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Abstract
We explore machine learning methods to detect gravitational waves (GW) from
binary black hole (BBH) mergers using deep learning (DL) algorithms. The DL
networks are trained with gravitational waveforms obtained from BBH merg-
ers with component masses randomly sampled in the range from 5 to 100 solar
masses and luminosity distances from 100 Mpc to, at least, 2000 Mpc. The GW
signal waveforms are injected in public data from the O2 run of the Advanced
LIGO and Advanced Virgo detectors, in time windows that do not coincide
with those of known detected signals. We demonstrate that DL algorithms,
trained with GW signal waveforms at distances of 2000 Mpc, still show high
accuracy when detecting closer signals, within the ranges considered in our
analysis. Moreover, by combining the results of the three-detector network in a
unique RGB image, the single detector performance is improved by as much as
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70%. Furthermore, we train a regression network to perform parameter infer-
ence on BBH spectrogram data and apply this network to the events from the
GWTC-1 and GWTC-2 catalogs. Without significant optimization of our algo-
rithms we obtain results that are mostly consistent with published results by the
LIGO–Virgo Collaboration. In particular, our predictions for the chirp mass
are compatible (up to 3σ) with the official values for 90% of events. From these
results we conclude that the combination of computer vision techniques and
deep-learning methods put forward in this work is a worthy addition to the GW
astronomer’s toolbox.

Keywords: gravitational waves, deep learning, machine learning, black hole,
LIGO, Virgo, parameter inference

(Some figures may appear in colour only in the online journal)

1. Introduction

The detection of gravitational waves (GW) from binary black hole (BBH) mergers [1, 2] dur-
ing the first data-taking run (O1) of Advanced LIGO [3] was a remarkable milestone that
opened up a new window for observing the cosmos. The European detector Advanced Virgo
[4] joined the efforts during the second observing run (O2) which helped improve the sky local-
ization of the sources. Notably, O2 included the first observation of GW from a binary neutron
star (BNS) merger, GW170817. This event was accompanied by electromagnetic radiation
which was observed by dozens of telescopes worldwide and brought forth the field of multi-
messenger astronomy [5]. During O1 and O2 the LIGO Scientific Collaboration and the Virgo
Collaboration (LVC) announced the confident detection of eleven GW signals from compact
binary coalescences (CBC) [6]. The third science run (O3) ended on March 2020 after complet-
ing almost one full year of data-taking. O3 provided a record number of detections, publicly
released as low-latency alerts through the GW catalog event database6. Recently, the LVC has
released their second GW transient catalog comprising the 39 CBC detections accomplished
in the first six months of O3 [7].

The detection of GW signals from CBC relies on accurate waveform templates against
which to perform match-filtered searches. Pipelines to perform these searches include pyCBC
[8], GstLAL [9] and MBTA [10]. Faithful templates can be built either by solving the gravi-
tational field equations with numerical relativity techniques or by using approximations to the
two-body problem in general relativity. Current gravitational waveform models (or approxi-
mants) combine analytical and numerical approaches and they are able to describe the entire
inspiral–merger–ringdown signal for a large variety of possible configurations of the parameter
space (see e.g. [11–14] and references therein). Once a CBC source is detected, the estima-
tion of its characteristic physical parameters such as component masses, individual spins or
distance, is based on Bayesian inference, using software such as LALInference [15] and Bilby
[16]. However, Bayesian inference can be computationally expensive as it may take of the order
of days to obtain sufficient number of posterior samples for BBH [17]. The situation aggra-
vates as the number of detections increases, as it is expected in the forthcoming observational
campaigns of the GW detector network. As an example, the predicted detection count of BBH
mergers in one-calendar-year observing run of the network during O4 is 79+89

−44 [18]. To over-
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come this difficulty deep learning (DL) algorithms constitute an attractive choice to speed-up
parameter estimation [17, 19–23].

Machine learning (ML) and DL are bringing about a revolution in data analysis across a
variety of fields and GW astronomy is not alien to that trend. In particular, the use of deep neu-
ral networks (DNN) [24] for classification and/or prediction tasks has become the standard on
data analysis applications, ranging from industrial applications [25–27] and medical diagnosis
[28, 29] to particle physics [30–32] and cosmology [33, 34]. This trend has now organically
been extended to GW astronomy, both for signal detection [35–37] and for detector characteri-
zation, by reducing the impact of noise artifacts or ‘glitches’ of instrumental and environmental
origin [38–46]. Glitches can potentially affect GW detection as they contribute to the back-
ground in transient searches, decreasing the statistical significance and increasing the false
alarm ratio of actual GW events. For this reason, the detection and classification of glitches
has become an important application of DL in GW astronomy. Worth highlighting is the Grav-
ity Spy project [47] which combines DL with citizen science to identify and label families of
glitches from the twin Advanced LIGO detectors. Recent approaches to eliminate, or at least
mitigate, the effect of glitches are discussed in [48–50]. We also note that recent develop-
ments of GW signal denoising algorithms include total-variation methods [51, 52], dictionary
learning approaches [53], DL autoencoders and deep filtering [54] or wavenets [55].

Contrary to CBC signals there are other types of GW sources whose detection is
not template-based, namely burst sources, continuos-wave sources and stochastic sources.
Archetypal examples of the first two are core-collapse supernovae (CCSN) and rotating neutron
stars (RNS), respectively. In the case of CCSN the number of waveform templates available
is fairly scarce due to the complexity of the very computationally expensive numerical sim-
ulations required to model the supernova mechanism, rendering a comprehensive survey of
the vast parameter space of the problem impracticable. In the case of RNS, their continous,
monochromatic GW signals are very stable, which makes match-filtering-based techniques
unfeasible due to the computational resources the task would involve. Both sources are how-
ever excellent candidates for DL methods and specific pipelines have been developed in the
two cases. Recent approaches that use DL to improve the chances of detection of CCSN GW
signals are discussed in [56–58]. Additionally, as DL methods are designed to efficiently deal
with large amounts of data, they could offer a very effective solution to detect and analyze sig-
nals from RNS [59–62]. Though still not widely adopted by the GW astronomy community,
DL-based techniques are quickly showing themselves to be a promising addition to the GW
astronomer’s toolbox.

In this paper we explore the use of computer vision techniques and DL methods to both
detect GW from BBH mergers and perform parameter inference using RGB spectrograms that
combine open data from the Advanced LIGO and Advanced Virgo three-detector network. Our
usage of residual networks (ResNets) in spectrogram data is a novel approach when compared
to existing pipelines for detection and parameter estimation. To achieve our goal we train a
cross-residual network (×ResNet) which allows us to extract information about source param-
eters such as luminosity distance, chirp mass, network antenna power (NAP), and effective
spin. As we show below, the application of our ResNet to the BBH detections included in the
GWTC-1 and GWTC-2 catalogs yields a remarkable agreement with the LVC results. All our
work was developed using the python programming language. The pyCBC [63] and gwpy [64]
libraries were used for data generation and treatment, while DNN models were implemented
with the fastai [65] library.

This paper is organized as follows: section 2 describes the generation of the GW datasets
used for training and testing. Section 3 deals with the general characteristics of our deep neural
network, describing its various architectures and the methodology employed for classification

3
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Table 1. Description of the full classification and regression datasets for training and val-
idation with both single and multiple detectors, using an 80/20 training/validation split.
The images are generated from the wave-forms calculated by pyCBC. For the classifi-
cation datasets, the individual masses (m1, m2) are sampled with an uniform distribution
within the range of 5 to 100M�. For the regression dataset the parameters of individual
masses, distances, inclination and spin are also uniformly sampled. The extra dataset
is generated in order to include more examples of small masses and complement the
dataset generated with the SEOBNRv4HM_ROM approximant.

Classification

Parameters Train size Validation size

Single detector
4000 images 1000 images(m1, m2) ∼ U(5, 100)M�,

560 × 560 pixels 560 × 560 pixelsdL = [100, 300, 1000, 1500, 2000] Mpc,
8-bit gray scale 8-bit gray scaleι = π

2 ,
Approximant: SEOBNRv4_ROM

Total images 20 000 5000

Multiple detector 4000 images 1000 images
(Same parameters as above) 560 × 560 pixels 560 × 560 pixels

8-bit RGB 8-bit RGB

Total images 20 000 5000

Regression

Parameters Train size Validation size

Multiple detector

12 769 images 3192 images
(m1, m2) ∼ U(5, 100)M�,

224 × 224 pixels 224 × 224 pixels
dL ∼ U(100, 4000) Mpc,

8-bit RGB 8-bit RGB
ι ∼ U(0, π),
spin ∼ U(−1, 1),
Restriction: SNR > 5
Approximant: SEOBNRv4HM_ROM

(Same parameters as above) 10 338 images 2584 images
Approximant: IMRPhenomPv2 224 × 224 pixels 224 × 224 pixels

8-bit RGB 8-bit RGB

(Same parameters as above) 10 625 images 2656 images
Approximant: IMRPhenomD 224 × 224 pixels 224 × 224 pixels

8-bit RGB 8-bit RGB

Total images 43 009 14 689

Extra dataset

Multiple detector
(m1, m2) ∼ U(5, 35)M�,
dL ∼ U(100, 4000) Mpc, 15 538 images
ι ∼ U(0, π), 224 × 224 pixels
spin ∼ U(−1, 1), 8-bit RGB
Restriction: SNR > 5
Approximant: SEOBNRv4HM_ROM
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Figure 1. (a) Combining single detector spectrogram data into a single RGB image, to
be used combined by the DL network architectures. The Hanford (top-left), Livingston
(top-right) and Virgo (bottom-left) spectrogram data, are used as the red, green and blue
images, respectively, to build the full RGB image (bottom-right). In all plots the x-axis
is time and the y-axis is frequency, while the colour intensity stands for the signal power
normalised to the 8-bit integer range (0–255). (b) RGB image from background labeled
spectrogram (left) as compared with a spectrogram where a GW waveform was injected
into real conditions noise (right).

and regression. The assessment of the network is discussed in section 4 and our main results
regarding the use of our network for the analysis (detection and inference) of real GW events
is presented in section 5. Finally, our main conclusions are summarized in section 6.

5



Class. Quantum Grav. 38 (2021) 155010 J D Álvares et al

2. GW datasets generation

We begin by describing the generation of the datasets used in our analysis. All CBC wave-
forms employed in the classification datasets were obtained using pyCBC [63] with the
SEOBNRv4_ROM approximant while the regression datasets use SEOBNRv4HM_ROM [66],
IMRPhenomPv2 [67] and IMRPhenomD [68, 69]. For the sake of simplicity we start by
considering spinless black holes and quasi-circular binaries with no orbital eccentricity. Fur-
thermore, since current GW detector networks are far more sensitive to the plus polarization
than to the cross one, we only generate plus-polarized waves. We note that this has the drawback
of making impossible to break the degeneracy between luminosity distance and inclination.

2.1. Single detector waveforms for classification

The purpose of this first dataset is to allow our DL models to discern the presence of a GW
signal with data collected from a single detector. In particular we employ a 500 s noise seg-
ment from the Hanford detector with initial GPS time tGPS = 1187 058 342 s. Defining τ to be
some time from the start of our noise segment, we randomly select τ 0 ∈ [5, 495] s and isolate
the window [τ 0 − 5 s, τ 0 + 5 s]. This strain selection, which we denote as n, is then whitened
through inverse spectrum truncation, using its own amplitude spectral density (ASD). Then, we
apply a bandpass filter from 20 Hz to 300 Hz, as well as notch filters at the individual frequen-
cies 60 Hz, 120 Hz and 240 Hz. For the generation of the waveform signal strain h, a random
pair of black hole masses (m1, m2) ∈ U ([5, 100]) M� is selected for a BBH merger with lumi-
nosity distance dL = 2000 Mpc and inclination ι = π

2 . This waveform is whitened using the
ASD of the selected noise strain n and the same filtering process is undertaken. The resulting
waveform is injected into the noise window in such a way that the maximum amplitude occurs
at τ 0. Following this, the constant-Q transform is calculated for the [τ 0 − 0.16 s, τ 0 + 0.4 s]
interval in the composite signal S = h + t, and a spectrogram is produced. A second spectro-
gram without signal injection is also generated for the same interval. Both spectrograms are
saved as images and appropriately labeled as ‘signal’ and ‘background’. This process is iter-
ated 5000 times to build our dataset. The same procedure is taken for the luminosity distances
dL = 100, 300, 1000, 1500 and 2000 Mpc. A summary of the single detector dataset summary
is shown in the first row of table 1.

2.2. Multiple detector waveforms for classification

In order to combine the data from all three detectors (Hanford, Livingston and Virgo) we select
coincident segments of 500 s from all detectors starting at a certain tGPS time. The process is
then identical to that of a single detector case with τ 0, m1 and m2 randomly generated. A
[τ 0 − 5 s, τ 0 + 5 s] time window is extracted from the longer segments for the three detec-
tors. The resulting background strain data, nH, nL and nV, for Hanford, Livingston and Virgo
interferometers respectively, is treated in the same way as described above. However, when
injecting a signal, one must make sure that the specific ASD of each detector is being used.
After the generation of the signal waveform and its injection into the background noise seg-
ments, we include the antenna power from each detector into our time series SH, SL and SV. At
this stage, we can emulate the sky position for the signal by randomly choosing one of three
detectors as a reference, and shift the beginning of the other two time series according to their
time delay with respect to the reference detector. Once the three spectrograms are produced
they are combined into a 560 × 560 × 3 array in such a way that each of them is represented by
a certain colour channel in a RGB image. Specifically, Hanford, Livingston and Virgo datasets
are mapped into the red, green and blue channels respectively, as can be seen in figure 1(a).

6
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Figure 2. Network antenna power as a function of sky position for (t mod 24 h) = 9742.

Table 2. Convolutional neural networks architectures employed for the classification,
multiple (single) detectors, and regression tasks. The first two columns show the setup
of the networks as explained in section 3, and the last column shows the performance on
a chosen metric, tying in to section 4. The custom header for the classification CNN is
described in section 3, the custom header for the regression model has the same struc-
ture with the main difference being that the final layer has only one unit with a linear
activation function.

Classification

Base architecture Hyperparameters Accuracy2

ResNet-101
Input size: 275 × 275 × 3(1),

Single detector: 0.72
+custom header

Batch size: 8 images,
Multiple detectors: 0.87Learning rate: [2 × 10−3, 2 × 10−1],

Weight decay: 1 × 10−5

Loss function: cross entropy loss (CE)

Regression

Base architecture Hyperparameters RMSE

×ResNet-18 Input size: 128 × 128 × 3,

0.021
+Blur average layer Batch size: 64 images,
+MC dropout Learning rate: 1 × 10−2,
+custom header Weight decay: 1 × 10−3,

Loss function: mean squared error (MSE)

As in the single detector case, an equivalent background spectrogram without signal injec-
tion is produced. Both, background (left) and signal (right) spectrograms, are represented in
figure 1(b). Once again, this process is iterated 5000 times for each luminosity distance we con-
sider. The dataset summary for the multiple detector case is summarized in the second row of
table 1.

7
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2.3. Mass dependent dataset

The purpose of this dataset is to check how the trained models perform depending on the binary
component masses and luminosity distances, both for the single and multiple detector cases.
To this end, we consider a number of mass combinations, where for each m1, ranging from 5
to 100M� in steps of 2M�, there is a set of values for m2, in the range [m1, 100]M�, covered
also with steps of 2M�. Regarding the luminosity distance dL, we use distances ranging from
100 to 2000 Mpc, in steps of 100 Mpc. The inclination is kept fixed at ι = π

2 . For each dL and
each of the 1225 (m1, m2) mass combinations, a waveform is generated and injected into the
detector’s noise following the same procedure as described above. However, in this case, only
the spectrograms with the injections are saved and labeled with the corresponding distance and
mass.

2.4. Regression datasets

We also study how the DL algorithms can be used to extract information about the physical
parameters from the generated data. This procedure is typically denoted as regression. For this
purpose, a larger dataset was deemed necessary and only the multiple detector case, was con-
sidered. To avoid a dependence on a particular approximant, three different datasets for each
of the approximants SEOBNRv4HM_ROM [66], IMRPhenomPv2 [67] and IMRPhenomD
[68, 69] were built. It is also relevant to note that, due to an apparent degradation of the regres-
sion close to the upper range of the sampled distances, we decided to consider distances up
to 4 Gpc, although we set our range of operation to go up to a maximum distance of 2.5 Gpc.
Here, we do not build separate datasets for particular values of the distance but instead let dL be
randomly generated within this range. The component masses m1 and m2 are again randomly
sampled in the [5, 100]M� interval while the inclination takes a random value in the [0, π]
interval. We also sample the sky position by taking into account the antenna pattern of each
detector. An example of the NAP is shown in figure 2. In our regression dataset black holes
are assumed to have a dimensionless spin in the range [−1, 1] and those are aligned with the
orbital angular momentum, allowing to compute the effective inspiral spin, χeff ,

χeff =
m1χ

‖
1 + m2χ

‖
2

m1 + m2
, (1)

where χ
‖
i is the component of the ith spin along the orbital angular momentum. Since we

assume from the beginning that a given input to the regression model will necessarily contain a
GW signal of some sort, we need not to worry about generating the background-onlycases. Fur-
thermore we impose a threshold for the signal-to-noise ratio (SNR) so that we only allow cases
where SNR > 5. The sizes of the SEOBNRv4HM_ROM, IMRPhenomPv2 and IMRPhenomD
datasets are, respectively, 15 961, 12 922, and 13 281. An extra dataset focused on lower masses
(m1, m2 ∈ [5, 35]M�) was also generated using the SEOBNRv4HM_ROM approximant, con-
taining 15 538 events. This was combined with the original SEOBNRv4HM_ROM dataset for a
lower-mass weighted dataset with a total of 31 499 items. All this information is summarized
in table 1.

3. Deep neural network: architectures and methodologies

As mentioned in section 2 we encode the information of the waveforms produced by BBH
mergers into a spectrogram. Here we describe how to apply our DL algorithms to identify
GW information from spectrogram data. This is done using the classification and regression

8
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Figure 3. Simulated signal scores using one single detector for different luminosity dis-
tances and evaluated with DL networks trained with GW waveforms from BBH mergers
at a luminosity distance of 2000 Mpc. Results are shown as a function of the BH masses
of the binary system, m1 and m2, for GW signals from sources at 400 Mpc (top),
1000 Mpc (middle) and 2000 Mpc (bottom).
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Figure 4. Same as figure 3 but employing multiple detectors to estimate the simulated
signal scores displayed.

10
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Figure 5. ROC curve for the best-performing classifier. The red star displays the current
threshold location on the ROC used for classify the events into signal (score � 0.5) or
background (score � 0.5).

networks that we discuss in this section. A summary of the architectures of both networks is
reported in table 2.

3.1. Classification network

Our first task is to test whether a DNN can distinguish between possible signal events over
a random background. For this, we choose a ResNet [70], which consists of a DNN built as
blocks of convolutional layers together with shortcut connections (to skip layers) that make
them easier to optimize and overcome the ‘vanishing/exploding gradient’ problem (discussed
in [71]). In our analysis, we have tested the accuracy of the ResNet with an increasing number of
layers, namely ResNet-18, ResNet-34, ResNet-50, and ResNet-101, using the single-detector
and multiple-detector classification data sets described in section 2. The choice of using this

11
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Figure 6. Calibration results for dL using the different approximant datasets,
SEOBNRv4HM_ROM (top), IMRPhenomPv2 (middle) and IMRPhenomD (bottom),
and for different SNR thresholds.

architecture comes from the ease of training such networks as well as its well-documented
performance in image recognition applications.

For the classification task the highest accuracy was achieved with a ResNet-101 (see table 2),
which consists of 101 layers. For our task, we have replaced the last fully connected layers (or
the header) of the ResNet-101, responsible for the classification, with the following sequence
of layers:

• An adaptive concatenate pooling layer (AdaptiveConcatPool2d),
• A flatten layer,

12
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Figure 7. Same as figure 6 but showing the calibration results for the network antenna
power.

• A block with batch normalization, dropout, linear, and ReLU layers,
• A dense linear layer with 2 units as outputs, each unit corresponding to signal or back-

ground class and a softmax activation function. This is a necessary step since the fastai
ResNet implementation has 1000 output classes by default.

The AdaptiveConcatPool2d layer uses adaptive average pooling and adaptive max
pooling and concatenates them both. The use of mixed precision (MP) training [72] nearly
halves memory requirements and speeds up arithmetic calculations. As the batch size is
bounded by the amount of memory available, MP training allows us to use larger batch sizes,

13
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Figure 8. Same as figure 6 but for the chirp mass in the source frame.

which prevents overfitting [73–75]. For each network, we used the maximum possible batch
size supported by the hardware.

The learning rate and weight decay are other two key hyperparameters to train DNNs. A
good choice of these two parameters can greatly improve the model performance. In our par-
ticular case it implies a high accuracy classification and a good background rejection, while
drastically reducing the training time. Instead of using a fixed value for the learning rate we
opted to use the so called cyclical learning rates (CLR) [74]. To this end one must specify
the minimum and maximum learning rate boundaries as well as a step size. While the latter
corresponds to the number of iterations used for each step, a cycle consists of two such steps:

14
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Figure 9. Same as figure 6 but for the effective inspiral spin.

one in which the learning rate increases and the other in which it decreases [74]. Following
the guidelines from reference [76], we have performed a scan over a selected range of values
for both learning rates and weight decays. According to [76] the best initial values for learning
rates are the ones who give the steepest gradient towards the minimum loss value. In our case,
we have found it to be 2 × 10−3 for the learning rate and 1 × 10−5 for the weight decay, while
for the maximum learning rate value we just multiply the initial value by 10.

3.2. Regression network

We based the regression network architecture on a cross-residual network (×ResNet; see
table 2) [77] and following the guidelines in [78] replaced the average pooling layers with

15
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blur pooling ones. Furthermore, we used dropout layers before pooling, kept activated dur-
ing test time, a technique known as Monte Carlo (MC) dropout. The effect of MC dropout
is equivalent to applying a Bernoulli distribution over the model weights and approximates a
Gaussian process [79]. During test time, random realizations of node activations for the same
input are translated into a probabilistic distribution in the output values, giving us a simple way
of estimating uncertainty. For training, we use once again the CLR, with 1 × 10−2 as the initial
value for the learning rate and 1 × 10−3 as the weight decay. It is important to mention that
we use the spectrogram images generated from the GW signals to infer continuous values for
variables such as the chirp mass M of the BBH system

M ≡ (m1m2)3/5

(m1 + m2)1/5
, (2)

or the luminosity distance of the source dL. While this approach seems to be rather non-
intuitive, CNN’s carry inductive biases rooted in translation invariances. Such biases are a
direct consequence of the convolutional filters and can be used to extract information from
patterns in the spectrogram images and correlated to physical continuous variables.

4. Network assessment

4.1. Classifier

4.1.1. Single detector performance. For the single detector case we find that training with
injections at 2000 Mpc retains a 90% classification accuracy7 for injections at 100 Mpc, while
managing 72% accuracy on the 2000 Mpc validation data. In figure 3 we show contour plots
of the scores given to the events in the mass dependence dataset for this last, top-performing
model. The signals generated by more massive and closer objects have a higher SNR, therefore
easier to classify. Figure 3 illustrates that the signal scores are directly proportional to the com-
ponent masses and inversely proportional to the luminosity distance. It is worth stressing that
the scores increase for GW signals from sources at shorter distances, even when the network is
trained with signals at 2 Gpc. This may suggest that, when searching for potential GW signals
from BBH mergers with DL networks, the training phase can start by using signals from far
away sources.

4.1.2. Multiple detector performance. For the multiple detector case we observe the same
trend as in the single detector scenario. However, the performance significantly improves in
what concerns the distance of the sources used in the training set. Combining three detectors
yields an across-the-board improvement in accuracy of up to 82% figure 4 shows the perfor-
mance of the best multiple detector model as a function of the binary component masses. Once
again, it is noticeable that larger masses and smaller distances result in higher scores. Compar-
ing figures 3 and 4 shows that the multiple detector model yields more confident results, as the
region of score > 0.95 (dark blue) is overall more prominent. Figure 5 exhibits the receiver
operating characteristic (ROC) curve for our best-performing network, using 2000 Mpc data,
showing a value of 0.87 for the area under the curve (AUC)8. The x-axis shows the fraction of
background-only spectrograms that are successfully rejected by the network, 1 − εB, while the
y-axis represents its efficiency at detecting signals, εS. As can be seen in the ROC curve, we

7 Accuracy is defined as TP+TN
TP+TN+FP+FN , where TP (TN) corresponds to the correctly identified signals (backgrounds)

and FP (FN) correspond to incorrectly classified signals (backgrounds).
8 An AUC of 1 (0.5) represents a perfect (random) classification.
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Table 3. Classifier scores for GWTC-1 marginal detections (left), GWTC-1 confident detections (middle) and GWTC-2 detections (right).

GWTC-1 Confident GWTC-1 Marginal GWTC-2

Event Score Event Score Event Score Event Score

GW170814 1.00 MC151116 0.73 GW190521 1.00 GW190708_232457 0.98
GW150914 1.00 MC161217 0.72 GW190602_175927 1.00 GW190909_114149 0.97
GW170823 1.00 MC170705 0.51 GW190424_180648 1.00 GW190514_065416 0.96
GW170104 1.00 MC170630 0.49 GW190620_030421 1.00 GW190814 0.95
GW170729 0.99 MC170219 0.45 GW190503_185404 1.00 GW190521_074359 0.95
GW170809 0.97 MC161202 0.40 GW190727_060333 1.00 GW190731_140936 0.92
GW151012 0.96 MC170423 0.35 GW190929_012149 1.00 GW190513_205428 0.92
GW170608 0.92 MC170208 0.33 GW190915_235702 1.00 GW190421_213856 0.87
GW170818 0.88 MC170720 0.30 GW190630_185205 1.00 GW190412 0.81
GW151226 0.87 MC151012A 0.26 GW190519_153544 1.00 GW190728_064510 0.77
— — MC151008 0.20 GW190706_222641 1.00 GW190719_215514 0.76
— — MC170405 0.14 GW190413_134308 1.00 GW190803_022701 0.66
— — MC170616 0.12 GW190701_203306 1.00 GW190930_133541 0.58
— — MC170412 0.09 GW190517_055101 1.00 GW190828_065509 0.56
— — — — GW190408_181802 1.00 GW190924_021846 0.40
— — — — GW190910_112807 1.00 GW190707_093326 0.35
— — — — GW190828_063405 0.99 GW190720_000836 0.16
— — — — GW190413_052954 0.99 — —
— — — — GW190512_180714 0.98 — —
— — — — GW190527_092055 0.98 — —
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could alter the threshold for classification to be more or less strict, according to the necessities
of the problem at hand.

4.2. Regression

4.2.1. Luminosity distance regression. Figure 6 shows the performance of dL regression for
each trained model on its respective validation set. Each event is evaluated 100 times using MC
dropout and the mean value of the regressed parameter outputs are stored in the histograms.
The white dashed diagonal line shows the ideal behaviour. For the lowest SNR threshold (left
columns) the deviation from the ideal behaviour can be quite large. However, as the threshold
increases to SNR > 10 and SNR > 15 we are able to more confidently resolve the distances.
On the other hand, these thresholds mean that we lose the ability to resolve larger distances for
which larger SNRs are also rarer. All three approximants exhibit roughly the same behaviour
with the SEOBNRv4HM_ROM dataset showing a slightly tighter distribution.

4.2.2. Network antenna power regression. In figure 7 we show the performance of our model
in the regression of the NAP parameter. Again, as for the luminosity distance, all three approx-
imants show roughly the same behaviour. Also note that almost no events with NAP < 0.2 are
present, which is to be expected due to the SNR requirements. For the SNR > 5 threshold (left
column) there seems to be two separate populations, one that broadly follows the diagonal line
and a second one that roughly follows a horizontal line around the 0.6 mark. As we increase the
SNR threshold, this second population fades away and we isolate a population of predictions
that nicely follows the diagonal line.

4.2.3. Chirp mass regression. Figure 8 shows the behaviour of the predicted source frame
chirp masses. It is worth mentioning that the bulk of data points in this figure, as well as in
figures 6 and 7, tend to populated the central region of the distributions. The predictions we
obtain for the chirp masses nicely follow the actual injected values as the events closely cluster
along the diagonal lines in the plots. Of all variables we employ to calibrate our method, the
chirp mass is the one that shows the smallest scatter from the ideal results. The distribution
for SNR > 5 already displays a fairly low error in the predictions and as we increase the
SNR threshold the error further shrinks. Again, the results show almost no dependence on the
waveform approximant used.

4.2.4. Effective inspiral spin regression. To end the discussion of the calibration of our model
we show in figure 9 the predictions for χeff compared to the real values. In this case we see that
all models also follow closely the ideal diagonal line, with the faithfulness of the distribution
width increasing as we raise the SNR threshold.

5. Analysis of real GW detections

Initially, our study comprehended the detections published in the GWTC-1 catalog. When
GWTC-2 became publicly available, we extended the analysis to include those detections too.
The GW detectors’ sensitivity improved in O3 compared to O2, and their detections’ SNR
differs from the one in our training sets. Therefore, we do not expect optimal results with the
current training for the GWTC-2 events.

5.1. Classifier

To analyse the real GW events we produce RGB spectrograms using publicly available data
for all GWTC-1 and GWTC-2 BBH events, combining the data from Hanford, Livingston and
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Virgo. We leave out the BNS events (GW170817, GW190425 and GW190426) as those cases
are not present in our datasets and thus we should not expect the network to recognize them.
However, we include GW190814 despite the fact that it involves a ∼ 2.6M� compact object,
since its precise nature remains undetermined [80]. In addition to the confident detections from
GWTC-1 and GWTC-2, we also analyze the marginal subthreshold triggers for GWTC-1.

The results of our classifier are presented in table 3. All confident detections reported by
the LVC for GWTC-1 are corroborated by our classifier: GW150914, GW170104, GW170814
and GW170823 are all given the score of 1.00, the highest value possible. From the remain-
ing events, the lowest score is 0.87. When we analyse the marginal detections from GWTC-1
we obtain, as expected, much lower scores across the board. Under the standard threshold for
detection, which assumes a score of 0.50 or higher, only three events are classified as signal.
These are MC151116, MC161217 and MC170705, with scores of 0.73, 0.72 and 0.51 respec-
tively. The first two in particular may deserve a more careful analysis in the future, but this
stays outside the scope of this paper. Keeping in mind that the classifier is not optimized for
the O3 a run, which has a significantly lower noise floor, we look also at the new BBH events
of the GWTC-2 catalog. Despite the lack of any optimization, we find that 34 out of 37 events
are given a score above our threshold for detection, and from these, 27 (31) events are given a
score above 0.90 (0.70). The highest possible score is obtained for a subset of 16 events.

As an aside remark, it is interesting to note that we have also obtained high scores for signals
proposed in alternative GW catalogs [81, 82]. As an example, our method yields a score of 0.75
for GW151216, proposed in [82].

5.2. Parameter inference on GWTC-1

The regression on the BBH events in the LVC catalogs was performed twice. First, with three
different networks trained on the three regression datasets, we used MC dropout to pass the
spectrogram corresponding to each event to each network, 500 times. We then calculated
the mean and standard deviation for the networks’ predictions. We realized that with these
datasets, low M events were underrepresented. Therefore, we generated a new dataset using
the SEOBNRv4HM_ROM approximant, which was concatenated with the corresponding origi-
nal dataset, for a total of 31 499 items. A new network was trained on this dataset with a 70/30
train/validation split and new calibration plots were produced. We have checked that with this
correction we maintain similar patterns for the calibration plots as presented in subsection 4.2.
The spectrograms of the catalogued events were then passed to this new network, 1500 times
for each event.

We show the inference results with and without the low-mass datasets contribution to high-
light the importance of covering the relevant parameter space. The results in both cases coincide
for the high mass events, reinforcing the consistency of our method. Figure 10 shows the com-
parison between our predictions and the published values by the LVC. As we show below,
the consistency of the results obtained with our DL methods with the published data is worth
highlighting.

5.2.1. Chirp mass. In the leftmost panel of figure 10 we show the combined results for our
three approximants for the chirp mass M of the GWTC-1 confident BBH detections. The red
error bars enclose the MC dropout 3σ range. The results in the top panel are obtained without
including the low-mass distribution while those in the bottom panel do include it. For the for-
mer we find that the published 90% confidence intervals lie outside our predicted 3σ range for
6 events (without systematic uncertainties taken into account). The most significant discrep-
ancies occur for the GW151226 and GW170608 events where the network seems reluctant to
predict low-mass values. We expect this to be related to the under-representation of low chirp
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Figure 10. Comparing the parameters of events reported in the gravitation-wave tran-
sient catalog (GWTC-1) with the parameters estimated by our algorithm. The parameters
include the chirp mass (left), the luminosity distance (middle), and the network for the
chirp mass (left), and effective inspiral spin (right). The top panel shows our estima-
tions without a correction (explained in section 5.2) for low-mass events. The bottom
panel shows the estimation with the correction for low-mass events, which improved the
results.

mass events in the training set. In fact, when the network is trained with the addition of the
low-mass dataset, shown in the bottom panel of figure 10, we do indeed observe a consider-
able improvement. Most of the predictions are now compatible with published data with an
uncertainty up to three standard deviations. The one exception is GW151226, where the lower
bound on the chirp mass is slightly overestimated by the network when compared to Advanced
LIGO results.

5.2.2. Luminosity distance. The top, middle panel of figure 10 displays the combined results
for the three approximants without the low-mass distribution, for dL of the GWTC-1 confident
BBH detections. For the luminosity distance most of our predictions, except for GW170823,
are compatible with the LIGO/Virgo predictions up to a network uncertainty of 3σ. However,
when the network is trained with the addition of the low-mass dataset, as displayed in the
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Figure 11. Best-performing DL network’s prediction for the chirp mass (left), lumi-
nosity distance (middle) and effective inspiral spin (left) for the BBH events from
GWTC-2.

bottom, middle panel of figure 10, all of our predictions become compatible with the LVC
values.

5.2.3. Effective inspiral spin. When inferring the effective inspiral spin χeff using the com-
bined results for the three approximants and without including the low-mass distribution, we
find six events with a significant disagreement with published results (in the same sense as
discussed previously for the chirp mass) as can be seen in the rightmost, top panel of figure
10. As shown in the corresponding bottom panel of the same figure, when the network is
trained with the addition of the low-mass dataset, our results improve. All events, except for
GW151226, show compatibility between the LVC 90% confidence interval and the MC dropout
3σ uncertainty.
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5.3. Parameter inference on GWTC-2

Finally, we discuss our inference results for the BBH events of GWTC-2. Those are plotted
in figure 11 for our best-performing network only, that is, the one trained with the low-mass
corrected dataset. As before, we show the parameter inference on the chirp mass, luminosity
distance and effective inspiral spin. Without any further optimization of our network, we find
that regarding the chirp mass (left panel), the published 90% confidence intervals are compat-
ible with the MC dropout 3σ uncertainty for roughly 90% of the events. While the behaviour
for the χeff predictions tends to also show a reasonable agreement (right panel), the predictions
for dL (middle panel) show a bias towards lower values. We attribute this effect to the usage of
O2 noise for the training of the network, as alluded to at the beginning of this section. While
this conjecture will be analyzed in future work, the fact that these methods are able to infer
some physical parameters from O3 data without any further calibration reinforces the validity
of our approach.

6. Conclusions

In this work we have introduced DL methods to study GW from BBH mergers, using spec-
trograms created from Advanced LIGO and Advanced Virgo open data. By combining data
from each of the detectors in the Advanced LIGO and Advanced Virgo network using color
channels of RGB images we have shown that the classification procedure improves when com-
pared to a single detector case. For black holes of varying mass and zero spin, we have trained
a ResNet classifier on 2000 Mpc data, obtaining a precision of 0.9 and an accuracy of 0.82.
This ResNet has been applied on LIGO/Virgo detections and we have corroborated all confi-
dent results with high scores, while an analysis of marginal triggers from the O1 and O2 runs
has identified 3 cases (MC151116, MC161217 and MC170705) as GW signals, rejecting all
others. For GWTC-2 events, despite the lack of any optimization, we have found that 34 out
of 37 events pass the threshold for detection.

For the case of black holes of varying mass, spin and sky position, with varying distance,
we have trained a ×ResNet to perform parameter estimations on GW spectrogram data from
BBH mergers. Using MC dropout we have obtained a natural estimation of the uncertainty of
our predictions. We have shown that, at a fledgling level of development, it is possible to suc-
cessfully perform parameter inference on the distance, chirp mass, antenna power (functioning
as a proxy for sky position) and the effective inspiral spin χeff . The success at resolving this
last parameter, especially at high SNR values, shows that our method is sensitive to contribu-
tions to the post-Newtonian expansion of the binary system GW radiation up to order 1.5, as
this is the first order where a spin–orbit coupling term is observed. Applying this network to
spectrogram data from GWTC-1 BBH events, we have found a remarkable agreement with
the results published by the LVC in the case of dL estimations. Most of our chirp mass and
effective spin estimations are also compatible with the published 90% confidence intervals up
to an MC dropout uncertainty of 3σ, with the exception of GW151226. For GWTC-2 events,
again without any optimization, we have found that the published 90% confidence intervals
for the chirp mass are compatible with our prediction up to 3σ, for 33 out of 37 BBH events.
The behaviour for the χeff predictions tends to show a reasonable agreement, similar to that of
the chirp mass. The predictions for dL tend to be underestimated, which we suspect is related
with the training of the network with injection on O2 noise, which has different characteristics
when compared with the O3 run.

While there exist techniques for GW detection and parameter estimation [83], our approach
provides the basis for a new pipeline that easily integrates classification and regression tasks. It
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is important to stress that we have not carried out a thorough search of network architectures.
Going forward, optimizing the architecture, as well as exploring other implementations of
Bayesian neural networks, could provide further improvements on our results. Other physical
effects of BBH mergers, such as orbital plane precession or eccentricity, may also be explored.
Lastly, higher resolution spectrograms, as well as higher colour depth, could in theory be used
to increase the sensitivity to smaller effects as well as the predictive power of our tool.
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Class. Quantum Grav. 34 034002
[41] Razzano M and Cuoco E 2018 Class. Quantum Grav. 35 095016
[42] Cavaglia M, Staats K and Gill T 2018 Commun. Comput. Phys. 25 963
[43] George D, Shen H and Huerta E A 2018 Phys. Rev. D 97 101501
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