
1 

On the use of a mesoscale masonry pattern representation in discrete 1 

macro-element approach 2 

Federica Vadalà1, Valeria Cusmano2, Marco Francesco Funari1,*, Ivo Caliò2 and Paulo B. Lourenço1  3 

1Department of Civil Engineering, University of Minho, ISISE, 4800-058 Guimarães, Portugal  4 

2 Department of Civil Engineering and Architecture (DICAR), University of Catania, Italy.  5 

*Correspondence: marcofrancesco.funari@civil.uminho.pt 6 

Abstract 7 

This paper presents numerical investigations using the mesoscale approach coupled with the discrete 8 

macro-element approach for masonry structures, i.e., each macro-element represents a single unit stone. 9 

At first, parametric analyses are performed on a U-shape masonry prototype made with stone. Nonlinear 10 

static analyses are performed to investigate parameters that affect the results when a mesoscale masonry 11 

pattern representation is adopted. Results demonstrate how mesoscale representation is a powerful 12 

alternative to model unreinforced masonry structures within a discrete macro-element approach 13 

(particularly if compared with classic homogeneous FE methodologies). However, one of the main 14 

challenges in using the mesoscale approach for the structural assessment of masonry buildings, made 15 

with stones having different dimensions, is the unit by unit description. The complexity of the problem, 16 

and the amount of information needed, usually preclude the study of these structures deterministically. 17 

To this end, a digital tool to generate randomised masonry patterns using a few input parameters is 18 

proposed. A box structure is adopted as parent geometry, and ten masonry patterns with different 19 

degrees of randomness are investigated by performing nonlinear static and dynamic simulations. The 20 

outcomes focus on the influence of masonry patterns and demonstrate how irregularity of units can 21 

affect the structural response leading to a reduction in terms of strength and ductility if compared to 22 

regular distribution of masonry units.  23 

 24 
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1 Introduction 27 

Field reconnaissance after earthquake events demonstrated how out-of-plane (OOP) failure mechanisms 28 

affect historical unreinforced masonry (URM) structures, producing their collapse, loss of life, and, at 29 

the same time, an immaterial loss of memory and people identity [1]–[3]. As a consequence, in the last 30 

decades, several researchers proposed advanced analysis methods, often calibrated through extensive 31 

experimental campaigns [4]–[9], for the preventive assessment of heritage buildings. Their overall 32 

classification is mainly made between numerical and analytical approaches [10], [11]. 33 

Analytical approaches are often based on limit analysis theorems that have the great advantage of being 34 

independent of most material properties but inevitably rely on a very simplified material model [12]–35 

[15]. Such approaches include force- and displacement-based procedures suitable for rapid seismic 36 

vulnerability assessment. Moreover, limit analysis-based tools typically neglect the structure's global 37 

behaviour, only focusing on assessing a set of local failure mechanisms [16]–[20]. 38 

Numerical approaches are typically implemented in the Finite Element Method (FEM) [21]–[27] or 39 

Discrete Element Method (DEM) [28]–[32] frameworks. Such approaches model the masonry material 40 

using different representation scales, i.e., equivalent continuum, macro-blocks, or discrete 41 

representations. FEM allows a more versatile application as masonry can be represented either through 42 

a homogeneous equivalent media (designated macro-modelling) or by a discrete representation of units 43 

and joints (designated micro-modelling). DEM is well suited for masonries with both dry- and mortared 44 

joints but still requires a full representation of the blocks (masonry units) arrangement [32]–[37]. In 45 

both cases, linear and nonlinear static and dynamic analyses are eligible. 46 

Nonetheless, additionally, to the significant amount of data needed to characterise the nonlinear 47 

response of materials, the analysis can be both time-consuming and computationally expensive when 48 

estimating the ultimate ductility level of the structure. Despite their reliability, the computational 49 

efficiency of the available numerical methods is rarely compatible with the need to have a rigorous real-50 

time post-earthquake assessment [38]. Hence, several research groups developed alternative modelling 51 

approaches and practical tools to decrease the computational cost of nonlinear static and dynamic 52 

analyses [39]–[42]. 53 
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In this framework, macro-element approaches were proposed in which structures are described as an 54 

assemblage of macroscopic structural elements. For instance, the Equivalent Frame Model (EFM) is 55 

being adopted by national and international standards in combination with nonlinear static analysis [43]. 56 

Because of its simplicity and low computational demand, it is one of the most widely adopted analysis 57 

methods in engineering practice [44]. However, despite the advantages of the EFM method, it is worth 58 

underlining some limitations: i) discretisation of structure with an irregular position of openings is 59 

sometimes ambiguous or not possible, ii) geometric inconsistency of the approach, as it represents a 60 

plane portion such as masonry panels with a mono-dimensional element, iii) presence of areas which 61 

cannot be damaged, generally identified as rigid links, iv) the ultimate displacement is a priori defined. 62 

In order to cover such limitations and keep the computational efficiency, a discrete macro-element 63 

method (DMEM) was proposed in Ref. [45]. The first implementation of the DMEM approach was 64 

based on a plane element whose kinematics was described only by four Lagrangian parameters: three 65 

degrees of freedom associated with the in-plane (IP) rigid-body motion and one additional degree of 66 

freedom related to shear deformability in its own plane. Such plane elements were represented by 67 

articulated quadrilaterals with rigid edges connected to the vertices by four hinges and diagonal springs 68 

simulating the shear behaviour. Each element was connected to the adjacent ones by means of a discrete 69 

distribution of nonlinear springs, denoted as interfaces. The interfaces' deformations are associated with 70 

the relative motion of the connected panels, and no additional Lagrangian parameters are needed. One 71 

can note how this preliminary formulation of the DMEM approach simulated the nonlinear behaviour 72 

of masonry panels IP, not being able to describe the out-of-plane (OOP) behaviour. The reliability of 73 

the proposed approach was evaluated by means of nonlinear incremental static analysis performed on 74 

masonry structures, for which theoretical and/or experimental results are available in the literature [45]. 75 

Afterwards, the macro-element was improved to investigate OOP response of URM structure by 76 

developing a three-dimensional macro-element for which its kinematic was described by seven degrees 77 

of freedom IP and OOP [46]. Subsequently, such an element was adopted to simulate also curved 78 

masonry structures, whose role is fundamental both in the local and global behaviour of the buildings, 79 

especially in the monumental ones (e.g. arches, vaults, and domes) [47]. Both experimental and 80 

numerical validations showed the capability of the proposed approach to be applied to predict the 81 
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nonlinear response of URM structures under different loading conditions. A more recent 82 

implementation was conducted to assess the seismic behaviour of URM structures subjected to dynamic 83 

input, i.e., earthquakes records, by introducing a consistent or lumped mass matrix [48]. As 84 

demonstrated in Ref. [48], the DMEM strategy showed its capability to simulate dynamic response 85 

characterised by coupling IP/OOP failure mechanisms. Despite the improvements recently 86 

implemented in the DMEM approach, some limitations still characterised such a methodology, i.e., i) 87 

formulation accounts only for small displacements, ii) macro elements size dependency when the 88 

structure is affected by OOP loading, iii) vertical joints do not permit to account for interlocking 89 

phenomenon typically expected in masonry structures. However, the literature analysis underlines how 90 

the DMEM approach may be used to assess the seismic behaviour of historic masonry structures. 91 

Nevertheless, just a few attempts investigated the influence of the mesh discretisation of the macro-92 

elements, how the same impacts the structural response, and the potential in adopting a mesoscale 93 

representation [49]. In order to address these gaps, this paper mainly aims to: i) apply the DMEM 94 

approach by adopting a mesh representation consistent with real masonry patterns and ii) evaluate what 95 

phenomenon affects the structural response. To accomplish the latter, the framework described next has 96 

been followed: 97 

1. The 3D macro-element is adopted to simulate the OOP response of masonry structures. 98 

2. Parametric investigations are performed on U-shape masonry prototypes made with stone [50]. 99 

Modelling parameters are investigated and discussed, and the motivation in using mesoscale 100 

mesh discretisation is underlined.  101 

3. A random mesh generator is implemented to quickly generate numerical models where the 102 

masonry patterns are consistent with a chaotic distribution of the units.  103 

4. The random mesh generator tool is used to generate ten different masonry patterns consistent 104 

with a unique parent geometry. The masonry prototypes differ only in terms of masonry patterns 105 

and openings. 106 

The novelties of the study include: i) a pioneering application of the mesoscale random generated 107 

masonry pattern representation in DMEM for simulating unreinforced masonry structures, ii) numerical 108 
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investigation of the phenomenon that affects the structural response when mesoscale representation is 109 

adopted, and iii) implementation of a visual script for the generation of different masonry wall patterns. 110 

The paper is organised as follows. Section 2 summarises the theoretical formulation and the numerical 111 

implementation of the DMEM approach. Section 3 presents a parametric study to assess how the mesh 112 

topology affects the structural response and reports comparisons between classical DMEM and finite 113 

element homogenous approaches. Section 4 investigates how different degrees of randomness affects 114 

the seismic behaviour of a benchmark case. Finally, conclusions are discussed in Section 5. 115 

2 Discrete Macro-Element Modelling Approach  116 

As mentioned in the previous section, the original formulation of the DMEM approach provided only 117 

the possibility to simulate the IP structural response of masonry panels, which were modelled using a 118 

simple plane element (Figure 1a). In order to overcome this issue, a macro-element that was able to 119 

simulate the OOP response was proposed in Ref. [47]. Such a macro-element is a zero-thickness 120 

element, which is able to account for shear deformation in its plane, having on the edges a set of different 121 

nonlinear links denoted as interfaces. Each interface is constituted by i) m rows of n orthogonal 122 

nonlinear links, responsible for simulating the panels' flexural behaviour (Figure 1b and Figure 1c), ii) 123 

a single IP sliding link, which rules for the sliding behaviour, and iii) a set of two OOP sliding links 124 

that account for both OOP sliding and torsional behaviour. One can note that the number of orthogonal 125 

links is selected in accordance with the desired level of accuracy, losing as a counterpart a little 126 

computational efficiency. The diagonal shear deformability is governed by a diagonal nonlinear link 127 

that connects two corners of the quad element [46]. Hence, the kinematics of the spatial macro-element 128 

are described by seven Lagrangian parameters, six governing the rigid body motion and the remaining 129 

associated with the IP shear deformability. One can note that the low number of DOFs associated with 130 

each macro-element makes this approach computationally inexpensive with respect to the classical 131 

FEM and DEM formulations. 132 

https://www.sciencedirect.com/science/article/pii/S2352710219329857#sec3
https://www.sciencedirect.com/science/article/pii/S2352710219329857#sec5
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(a) (b) (c) 

Figure 1: DMEM evolution (a) Plane Element; (b) Regular Spatial Element; (c) Irregular Spatial Element. 133 

Macro-element's nonlinear links calibration has been performed according to a straightforward fibre 134 

calibration procedure. The procedure reported herein is suitable for three-dimensional model 135 

characterised by elements with the same geometrical and mechanical characteristics. Nevertheless, the 136 

calibration procedure of nonlinear links associated with irregular three-dimensional panels 137 

characterized by different mechanical properties presents a more sophisticated procedure beyond this 138 

research's scope. A detailed description of the calibration procedure for irregular macro-elements, can 139 

be found in Ref. [51]. The nonlinear interface's links can be distinguished as transversal N-links, IP 140 

shear sliding N-link, and OOP shear sliding N-links. In the following, the main characteristics of the 141 

calibration procedure are described with reference to each group of nonlinear N-links. 142 

Transversal N-links orthogonal to the interfaces govern the flexural IP and OOP behaviour between 143 

two adjacent macro-elements. Each orthogonal link is representative of the nonlinear behaviour of the 144 

corresponding masonry strip of two adjacent elements (e.g. panels l and k) along a given material 145 

direction. Since the deformations of the panels are concentrated in the zero-thickness interfaces, the 146 

orthogonal links have the role of simulating the deformability of the two connected panels in a given 147 

direction. It is worth noting that to account for masonry as an orthotropic material, the calibration is 148 

conducted separately for horizontal and vertical interface elements. The initial stiffness Kn of each link 149 

is simply obtained by assigning, to each link, the axial rigidity (Young's modulus, E) of the 150 

corresponding masonry strip defined by the volume characterised by the influence area ( ASn ) of each 151 

spring and half of the length (L/2) of the panel (Figure 2a). This procedure provides a couple of springs 152 
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in series, each associated with each of the connected panels. Each couple of springs is then replaced by 153 

a single resulting nonlinear spring as described in [45]. The yielding forces in tension, Fytn, and 154 

compression, Fycn, of each transversal link are related to their influence area and the tensile, σt, and 155 

compressive strengths, σc, adopted for the masonry. Finally, the tensile and compressive yieldind 156 

displacements uytn and uycn are associated with each link's yielding forces and initial stiffness. The 157 

nonlinear behaviour of the masonry can be simulated by adopting for transversal links any suitable and 158 

uniaxial nonlinear constitutive laws. Initial stiffness, tensile and compressive strength and displacement 159 

are reported respectively in Eq. 1-5. 160 

𝐾𝑛 = 2
𝐸𝐴𝑆𝑛

𝐿
      (1) 161 

𝐹𝑦𝑡𝑛 =  𝐴𝑆𝑛𝜎𝑡       (2) 162 

𝐹𝑦𝑐𝑛 = 𝐴𝑆𝑛𝜎𝑐      (3) 163 

𝑢𝑦𝑡𝑛 =
𝐹𝑦𝑡𝑛

𝐾𝑛
      (4) 164 

𝑢𝑦𝑐𝑛 =
𝐹𝑦𝑐𝑛

𝐾𝑛
      (5) 165 

The shear deformation of a masonry wall, discretised by a mesh of macro-elements, can be partly related 166 

to the diagonal shear deformation and partly due to the friction sliding along the interface between two 167 

adjacent macro-elements. The former is governed by a single diagonal spring (Figure 1) connecting two 168 

opposite macro-elements vertexes. First, a linear elastic calibration is performed by enforcing the 169 

equivalence between the macro-element subjected to a pure shear deformation related to the kinematic 170 

of the hinged quadrilateral and a reference continuous elastic solid. This finite portion of masonry is 171 

characterised by shear modulus G, transversal area At, height h, and base b. The initial stiffness KD of 172 

the diagonal link is expressed in Equation 6, in which θ is defined as arctan(b/h), and it is influenced by 173 

a shear factor denoted as αs whose value ranges between 0 and 1. If this factor presents a value equal to 174 

1, the global in-plane shear stiffness is entirely associated with the initial stiffness of the diagonal links, 175 

and the in-plane sliding links are assumed rigid. On the other hand, if the value of α is different from 1, 176 

the global in-plane shear stiffness comes as a contribution between diagonal and in-plane sliding 177 

nonlinear links.  178 
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𝐾𝐷 =
𝐺∙𝐴𝑡

ℎ∙𝑐𝑜𝑠2𝜃∙𝛼𝑠
       (6) 179 

The nonlinear post-elastic behaviour may be addressed by adopting different and suitable constitutive 180 

laws. A Mohr-Coulomb or Turnsek-Cacovic yielding criteria can be adopted for the constitutive 181 

calibration of this nonlinear link. The value of yielding force Fy associated to the Mohr-Coulomb and  182 

Turnsek and  Cacovic [52] criteria are given by Equations 7 and 8, respectively.  183 

𝐹𝑦 = 𝐹𝑦0 + 𝜇𝑑 ∙ 𝑁     (7) 184 

𝐹𝑦 = 𝐹𝑣0√1 +
𝑁

1.5∙𝐹𝑣0
     (8) 185 

where Fy0 and Fv0 are the yielding forces under no confinement conditions (zero normal stresses) 186 

associated with the Mohr-Coulomb or Turnesek-Cacovic criteria. 187 

The IP and OOP shear sliding springs (Figure 2b) rule the relative sliding motion between two adjacent 188 

macro-elements. The initial stiffness KS, related to the sliding mechanism, is associated with the panel's 189 

shear modulus G, the effective length, and the influence area As of the corresponding nonlinear link. 190 

The expression that provides the initial stiffness for IP and OOP sliding links is given by Equation 9. It 191 

is worth mentioning that the OOP shear mechanism is solely associated with the nonlinear links along 192 

the thickness of the interface element, and there is no need to introduce a shear factor in the out-of-193 

plane direction. The OOP sliding links also account for torsional behaviour around the axis orthogonal 194 

to the interface plane (Figure 2c). The elastic torsional stiffness Kϕ is associated with a torsional rigidity 195 

factor Jϕ given by Equation 11, in which s corresponds to the thickness of the panel. The shear sliding 196 

behaviour of UMR structure is associated with a frictional phenomenon along the mortar joints. Such 197 

behaviour can be adequately simulated by means of a Mohr-Coulomb yielding criterion. Based on this 198 

approach, the current yielding force Fy of the IP and OOP links is defined employing the cohesion c 199 

and friction coefficient µs of the masonry material, the current contact area A, and the normal force N  200 

applied to the interface element. 201 

𝐾𝑆 =
𝐺∙𝐴𝑠

𝐿∙(1−𝛼𝑠)
      (9) 202 

 203 

 204 



9 

 205 

𝐾𝛷 =
𝐺∙𝐽𝜙

𝐿
      (10) 206 

𝐽𝜙 = B ∙ 𝑠3 [
1

3
− 0.21

𝑠

𝐵
(1 −

𝑠4

12∙𝐵4)]   (11) 207 

𝐹𝑦 = 𝑐 ∙ 𝐴 + 𝜇𝑠 ∙ 𝑁     (12) 208 

More details on the calibration procedures can be found in Refs. [45], [46]. One can note that different 209 

nonlinear constitutive laws for the shear mechanisms accounting for residual strength when a target 210 

displacement is attained might be adopted. However, it has not been considered in the present paper 211 

since the main goal of this study relies on the investigation of the masonry mesoscale masonry pattern 212 

representation in a DMEM approach. For this reason, simple constitutive laws have been adopted 213 

aiming at limiting the number of parameters involved in the numerical analyses.  214 

   

(a) (b) (c) 

Figure 2: Interface’s Links representation: (a) Orthogonal N-Links; (b) In-plane sliding N-links; (c) Out-of-Plane 215 

sliding N-Links. 216 

DMEM approach classical interpretation implies that each macro-element must be representative of the 217 

corresponding finite portion of masonry walls, according to the macro-modelling approach. 218 
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Consequently, there is no relation between masonry constituents and block regions, and a 219 

homogenisation strategy is adopted to define the masonry mechanical constitutive law.  220 

An example of a masonry wall is shown in Figure 3a. Even though DMEM is conceived as a macro-221 

modelling strategy, some studies (Figure 3b) explored the possibility of discretising the structural model 222 

within a mesoscale approach (Figure 3c) [49], [53]. In this case, the properties of the constituents, for 223 

example, brick and mortar, and the details of the masonry arrangement are adopted to study the 224 

interaction of the constituents and the damage propagation pattern under different loading histories. It 225 

is worth noting that by using mesoscale strategies, some physical phenomena involved can be described 226 

in more detail, i.e. interlocking effect between the blocks or the presence of well-defined and realistic 227 

fracture surfaces at the interface. Moreover, a mesoscale model is quite accurate for the study of weak 228 

or dry mortar masonry structures for which usually DEM approaches are adopted [28], [29], [54]. 229 

Therefore, depending on whether a macro- or mesoscale approach is adopted, it is necessary to 230 

appropriately calibrate the main mechanical parameters that influence the response. As reported in Ref. 231 

[49], the interlocking phenomenon has mainly the effects of increasing the tensile strength and the 232 

cohesion between blocks influencing the collapse mechanism and increasing the strength and 233 

displacement capacity of the entire structure. 234 

 
(a)  

(b) 
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(c) 

 

Figure 3: (a) Real blocks’ arrangement; (b) Macro-scale modelling; (c) Mesoscale modelling. 235 

 236 

3 Numerical Investigation: U-shape Stone Prototype  237 

3.1 Description of the prototype  238 

In this section, parametric studies are performed to assess how the mesh topology affects numerical 239 

simulations performed with the DMEM. The numerical investigation has been performed on a 240 

benchmark represented by a U-shape masonry prototype, a simple structure of three walls forming a U-241 

plan made in stone masonry that idealises the experimental tests performed at the LNEC shaking table 242 

[55]. Figure 4 represents the overall geometrical characteristic of the masonry prototype. 243 

 244 
Figure 4: U-Shape stone prototype: geometrical features. 245 
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Figure 5 represents the different mesh discretisations adopted. Three of them are mesh discretisations 246 

consistent with the macroscale approach, in which the macro-elements' characteristic dimension is 247 

gradually decreased to reach three different levels of refinement. The last one is a mesoscale 248 

discretisation, which is taken in agreement with the one adopted in Ref. [56]. Concerning the 249 

mechanical properties, the parameters reported in Ref. [56] have been initially adopted for all mesh 250 

discretisations (Table 1 and  251 

Table 2). It is worth underlining that when a mesoscale representation is adopted (M4), a linear-elastic 252 

constitutive law has been selected for the diagonal shear behaviour to avoid that diagonal cracking 253 

involves the single macro element. This assumption ensures that the shear failure does not occur when 254 

macro-element represents a single masonry unit [49].  255 

Macroscale: M1 Macroscale: M2 Macroscale: M3 Mesoscale: M4 

    

Figure 5: Mesh discretisations adopted for the numerical investigations. 256 

 257 
Table 1: Mechanical properties adopted for the U-shape prototype: flexural behaviour [56]. 258 

 Flexural behaviour 

 Density Young's 
modulus 

Compressive 
strength 

Compressive 
fracture 
energy 

Tensile 
strength 

Tensile 
fracture 
energy 

Model [kg/m3] [MPa] [MPa] [N/mm] [MPa] [N/mm] 

M1,M2,M3 2360 2077 5.44 ∞ 0.224 0.048 
M4 2360 2077 5.44 ∞ 0.224 0.048 

 259 

Table 2: Mechanical properties adopted for the U-shape prototype: shear behaviour [56]. 260 

 Diagonal cracking behaviour Sliding behaviour 

 Shear 
modulus 

Failure 
criterion 

τ0 μd c μs 
 

Model [MPa] [MPa] [MPa] 

M1,M2,M3 830 Mohr-Coulomb 0.336 0.3 0.336 0.3 
M4 830 - - - 0.336 0.3 

 261 
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3.2 Nonlinear static analyses 262 

This section aims to investigate how the structural response o if macro- and mesoscale masonry 263 

representations are adopted. Nonlinear static analyses have been performed applying vertical actions 264 

including gravity loads and, subsequently, an incremental lateral force along the positive direction of 265 

axis X. 266 

Figure 6a reports the load-displacement curves of the considered mesh discretisations for horizontal 267 

actions. Further comparison is provided with a homogeneous model performed in Abaqus [57] where 268 

concrete damage plasticity (CDP) has been adopted to simulate the nonlinear behaviour of the masonry.  269 

The results demonstrate how the M1, M2 and M3 models are slightly affected by a mesh dependency, 270 

showing small differences in terms of initial stiffness and peak load. On the contrary, the mesoscale 271 

model, i.e., M4, provides a stiffer initial behaviour and a higher peak load than the M1, M2 and M3. 272 

One can note how M4 has the same initial stiffness as the homogeneous model performed in Abaqus; 273 

however, the reached peak load is slightly higher than the macroscale discretisations, which cannot 274 

account for blocks' interlocking. When mesh discretisation with interlocking between blocks are 275 

considered, the structural response is characterised by a complex interaction between the macro-276 

elements that involved shear sliding, shear diagonal, torsional, and membrane behaviour. 277 

The mesoscale model M4 correctly accounts for the stone's interlocking effects leading to higher 278 

stiffness and ultimate load. Moreover, M1, M2 and M3 present similar post-peak behaviour, while M4 279 

has two drops. Generally, when a discrete numerical model is used, each drop corresponds to a local 280 

crack in the numerical model. Once again, the differences in the post-peak behaviour can be justified 281 

by the fact that the mesoscale model M4 correctly accounts for the stone's interlocking effects, leading 282 

to different and more realistic results in terms of loading-displacement curve and collapse mechanism. 283 

In this latter model, the first drop, in the loading-displacement curve, is due to the crack propagation 284 

that starts from the opening in the later wall, whereas the second drop is related to the flexural rocking 285 

mechanism of the orthogonal wall without openings in its plane, which causes compressive and tensile 286 

stresses at the base of the wall. When the tensile stress exceeds the tensile strength assumed for the 287 
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masonry, cracks propagate at the base of the wall. M4 model grasps the so-called flange effect that can 288 

cause a significant overstrength on the approach based on equivalent frame modelling [58]. 289 

The misalignment of the vertical interfaces of the model M4 leads to more realistic results also in terms 290 

of collapse mechanisms, as reported in Figure 7, where the failure mechanisms provided by the five 291 

considered models are compared. To this end, for taking into account the interlocking effects provided 292 

by the mesoscales model by using a macroscale simulation, it is needed to consider the over-stiffness 293 

and over-strength in the calibration of the mechanical parameters, particularly when the size of the units 294 

is large in comparison of the size of the structural components of the building. According to Ref. [31], 295 

the tensile strength and fracture energy have been modified to obtain pushover curves comparable to 296 

those relative to the mesoscale model. Hence, the updated macroscale model (DMEM-C) has the same 297 

mesh discretisation adopted for M1, whereas tensile strength and fracture energy were calibrated 298 

through a tuned process, which was stopped when assumed a value equal to 0.240 MPa and 0.060 299 

N/mm, respectively. 300 

 301 

Figure 6: (a) Comparison in terms of load-displacement curve; (b) Normalised computational time (CPU) and 302 

normalised number of degrees-of-freedom (DOFs) for each numerical simulation. 303 

One can note how M4 and DMEM-C curves show a different initial stiffness. Such a phenomenon may 304 

be mitigated by also modifying the elastic modulus of the masonry in the DMEM-C model. Finally, 305 

Figure 6b reports a comparison including the required computational time (CPU) and the number of 306 

degrees-of-freedom (DOFs) for each mesh discretisation. Results have been normalised with respect to 307 

the Abaqus model. It should be noted how the DMEM approach can strongly decrease the 308 
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computational demand, by more than 90%. Besides, when a mesoscale mesh representation has been 309 

used, the computational saving is more than 95%, while the amount of DOFs is decreased by 90%. 310 

ABAQUS-FEM Macroscale: M1 Macroscale: M2 Macroscale: M3 Mesoscale: M4 

     

Figure 7: Comparison in terms of failure mechanisms. 311 

In short, the mesoscale representation may be a powerful alternative to model unreinforced masonry 312 

structures within a discrete macro-element approach (particularly if compared with classic 313 

homogeneous FE methodologies), even though the mechanical calibration cannot be performed 314 

considering an equivalent homogenous masonry, as described in the previous section 2. Differently, a 315 

proper characterisation of the blocks and the mortar joints must be considered. 316 

4 Numerical Investigation: Box prototype 317 

4.1 Generation of the models: geometrical and mechanical characteristics 318 

As reported in Ref. [59], masonry constituted by the assemblage of blocks and stones with variable 319 

dimensions is very common in historical buildings. However, the complexity of the problem, and the 320 

amount of information to accurately model using a mesoscale approach, usually preclude the study of 321 

these structures deterministically. Indeed, such uncertainties suggest investigations based on 322 

probabilistic approaches rather than deterministic, i.e., assuming texture properties within certain 323 

statistical variations.  324 

This section is devoted to understanding how irregular masonry patterns affect the structural response 325 

of a masonry prototype having a rectangular shape. Several mesh discretisations having a different 326 

degree of randomness have been generated by adopting a proper numerical tool which is described 327 

below. Instead, the parent geometry is always the same and coherent with a rectangular plan having 328 

4.80 m and 7.20 m, with walls' height equal to 4.0 m and a walls' thickness of 0.30 m (Figure 8). The 329 
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overload arising from a deformable slab, having a weight equal to 150 kN/m2, has been modelled as 330 

distributed line load along the top of the walls W2 (Figure 8). 331 

 332 

Figure 8: Parent geometry for box prototype: geometrical features. 333 

The masonry patterns have been generated using a numerical tool implemented in a GHPython script 334 

[42], [43]. It can generate 2D or 3D masonry prototypes within a randomised masonry pattern. However, 335 

one can note that the GHPython script is responsible for generating a single planar wall, whereas the 336 

assemblages in 3D still require operations performed that have been manually implemented. Next, the 337 

tool's explanation is performed in 2D framework, i.e., referred to the generation of a single planar wall. 338 

As represented in Figure 9a, the primary tool's inputs are the overall dimension of the wall (height, 339 

length and width), the cantonal's dimension, and the number of units' courses (NR). At this stage, the 340 

user has to define some parameters defining three numerical domains. As reported in Figure 9b the first 341 

domain is formed by integer numbers that define the minimum and the maximum number of units per 342 

row (UR). The second domain of values is defined by the smallest and the largest unit length that may 343 

appear at each row (UL). Finally, the third domain, similar to the second one, is defined by the minimum 344 

and maximum height that may assume a units' course (UH) (Figure 9c). Finally, the total height of the 345 

wall is scaled in order to be consistent with the primary input of the generator. The proposed algorithm 346 

can randomise the values contained inside the early mentioned domains and generate a different 347 

masonry pattern at each iteration. 348 
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 349 

Figure 9: Random masonry pattern generation. 350 

Referring to the parent geometry reported in Figure 8, one can note that two subcategories of masonry 351 

patterns have been generated, which are characterised by a different number on the units' courses equal 352 

to (A) 18 and (B) 12, respectively. The investigated mesh configurations are reported in Figure 10. A 353 

regular masonry bond pattern characterises the reference configurations A1 and B1, where all the units 354 

have the same dimensions, i.e., 0.60 x 0.222 x 0.30 m3 and 0.60 x 0.333 x 0.30 m3, respectively. 355 

A chaotic mesh distribution instead characterises A2 and B2 configurations. Therefore, the following 356 

values for the domains UR and UL have been adopted: 357 

𝑈𝑅
𝑊1 = [6, 10]      (13) 358 

𝑈𝑅
𝑊2 = [9, 15]       (14) 359 

𝑈𝐿
𝑊1,𝑊2 = [[0.20,0.60], 1.00]     (15) 360 

where the limits W1 and W2 are referred to walls having smaller and larger lengths (see Figure 9). One 361 

can note how 𝑈𝐿
𝑊1,𝑊2

 does not contain the actual dimension of the blocks, but the ratio between a lower 362 

bound, which has been assumed to be randomly selected between 0.20 and 0.60, and the upper bound 363 

that is equal to 1.00. The value selection is random and is performed by using the random function 364 

available in Python [60]. Hence, a remapping procedure must be performed in order to respect the 365 

compatibility condition regarding geometry: 366 

∑ 𝑈𝐿𝑈𝑅
(𝐿 − 𝐿𝑐𝑎𝑛𝑡)⁄ = 1    (16) 367 

Finally, A3 and B3 are also affected by a variable height of the units' courses. In this case, the domain 368 

𝑈𝐻  has been defined as follow: 369 

𝑈𝐻 = [0.50, 1.00]     (17) 370 
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One can note that 𝑈𝐻  does not contain the actual height of the unit's course, but the ratio between a 371 

lower bound, assumed to be 0.50, and the upper bound that is equal to 1.00. Hence, a remapping 372 

procedure must be again performed in order to respect the following compatibility condition: 373 

∑ 𝑈𝐻𝑁𝑅
(𝐻)⁄ = 1     (18) 374 

Finally, the openings are added by making Boolean differences and introducing the lintels. 375 

 A1  B1 

 A1O  B1O 

 A2  B2 

 A3  B3 
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 A3O  B3O 

 376 
Figure 10: Mesh discretisations adopted for the numerical investigations, with a total of ten. 377 

As mentioned in section 2, DMEM approach requires defining the mechanical properties considering 378 

the failure modes, i.e., flexural, shear-diagonal and shear-sliding, independently. A 379 

nonlinearconstitutive law has been assumed for the flexural response, governed by an exponential 380 

softening for the tensile post-peak behaviour and a parabolic curve for the compressive post-peak 381 

behaviour. The shear-sliding behaviour has been considered according to a Mohr-Coulomb failure 382 

criterion, considering a perfectly post-elastic constitutive law and assuming that the cohesion under no 383 

confinement conditions is equal to the tensile strength. Regarding the shear-diagonal behaviour, a 384 

linear-elastic constitutive law has been adopted to avoid the shear failure of the element, i.e., a 385 

mesoscale approach [56] without accounting for the failure of the units (assumed infinitely resistant). 386 

Table 3 and Table 4 summarise the mechanical properties adopted across the numerical simulation. One 387 

can note how tensile strength and fracture energy have been assumed to be very small to simulate dry-388 

stacked masonry.  389 

Table 3: Mechanical properties adopted for the box prototype: flexural behaviour 390 

 Flexural behaviour 

 Density Young's 
modulus 

Compressive 
strength 

Compressive 
fracture 
energy 

Tensile 
strength 

Tensile 
fracture 
energy 

Model [kg/m3] [MPa] [MPa] [N/mm] [MPa] [N/mm] 

Mesoscale 1800 1500 3.80 3.00 0.001 0.0001 

 391 

 392 
Table 4: Mechanical properties adopted for the box prototype: shear behaviour 393 

 Diagonal cracking behaviour Sliding behaviour 

 Shear 
modulus 

Failure 
criterion 

τ0 μd c μs 
 

Model [MPa] [MPa] [MPa] 

Mesoscale 580 - - - 0.001 0.6 

 394 
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4.2 Nonlinear static analysis 395 

Nonlinear static analyses have been performed applying an incremental lateral force, proportional to 396 

the mass of the structure, in X+ direction (Figure 8). Figure 8 also represents the control point used to 397 

define the pushover curves, which corresponds to the middle node at the top of the longitudinal wall 398 

that exhibits the maximum out of plane displacement.  399 

Figure 11a and Figure 11b report the pushover curves for classes A and B characterised by a different 400 

number on the units' courses equal to 18 and 12, respectively. As stated above, for each class, five 401 

masonry patterns characterised by an increased index of randomness and the presence of openings have 402 

been generated (Figure 10). Results demonstrate how irregular masonry patterns, as well as the presence 403 

of the openings, tend to decrease the capacity of the structures. 404 

As mentioned earlier, reference macro-element mesh discretisation has been compared with the random 405 

generated models (A2, A3, B2, B3) as well as with regular mesoscale configuration (A1, B1). To this 406 

end, reverse engineering was considered for selected mechanical parameters to get a good match in 407 

terms of structural response between macroscale and mesoscale models. In order to simulate the 408 

interlocking effect, in the macroscale model, the shear-diagonal behaviour has been calibrated 409 

according to a Turnsek-Cacovic failure criterion assuming a perfectly post-elastic law. The shear 410 

strength in the absence of axial load has been assumed to be equal 0.2 MPa while a value of 0.6 has 411 

been considered for the friction coefficient μs. The tensile strength ft and the cohesion c, which affected 412 

the peak of the capacity curve, have been increased to 0.025 MPa in macro-model A and to 0.015 MPa 413 

in macro-model B with the aim to satisfactorily reproduce the static nonlinear response of the mesoscale 414 

models A1 and B1, respectively. Moreover, the value of tensile fracture energy Gft, which influenced 415 

the post-peak capacity as reported in Ref. [49], was increased to 0.25 and 0.30 N/mm in the constitutive 416 

law of model A and B, respectively. It is worth noting that the interlocking phenomenon effect on the 417 

initial stiffness is less pronounced than the previously analysed U-shape. It happens because the 418 

interlocking phenomenon tends to increase the structure's initial stiffness, particularly when the 419 

slenderness ratio is small. 420 



21 

 421 

Figure 11: Comparison in terms of load-displacement curves for classes A and B characterised by a different 422 

number on the units' courses equal to: (a) 18; (b) 12.  423 

Furthermore, the deformed shapes at the last step of the analyses, highlighting the collapse mechanisms 424 

of the structures and the concentration of plastic strains, are reported in Figure 12. The failure 425 

mechanisms are always characterised by the overturning of the wall orthogonally loaded and subjected 426 

to outwards actions. In this regard, it is observed how the plastic strains are mainly concentrated at the 427 

connection with the sidewalls. It is worth noting how increasing the randomness index, the collapse 428 

mechanism is more localised at a single wall, and the structure tends to rapidly lose the box behaviour, 429 

whereas, in the structure with a regular masonry pattern, the overall structural behaviour is affected by 430 

a more global character although the incipient collapse mechanism is still characterised by the collapse 431 

of the wall that tends to overturn OOP. 432 

 A1  B1 



22 

 A1O  B1O 

 A2  B2 

 A3  B3 

 A3O  B3O 

 433 
Figure 12: Deformed shapes of the mesh discretisations adopted for control point displacement equal to 100 mm. 434 

For the sake of clarity, the histogram reported in Figure 13 represents the maximum displacement 435 

reached at the end of the simulations for the mesh configuration A1O and A3O evaluated by monitoring 436 

two control points located in the middle of the two opposite long walls. The same analysis has been 437 



23 

reported regarding the configuration B1O and B3O. In both cases, the results have been normalised with 438 

respect to the greater of the maximum displacements reached by the two points, and they quantitatively 439 

demonstrate how a chaotic distribution tends to localise the collapse mechanism leading to a negative 440 

influence on the masonry prototypes' global behaviour. 441 

 442 

Figure 13: Comparisons in terms of maximum displacement reached: orange vs blue control point. Notation 1 443 

indicates a regular masonry pattern and notation 3 indicates an irregular masonry pattern. 444 

4.3 Nonlinear dynamic analysis 445 

In this section, dynamic simulations have been performed applying a semi-sinusoidal pulse with an 446 

amplitude equal to 1g and a frequency of 6.7 Hz (that is a frequency close to the first mode vibration of 447 

the model A1) as input ground motion along the X direction (see Figure 14). Newmark's method with 448 

parameters γ = 0.5 and β = 0.25 [61], and a time step of 0.005 s has been adopted as numerical 449 

integration procedure, whereas the energy dissipation was based on the Rayleigh viscous damping 450 

criterion [62], assuming a 5% damping ratio associated with the 1st and 13th natural frequencies, the 451 

latter corresponding to 80% of the total accumulated specimen mass.  452 
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 453 

Figure 14: Ground motion input: semi-sinusoidal pulse. 454 

Figure 15 a and b report the time-history displacement of the control point of the mesoscale patterns 455 

belonging to classes A and B. Similar to what is underlined within the nonlinear static analyses (with 456 

lower capacity in terms of forces), the mesh discretisations belonging to class B (low number of units' 457 

courses) show higher residual displacements. Indeed, B models are affected statistically by a smaller m 458 

parameter, i.e., the ratio between the half-length and height of the blocks, being class B characterised 459 

by fewer courses.  It results in an overall lower capability of the blocks to generate frictional resistance 460 

in their plane [63]. 461 

 462 

Figure 15: Comparison in terms of time history displacement. 463 
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Figure 15a and Figure 15b show how increasing the masonry pattern's randomness, the structures are 464 

affected by larger displacements. Similarly, larger displacements are found in cases with openings, for 465 

which the structures are obviously affected by lower global stiffness. Finally, aiming to investigate the 466 

dynamic response of the considered specimens when subjected to earthquake loading, incremental 467 

dynamic analysis (IDA) has been carried out by adopting the Amatrice EW (2016) earthquake record, 468 

Italy, as input ground motion active along the X-direction (see Figure 16a). The original record has been 469 

scaled in order to reach the condition of the near-collapse of the investigated masonry prototype.  470 

 471 

Figure 16: (a) Amatrice EW (2016) record; (b) ratio between the maximum displacement of the control point and 472 

the absolute maxi-mum displacement for all mesh discretisations as a function of the scale factor of the record: 473 

shaded red provides the envelope of the results. 474 

Figure 16b reports the ratio between the maximum displacement of the control point and the absolute 475 

maximum displacement for all the investigated adopted mesh discretisations as a function of the scale 476 

factor of the record, which is a measure of the ground motion intensity (IM). It should be underlined 477 

that the adopted mesh configurations have shown a divergent behaviour with the increase of the scale 478 

factor, pointing out that the influence of the mesh pattern is larger, in terms of the maximum reached 479 

displacement, for a higher value of PGA. The results also confirm the need to perform stochastic 480 

simulations by generating a large number of masonry pattern configurations statistically consistent.  481 
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5 Final remarks 482 

This paper investigates the DMEM approach by adopting a mesoscale representation rather than a 483 

classical macroscale representation. At first, parametric analyses investigate the mesh sensitivity of the 484 

DMEM approach and shed light on the mechanical parameters that need to be calibrated to consider 485 

physical phenomena, namely interlocking behaviour generated by the vertical joint misalignment. Such 486 

investigations were performed by using a benchmark model represented by a U-shape masonry 487 

prototype made in stone, idealising the experimental tests performed at the LNEC shaking table [55]. 488 

The results underlined the need to recalibrate the tensile fracture energy as well as the tensile strength. 489 

Furthermore, the comparisons with a classical FE homogeneous model calibrated in ABAQUS showed 490 

that DMEM requires much lower computational demand, also if the adopted discrete modelling 491 

approach contemplated a unit by unit mesoscale modelling.  492 

In order to adequately simulate URM structures characterised by units with variable dimensions, a 493 

random masonry pattern generator was developed and implemented in a GHPython script. Such a script 494 

was adopted to generate 10 masonry prototypes (with different level of randomness), with the overall 495 

dimension consistent with a rectangular plan having 4.80 m and 7.20 m and walls' height equal to 4.0 496 

m, in order to evaluate how the chaotic distribution of the units might affect the structural behaviour. 497 

Both nonlinear static and dynamic analyses were performed, and the results demonstrated how the 498 

masonry pattern affected the structural response. In particular, it was worth noting how the increase of 499 

the randomness degree generated an early loss of the box behaviour.  500 

The main conclusions of this study are that: 501 

1. DMEM approach is able to take into account the main in-plane and out-of-plane failure 502 

mechanisms;  503 

2. Mesoscale configurations have been compared with a classical macro-element mesh 504 

discretisation. To this end, it was necessary to calibrate some mechanical parameters in order 505 

to get a good match in terms of structural response.  506 

3. A digital tool was adopted to generate random masonry patterns; it can generate chaotic 507 

masonry patterns by defining a few parameters. 508 
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4. The results demonstrated how the arrangement of the blocks affected the results. Moreover, by 509 

increasing the randomness index, the collapse mechanism is localised, and the structures lose 510 

the box behaviour, whereas, in the structure with a regular masonry pattern, the overall 511 

structural behaviour exhibited a more global character. 512 

5. Further investigations are necessary to better understand the potential of the DMEM approach 513 

in handling a mesoscale model and to have a clear picture of the influence of mesh discretisation 514 

on mechanical properties. 515 

6. Further efforts are also required to implement a masonry pattern generator by taking into 516 

account geometrical parameters easily detectable from practitioners, i.e., masonry quality index 517 

[64]. 518 

Future studies could include: i) statistical definition of the mechanical properties [65], [66]; ii) 519 

simulation of strengthening techniques, such as the use of Textile Reinforced Matrix (TRM) of Fiber 520 

Reinforced Polymers (FRP) reinforcement, for masonry pattern having units of variable dimensions. 521 
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