saadeh et al. [4] was the only study that performed an external validation, i.e., used data
collected outside the study’s experimental protocol to validate the system. As well as the
data collected from 20 subjects (aged between 65 and 70) within their study, these authors
also used data from 57 subjects (aged between 20 and 47) from the MobiFall dataset [35].
The remaining studies performed only an internal validation, i.e., validate the system using
only data collected within the same study.

Cross-Validation (CV) was the most used validation method using both K-fold [26,28,29]
and Leave-one-out [8,9,27]. The Holdout validation method was used in three stud-
ies [5,25,30]. Saadeh et al. [4] did not explicitly mention the validation method used. Lastly,
Yang et al. [31] performed validation without using an algorithm. Their validation process
consisted of comparing the features extracted from their smart insole system during the
performance of four environment-adapting TUGs against video ground truth references.

Concerning the references measures for classification, five studies [8,9,25–27] used
the clinical scale scores obtained at the baseline assessment as the reference measures for
comparing the algorithm’s classification outcome. The algorithms developed by these
5 studies attempted to estimate the baseline clinical scale scores based on the wearable
sensor data collected from the subjects. A group of four studies [4,5,28,29] labelled the data
based on the activities performed. Thereby, data samples were labelled as fall risk/pre-
fall or normal/ADL events and were used as the reference values to compare against
the algorithm’s outcome. The algorithms developed in these studies attempted to detect
if the subject was experiencing a fall risk event and obtain the lead-time values of that
detection. Buisseret et al. [30] followed a different approach by considering the faller status,
i.e., faller or non-faller, associated to each subject based on the prospective occurrence
of falls during a follow-up period of 6 months. This faller status served as the reference
metric for the algorithm’s fall risk outcome. Yang et al. [31] used video recordings to obtain
reference values. The features extracted by their smart insole systems are compared against
these reference values to obtain the system’s performance metrics. According to Table 2,
the accuracy, sensitivity, and specificity were the most used performance metrics to validate
fall risk assessment system’s performance. Nevertheless, the mean error is also used by
some studies that predicted clinical scale scores [9,26,27]. Generally, studies seem to have
reached good performance from the developed fall risk assessment systems.

4. Discussion and Future Directions
4.1. Which Are the Main Types of Fall Risk Assessment Methods Using Wearable Sensors in
Literature Studies?

Concerning the search results, two main methods to assess the fall risk were identified.
The first and most widely used consisted on the long-term assessment of fall risk and was
based on clinical scales. In this method, which was adopted by nine studies, data from
wearable sensors is used to predict subject’s fall risk based on clinical scale scores. Thereby,
subjects are assigned to either high or low fall risk category. This method will promote the
decrease in long-term fall risk by enabling subjects to continuously perform long-term fall
risk assessments.

The second method, which was described in four studies, comprised a real-time
assessment of fall risk by means of the detection of fall risk events. Data from wearable
sensors was used to detect pre-fall/unbalanced situations in order to identify fall risk
events. This method will promote the decrease in short-term fall risk by allowing subjects
to be monitored in real-time on a daily basis, providing subjects feedback as to when a fall
risk event is taking place. All the studies within this fall risk assessment method analysed
the concept of lead-time. Two different perspectives of lead-time were considered: (i) the
time between the detection of the unbalance event and the impact of the fall [4,5,29]; and (ii)
the time delay between the onset of the perturbation and the instant when the perturbation
was detected [28]. The first definition of lead-time may be particularly interesting, because
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if the time is high enough, it may enable the trigger of protection systems or alarms to
reduce the harmful consequences of a fall [36]. In addition, the second concept of lead-
time appears to be oriented to the speed of unbalance event detection rather than time
for prevention of a fall. Future work in fall risk assessment should attempt to address
both time concepts in order to evaluate not only the time for triggering a system for fall
prevention, but also the speed of detection of unbalance events.

Another group of three articles, which assessed the risk of falling from other perspec-
tives, was also identified [12,13,32]. Although these studies adopted interesting metrics and
approaches to assess the risk of falling, they present some limitations. Selvaraj et al. [32]
and Parvaneh et al. [12] only considered one metric to assess the fall risk and thus their
studies did not perform a comprehensive fall risk assessment. Nevertheless, the inclusion
of the foot clearance feature in fall risk assessment systems is pertinent, as it may depict
the propensity of a subject to trip events [37]. In addition, cardiovascular metrics may
also be important, as they can be considered a fall risk factor [3]. The cyber-physical
system developed by Annese et al. [13] may bring some wearability issues, as users may
not be comfortable with using EEG electrodes on a daily basis. In addition, considering
that the baseline and environmental factors are constant, the assessment of fall risk based
on these factors may not be accurate in all scenarios, as they are subject to change in
real-life conditions.

Regarding the search results obtained, it was possible to conclude that the selection
of which fall risk assessment method to adopt is strongly linked to the purpose of the
assessment. For instance, if it is intended to perform a long-term prediction of the subject’s
risk of falling, the estimation of clinical scale scores may be the most suitable approach, as it
is performed in a single time period and allows direct feedback of fall risk based on the score
obtained from the assessment. Further, it is possible to compare clinical scores obtained
from the current and previous assessments in order to perceive the effectiveness of the
evidence-based treatment interventions applied. On the other hand, if the objective of the
assessment is a real-time prediction of the fall risk in the everyday life scenario, the method
to detect fall risk events may become the most appropriate. Thereby, it is possible to
monitor subjects continuously and alert them when fall risk events are identified.

4.2. What Types, Number, and Location of Wearable Sensors Were Adopted in the
Literature Studies?

Inertial sensors, especially accelerometers, were used in all the studies that performed
fall risk assessment based on clinical scales. As mentioned by Rucco et al. [6], the trend for
using acceleration sensors may be related to the wide range of these inertial sensors on the
market, as well as its low-cost and small size and weight. In addition, accelerometers have
a lower power consumption compared to other inertial sensors, such as gyroscopes, which
makes them more suitable for continuously monitoring applications [4,38]. In addition,
as moderate correlations in scientific literature have been found between accelerometry
features and some clinical scales, the use and interest of wearable sensors to assess the
risk of falling through clinical-based scales has been growing [18,25]. Although three
studies [8,25,26] only used accelerometers, four studies combined accelerometer with other
inertial sensors, namely gyroscope [30,31,33,34] and magnetometer [30,31,34]. The stand-
alone use of the described inertial sensors may bring various sources of measurement
errors. For instance, in dynamic activities, accelerometers lack the proper estimation of
orientation as they measure the motion’s external acceleration besides the gravitational
acceleration. Additionally, due to gyroscope’s cumulative measurement errors, its use for
estimating orientation in long-time activities may not be effective. In addition, especially in
indoor environments, the geomagnetic field measures from the magnetometer are affected
by ferrous structures [39]. Thus, the use of accelerometer, gyroscope, and magnetometer in
a single IMU enables their sensing data fusion, which may solve the mentioned drawbacks
and provide a reliable orientation estimation [39]. Furthermore, IMUs can be easily attached
to subject’s clothing, which enhances the wearability of the sensor systems [30,31]. As such,
IMUs became a reliable solution for gait analysis and, consequently, the assessment of fall
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risk. Pressure sensors were also included in two studies [9,31] to assess fall risk through
clinical scales. Kinetic data collected from these sensors enable the detection of foot–ground
contacts due to the pressure increase during specific phases of the gait cycle. This method
of phase detection may be more accurate than the methodologies that use IMU sensor
data, as contact phases are indirectly detected from inertial data by using foot orientation
information [31,40]. Therefore, the use of data collected by pressure sensors in the feet
insole may be helpful to enhance the performance of fall risk assessment. As opposed to
fall risk assessment based on the detection of fall risk events, no study described the use of
EMG sensors in fall risk assessment based on clinical scales.

There was also found to be clear evidence regarding the use of the wearable sensors
on the upper body in fall risk assessment through clinical scales. Nevertheless, both studies
that included pressure sensors in their systems placed these sensors on the feet [9,31].
According to Rucco et al. [6], the upper body placement of sensors is preferred over the
lower limbs, as the upper body is preponderant in both static and dynamic stability, and is
strongly linked to the upright gait which requires the ability to maintain upper body’s
balance during walking. The chest and the lower back are the most adopted upper body
locations to place the wearable sensors. Rivolta et al. [8] focused on the global body stability
by placing their single wearable sensor on the chest, which restricts the relative motion
between the body and the acceleration sensor. Shahzad et al. [26] and Buisseret et al. [30]
considered the placement of sensors on the lower-back. In fact, the lower back positioning
of wearable sensors is relevant in fall risk assessment applications as it is near the Center of
Mass of the human body. Therefore, the sensors placed near that location provide signals
with information of the whole body movements [26,41]. This evidence allows for wearable
sensors to be included in user-friendly systems, e.g., waistbands, which can enhance the
compliant use of the sensor systems by the elderly on a daily basis.

On the other hand, EMG sensors were the most used to detect fall risk events in
real-time, being adopted in three of the four studies gathered [5,28,29]. The remaining
study [4] used accelerometer data to perform this detection, activating a fall risk alarm
whenever a fall event was predicted. As stated by Leone et al. [5], most of the studies in the
scientific literature use inertial sensors to assess the fall risk. As such, the authors suggested
the alternative to assess the unbalance condition by means of muscle contractile EMG data
from the lower limb muscles. Concerning the search results, it seems that EMG signals may
provide important information towards real-time fall risk assessment. In the three studies
that used EMG systems to asses the fall risk [5,28,29], it was suggested that using lower limb
surface electromyography sensors would promote higher lead-times than using inertial-
based sensors, considering that the sudden change of EMG patterns due to an unbalance
event is faster than the change of inertial signal patterns. However, the use of conventional
EMG sensors may cause discomfort to the users on a daily basis, as they require a proper
attachment to the surface of the skin next to the target muscle. This may bring compliance
issues with the electrodes’ gel considering a long-term use of these kind of wearable devices.
To overcome these drawbacks, Leone et al. [5] used hybrid polymer electrolytes-based
electrodes, instead of the conventional pre-gelled electrodes, incorporated in socks to
reduce skin irritation while improving biocompatibility, mechanical properties and signal
detection. These novel solutions may increase users’ conformity with the use of EMG
sensors and enhance its role in fall risk monitoring in free-living context.

Regarding sensor placement, it was observed that all the studies that used EMG sen-
sors [5,28,29] considered its placement on gastrocnemius and tibialis muscle groups of both
legs. These muscles are particularly important due to their role on walking, controlling
stability, and maintaining the standing position. They are also relevant to evaluate gait
changes related to age, fall risk, and postural deficits [5,29,42,43]. As gastrocnemius and
tibialis are agonist–antagonist muscles, during a normal walk, they are alternatively acti-
vated. By detecting simultaneous and persistent activation of these muscles, it is possible
to identify an unbalance event [22].
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The sampling frequency adopted by each fall risk assessment method was different.
While studies that assess fall risk based on clinical scales adopted frequencies below 100 Hz,
the real-time detection of fall risk events was performed by acquiring data at a sampling
frequency higher than 100 Hz. As the onset of fall risk events happen in fractions of a
second, real-time fall risk assessment systems require sensor systems capable of collecting
and processing high amounts of data in short periods of time. Therefore, a high sampling
frequency is needed [4]. On the other hand, the analysis of long-term fall risk does not need
to fulfil such requirements considering that the subject is not in danger of falling during
the assessments. In addition, four studies [8,25–27] used sampling frequencies equal to or
below 50 Hz. The use of lower sampling frequencies in this fall risk assessment method
may be based on the fact that human activity frequencies lie between 0 and 20 Hz with 98%
of its Fast Fourier Transform (FFT) amplitude contained under 10 Hz [44]. However, as
lower sampling frequencies do not capture some useful particularities of the gait pattern,
such as the subject’s walking style, higher frequencies may still be necessary to further
enhance the reliability of metrics extracted for long-term fall risk assessment [45,46].

Regarding both fall risk assessment groups, there was found a clear evidence to use
the least number of sensors, explained by the fact that most of the studies have developed
systems with four wearable sensors or less. The technological advances in wearable sensors
along with the meaningful data they provide are responsible for enhancing the wearable
properties of fall risk assessment systems while maintaining or improving their perfor-
mance.

Considering the search results, some important advantages are assigned towards
the use of wearable sensors for fall risk assessment, as they: (i) increase the objectivity
of the evaluation: (a) the assessment is based on objective data collected from sensors;
(b) in conventional clinical scale assessments, participants are more aware that they are
being evaluated and their behaviour may not be representative of the one in everyday
context; and (c) it is removed the bias associated with the inter-operator variability of
score assignment of conventional clinical scale assessments; (ii) enable the performance
of some clinical standard scales at home, which increases the accessibility of these tests
and decreases their related health care costs; and (iii) enable the real-time assessment of
fall risk based on data collected during functional tasks performed in the everyday life
context, which reflect subject’s real fall risk more accurately, and further allow for the
timely detection of fall risk events.

Some of the findings in this search are in line with Rucco et al. [6], as: (i) the trend to
use the upper body sensor placement, particularly of inertial sensors, was identified; (ii)
the use of a single accelerometer was the more widespread single-sensor solution; and (iii)
the combinations of the accelerometer sensor with either gyroscope or pressure sensors
were the most used two-sensor solutions.

4.3. Which Tasks or Clinical Scales Were Performed during Experimental Protocols for
Data Acquisition?

Considering the activities performed for data acquisition, the majority of
studies [8,9,25,30,31,33,34] from the group of fall risk assessment based on clinical scales
instructed their participants to perform experimental protocols relative to one or more
clinical standard scales. The variety of clinical scales addressed in fall research is depicted
by the six different scales adopted in the previously mentioned group of studies. Ac-
cording to the search results, the most adopted clinical scales were the TUG [27,30,31,34],
the BBS [9,26,33] and the Tinetti test [8,25]. Although TUG is simple to administer in
the older population, this test comprises some limitations, mainly due to its simplicity,
which leads to the lack of information about gait adaptability that is strongly linked to
fall risk [31,47]. This led Yang et al. [31] to conduct four environmental adapting TUG
tests in order to obtain a more in-depth fall risk assessment. Other clinical scales, such as
BBS and Tinetti, involve a more comprehensive group of activities, which may lead to a
more representative amount of information on the subject’s fall risk [48,49]. Nonetheless,
the time, material resources and monitoring from health care providers are more costly,
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making it less likely to be performed frequently and in the home environment. In order
to overcome these issues, Vieira et al. [33] developed a gamified application that enables
them to safely and autonomously perform the BBS. Nevertheless, as no results have been
presented in the paper, there is no actual proof of the usability of the developed method.
Despite being only considered in one study, the miniBEST test includes some advantages
over the other clinical scales, as it evaluates more components of dynamic stability such
as standing on a compliant or inclined surface and reacts to postural perturbations and
crossing obstacles [9,50]. Concerning the 6MWT, as it provides relevant information con-
cerning subject’s functional capacity, endurance, and systems involved during physical
activity while requiring a simple setup, it may be interesting to include this test in fall
risk assessment applications [51]. Although 30SCS requires a simple setup requirement,
the test only provides the number of stands performed in 30 s as the only quantitative
outcome [34,52]. It is noteworthy that three studies assessed the risk of fall using more
than one clinical-based scale [9,30,34]. This can be particularly useful to gather metrics
that are task-specific for each scale, which may enrich the information extracted to assess
the fall risk. The decision of which clinical scale to adopt depends not only on the aim of
the assessment, but also on the characteristics of the targeted population. Each scale has a
specific objective and a preferable target population, both of which should be considered
during the clinical scale selection. On the other hand, a minority of two studies [26,27]
acquired data outside the clinical scale experimental protocol to predict the clinical scale
score. This may be particularly useful if: (i) the activities used to collect data require less
time than performing the clinical scale protocol [26]; or (ii) data acquired from free-living
conditions could be used to predict a clinical scale score [27]. Therefore, more compliant
ways to assess the fall risk can be achieved by decreasing the inconveniences associated
with the performance of the whole clinical scale protocols. This should be addressed in
future investigations.

The experimental protocol of studies that assessed fall risk based on the detection of
fall risk events generally included some common ADLs, ADLs that can be misclassified
as falls and fall events in different directions [4,5,28,29]. The inclusion of ADLs that can
be misclassified is particularly interesting to test the algorithms’ fall positive rate and
show its capability in classifying only true fall events. In [4], the conducted experimental
protocol was similar to the one used to obtain the MobiFall dataset [35] and, along with
the data collected in their study, they used data from that dataset in order to evaluate their
system. The other studies from this fall risk assessment method [5,28,29] only included
data collected within their experiments, which would limit the reliability of the systems’
performance metrics obtained. In addition, Leone et al. [5,29] and Rescio et al. [28] lack
on the variety of ADL and fall events performed and on the number of subjects enrolled
in the experimental protocol, in comparison to the study performed by Saadeh et al. [4].
Nevertheless, all the activities performed in these four studies were conducted in controlled
conditions, which will introduce some bias on the data collected regarding real-world ADLs
and falls. Future work should attempt to introduce real-world data from both ADL and
fall event towards fall risk assessment based on the detection of fall risk events.

4.4. Which Algorithms Are Used in the Scientific Literature for the Classification of Fall Risk?

Concerning the analysis of the algorithms used for the classification of fall risk, Ma-
chine Learning models were the most used in the fall risk assessment methods identi-
fied [4,5,8,9,26,27,29]. These models are able to generate more reliable and reproducible
results of fall risk classification than simpler algorithms such as threshold-based meth-
ods [3]. Aziz et al. [53] compared the performance of five Machine Learning algorithms
against five threshold-based algorithms described in the literature to distinguish fall events
and non-fall events. Accelerometer data from young adults was collected while performing
eight types of ADLs, five types of near-falls, and seven types of falls in laboratory controlled
conditions. The authors concluded that Machine Learning algorithms had generally greater
performance than the threshold-based algorithms by providing higher values of sensitivity
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and specificity. The use of Machine Learning may be particularly useful in cases where it is
complex to define a threshold value to classify data samples. However, if the threshold
definition is simple and effective, threshold-based algorithms could be considered. As a
matter of fact, Aziz et al. [53] found that two threshold-based algorithms had a lower false
alarm rate than the Machine Learning algorithms. In this regard, the authors suggested that
both algorithms could potentially be combined to increase the classification performance.

Nevertheless, Deep Learning algorithms have also been used to assess the fall risk
and address some of the drawbacks related to the commonly used Machine Learning
methods. Yu et al. [54] highlighted that the simple architecture of traditional Machine
Learning models consists of only one layer that performs the extraction of a feature space
from the raw input signals. However, the information processing mechanisms exhibited by
humans indicate a more complex processing of the sensory input information, suggesting
that data processing is performed through layered hierarchical structures [54]. Therefore,
Deep Learning algorithms may be more appropriate to assess the fall risk, as they extract
the most relevant features automatically towards this assessment. Hence, the manual
extraction of pre-determined features from the sensor data, needed in traditional Machine
Learning methods, is not required [55]. Deep learning models have been compared against
traditional Machine Learning algorithms and have been shown to provide greater results,
e.g., in gait event detection using accelerometer data [56]. The increasing computational
power of micro devices over the recent years may lead to the implementation of more
complex and sophisticated AI algorithms in wearable devices, which would enable an
enhanced performance of fall risk assessment in a free-living context.

4.5. How Was the Validation of Fall Risk Assessment Systems Performed Using Wearable Sensors?

Different approaches were adopted to validate fall risk assessment systems, regarding
the 11 studies that performed the validation process [4,5,8,9,25–31]. Most studies that
performed fall risk assessment based on clinical scales used data from elderly subjects to
validate their systems [4,8,9,25–27,30]. However, only one study that performed fall risk
event detection used data from elderly participants [4]. Those remaining which used this
method collected data from young subjects [5,28,29]. The participation of younger subjects
may have been related to the compliance issues of elderly participants, considering the
EMG sensor placement, compared to inertial sensors, do not require proper attachment to
the skin. Nevertheless, future work on this fall risk assessment method should address the
elderly’s muscle behaviour towards the detection of fall risk events, as the elderly are the
targeted population for fall risk assessment. Regardless of the fall risk assessment method
adopted, the number of subjects enrolled in the experiments was generally reduced. This
will directly affect system’s performance metrics, as the reduced amount of subjects could
not be representative of the whole population. Therefore, the algorithm’s classification
can be biased to the study’s participants and not reproduce a reliable fall risk assessment
towards subjects outside the study. Thus, researchers should focus on training and testing
these algorithms on a larger sample of subjects.

The lack of external validation performed in the selected studies is remarkable. In fact,
Saadeh et al.’s [4] was the only study which conducted an external validation, which was
accomplished by using data from a public dataset, MobiFall [35]. Evaluating the perfor-
mance of a system with data collected outside the study’s experiments would increase the
reliability of the classification outcomes by reducing the bias of the system’s classification
towards data collected within the study. This external validation should be pointed out as
one of the main requirements in the design and conception of every fall risk assessment
system [18]. The use of public datasets may be an interesting approach to perform external
validation, particularly for fall risk assessment based on the detection of fall risk events.
Choosing the datasets to perform the external validation must be done carefully and crit-
ically. Some recommendations should be followed during the dataset selection process,
as pointed out by Casilari et al. [57]. By analysing some of the public available datasets,
the authors suggested that the performance of a system should be evaluated by more than
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one dataset, giving the heterogeneity of existing repositories. Therefore, this evaluation
would lead to more reliable and reproducible performance results of a system. However,
most of the publicly available datasets contain ADLs and falls induced in laboratory con-
trolled conditions rather than in free-living conditions [57]. In this regard, repositories
such as FARSEEING contain real-world fall data. Nevertheless, as that dataset is private,
the use of the full dataset information is limited to researchers who collaborate with the
FARSEEING repository [58]. However, it is important to mention that advances have been
performed during the latest years in order to decrease the gap between laboratory-induced
and real-world falls [59].

According to the search results, the validation process is mostly achieved either by
using CV [8,9,26–29] or Holdout [5,25,30] methods. Despite its simplicity, the Holdout
method produces a reduced dataset for algorithms’ training and testing, which could
lead to a generation of weaker models and a smaller dataset to test its classification
performance [18]. CV emerged as an alternative, as it would substantially increase the data
available for algorithm training and testing. This validation method became widely used
to estimate the generalisation performance of Machine Learning models [18,60]. This is
in line with the search results obtained, considering that more than half of the validation
methods applied were related to CV [8,9,26–29]. It is noteworthy that none of the studies
used the resubstitution method to validate the fall risk assessment systems performance.
In this methodology, the model is trained and tested with the same dataset, leading to
an obvious overfitting of the model towards the validation dataset and over-optimistic
performance results [18]. In fact, Shany et al. [18] identified some studies that performed
this inefficient validation model. Thus, it is possible to understand that recent work on fall
risk assessment systems has been addressing more robust validation methods, disregarding
weaker methods such as resubstitution.

Overall, the performance results obtained by fall risk assessment systems were quite
promising. Regarding fall risk assessment based on clinical scales, various studies re-
ported high performance from their systems. The Deep Learning model developed by
Rivolta et al. [25] achieved a sensitivity and a specificity of 86% and 90%, respectively,
towards the classification of individuals at high or low fall risk category based on the
Tinetti test score attributed at the baseline assessment. In addition, Saporito et al. [27] and
Shahzad et al. [26] obtained a relatively low misclassification error towards the estimation
of participants’ TUG and BBS clinical scale scores, respectively. The smart insole system
developed by Yang et al. [31] also showed high values of accuracy in estimating relevant
spatio-temporal features from the TUG test that enable the assessment of fall risk. Concern-
ing fall risk assessment based on the detection of fall risk events, Saadeh et al. [4] obtained
an outstanding performance detecting fall risk events, reporting a sensitivity of 97.8% and
a specificity of 99.1%. Leone et al. [5,29] also achieved accuracy, sensitivity, and specificity
values between 80% and 90%. Nevertheless, as previously mentioned by Shany et al. [18],
fall risk assessment study results are often over-optimistic considering the reduced number
and age of subjects enrolled in the test. In addition, even the pervasively used CV presents
some problems given the fact that its statistical properties are not fully understood [18,60].
Furthermore, a remarkable lack of external validation of fall risk assessment systems was
observed. These topics should be further addressed and discussed in future studies in order
to reliably design and validate fall risk assessment systems while tackling the limitations
and gaps found in current studies.

4.6. Future Directions and Work

As the interest in the field of fall risk assessment is growing, it is expected that novel
wearable monitoring solutions will emerge and enhance the assessment’s performance.
That can be enabled by: (i) the advances on the current used sensing technologies; (ii)
the used algorithms; or (iii) the introduction of innovative wearable sensors that record
meaningful data for this assessment. Regarding this last topic, the advances of sensors that
measure biosignals can play an important role by providing meaningful metrics underlying
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a subject’s biomechanical reactions to falls. Future work on the fall risk assessment field
may focus on a multifactorial approach to assess the risk of fall, comprising meaningful
data provided by wearable kinematic, kinetic, and biosignal sensors [2]. Nevertheless, it
is essential to perform a trade-off between the number of sensors used, which should be
the lowest number possible, and the system’s algorithm performance, that should be as
high as possible. Fall risk assessment systems must be user-centred designed so that the
user feels compliant with the designed sensor system, in order to be able to use it for long
periods of time without any issues [2].

According to the topics previously discussed, a solution to accomplish a comprehen-
sive fall risk assessment may be a system that: (i) monitors the risk of fall in real-time,
based on the detection of fall risk events; and (ii) has the option to predict the score of
the most suited clinical established scales, in order to conduct a long-term prediction of
the individual’s fall risk. This long-term evaluation may motivate the subject to decrease
its fall risk by being able to compare its current clinical scale index of fall risk with the
previous ones obtained. The ideal scenario is that all of this assessment is executed during
the everyday life and that the user does not need to go to any medical care centre to
perform clinical scales towards fall risk assessment. However, despite the encouraging
performance of the real-time fall risk assessment systems towards the timely detection
of fall risk events, its applicability to accurately prevent falls in the elderly community
remains unclear. The elderly may not be agile enough to react to a fall risk alarm and
prevent a fall, considering their level of physical and cognitive decline and how rapidly
a fall occurs [1]. In fact, to the authors’ knowledge, there are no studies in the scientific
literature that address and evaluate the applicability of fall risk assessment systems to
actually prevent falls. In this regard, two potential solutions could be used with the fall
risk assessment systems in order to enhance the likelihood of balance recovery upon a
fall risk event: (i) trigger an assistive system attached to the subject, whenever a fall risk
event is detected, in order to help regain balance and thus prevent the fall [61,62]; or (ii)
improve subject’s reactive stability and fall resisting skills. This can be achieved through
conventional training, such as Tai-chi, which has proven effective towards fall prevention
by improving balance, muscle strength, endurance, and proprioception [63]. Nevertheless,
perturbation-based balance training (PBT), which is a promising new task-specific training,
has also been shown to reduce fall incidence [64]. Essentially, PBT consists on the delivery
of unexpected destabilising balance perturbations during walking, which match real-life
loss of balance scenarios, in a controlled environment [59,64,65]. The goal of this training
scheme is to prepare high fall risk subjects to develop fall resisting skills to counteract
real-life loss of balance events. When using an assistive device as a means to prevent a fall,
several considerations have to be researched to verify their applicability. Falls happen very
fast. Thus, the applicability of a system to prevent a fall must be assessed to guarantee that
after the detection of the incoming signal to prevent a fall, there is still enough remaining
time to prevent it.

It is also necessary to plan and perform a suitable and reliable validation of the
performance of the fall risk assessment systems [18]. Hence, future work should also
focus on the identification of gold standard external validation sources, i.e., public datasets,
in which systems could be benchmarked. This would provide a reliable comparison
between the different literature fall risk assessment systems. In this regard, as these systems
are intended to be used by the elderly or subjects with mobility deficits, an effort should be
performed to validate the systems with data collected from these target populations.

5. Conclusions

The current state-of-art of fall risk assessment systems analysed in this narrative
review showed that most of the studies performed fall risk assessment based on clinical
scales. In the studies within this group, kinematic and kinetic data collected by inertial
and pressure sensors, respectively, were the most widely used sensing modalities, and
sensors were generally placed in the upper body. In the studies that performed fall risk
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assessment based on the detection of fall risk events, it was identified a trend to use EMG
sensors on lower limb muscles. Both identified methods seem to preferably adopt Machine
Learning models to classify the subject’s risk of fall. Concerning fall risk assessment
systems validation, it was shown that the number of participants enrolled in the studies’
experimental protocols was reduced. In addition, some studies did not include elderly
participants. CV was found to be the most adopted validation method. The lack of external
validation was remarkably noticed, considering that almost all studies performed internal
validation of the developed systems. Validation results suggested that an acceptable
performance was obtained by some fall risk assessment systems. However, we identified
the need for the establishment of an open access gold standard by which different fall
risk assessment systems could be benchmarked. This would pave the way for a reliable
performance comparison between the different systems developed in the literature.
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