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Abstract 
The increasing number of scientific research documents published keeps growing at an 
unprecedented rate, making it increasingly difficult to access practical information within 
a target domain. This situation is motivating a growing interest in applying text mining 
techniques for the automatic processing of text resources to structure the information that 
helps researchers to find information of interest and infer knowledge of practical use. 
However, the automatic processing of research documents requires the previous existence 
of large, manually annotated text corpora to develop robust and accurate text mining 
processing methods and machine learning models. In this context, semi-automatic 
extraction techniques based on structured data and state-of-the-art biomedical tools 
appear to have significant potential to enhance curator productivity and reduce the costs 
of document curation. In this line, this work proposes a semi-automatic machine learning 
workflow and a NER+Ontology boosting technique for the automatic classification of 
biomedical literature. The practical relevance of the proposed approach has been proven 
in the curation of 4,115 gluten-related documents extracted from PubMed and contrasted 
against the word embedding alternative. Comparing the results of the experiments, the 
proposed NER+Ontology technique is an effective alternative to other state-of-the-art 
document representation techniques to process the existing biomedical literature.

Keywords: Literature mining, document classification, semi-automatic curation, 
ontology-based representation, gluten bibliome.



1. Introduction
The recent technological improvements emerged, and the reduction of costs to apply new 
scientific techniques are generating a vast amount of information associated with the area 
of Biomedicine [1]. This increase is followed by a corresponding publication of textual 
knowledge in the form of technical studies, posts and books (also known as bibliome), 
which keeps growing at an unprecedented rate and exceeding the ability of researchers to 
digest it [2,3]. At the same time, it is becoming increasingly difficult for the general 
population to contrast the media misinformation and find reliable sources of information 
based on the empirical evidence exposed in the bibliome [4,5]. In this sense, current 
bioinformatics challenges pass through the combination of vast amounts of structured, 
semi-structured, weakly structured data and unstructured information to build new 
sources of knowledge that could be explored by the general public and help researchers 
to discover the knowledge of practical use [6]. 
In this context, text mining (TM) techniques and machine learning (ML) approaches are 
being explored as procedures to recognize the relevant parts of the bibliome, allowing the 
effective search of information, the discovering of hidden interactions between 
biomedical entities and the assistance in obtaining new knowledge and inferring 
hypothesis for further biomedical research documents [7,8]. However, the automatic 
processing of the bibliome requires the previous existence of large, manually annotated 
text corpora, or structured biomedical databases, to develop robust and accurate 
workflows that use TM and ML algorithms to process all data automatically. The 
relevance of the annotated corpora has been highly discussed in diverse manual curation 
tasks that have been set up to construct gold standards to evaluate and develop derived 
computational algorithms [9–13]. These efforts have a high impact on delivering new and 
more robust computational algorithms and biomedical databases, but it also requires high 
human costs both in time and money [14,15]. 
The time-consuming nature of manual curation, along with the exponential growth of 
biomedical literature, strongly limits the number of publications that database curators 
can revise [16,17]. In addition, the limitations of keyword-based search techniques to rank 
biomedical articles in a specific problem domain require the application of robust text 
mining workflows that further consider the role of the biomedical entities discussed in 
the bibliome. The objective is to create novel computational methods that enable 
discovering important scientific publications considering the relevance of the 
biochemical interactions reported. The relevance of this computational support is of 
utmost importance to discover and analyze the health-related and pharmacological 
interactions supported by the literature [18]. Consequently, several tasks have promoted 
the development of novel computational methods to assist in the automatic literature 
classification and reduce the manual curation efforts [19,20]. In a similar line, different 
studies propose a hybrid curation process or semi-automatic tasks to promote that experts 
revise documents that have been automatically processed [21,22]. These semi-automatic 
approaches combine predictive knowledge extraction methods with manual expert 
annotation to reduce the required curation work [23].  



In this context, this work proposes a biomedical document description (i.e. vector-space) 
integrated into a semi-automatic curation workflow to enhance the classification 
efficiency in a real curation task. To this end, the current approach combines unsupervised 
and biomedical knowledge extraction methods with lexical normalization procedures to 
boost different state-of-the-art classifiers and assist in the manual curation of the 
bibliome. In order to evidence the merit of the proposed approach, several experiments 
were executed comparing the proposed document description technique against the well-
known word embedding alternative through the use of state-of-the-art classifiers.

2. Related work
The limitations of keyword-based search techniques to rank relevant biomedical articles 
in a specific problem domain require investigating robust text mining techniques that 
further consider the biomedical knowledge contained. Traditional approaches explored 
unsupervised methods, named entity recognition techniques or domain ontologies to 
recognize the relevance of a document in a specific domain. For example, García et al. 
[24], Chen et al. [25], and Matos [26] applied unsupervised semantic similarities as bag-
of-concepts to improve the automatic classification performance of biomedical studies. 
On the other hand, Jorge et al. [27] and Luo et al. [28] considered the integration of named 
entity recognizers to support the classification of the literature. In terms of semantic 
normalization to enhance vocabulary unification and to classify documents with similar 
content, Kulmanov et al. [29] and Ding et al. [30] performed an overview of different 
approaches that incorporated ontologies-based techniques to ML methods to compute the 
word similarity. In this line, the authors highlighted the additional inference and reasoning 
capacity that domain ontologies contribute to the ML area. For its part, Sanchez-Pi et al. 
[31] demonstrated how an experimental developed ontology-based classification 
algorithm obtained better performance in the medical area compared with a state-of-the-
art ML method. Compared to these works, the main contribution of this study lies in 
proposing a novel document representation vector-space that takes advantage of 
combining different techniques (i.e. unsupervised text mining algorithms, named entity 
recognizers and the lexical capacities of a domain ontology) to boost several state-of-the-
art classifiers. 
Regarding the implementation of semi-automatic workflows to assist in the manual 
curation of the literature, different works explored the combination of automatic text 
mining methods with the manual work of experts to improve the curation accuracy and 
efficiency. For example, Kwon et al. [32] described the advantages of these workflows in 
a real curation scenario and discussed how these approaches reduced the annotation time 
for a beginner-intermediate level annotator. In the same line, Szostak et al. [33] compared 
a semi-automated workflow against a manual curation counterpart and proved that semi-
automatic approaches reached similar results while reducing curation effort. This idea is 
also supported by Rinaldi et al. [34] that exemplified how text mining technologies could 
enhance the productivity of the curators. Finally, Winnenburg et al. [35] discussed how 
text mining methods could be tightly integrated with the manual annotation process to 



scale up high-quality manual curation. In the same line, the current work considers the 
problem of curation and classification of biomedical bibliome as a whole and, in contrast 
to previous approaches, presents the integration of the proposed document vector-space 
in a semi-automatic curation workflow to improve the computational and manual 
performance. Therefore, the proposed semi-automatic workflow guides the manual 
curators with the extracted knowledge at the same time as it reduces the manual work in 
an escalated way by applying past curator decisions to filter irrelevant information 
automatically. On the whole, the proposed approach takes advantage of the combination 
of an accurate document representation vector-space with a semi-automatic workflow to 
reach a better performance by the continuous improvement of the applied knowledge 
inference techniques. In this sense, the implemented workflow was applied in a real 
curation task to improve the classification performance of gluten-related documents that 
could contain relevant biochemical interactions.

3. Case study
Concerning the alimentary proteins, more and more studies, as well as health awareness 
campaigns, keep advertising the existent association between nutrition and the increment 
of chronic diseases among the population. In this sense, the number of exploratory 
research studies testing the elimination of some alimentary proteins in specific diets to 
treat patients with (or without) an apparent nutritional association has highly increased in 
recent years. However, in return, the implications of suggestions of these exploratory 
experiments may be misunderstood or misused by bad actors in the social media platforms 
causing misinformation and high monetary and human costs [36–38]. One of the diets 
that are being tested as an experimental therapy for the treatment of different diseases, 
not only for handling gluten-related disorders, is the gluten-free diet (GFD) [39,40]. The 
difficulty in digesting the growing scientific information, not conclusive scientific 
evidence in these experimental studies and the influence of social media platforms have 
caused an increased spread of gluten-related misinformation in the last years [41,42]. This 
event induces many people to follow the GFD as a self-prescribed lifestyle, although most 
of them have not been previously diagnosed with a related disease [43,44].
In relation to the gluten protein, Figure 1 shows the increment in the number of scientific 
documents discussing this topic up to and including the publication tendency for the year 
2030. 
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Figure 1: Number of gluten-related scientific works published annually in the PubMed database. The 
blue color represents the number of gluten-related documents year by year. The black line indicates the 
exponential publication tendency extrapolated to the year 2030.

Therefore, the need for computational approaches to support the classification and 
analysis of publications containing relevant biomedical interactions becomes increasingly 
important, especially to structure the recognized role of the different biochemical 
compounds in the body processes and diseases. In this line, recent studies explored the 
manual curation of the literature in different knowledge areas to generate new databases 
with relevant health-related interactions that provide practical and structured scientific 
information to the general population and researchers [45–47].
Accordingly, the proposed semi-automatic workflow was applied to the gluten bibliome 
with the goal of identifying studies that contain relevant health-related knowledge (i.e. 
documents that support meaningful biochemical interactions) to create a future database 
that assists researchers to make appropriate decisions and develop new hypotheses 
supported by the available bibliome.

4. Materials and methods
This section describes the proposed document description technique, as well as the 
integrated, iterative, and semi-automatic data curation workflow applied to the gluten-
related bibliome. The proposed workflow comprises different sub-sequential rounds that 
support the application of past experiences to assist the document curation incrementally. 
In other words, manually curated portions of the dataset were incrementally applied to 
improve and fine tune the different predictive methods that supported the automatic 
classification and annotation of the remaining unclassified documents. This scalable and 
iterative approach established a semi-automatic workflow in which unprocessed 
documents were automatically filtered and annotated, considering the previous curator 
decisions. Therefore, the manual inferred knowledge of past iterations was automatically 



propagated to the sub-sequential curation rounds in order to enhance the baseline 
classification performance, improve the inferred knowledge methods and reduce human 
efforts. 
In this sense, the implemented workflow consists of the following fundamental phases (i) 
knowledge retrieval; (ii) document processing; and (iii) document classification. Figure 
2 summarizes the different tasks comprising each phase, while the following subsections 
give details about the strategies applied in every case.
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Figure 2: Schema of the semi-automatic curation workflow using the proposed document 
representation vector-space. The current approach presents a document description technique that 
combines (i) unsupervised text mining techniques, (ii) named entity recognizers and (iii) domain ontologies 
to create a document representation (i.e. vector-space) that boosts the automatic curation of the biomedical 
bibliome. This approach takes advantage of the integrated semi-automatic workflow using past experiences 
to automatically filter irrelevant documents and to improve the performance of the different processes.

4.1 Knowledge retrieval 
As illustrated in Figure 2, the objective of this phase was to retrieve gluten-related 
scientific documents from the PubMed repository and to identify domain ontologies that 
were most suited to the scope of this work. The output of this phase provides an initial 
corpus of gluten-related documents to be further curated, plus a lexicon database to be 
used to annotate the retrieved documents and normalize the domain identified terms.

4.1.1 Data gathering, lexicon and domain word normalization

The National Center for Biotechnology Information (NCBI) Entrez Utilities Web services 
were used to access the PubMed library, search for potentially relevant documents, and 
download associated publication details, including the abstracts [48]. For the current 
study, the most relevant 4,115 abstracts (out of a total of 12,047 documents) were initially 
retrieved from the PubMed repository to be further processed. 
The following domain-related ontologies and dictionaries were initially selected to 
recognize, extract and normalize the semantic domain concepts present in the selected 
documents: FoodOn ontology [49], Symptom (SYMP) ontology [50], Medical Subject 
Headings (MeSH) [51], Chemical Entities of Biological Interest (ChEBI) lexicon [52], 
Foundational Model of Anatomy (FMA) ontology [53], National Cancer Institute 
Thesaurus (NCIt) [54], Disease Ontology [55], DrugBank lexicon [56], KEGG [57]; 



PharmGKB [58], the protein catalogue of Uniprot [59] and an expert manually curated 
list of food diets. 
Overall, a lexicon of 1,000,450 entries was generated in this step to support the later entity 
recognition task as well as the normalization of the different terms with the same domain 
meaning (e.g. normalize the distinct representations of a concept like “Colonic 
hamartomatous polyp” or “Peutz Jeghers polyp” to a unique central idea “Peutz-Jeghers 
syndrome”).

4.2 Document processing
Once the initial set of documents was retrieved, and the required resources were correctly 
identified in the previous phase, documents were processed to identify and normalize the 
different domain-relevant concepts discussed. The output of this phase produces an 
automatically annotated corpus to be further revised by the experts but also contributes 
with valuable information suitable for use in the design of the supervised document 
classifiers.

4.2.1 Initial text pre-processing

Initially, different text pre-processing operations were applied to prepare documents for 
further exploration. In detail, the following operations were carried out: (i) tokenization 
(i.e. to split a set of text up into minimal meaningful elements); (ii) English stop words 
removal (i.e. elimination of frequent English words like “the” or “by”); (iii) n-gram 
computation (i.e. consider a contiguous sequence of n tokens as a concept); (iv) part of 
speech (POS) tagging (i.e. identification of the lexical category of each token); (v) small 
tokens removal (i.e. those having less than three characters); (vi) convert tokens to 
lowercase; and (vii) lemmatization (i.e. obtaining the lexeme form of the tokens). This 
initial document pre-processing was implemented using the well-known Stanford 
CoreNLP pipeline [60].

4.2.2 Named entity recognition

After the previous procedure, different but complementary NER methods were used to 
correctly identify mentions of critical entities in the target domain, notably anatomy terms 
(e.g. duodenal), cell types (e.g. T-cell), compounds (e.g. vitamin D), variety of diets (e.g. 
vegan), diseases (e.g. osteoporosis), food or food products (e.g. rice), genes (e.g. HLA-
DQB1), organisms (e.g. Lactobacillus), proteins (e.g. IgA) and symptoms (e.g. ataxia). 
These automatically generated annotations were used to index document contents and to 
help to reduce the cost of their manual annotation. To carry out this operation, an 
ensemble of the following six state-of-the-art NER taggers was used:
LINNAEUS [61], an open-source stand-alone software system capable of recognizing 
and normalizing species name mentions with speed and accuracy. The software can be 
freely downloaded from http://linnaeus.sourceforge.net/.
ABNER [62], a statistical ML system using linear-chain conditional random fields 
(CRFs) for automatically tagging genes, proteins, and other entity names in a text. The 
software is freely available at http://pages.cs.wisc.edu/~bsettles/abner/. 



OSCAR4 [63], an open-source chemistry analysis routines (OSCAR) developed since 
2002 to recognize chemical names, reaction names, ontology terms, enzymes, chemical 
prefixes, and adjectives. The software can be freely downloaded from 
https://bitbucket.org/wwmm/oscar4/wiki/Home.
TMCHEM [64], another open-source alternative for identifying chemical names in 
biomedical literature, including chemical identifiers, drug brand and trade names, and 
systematic formats. TmChem achieved the highest performance in the BioCreative IV 
CHEMDNER task (over 87% F-measure), being accessible at 
https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/tmchem/.
DNORM [65], software that uses ML to recognize and normalize disease names in a 
biomedical text. DNorm achieved the best performance in the 2013 ShARe/CLEF shared 
task on disease normalization in clinical notes, being accessible at 
https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/dnorm/.
In addition, with the goal of complementing the functionality offered by the previous 
state-of-the-art taggers, an in-house ontology-based NER able to perform dictionary 
lookups as well as pattern and rule-based recognition was also developed. It is based on 
an inverted recognition strategy that uses words as patterns to be matched against an 
ontology-based lexicon [66]. The proposed approach is suitable for the type of texts 
analyzed in the current work due to their short length compared to the size of the lexicon. 
Moreover, recognition preference was given to the longest possible n-gram (e.g. “wheat 
gluten protein” instead of “gluten”), while concepts that may be associated with more 
than one semantic category were ignored. Additionally, the implemented recognizer 
accepts perfect matches as well as lexical variations of the terms (i.e. lemmatized entries, 
abbreviations, and synonym normalization), being updated with the expert 
recommendations at the end of each curation round to improve its annotation performance 
(i.e. semantic type of the annotations and false-positive identified concepts).

4.2.3 Automatic text annotation

In order to integrate the previously commented alternatives with the goal of improving 
the global accuracy of annotations by taking into consideration their semantic context, 
the following strategy was applied. 
Initially, all documents were annotated separately with each tagger, selecting the 
annotations containing more grams. In this way, the inconsistences (i.e. different 
annotations of the same token with incompatible semantic types) were solved by 
prioritizing the expert-derived knowledge incorporated into the in-house ontology-based 
NER over the successive annotation rounds. Alternatively, if there was not a match that 
could be solved by the ontology-based NER (e.g. a new concept that was not previously 
incorporated into the ontology lexicon), the confidence of the different taggers was used. 
This ontology-based normalization enables additional inference and reasoning capacity 
steps like standardizing different terms with similar meaning (i.e. synonyms) or inferring 
related semantical terms (i.e. deduce families of concepts). After that, a post-processing 
operation to enhance the annotation performance based on the semantic context of the 
identified terms and their recognized semantic category was executed. In order to carry 



out this process, a rule-based annotation strategy was applied following the criteria of the 
expert curators (see Supplementary material 1). As an example, if a given tagger 
identified the anatomic part “small intestinal” and another tagger determined a symptom 
“intraepithelial lymphocytosis” in a nearest semantic context, then those annotations were 
joined into the most complex domain concept “small intestinal intraepithelial 
lymphocytosis”. In addition, the capacity to identify semantical patterns in the context of 
the annotations allowed the recognition of more complex concepts. For example, 
supposing the name of a food or a protein is identified near to the word “sensitivity” or 
“intolerance”, then the corresponding annotation is expanded to the associated symptom 
semantic category (e.g. “egg intolerance”). 

4.3 Document classification
Following the proposed workflow illustrated in Figure 2, the semi-automatic annotation 
process concludes with the curation of the documents by experts. In this phase, experts 
revise the integrated NER annotations automatically generated in the previous phase and 
classify the content of the documents as relevant or irrelevant. The first round of this 
iterative task generates an initial gold standard (updated in subsequent annotation rounds), 
that is used to retrain and update the overall performance of the different methods used 
in the implemented workflow. To facilitate a better understanding of the actual integration 
of the manual curation step in the proposed workflow, Figure 3 provides details about the 
iterative curation process and classification strategy applied in the current work.
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annotation and manual curation of the 1,000 PubMed records (belonging to the initial group of 4,115 
documents). This process generates an updatable gold standard used to improve the different methods that 
form part of the proposed workflow. 

4.3.1 Expert manual curation

In order to provide specific support to experts in the initial manual curation of the 
automatically generated annotations, and also for the later document classification phase, 
the Markyt annotation tool s was used. In detail, the Markyt framework contributed with 
useful information concerning the following aspects of the proposed workflow: (i) 
produced valuable insights to update both the ontology-based NER algorithm and the 
automatic text annotation of successive rounds; and (ii) made available relevant 
information about the manual classification of documents to improve the subsequent 
training and test of the automated classifier included in the workflow. Figure 4 shows the 
Markyt framework in action during the annotation of two given documents.



Figure 4: Snapshot of the Markyt annotation tool used in the proposed workflow. Illustrate the 
visualization of document contents, existing annotations, relevance classification (icon following to the 
PubMed id) and different available semantic types.

As previously commented, in order to obtain an initial gold standard for feeding the 
proposed workflow and generate a primary document classifier, a first round with 1,000 
automatically annotated but unclassified documents was carried out (see Figure 3, top). 
The expert revision of this initial set of documents enabled (i) the development of the first 
classifier to assess the relevance of the follow-up documents belonging to the next rounds 
and (ii) established the basis for the automatic annotation rules. The application of this 
semi-automatic curation strategy helped to save manual efforts by identifying relevant 
biomedical entities and relevant documents based on previous experiences [67]. 
Following this iterative approach, inconsistencies, glitches, misses, and interpretation 
issues were fixed and documented by experts to enhance the global workflow 
performance (i.e. improving the vocabulary and matching rules supporting both the 
automatic annotation and the priority given to each available tagger). 

4.3.2 Initial document description

With the goal of accurately representing each document for serving as input to the 
automatic classifier of the proposed workflow, a document attribute matrix was initially 
formed considering three different but complementary groups of attributes.
The first set of attributes is given by a word vector containing the most meaningful 
concepts of each document when considering the whole dataset (first set of descriptive 
columns in Table 1). For its generation, the term frequency-inverse document frequency 
(TF-IDF) measure of unigrams, bigrams, and trigrams was computed. TF-IDF measures 
the significance of a given word in a dataset regarding the total number of times that it 
appears in a particular document compared to the overall dataset (Equation 1).

TF - IDF(𝑡,𝑑,𝐷) = TF(𝑡,𝑑) × IDF(𝑡,𝐷)  (1)



where  is the evaluated term,  stands for any given document from the dataset, , and 𝑡 𝑑 𝐷 TF
 expresses the ratio of corresponding to the term, , in a document, , described as (𝑡,𝑑) 𝑡 𝑑

follows (Equation 2):

TF(𝑡,𝑑) =
𝑛𝑡

∑
𝑘𝑛𝑘

   (2)

where is the number of occurrences of the term,  in a document, , and  is the total 𝑛𝑡 𝑡, 𝑑 𝑛𝑘

number of terms in a document, . Moreover, in Equation 1  stands for the 𝑑 IDF(𝑡,𝐷)
logarithmic ratio of the term,  in the dataset, , being computed as follows (Equation 3):𝑡, 𝐷

IDF(𝑡,𝐷) = log
|𝐷|

|{𝑑𝑖 ∈ 𝐷|𝑡 ∈ 𝑑𝑖}|   (3)

Table 1: Initial vector representation describing each document.

Document TF-IDF terms #Normalised annotations #Domain count

celiac allergy … Glu-D1 DOID:9892 … Diseases Compounds …

Doc 1 0.6 0.30 … 2 5 … 2 8 …

Doc 2 0.32 0 … 0 2 … 5 3 …

… … … … … … … … … …

Doc n … … … … … … … … …

The second group of attributes comprises the normalized label of all automatic 
annotations of each document (second set of descriptive columns in Table 1). In this way, 
the combination of the output of the different taggers, in conjunction with the distinct 
domain ontologies of the lexicon, enables that those annotations with a similar meaning 
can be computed as the same entry in this attribute group. 
Finally, the third group of attributes includes the different semantic types annotated in 
each document (third set of descriptive columns in Table 1). 

4.3.3 Final document representation

Regardless of the specific strategy used to extract attributes from any document to 
generate its vector representation (as the one proposed in the previous section), thousands 
of entries usually form it. This scenario requires the consideration of a precise feature 
selection procedure to identify the most informative features. In this sense, a combination 
of Information Gain (IG), Chi Square ( ), and the stability-correlation measure was 𝜒2

applied in this work. 
In detail, the IG of any feature, , describing a class, , represents the reduction in 𝑓𝑘 𝑐𝑖

uncertainty about  when the value of  is known, and can be calculated as follows 𝑐𝑖 𝑓𝑘

(Equation 4):



IG(𝑓𝑘,𝐶𝑖) = ∑
𝐶 ∈ {𝑐𝑖,𝑐𝑖}

∑
𝑡 ∈ {𝑓𝑘,𝑓𝑘}

𝑃(𝑓𝑖,𝑐𝑖)log
𝑃(𝑓𝑘,𝑐𝑘)

𝑃(𝑓𝑘)𝑃(𝑐𝑖) (4)

where  is the fraction of the documents belonging to class,  over the total number 𝑃(𝑐) 𝑐,
of documents,  is the fraction of the documents belonging to class,  that contains 𝑃(𝑓,𝑐) 𝑐,
a feature, , over the total number of documents, and  represents the fraction of the 𝑓 𝑃(𝑓)
documents that contain a feature,  over the total number of documents.𝑓,
For its part, the  measure is commonly used in mathematical statistics to evaluate the 𝜒2

independence of any two given variables. In the proposed approach, the independence of 
a feature, , with respect to a category, , is measured by Equation 5, in which the greater 𝑓𝑘 𝑐𝑖

the value of the  is, the more information provides the feature, :𝜒2(𝑓𝑘,𝑐𝑖) 𝑓𝑘

𝜒2(𝑓𝑘,𝑐𝑖) =
𝐷(𝑎𝑘𝑖𝑑𝑘𝑖 ― 𝑏𝑘𝑖𝑐𝑘𝑖)2

(𝑎𝑘𝑖 + 𝑏𝑘𝑖)(𝑎𝑘𝑖 + 𝑐𝑘𝑖)(𝑏𝑘𝑖 + 𝑑𝑘𝑖)(𝑐𝑘𝑖 + 𝑑𝑘𝑖)
(5)

where  stands for the total number of documents,  is the frequency of feature, , in 𝐷 𝑎𝑘𝑖 𝑓𝑘

the category, ,  is the frequency of feature,  in all the existing categories except, , 𝑐𝑖 𝑏𝑘𝑖 𝑓𝑘, 𝑐𝑖

 is the frequency with which category,  occurs without containing feature, , and  𝑐𝑘𝑖 𝑐𝑖, 𝑓𝑘 𝑑𝑘𝑖

is the number of times neither  nor  occur.𝑐𝑖 𝑓𝑘

Finally, the stability-correlation statistic evaluates the importance of any given variable 
based on its stability and correlation concerning a given class (i.e. variables with a high 
correlation and high stability achieve an importance nearest to 1). In the current study, 
the stability measure of a feature, , over a class,  corresponds to the percentage of 𝑓𝑘 𝑐𝑖,
documents that have similar values for the same feature, being defined as follows 
(Equation 6):

Stability(𝑓𝑘) =
𝐷(𝑓𝑘,𝑐𝑖) 

𝐷
(6)

where  is the total number of documents, and  stands for the frequency of feature, 𝐷 𝐷(𝑓𝑘,𝑐𝑖)

 in class,  for .𝑓𝑘, 𝑐𝑖, 𝐷
In a complementary way, the correlation measure of a feature,  over a class, , is 𝑓𝑘, 𝑐𝑖

defined as follows (Equation 7):

Correlation(𝑓𝑘) =
∑𝐷

𝑗 = 1
(𝑓𝑘𝑗 ― 𝑓𝑘)(𝑐𝑖𝑗 ― 𝑐𝑖)

[∑𝐷

𝑗 = 1
(𝑓𝑘𝑗 ― 𝑓𝑘)2][∑𝑛

𝑗 = 1
(𝑐𝑖𝑗 ― 𝑐𝑖)

2]
(7)

where  is the total number of documents,  is the mean of feature, , and  is the mean  𝐷 𝑓𝑘 𝑓𝑘 𝑐𝑖

of  for the class .𝑓𝑘 𝑐𝑖



In the proposed approach, a combination of the three feature selection techniques was 
devised to select the top 300 features achieving the most significant average weight, 
normalized between 0 and 1. 

5. Results and discussion
This section introduces the final gold standard dataset created by applying the suggested 
semi-automatic workflow to the gluten bibliome case study, giving relevant details about 
the corpus in terms of both relevance in classification and representativeness for the 
selected domain. After that, and with the goal of assessing the adequacy of the proposed 
document representation method (discussed in Sections 3.3.2 and 3.3.3), a well-known 
baseline (i.e. word embedding) is briefly described together with the introduction of the 
experimental setup and the definition of the selected performance measures. The results 
from six state-of-the-art classifiers are presented and analyzed in detail, evidencing the 
importance of having an accurate document representation for obtaining positive 
outcomes in the classification task. The section ends with a learned lessons discussion 
that summarizes the key findings resulting from applying the current workflow and the 
interaction with experts in the studied field.

5.1 Gluten-related gold standard
As previously commented, in order to create a comprehensive curated corpus following 
the proposed semi-automatic workflow, a total of 4,115 PubMed documents related to 
gluten bibliome (out of a total of 12,047 entries) were iteratively annotated and manually 
classified by experts with the help of the Marky platform. Table 2 describes the 
distribution of the final gold standard dataset regarding the relevance of documents.

Table 2: Gold standard dataset manually curated by experts.

Curated documents
Relevant 1,871 (45.5%)
Irrelevant 2,244 (54.5%)
∑ 4,115

The curation process (i.e. semi-automatic annotation and classification) of the documents 
reflected in Table 2 was carried out by experts through nine rounds with a non-regular 
number of documents to revise in each iteration. This round flexibility helped to adapt 
the revision process to the agenda of the curators and enabled the successive improvement 
of the different workflow algorithms.
In order to provide meaningful insights describing the existing knowledge in the newly 
generated gold standard dataset, a correlation analysis of the semantic categories was 
carried out using an association coefficient calculated as follows (Equation 8):



ϕ𝐷𝑖𝐷𝑗 =
𝐷𝑐𝑖 ∩ 𝑐𝑗𝐷𝑐𝑖′ ∩ 𝑐𝑗′ ― 𝐷𝑐𝑖′ ∩ 𝑐𝑗𝐷𝑐𝑖 ∩ 𝑐𝑗′

𝐷𝑐𝑖𝐷𝑐𝑖′
𝐷𝑐𝑗𝐷𝑐𝑗′

(8)

where  represents the number of documents containing category ,  stands for the 𝐷𝑐𝑖 𝑐𝑖 𝐷𝑐𝑖′

number of documents not containing category ,  indicates the number of 𝑐𝑖 𝐷𝑐𝑖 ∩ 𝑐𝑗

documents containing both categories,  and ,  indicates the number of documents 𝑐𝑖 𝑐𝑗 𝐷𝑐𝑖′ ∩ 𝑐𝑗′

not containing both categories  and , and  represents the number of documents 𝑐𝑖 𝑐𝑗 𝐷𝑐𝑖 ∩ 𝑐𝑗′

containing category  but not . In this way, the association coefficient ranges between 𝑐𝑖, 𝑐𝑗

-1 to +1, representing to what extent documents tend to discuss one category but not the 
other, neither of them or both categories together. 
This measure enabled the identification of statistical differences regarding the annotation 
of the different semantic types between the relevant and irrelevant documents that 
comprise the corpus. In this sense, the tables below summarize the number of annotations 
per semantic category and their co-occurrence for relevant (Table 3) and irrelevant (Table 
4) documents.
Table 3: Correlation between different annotation types and the number of annotations per semantic 
category in relevant documents. Explicit mentions of general terms in the analyzed domain (e.g. “celiac”, 
“gluten” or “protein”) were not considered for the generation of the table. ANA stands for anatomy,  CEL 
stands for cell types, COMP stands for compounds, DIS stands for diseases, FOOD stands for food or food 
products, ORG stands for organisms, PROT represents proteins, and SYMP stands for symptoms. In terms 
of summarization  represents the summarization of all correlations and  represents the ∑Corr ∑Ann
summarization of all annotations
 ANA CEL COMP DIET DIS FOOD GENE ORG PROT SYMP ∑𝐂𝐨𝐫𝐫

ANA  0.739 0.749 0.076 0.930 0.550 0.513 0.399 1.001 0.801 5.760
CEL   0.244 -0.061 0.285 0.190 0.391 0.082 0.753 0.223 2.846
COMP    0.078 0.579 0.446 0.174 0.195 0.714 0.421 1.640
DIET     0.182 0.032 -0.060 -0.025 0.010 0.079 0.286
DIS      0.438 0.386 0.167 0.854 0.873 2.057
FOOD       0.168 0.332 0.615 0.177 0.509
GENE        0.083 0.674 0.219 0.970
ORG         0.366 0.086 0.086
PROT          0.631 3.865
SYMP           0.086
∑𝐀𝐧𝐧 3432 1074 2040 99 3693 1987 636 315 5975 2380  

Table 4: Correlation between different annotation types and the number of annotations per semantic 
category in irrelevant documents. Explicit mentions of general terms in the analyzed domain (e.g. 
“celiac”, “gluten” or “protein”) were not considered for the generation of the table. ANA stands for 
anatomy,  CEL stands for cell types, COMP stands for compounds, DIS stands for diseases, FOOD stands 
for food or food products, ORG stands for organisms, PROT represents proteins, and SYMP stands for 
symptoms. In terms of summarization  represents the summarization of all correlations and  ∑Corr ∑Ann
represents the summarization of all annotations
 ANA CEL COMP DIET DIS FOOD GENE ORG PROT SYMP ∑𝐂𝐨𝐫𝐫

ANA  0.337 0.752 0.131 0.422 0.573 0.368 0.328 0.630 0.415 3.957
CEL   0.250 -0.001 0.179 0.167 0.130 0.035 0.399 0.189 1.685
COMP    0.184 0.362 1.079 0.535 0.707 0.876 0.392 2.540
DIET     0.128 0.130 -0.022 -0.016 0.033 0.079 0.484
DIS      0.300 0.070 -0.039 0.507 0.420 1.043
FOOD       0.588 0.764 0.806 0.243 1.007
GENE        0.328 0.455 0.062 1.560
ORG         0.350 0.070 0.070
PROT          0.406 3.434
SYMP           0.070



∑𝐀𝐧𝐧 1961 335 5450 86 1149 5472 960 816 4200 686  

From the annotated categories shown in Table 3 and Table 4, it can be observed that those 
relevant documents related to the gluten protein were mainly focused on the study of 
proteins, compounds, and foods that produce a body change in terms of diseases and 
symptoms. In contrast, irrelevant documents were essentially focused on the analysis of 
foods and organisms relating to compounds, showing less correlation with diseases and 
symptoms. In addition, with the goal of analyzing the incidence of some representative 
terms, Figure 5 presents the top most mentioned terms along with their associated 
semantic category.

Figure 5. Topmost mentioned terms per semantic category. Terms are arranged taking into 
consideration the number of different documents that mention each term. Explicit mentions of general terms 
in the analyzed domain (e.g. “celiac”, “gluten” or “protein”) were not considered for the generation of the 
figure.

5.2 Experimental setup
In order to evaluate the proposed document representation method (explained in Sections 
3.3.2 and 3.3.3) as part of the developed workflow (Figure 2 and Figure 3), we compared 
its performance against the use of word embedding [68], one of the most popular 



representation technique for capturing the context of words in a given set of documents. 
To this end, we make use of several state-of-the-art classifiers, including Support Vector 
Machines (SVM) [69], Random Forest (RF) [70], Generalized Linear Model (GLM) [71], 
K-nearest neighbor (KNN) [72], Fast Large Margin (FLM) [73], and a Deep Learning 
(DL) multi-layer feed-forward artificial neural network (ANN) with a 2-2-2 layer 
configuration [73].
As previously commented, word embedding is a well-reputed unsupervised technique 
able to generate clusters of words based on their context in a given set of documents 
[74,75]. This method is generally used in computational linguistics to improve the 
performance of different ML algorithms [76–78] by taking advantage of the 
normalization of words with a similar meaning [79,80]. Prominent among other 
alternatives, Mikolov et al. developed word2vec [81] based on the hypothesis that words 
that occur in similar contexts tend to have similar meanings [82]. Therefore, word2vec 
uses a simple neural network to embed words into a continuous vector-space. In the 
particular case of this study, although there are available different word2vec models for 
the biomedical area [83], it was trained an in-house word2vec model using the overall 
gluten-related dataset (i.e. 12,047 documents initially obtained from PubMed, as 
commented in Section 3.1.1) with the goal of fairly comparing its results against the 
proposed approach, called NER+Ontology.
In order to obtain accurate results and a well-founded discussion, the six initially selected 
classifiers were evaluated following a 10-fold cross-validation strategy [84]. Standard 
measures of precision, recall, and F-score were calculated to assess the performance of 
the different classifiers, being computed as follows (Equations 9 to 11):

Precision =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) (9)

Recall =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) (10)

𝐹𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑇𝑃

(2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) (11)

where  is the number of true positives (i.e. relevant documents classified as relevant), 𝑇𝑃
 is the number of false positives (i.e. non-relevant documents classified as relevant), 𝐹𝑃
 is the number of false negatives (i.e. relevant documents classified as irrelevant), and 𝐹𝑁
 stands for the number of true negatives (i.e. non-relevant documents classified as 𝑇𝑁

irrelevant).



5.3 Assessing the importance of document representation: word 
embedding vs. NER+Ontology

This section analyzes the performance obtained by both alternatives as document 
representation techniques when used to train different state-of-the-art classifiers to be 
further used in the proposed semi-automatic workflow.
In detail, the first analysis involved the establishment of a baseline to discover which 
alternative obtains good performance results at the beginning of the process. To carry out 
this experiment, a 10-fold cross-validation analysis was executed using the first set of 
1,000 manually curated documents, which were the output of the first iteration round of 
the proposed workflow (see Figure 3, top). Table 5 summarizes the results obtained in 
terms of precision, recall and F-score. 

Table 5: Performance comparison of the two document representation techniques under a 10-fold 
cross-validation scenario using the first set of 1,000 curated documents.

Word embedding NER+Ontology Gain
Precision Recall F-score Precision Recall F-score F-score

SVM 0.717 0.653 0.683 0.766 0.861 0.810 +0.127
RF 0.702 0.694 0.697 0.826 0.815 0.820 +0.123

GLM 0.590 0.615 0.602 0.768 0.784 0.775 +0.173
KNN 0.620 0.559 0.587 0.657 0.856 0.743 +0.156
FLM 0.686 0.658 0.670 0.785 0.840 0.811 +0.141

DL(2-2-2) 0.672 0.737 0.686 0.797 0.780 0.787 +0.101
Average 0.663 0.650 0.653 0.765 0.822 0.791 +0.135

Regarding the baseline performance comparison shown in Table 5, RF has proven to be 
the best approach to establish a first recommended classifier as starting point for the semi-
automatic curation workflow (F-score = 0.697 and F-score = 0.820). From another 
perspective, comparing both representation techniques, the proposed NER+Ontology 
algorithm obtained an average F-score of 0.791, whereas the word embedding alternative 
achieved an average F-score of 0.653. Considering the differences between the F-score 
values reported in Table 5, the GLM and KNN classifiers reached the most significant 
advantage using the proposed document representation technique (F-score = +0.173 and 
F-score = +0.156, respectively). As an initial conclusion from this first experiment, it 
seems that the NER+Ontology approach has succeeded in improving the performance of 
all the analyzed classifiers, regardless of their specific type.
In order to obtain conclusive results, Table 6 presents the final performance achieved in 
a subsequent experiment using the final gold standard dataset generated by the proposed 
workflow (see Figure 2). To properly compare the evolution and stability of the different 
classifiers, they were trained and tested using the same parameters as those adopted in the 
baseline evaluation.

Table 6: Performance comparison of the two document representation techniques under a 10-fold 
cross-validation scenario using the final gold standard dataset (4,115 documents).



Word embedding NER+Ontology Gain
Precision Recall F-score Precision Recall F-score F-score

SVM 0.824 0.838 0.831 0.825 0.890 0.856 +0.025
RF 0.781 0.903 0.838 0.915 0.794 0.850 +0.012

GLM 0.803 0.821 0.812 0.869 0.846 0.857 +0.045
KNN 0.793 0.833 0.812 0.828 0.838 0.833 +0.021
FLM 0.807 0.836 0.821 0.880 0.841 0.860 +0.039

DL(2-2-2) 0.780 0.886 0.828 0.878 0.821 0.848 +0.020
Average 0.798 0.852 0.824 0.865 0.838 0.851 +0.027

Regarding the results summarized in Table 6, RF has proven to be the best classifier when 
using the word embedding technique for document representation (F-score = 0.838), 
whereas FLM obtained the best position through the use of the proposed NER+Ontology 
technique (F-score=0.860). As in the previous experiment, comparing the average F-score 
of both alternatives, the proposed NER+Ontology algorithm reached a better value 
(average F-score = 0.851) compared to the word embedding approach (average F-score = 
0.825). This experiment makes it possible to conclude that the improvement demonstrated 
by the proposed NER+Ontology technique was stable, regardless of the size of the corpus 
or the specific classifier used. 
In addition, to complement the study carried out, a grid search optimization was executed 
to evaluate the best performance that the selected classifiers could reach with the two 
document representation techniques plus a third combination of both. In this regard, Table 
7 summarizes the performance measures obtained under a 10-fold cross-validation 
scenario over the final gold standard dataset.

Table 7. Performance comparison of the different document representation techniques using the best 
optimization parameters for the different classifiers being evaluated under a 10-fold cross-validation 
scenario over the final gold standard dataset (4,115 documents).

Word embedding NER+Ontology Gain Word embedding & 
NER+Ontology

Precision Recall F-score Precision Recall F-score F-score Precision Recall F-score
SVM 0.808 0.877 0.841 0.898 0.830 0.863 +0.022 0.891 0.842 0.866

RF 0.796 0.909 0.849 0.914 0.815 0.862 +0.013 0.915 0.815 0.862
GLM 0.819 0.844 0.831 0.880 0.850 0.864 +0.033 0.874 0.851 0.862
KNN 0.770 0.910 0.834 0.860 0.836 0.848 +0.014 0.915 0.789 0.847
FLM 0.795 0.873 0.832 0.878 0.846 0.861 +0.029 0.881 0.846 0.863

DL(2-2-2) 0.788 0.881 0.832 0.884 0.843 0.862 +0.031 0.882 0.830 0.854
Average 0.796 0.882 0.836 0.886 0.837 0.860 +0.024 0.893 0.828 0.859

From the results shown in Table 7 related to the performance of the two initial 
alternatives, it can be seen that the proposed NER+Ontology algorithm obtained a better 
average F-score value (0.860) than the one achieved by the word embedding counterpart 
(0.836). Considering the overall F-score values attained by the different classifiers, the 
GLM and RF algorithms reached the best classification performance using the proposed 
document representation technique (F-score = 0.864 and F-score = 0.849, respectively). 
Furthermore, the NER+Ontology approach always exceeded the performance obtained 



by the word embedding alternative, as showed by the positive values present in the Gain 
F-score column, being the GLM and DL classifiers that benefit most. 
From another interesting perspective, Table 7 also evidenced how the combination of the 
two document representation techniques (i.e. Word embedding & NER+Ontology) barely 
achieved a noticeable improvement in some specific cases. This behavior is because the 
unsupervised word embedding technique does not enhance the semantic normalization 
obtained using a domain ontology or specific domain NERs. In this sense, a more 
significant number of domain concepts were supported by the NER+Ontology domain 
normalization, and only a marginal set of remaining non-stop words was also considered 
by the standardization provided by the word embedding technique.

5.4 Learned lessons
With the goal of complementing the study carried out with useful insights, this section 
discusses certain expertise and some lessons learned from implementing the proposed 
workflow in terms of different design strategies and the manual curation of biomedical 
information.
In the first place, although the proposed semi-automatic workflow required more 
computational time and human effort to process (i.e. manually annotate and classify) all 
the documents comprising the final gold standard in several iterative rounds, human-in-
the-loop (HITL) approaches provide better trade-offs guaranteeing an improvement of 
the accuracy in the majority of datasets while improving safety and precision. In this 
sense, even though all the automatically classified documents (i.e. relevant and irrelevant) 
were manually revised in order to correctly evaluate the proposed NER+Ontology 
technique, the following iterations of the implemented workflow will obtain more 
benefits since only the manual annotation of relevant documents, and a part of those 
automatically classified as irrelevant will be required. This strategy allows saving of 
manual classification efforts because it reduces the number of documents to be revised. 
In this way, in successive iterations of the proposed workflow, only documents 
automatically labeled as relevant and a random subset of documents classified as 
irrelevant (e.g. 20%), are going to be curated in order to recalibrate the internal classifier. 
In terms of global performance, the proposed semi-automatic workflow achieves a more 
significant advantage by supporting the overall annotation process.
From another perspective, mainly related to the analyzed case study and considering the 
most common annotated terms per semantic category identified in Figure 6, the topmost 
discussed concepts related to the topic of “anatomical parts” owned a pre-existing 
relationship to blood components and gastrointestinal organs due to the nature of the 
disease. In contrast, the term “bone mineral density” (BMD) stood out due to the high 
number of documents that relate untreated gluten diseases to a greater tendency to suffer 
from fractures and a density improvement on a gluten-free diet [85]. Consequently, 
associated with BMD, the terms “Osteoporosis” and “Osteopenia” (both diseases) were 
also widely mentioned and related with celiac disease (CD) and GFD, in the same way as 
BMD [86,87]. 



With regard to cell types, the most discussed concepts were related to T-cells with 
inflammatory and immune roles, namely, “CD4+”, “T-lymphocytes”, and “Intraepithelial 
lymphocytes”, derived from the autoimmune nature of gluten-related diseases [88,89]. 
Similarly, the most mentioned proteins, besides the different protein fractions that 
constitute gluten, were related to antibodies closely associated with developing distinct 
health issues. In this sense, several scientific documents referring to these proteins 
discussed their relationship in diagnosing different illnesses or the benefits of the GFD. 
An example of this case was the relationship of the “IgA” and “IgG” autoantibodies 
against “tissue transglutaminase” [90,91]. Another protein that deserved attention due to 
its substantial presence in the bibliome was casein, the collective term for a family of milk 
proteins [92]. This protein is positively associated with non-gastrointestinal diseases, 
notably autism spectrum disorder (ASD), and the casein/gluten elimination from the diet 
is encouraged to improved ASD behaviors in children who reported some gastrointestinal 
symptoms [93,94]. 
Considering the diet semantic category, most of the identified concepts were related to 
discussing the advantages of a gluten-free diet in treating different diseases and their 
relation with the most annotated discussed symptoms like diarrhea, malabsorption, 
inflammation of the small intestine, and abdominal pain. In this sense, the curated studies 
evaluated the effect that GFD and other counterparts diets could produce in humans with 
different health issues [95,96]. 
The most mentioned compounds were iron, calcium, and other general nutrients, being 
discussed in a large number of documents signaling the alimentary unbalances produced 
by GFD [97], how GFD places compounds within the normal range [98], and also the 
difficulty of their absorption into the digestive system in related diseases [99,100]. 
Concerning diseases, numerous documents discussed the damaged relationship that 
gluten can produce to health issues related to the digestive system, like “Irritable bowel 
syndrome” [101] and “Type 1 diabetes” [102], but also for other diseases with a less 
apparent relationship, such as skin diseases [103] and psychological disorders, like 
“Autism” and “Schizophrenia” [104–106].
With respect to the food or food product category, the relevant discussed terms were 
related to cereals and, above all, oats. In this sense, recent studies have questioned the 
suitability of oats in the diet of gluten-related patients, with some authors claiming that 
oats pose no risk to celiac [107] and others arguing that a subgroup of celiac patients may 
be intolerant to oats [108]. As occurring with diet therapy, mentioned organisms were 
oriented towards applying different bacteria to reduce or degrade toxic gluten peptides 
[109,110]. 
Finally, concerning the genes category, the most identified terms were related to genes 
responsible for CD development, namely “HLA-DQA1” or “HLA-DQB1”. These genes 
are present in 30-40% of the general population, but only a few percentages of carriers 
develop gluten-related diseases [111,112]. Similarly, the “myosin IXB” gene was 
discussed as a potential risk factor in inflammatory conditions, having a role in intestinal 
barrier functions with evidence of its association with CD, dermatitis herpetiformis, 
inflammatory bowel disease, systemic lupus erythematosus, and rheumatoid arthritis risk 
[113]. It is noteworthy that apart from these genes, few studies related other genes to this 



subject, which may be motivated because the genes that predispose individuals to gluten-
related disorders are very well defined. 

6. Conclusions and future work
This work presents a semi-automatic ML workflow able to reduce the manual curation 
cost (i.e. annotation and classification) of thousands of documents downloaded from 
PubMed with the goal of generating a gold standard corpus. As a fundamental part of the 
proposed approach, it is introduced the NER+Ontology document description technique 
for the automatic classification of the bibliome. The practical relevance of the 
implemented workflow was demonstrated in the manual curation of 4,115 gluten-related 
documents, while the proposed NER+Ontology technique showed satisfactory results 
compared to other state-of-the-art document representation techniques in three different 
scenarios using well-known classifiers.
Future work will be focused on applying the best-ranked classifier for the automatic 
classification of the remaining bibliome, adopting the proposed NER+Ontology 
description technique as the current baseline for identifying novel relation patterns in 
overall. Although the experimental results have demonstrated the proper operation of the 
proposed approaches, it would be interesting to consider the exploitation of the remaining 
ontology capabilities to obtain better classification results, for example, the semantic 
hierarchy inference provided by the different ontologies. Finally, a parallel objective is 
related to structuring and making available the curated knowledge through an online 
database to assist researchers in making decisions and developing new hypotheses based 
on the bibliome.
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Table 1: Initial feature description vector for each document.

Document TF-IDF terms #Normalised annotations #Domain count

celiac allergy … Glu-D1 DOID:9892 … Diseases Compounds …

Doc 1 0.6 0.30 … 2 5 … 2 8 …

Doc 2 0.32 0 … 0 2 … 5 3 …

… … … … … … … … … …

Doc n … … … … … … … … …

Table 2: Gold standard dataset manually curated by experts.

Curated documents
Relevant 1,871 (45.5%)
Irrelevant 2,244 (54.5%)

∑ 4,115

Table 3: Correlation between different annotation types and the number of annotations per semantic 
category in relevant documents. Explicit mentions of general terms in the analyzed domain (e.g. “celiac”, 
“gluten” or “protein”) were not considered for the generation of the table. ANA stands for anatomy,  CEL 



stands for cell types, COMP stands for compounds, DIS stands for diseases, FOOD stands for food or food 
products, ORG stands for organisms, PROT represents proteins, and SYMP stands for symptoms. In terms 
of summarization  represents the summarization of all correlations and  represents the ∑Corr ∑Ann
summarization of all annotations.
 ANA CEL COMP DIET DIS FOOD GENE ORG PROT SYMP ∑𝐂𝐨𝐫𝐫

ANA  0.739 0.749 0.076 0.930 0.550 0.513 0.399 1.001 0.801 5.760
CEL   0.244 -0.061 0.285 0.190 0.391 0.082 0.753 0.223 2.846
COMP    0.078 0.579 0.446 0.174 0.195 0.714 0.421 1.640
DIET     0.182 0.032 -0.060 -0.025 0.010 0.079 0.286
DIS      0.438 0.386 0.167 0.854 0.873 2.057
FOOD       0.168 0.332 0.615 0.177 0.509
GENE        0.083 0.674 0.219 0.970
ORG         0.366 0.086 0.086
PROT          0.631 3.865
SYMP           0.086
∑𝐀𝐧𝐧 3432 1074 2040 99 3693 1987 636 315 5975 2380  

Table 4: Correlation between different annotation types and the number of annotations per semantic 
category in irrelevant documents. Explicit mentions of general terms in the analyzed domain (e.g. 
“celiac”, “gluten” or “protein”) were not considered for the generation of the table. ANA stands for 
anatomy,  CEL stands for cell types, COMP stands for compounds, DIS stands for diseases, FOOD stands 
for food or food products, ORG stands for organisms, PROT represents proteins, and SYMP stands for 
symptoms. In terms of summarization  represents the summarization of all correlations and  ∑Corr ∑Ann
represents the summarization of all annotations.
 ANA CEL COMP DIET DIS FOOD GENE ORG PROT SYMP ∑𝐂𝐨𝐫𝐫

ANA  0.337 0.752 0.131 0.422 0.573 0.368 0.328 0.630 0.415 3.957
CEL   0.250 -0.001 0.179 0.167 0.130 0.035 0.399 0.189 1.685
COMP    0.184 0.362 1.079 0.535 0.707 0.876 0.392 2.540
DIET     0.128 0.130 -0.022 -0.016 0.033 0.079 0.484
DIS      0.300 0.070 -0.039 0.507 0.420 1.043
FOOD       0.588 0.764 0.806 0.243 1.007
GENE        0.328 0.455 0.062 1.560
ORG         0.350 0.070 0.070
PROT          0.406 3.434
SYMP           0.070
∑𝐀𝐧𝐧 1961 335 5450 86 1149 5472 960 816 4200 686  

Table 5: Performance comparison of the two document representation techniques under a 10-fold 
cross-validation scenario using the first set of 1,000 curated documents.

Word embedding NER+Ontology Gain
Precision Recall F-score Precision Recall F-score F-score

SVM 0.717 0.653 0.683 0.766 0.861 0.810 +0.127
RF 0.702 0.694 0.697 0.826 0.815 0.820 +0.123

GLM 0.590 0.615 0.602 0.768 0.784 0.775 +0.173
KNN 0.620 0.559 0.587 0.657 0.856 0.743 +0.156
FLM 0.686 0.658 0.670 0.785 0.840 0.811 +0.141

DL(2-2-2) 0.672 0.737 0.686 0.797 0.780 0.787 +0.101



Average 0.663 0.650 0.653 0.765 0.822 0.791 +0.135

Table 6: Performance comparison of the two document representation techniques under a 10-fold 
cross-validation scenario using the final gold standard dataset (4,115 documents).

Word embedding NER+Ontology Gain
Precision Recall F-score Precision Recall F-score F-score

SVM 0.824 0.838 0.831 0.825 0.890 0.856 +0.025
RF 0.781 0.903 0.838 0.915 0.794 0.850 +0.012

GLM 0.803 0.821 0.812 0.869 0.846 0.857 +0.045
KNN 0.793 0.833 0.812 0.828 0.838 0.833 +0.021
FLM 0.807 0.836 0.821 0.880 0.841 0.860 +0.039

DL(2-2-2) 0.780 0.886 0.828 0.878 0.821 0.848 +0.020
Average 0.798 0.852 0.824 0.865 0.838 0.851 +0.027

Table 7. Performance comparison of the different document representation techniques using the best 
optimization parameters for the different classifiers being evaluated under a 10-fold cross-validation 
scenario over the final gold standard dataset (4,115 documents).

Word embedding NER+Ontology Gain Word embedding & 
NER+Ontology

Precision Recall F-score Precision Recall F-score F-score Precision Recall F-score
SVM 0.808 0.877 0.841 0.898 0.830 0.863 +0.022 0.891 0.842 0.866

RF 0.796 0.909 0.849 0.914 0.815 0.862 +0.013 0.915 0.815 0.862
GLM 0.819 0.844 0.831 0.880 0.850 0.864 +0.033 0.874 0.851 0.862
KNN 0.770 0.910 0.834 0.860 0.836 0.848 +0.014 0.915 0.789 0.847
FLM 0.795 0.873 0.832 0.878 0.846 0.861 +0.029 0.881 0.846 0.863

DL(2-2-2) 0.788 0.881 0.832 0.884 0.843 0.862 +0.031 0.882 0.830 0.854
Average 0.796 0.882 0.836 0.886 0.837 0.860 +0.024 0.893 0.828 0.859








